WO2015143621A1 - 导频序列的插入、提取方法和设备 - Google Patents

导频序列的插入、提取方法和设备 Download PDF

Info

Publication number
WO2015143621A1
WO2015143621A1 PCT/CN2014/074022 CN2014074022W WO2015143621A1 WO 2015143621 A1 WO2015143621 A1 WO 2015143621A1 CN 2014074022 W CN2014074022 W CN 2014074022W WO 2015143621 A1 WO2015143621 A1 WO 2015143621A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
transmit antenna
antenna port
transmitter
receiver
Prior art date
Application number
PCT/CN2014/074022
Other languages
English (en)
French (fr)
Inventor
王勇
唐小虎
倪锐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480056716.1A priority Critical patent/CN105637827B/zh
Priority to PCT/CN2014/074022 priority patent/WO2015143621A1/zh
Publication of WO2015143621A1 publication Critical patent/WO2015143621A1/zh
Priority to US15/255,479 priority patent/US10135589B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions

Definitions

  • the present invention relates to communication technologies, and in particular, to a method and an apparatus for inserting and extracting a pilot sequence.
  • MIMO Multiple-Input Multiple-Output
  • a system that includes an Nt root transmit antenna and an Nr root receive antenna can approximate NtxNr times the capacity boost.
  • Each receiving antenna needs to separately estimate the channel information of each transmitting antenna according to the superposed signals.
  • the reference signal (referred to as RS) is different.
  • the receiving antenna mainly identifies the port of the transmitting antenna through the reference signal. Therefore, how to accurately complete the port identification of the multi-antenna system with less resource overhead is an urgent problem to be solved.
  • the Long Term Evolution (LTE) system uses a time-frequency orthogonal method to distinguish the transmit antenna ports, that is, the time and frequency at which different transmit antennas are inserted into the RS are different.
  • Figure 1 shows the mapping of the reference signal when the LTE system uses four transmit antennas.
  • the reference signal is a two-dimensional pattern, including time and frequency.
  • There are four transmit antennas on the transmit end. respectively, antenna 0, antenna 1, antenna 2 and antenna 3, ⁇ indicates the time-frequency point at which antenna 0 is inserted into the reference signal, indicating the time-frequency point at which antenna 1 is inserted into the reference signal, and ⁇ indicates the time-frequency point at which antenna 2 is inserted into the reference signal.
  • the time-frequency point at which the antenna 3 is inserted into the reference signal Indicates the time-frequency point at which the antenna 3 is inserted into the reference signal, and the time-frequency point other than the time-frequency point of the inserted reference signal is the time-frequency point at which the user data is inserted.
  • the time-frequency points at which the antennas transmit and transmit reference signals are different from each other, so that different transmission antennas can be distinguished according to the time-frequency points, and the reference signals transmitted and transmitted by the respective antennas are the same.
  • the prior art also has the following problems:
  • the time-frequency resources occupied by the transmit reference signal will increase proportionally as the number of MIMO transmit antennas increases, and the time-frequency resources of the transmit reference signals allocated to a certain transmit antenna cannot Used by other antennas, causing serious time-frequency resource waves
  • the fee reduces the spectral efficiency and throughput of the entire system.
  • the embodiments of the present invention provide a method and a device for inserting and extracting a pilot sequence, which can reduce the time-frequency resources used for transmitting the pilot sequence, thereby improving the spectrum efficiency and throughput of the entire system.
  • a first aspect of the present invention provides a method for inserting a pilot sequence, including:
  • the transmitter uses the pilot sequences corresponding to the N ' transmit antenna ports to insert the pilot sequences corresponding to the transmit antenna ports into the pilots corresponding to the transmit antenna ports.
  • the pilot pattern corresponding to the transmit antenna port is the same;
  • the transmitter transmits each OFDM symbol after the insertion of the pilot sequence to the receiver.
  • the length of each pilot sequence is greater than or equal to a product of the number of the transmit antenna ports and the number of multipaths,
  • the number of multipaths is the number of multipaths of the wireless channel between the transmitter and the receiver
  • the pilot pattern includes
  • is the coherence time
  • 4 is the Doppler shift
  • T OFDM is the duration of the OFDM symbol.
  • the number of pilot elements of the pilot sequence inserted in each OFDM symbol is equal, and the number of the pilot elements is The length of the pilot sequence and the number of OFDM symbols included in the pilot pattern The number of pilot elements of the pilot sequence inserted within each OFDM symbol is not equal.
  • a pilot sequence corresponding to each of the transmitting antenna ports into each orthogonal frequency division multiplexing OFDM symbol included in the pilot pattern corresponding to each transmitting antenna port Inside including:
  • the transmitter uses different The orthogonal pilot sequence is inserted into the pilot pattern corresponding to the transmit antenna port, and the pilot sequence corresponding to each transmit antenna port is inserted into each orthogonal frequency division multiplexing included in the pilot pattern corresponding to each transmit antenna port.
  • the method before the sending, by using the following formula, the orthogonal pilot sequences that are different from each other, the method further includes:
  • the transmitter acquires a tap coefficient of the receiver.
  • the transmitter acquires the multipath number, the Doppler frequency shift, and the duration of the OFDM symbol.
  • a second aspect of the present invention provides a method for extracting a pilot sequence, including:
  • the receiver extracts a pilot sequence superposed by each of the transmitting antenna ports from the OFDM symbols according to a pilot pattern corresponding to each transmitting antenna port of the transmitter, where the transmitting antenna ports correspond to The pilot pattern is the same, and the number of transmit antenna ports of the transmitter is a positive integer greater than or equal to 2;
  • the receiver performs channel estimation on each of the transmitting antenna ports according to a pilot sequence corresponding to each of the transmitting antenna ports.
  • the receiver by using the superposed pilot sequence, identifies a pilot sequence corresponding to each of the transmitting antenna ports. , including:
  • the receiver calculates a pseudo inverse matrix corresponding to each of the transmitting antenna ports according to the tap coefficient, the number of subcarriers included in the pilot pattern, and the number of the transmitting antenna ports, and the sending
  • the pseudo inverse matrix corresponding to the antenna port has orthogonality
  • the receiver determines a frequency domain transfer function of each of the transmit antenna ports according to a pilot sequence corresponding to each of the transmit antenna ports.
  • the receiver includes, according to a tap coefficient, the pilot pattern Before calculating the pseudo inverse matrix corresponding to each of the transmitting antenna ports, the number of the subcarriers and the number of the transmitting antenna ports respectively include: The receiver acquires the number of subcarriers included in the pilot pattern and the number of the transmit antenna ports.
  • a third aspect of the present invention provides a transmitter, including:
  • An insertion module configured to insert a pilot sequence corresponding to each of the transmitting antenna ports into a corresponding pilot of each transmitting antenna port according to a pilot pattern corresponding to the transmitting antenna ports, using a different orthogonal pilot sequence
  • a sending module configured to send each OFDM symbol after the insertion module is inserted into the pilot sequence to the receiver.
  • the length of each pilot sequence is greater than or equal to a product of the number of the transmit antenna ports and the number of multipaths,
  • the number of multipaths is the number of multipaths of the wireless channel between the transmitter and the receiver
  • the pilot pattern includes
  • the number of OFDM symbols, which is the coherence time, is the Doppler shift, and T o is the duration of the OFDM symbol.
  • the number of pilot elements of the pilot sequence inserted in each OFDM symbol is equal, and the number of the pilot elements is A ratio of the length of the pilot sequence to the number of OFDM symbols included in the pilot pattern.
  • the number of pilot elements of the pilot sequence inserted in each OFDM symbol is not equal.
  • the inserting module is specifically configured to:
  • a generating module configured to generate the different orthogonal pilot sequences according to the following formula:
  • the number of subcarriers is the tap coefficient of the receiver.
  • the generating module is further configured to: acquire a tap of the receiver, and combine the present invention
  • the generating module is further configured to: obtain the multipath quantity, the Doppler frequency shift, and The duration of the OFDM symbol.
  • a fourth aspect of the present invention provides a receiver, including:
  • a receiving module configured to receive each orthogonal frequency division multiplexing OFDM symbol after the inserted pilot sequence sent by the transmitter;
  • an extracting module configured to extract a pilot sequence superposed by each of the transmitting antenna ports from the respective OFDM symbols received by the receiving module according to a pilot pattern corresponding to each transmitting antenna port of the transmitter, where The pilot patterns corresponding to the transmit antenna ports are the same, and the number of transmit antenna ports of the transmitter is a positive integer greater than or equal to 2;
  • An identification module configured to identify a pilot sequence corresponding to each of the transmit antenna ports from the superimposed pilot sequence extracted by the extracting module, where pilot sequences corresponding to the transmit antenna ports are not mutually Same and orthogonal;
  • a channel estimation module configured to perform channel estimation on each of the transmitting antenna ports according to a pilot sequence corresponding to each of the transmitting antenna ports identified by the identifying module.
  • the tap coefficient the number of subcarriers included in the pilot pattern, and the number of the transmit antenna ports
  • the channel estimation module is specifically configured to: determine a frequency domain transfer function of each of the transmit antenna ports according to a pilot sequence corresponding to each of the transmit antenna ports.
  • D k (Ck * Ck) - 1 * C ⁇ , which is the conjugate transpose matrix of the matrix, ⁇ ) - 1 indicates the inverse of the matrix X.
  • the method further includes: an acquiring module, configured to obtain the pilot pattern, including Number of subcarriers and number of the transmit antenna ports.
  • a fifth aspect of the present invention provides a transmitter, including: a processor, a memory, and a transmitter, where the memory is used to store an instruction, and the processor is configured to execute the
  • the pilot sequences corresponding to the respective transmit antenna ports are inserted into the pilot patterns corresponding to the respective transmit antenna ports according to the pilot patterns corresponding to the transmit antenna ports, using the orthogonal pilot sequences that are different from each other.
  • Orthogonal frequency division multiplexing OFDM symbols wherein the pilot sequences are in one-to-one correspondence with the transmitting antenna ports of the transmitter, and ⁇ ' is a positive integer greater than or equal to 2, and each transmitting antenna port
  • the corresponding pilot pattern is the same;
  • the transmitter is configured to send each OFDM symbol after the pilot sequence is inserted to the receiver.
  • the length of each pilot sequence is greater than or equal to a product of the number of the transmit antenna ports and the number of multipaths,
  • the number of multipaths is the number of multipaths of the wireless channel between the transmitter and the receiver
  • the pilot pattern includes Where ⁇ is the coherent time, 4 is Doppler Frequency shift, T OFDM is the duration of the OFDM symbol.
  • the number of pilot elements of the pilot sequence inserted in each OFDM symbol is equal, and the number of the pilot elements is A ratio of the length of the pilot sequence to the number of OFDM symbols included in the pilot pattern.
  • the number of pilot elements of the pilot sequence inserted in each OFDM symbol is not equal.
  • the processor when the number of pilot elements inserted in each OFDM symbol is equal, is specifically used to:
  • N PPT ⁇ N is the length of the pilot sequence
  • M is The pilot pattern includes the number of OFDM symbols, where ⁇ is the number of subcarriers included in the pilot pattern.
  • the processor is further configured to: generate the orthogonal ones that are different from each other Before the pilot sequence, the tap coefficients of the receiver are obtained.
  • the processor is further configured to: generate the Before the pilot sequence is exchanged, the multipath number, the Doppler shift, and the duration of the OFDM symbol are obtained.
  • a sixth aspect of the present invention provides a receiver, including: a processor, a memory, and a receiver, wherein the memory is configured to store an instruction, and the processor is configured to execute the instruction stored in the memory,
  • the receiver is configured to receive each orthogonal frequency division multiplexing OFDM symbol after the inserted pilot sequence sent by the transmitter;
  • the processor is configured to extract, from the OFDM symbols, a pilot sequence superposed by each of the transmit antenna ports according to a pilot pattern corresponding to each transmit antenna port of the transmitter, where each transmit antenna The pilot pattern corresponding to the port is the same, and the number of the transmitting antenna ports of the transmitter is a positive integer greater than or equal to 2;
  • the processor is further configured to: identify, according to the superposed pilot sequence, a pilot sequence corresponding to each of the transmit antenna ports, where the pilot sequences corresponding to the transmit antenna ports are different from each other and are positive Pay
  • the processor is further configured to: perform channel estimation on each of the sending antenna ports according to a pilot sequence corresponding to each of the transmitting antenna ports.
  • the processor identifies, according to the superposed pilot sequence, a pilot corresponding to each of the transmitting antenna ports When the sequence is used, it is specifically used to:
  • the tap coefficient the number of subcarriers included in the pilot pattern, and the number of the transmit antenna ports ⁇ respectively calculating a pseudo inverse matrix corresponding to each of the transmitting antenna ports, and the pseudo inverse matrix corresponding to each of the transmitting antenna ports has orthogonality;
  • the processor When the processor performs channel estimation on each of the transmitting antenna ports according to a pilot sequence corresponding to each of the transmitting antenna ports, the processor is specifically configured to:
  • the processor includes the number of subcarriers included according to the tap coefficient and the pilot pattern.
  • the processor includes, according to a tap coefficient, the pilot pattern The number of subcarriers and the number of the transmit antenna ports ⁇ respectively calculate the respective transmission days Before the pseudo-inverse matrix corresponding to the line port, the method further includes: acquiring the number of subcarriers included in the pilot pattern and the number of the transmitting antenna ports.
  • the method and device for inserting and extracting a pilot sequence by using a plurality of orthogonal pilot sequences to distinguish different transmit antenna ports, the pilot sequence and the transmit antenna port are in one-to-one correspondence,
  • the pilot sequence distinguishes different transmit antenna ports, so each transmit antenna port can use the same pilot pattern, so that the time-frequency resources occupied by the transmit pilot sequence can be reduced, and the time-frequency resources occupied by the pilot sequence do not follow.
  • the number of transmit antenna ports in the MIMO system increases, no matter how much the transmit antenna port increases, only the orthogonal pilot sequence needs to be added, and no time-frequency resources need to be added, thereby improving the spectrum efficiency and throughput of the entire system.
  • Figure 1 is a diagram of a reference signal when the LTE system uses four transmit antennas
  • FIG. 2 is a schematic diagram of a basic processing flow of the present invention
  • FIG. 3 is a flowchart of a method for inserting a pilot sequence according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a pilot pattern according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a method for extracting a pilot sequence according to an embodiment of the present invention
  • FIG. 6 is a flowchart of still another method for inserting a pilot sequence according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a receiver according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another transmitter according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another receiver according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In order to make the objects, technical solutions and advantages of the embodiments of the present invention more clear, the following will be combined The embodiments of the present invention are clearly and completely described in the embodiments of the present invention. It is obvious that the described embodiments are a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 2 is a schematic diagram of a basic processing flow of the present invention. As shown in FIG. 2, the basic processing flow mainly includes the following steps:
  • Step 101 The encoder of the transmitter completes channel coding according to a preset MIMO coding strategy, and outputs the encoded signal.
  • Step 102 The modulator of the transmitter modulates the encoded signal number stream output by the encoder into a complex signal of the I/O two channels according to a preset constellation diagram, and outputs the complex signal to the position mapping module.
  • Step 103 The transmitting antenna of the transmitter uses an orthogonal pilot sequence according to a preset rule, and outputs the pilot sequence to the position mapping module.
  • Step 104 The location mapping module of the transmitter inserts the complex signal output by the modulator and the pilot sequence output by the transmitting antenna into the corresponding time-frequency point according to the pilot pattern, and outputs the inserted frequency domain signal.
  • IFFT IFFT Transformation
  • Step 106 Each transmit antenna of the transmitter adds a cyclic prefix before the time domain signal output by the IFFT module.
  • Step 107 Each transmitting antenna of the transmitter transmits a signal with a cyclic prefix added, and the signals transmitted by the plurality of transmitting antennas are superimposed on the time domain after undergoing the wireless channel.
  • Step 108 The receiving antenna of the receiver receives the superimposed signals sent by the plurality of transmitting antennas, performs time-interval and de-cyclical prefix operations, and buffers and outputs an OFDM symbol in a pilot pattern, where the OFDM symbol is a time domain signal.
  • Step 109 The Fast Fourier Transformation (FFT) module of the receiver transforms the time domain signal outputted by the receiving antenna into a frequency domain signal by using an FFT transform.
  • FFT Fast Fourier Transformation
  • Step 110 The frequency of the receiver outputting from the FFT module according to the same pilot pattern as the transmitter The pilot insertion position of the domain signal extracts the superposed pilot sequence.
  • Step 111 The receiver estimates the wireless channel state information of each transmitting antenna to the receiving antenna by using the pilot sequence superimposed by the signal according to a certain algorithm, and outputs the wireless channel state information of each transmitting antenna.
  • Step 112 The receiver extracts useful data from the non-pilot insertion position of the frequency domain signal output by the FFT module according to the same pilot pattern as the transmitter.
  • Step 113 The receiver completes channel equalization according to the wireless channel state information of each transmitting antenna estimated in step 111 and the useful data extracted in step 112.
  • Step 114 The demodulator of the receiver performs signal demodulation by using the same constellation as the modulator, and outputs a demodulated signal.
  • Step 115 The MIMO decoding module of the receiver performs a MIMO decoding operation according to the demodulated signal output by the demodulator, and the decoded bit stream is sent to the upper layer protocol stack.
  • the above procedure is a typical MIMO-OFDM basic processing flow.
  • the method of inserting the pilot sequence provided by the present invention will be described in detail below through a specific embodiment.
  • FIG. 3 is a flowchart of a method for inserting a pilot sequence according to an embodiment of the present invention, as shown in FIG.
  • the method in this embodiment may include:
  • Step 201 The transmitter uses the different orthogonal pilot sequences, and inserts the pilot sequence corresponding to each transmit antenna port into the pilot corresponding to each transmit antenna port according to the pilot pattern corresponding to the transmit antenna ports.
  • the transmitter has a total of two transmit antenna ports.
  • the transmit antenna port here is a logical port, which is not the same as the physical antenna of the transmitter.
  • one physical antenna corresponds to one transmit antenna port, but in some cases, one physical antenna can correspond to Multiple transmit antenna ports are not limited by the present invention.
  • each pilot sequence corresponds to one transmit antenna port, that is, the pilot sequences used by the respective transmit antenna ports are orthogonal, and the transmitter can generate the pilot sequence by using any existing method.
  • the present invention is not correct. The way the pilot sequence is generated is limited.
  • the pilot pattern is a two-dimensional pilot pattern, including two dimensions of time and frequency. Each frequency in the frequency dimension corresponds to one subcarrier, and each time unit in the time dimension corresponds to one OFDM symbol.
  • the number of OFDM symbols included in the pilot pattern mentioned in the embodiments of the present invention is the total number of OFDM symbols in the time dimension of the pilot frequency pattern, and the number of subcarriers included in the pilot pattern is the sub-carrier of the pilot frequency pattern in the frequency dimension. The total number of carriers.
  • the transmitter inserts the pilot elements of the pilot sequence into the OFDM symbols of the pilot pattern according to the pilot pattern, each pilot sequence includes a plurality of pilot elements, and the length of the pilot sequence is equal to the pilot sequence included The number of pilot elements.
  • the number of pilot elements of the pilot sequence inserted in each OFDM symbol is equal, that is, the transmitter inserts the pilot elements of the pilot sequence into each OFDM symbol, and the number of pilot elements.
  • the number of pilot elements of the pilot sequence inserted in each OFDM symbol is not equal, and the manner in which the pilot sequence is inserted is not limited in the present invention.
  • the plurality of transmit antenna ports are mainly distinguished by the orthogonality of the pilot sequences. Therefore, each transmit antenna port can use the same time-frequency point to transmit the pilot sequence, that is, each transmit antenna port can use the same Pilot pattern.
  • multiple transmit antenna ports are distinguished by different time-frequency points. One time-frequency point can only be used by one transmit antenna port, and the pilot patterns used by each transmit antenna port are different, thereby causing waste of time-frequency resources. .
  • the method in this embodiment uses the same pilot pattern for each transmitting antenna port, thereby saving time-frequency resources occupied by the transmitting pilot sequence and improving the utilization of time-frequency resources.
  • Step 202 The transmitter sends each OFDM symbol after the pilot sequence is inserted to the receiver.
  • the transmitter transmits each OFDM symbol after the insertion of the pilot sequence to the receiver, so that the receiver extracts the pilot sequence superimposed by each transmitting antenna port from each OFDM symbol, and sends each according to the superposed pilot sequence.
  • the antenna ports perform channel estimation separately.
  • the receiver distinguishes different transmit antenna ports by using multiple orthogonal pilot sequences, and the pilot sequences are in one-to-one correspondence with the transmit antenna ports, because different transmissions are distinguished by orthogonal pilot sequences.
  • the antenna port so that each of the transmit antenna ports can use the same pilot pattern, so that the time-frequency resources occupied by the transmit pilot sequence can be reduced, and the method provided in this embodiment does not follow the time-frequency resources occupied by the pilot sequence.
  • the number of transmit antenna ports in the MIMO system increases, and no matter how much the transmit antenna port increases, only the orthogonal pilot sequence needs to be added, and no time-frequency resource is needed, thereby improving the spectrum efficiency and throughput of the entire system.
  • the transmitter needs to use an orthogonal pilot sequence before Generating the orthogonal pilot sequences
  • it is also necessary to obtain the tap coefficients of the receiver.
  • the transmitter can obtain the tap coefficient of the receiver in the following two ways: In one mode, the transmitter pre-configures the tap coefficients of the receiver; in another mode, the transmitter sends a capability negotiation request to the receiver, the capability The negotiation request message is used to obtain the tap coefficient of the receiver. After receiving the capability negotiation request, the receiver returns a capability negotiation response to the transmitter, where the capability negotiation response includes the tap coefficient of the receiver.
  • the transmitter can also generate a pilot sequence in other manners. This embodiment does not limit the manner in which the pilot sequence is generated.
  • the length of the pilot sequence may be greater than or equal to the product of the number of transmit antenna ports and the number of multipaths.
  • the main purpose is to combat multipath cyclic Doppler shift of the wireless channel, and the number of multipaths is Refers to the number of multipaths of the wireless channel between the transmitter and the receiver.
  • the number of multipaths of the wireless channel is fixed in a certain environment and time, and can be obtained by the transmitter and receiver.
  • the pilot sequence is stored in the receiver.
  • the transmitter corresponds to each transmit antenna port according to the pilot pattern corresponding to each transmit antenna port.
  • the pilot sequence is inserted into each OFDM symbol included in the pilot pattern corresponding to each of the transmit antenna ports.
  • FIG. 4 is a schematic structural diagram of a pilot pattern according to an embodiment of the present invention.
  • the horizontal axis is a time dimension, and a total of 16 OFDM symbols are used.
  • the axis is a frequency dimension with a total of 64 subcarriers.
  • the time-frequency points on the pilot pattern are divided into pilot insertion points and non-pilot insertion points according to their functions.
  • the pilot insertion points are used to insert pilot sequences.
  • Columns, non-pilot insertion points are used to insert useful signals.
  • the gray area in the figure is the pilot insertion point, and the time-frequency point except the pilot insertion point is the non-pilot insertion point.
  • the time-frequency points of the reference signals inserted in antenna 0, antenna 1, antenna 2, and antenna 3 in Figure 1 do not overlap each other, that is, only one can be inserted at each time-frequency point.
  • the reference signal of the antenna therefore, the receiver distinguishes the antennas according to the position of the time-frequency point, and the reference signals used by the antennas are identical.
  • the time-frequency points of the pilot sequences inserted in antenna 0, antenna 1, antenna 2, and antenna 3 in FIG. 4 overlap each other, that is, antennas can be inserted at each time-frequency point.
  • the transmitter can use any pilot pattern.
  • the present invention does not limit the pilot pattern.
  • the pilot pattern can be pre-stored on the transmitter and receiver. When multiple pilot patterns are stored in the transmitter and receiver, the transmitter needs to inform the receiver which pilot to use before sending data to the receiver.
  • the frequency pattern, or the transmitter and receiver can also pre-arrange which pilot pattern to use.
  • the transmitter and the receiver may add an identifier to each pilot pattern, and identify different pilot patterns by using the identifier, and the transmitter sends the identifier of the pilot pattern to be used to the receiver before transmitting the data.
  • the receiver determines the pilot pattern used by the transmitter based on the identification of the pilot pattern.
  • the transmitter inserts a pilot sequence in each OFDM symbol according to the pilot pattern.
  • pilot elements are determined to be inserted using different pilot patterns.
  • the formula used in the position is different, that is, the formula for calculating p and q is different, and the calculation formulas of p and q in the present embodiment correspond to the pilot pattern in Fig. 4.
  • the number of OFDM symbols included in the pilot pattern is the number of OFDM symbols included in the pilot pattern
  • FIG. 5 is a flowchart of a method for extracting a pilot sequence according to an embodiment of the present invention. As shown in FIG. 5, the method provided in this embodiment includes the following steps:
  • Step 301 The receiver receives each OFDM symbol after the inserted pilot sequence sent by the transmitter, and the pilot sequence in each OFDM symbol is a pilot sequence superposed by each transmitting antenna port of the transmitter, and the receiver according to each transmitting antenna
  • the pilot pattern corresponding to the port extracts the superposed pilot sequence from each OFDM symbol, wherein the pilot pattern corresponding to each transmitting antenna port is the same, and the number of transmitting antenna ports of the transmitter is a positive integer greater than or equal to 2.
  • the receiver extracts the pilot sequence after receiving the M OFDM symbols.
  • the receiver may also extract the pilot element once for each OFDM symbol received, and then extract each time.
  • the resulting pilot elements form a complete pilot sequence.
  • the pilot sequence extracted by the receiver is a pilot sequence superimposed on each transmit antenna port, and the pilot pattern used by the receiver to extract the pilot sequence is the same as the pilot pattern used when the transmitter inserts the pilot sequence.
  • the signal received by the receiver includes the superimposed pilot sequence and the superimposed useful signal, and the receiver extracts the superposed pilot sequence from the pilot insertion position of the pilot pattern according to the pilot pattern.
  • the receiver since the pilot patterns used by the respective transmit antenna ports are the same, the receiver only needs to extract the pilot sequences once, and the extracted pilot sequences are the pilot sequences superimposed by the respective transmit antenna ports.
  • the receiver since the pilot patterns used by each transmitting antenna port are different, the receiver needs to extract a pilot sequence for each transmitting antenna port, and the pilot sequences extracted by each transmitting antenna port are independent. That is, the pilot sequences of the transmit antenna ports are not superimposed.
  • Step 302 The receiver identifies a pilot sequence corresponding to each transmit antenna port from the superposed pilot sequence, where the pilot sequences corresponding to the transmit antenna ports are different from each other and orthogonal.
  • the receiver needs to perform channel estimation on each transmitting antenna port, firstly, the pilot sequence corresponding to each transmitting antenna port is identified from the superposed pilot sequence, and then each transmitting according to the pilot sequence corresponding to each transmitting antenna port.
  • the antenna port performs channel estimation, where the pilot sequences corresponding to the respective transmit antenna ports are different from each other and orthogonal.
  • the receiver identifies the pilot sequence corresponding to each transmit antenna port from the superposed pilot sequence, and can be as follows: First, the receiver according to the tap coefficient, the number of subcarriers included in the pilot pattern, and the transmit antenna port of the transmitter The pseudo-inverse matrix corresponding to each transmitting antenna port is calculated separately, and each transmitting antenna port corresponds to a pseudo inverse matrix, and the pseudo inverse matrix corresponding to each transmitting antenna port has orthogonality. Then, the receiver identifies the pilot sequence corresponding to each transmit antenna port from the superposed pilot sequence according to the pseudo inverse matrix corresponding to each transmit antenna port.
  • the receiver multiplies the superposed inverse matrix corresponding to each transmit antenna port by the superimposed pilot sequence to obtain a pilot sequence corresponding to each transmit antenna port, and the above manner utilizes the orthogonality of the pseudo inverse matrix to make each time
  • the pilot sequence obtained by matrix multiplication specifically corresponds to a certain transmit antenna port, and the pilot sequences of other transmit antenna ports that are superimposed together are suppressed.
  • the receiver calculates a pseudo inverse matrix corresponding to each transmit antenna port according to the tap coefficient, the number of subcarriers included in the pilot pattern, and the number of transmit antenna ports of the transmitter, which specifically include the following steps:
  • the receiver calculates the matrix A according to the following formula.
  • the tap coefficient of the receiver is the number of subcarriers included in the pilot pattern.
  • the receiver Before the receiver calculates the pseudo inverse matrix corresponding to each transmit antenna port according to the tap coefficient, the number of subcarriers included in the pilot pattern, and the number of transmit antenna ports of the transmitter, the receiver must obtain the number of transmit antenna ports and the pilot pattern. The number of carriers and the tap coefficient of the receiver. Specifically, if the number of transmit antenna ports is a variable, the number of transmit antenna ports can be sent by the transmitter to the receiver. If the number of transmit antenna ports is constant, the number of transmit antenna ports is ⁇ It can be pre-configured, the number of subcarriers included in the pilot pattern and the tap coefficients of the receiver are known to the receiver.
  • the receiver takes the Kth column of the matrix A to generate a diagonal matrix, and multiplies each diagonal matrix by the matrix A to obtain a matrix, k2 ..., Nt , the diagonal of the diagonal matrix
  • the line element is the Kth column of matrix A, and the other elements of the diagonal matrix are all zero.
  • the receiver generates a generator matrix according to the matrix, ( ⁇ 2 ⁇ ... ⁇ ! ⁇ .
  • the value of k is 1, 2, 3, 4, ie
  • four matrices ⁇ , , hypothesis matrices ⁇ , ⁇ 2 , ⁇ 3 , respectively, are 4 ⁇ 4 matrices, then when the value of k is 1, the matrix is equal to when the value of k is 2, the matrix is A matrix consisting of and A, and so on.
  • the matrix C 3 is a 4 X 12 matrix, the matrix ( 3 consists of and , the matrix C 4 is a 4 X 16 matrix, and the matrix (: 4 by , , , And composition.
  • the receiver separately calculates a pseudo inverse matrix corresponding to each transmitting antenna port according to the following formula, D ⁇ CC ⁇ Ck) - 1 * ⁇ , which is a conjugate transposed matrix of the matrix, and - 1 indicates that the matrix X is sought inverse.
  • Step 303 The receiver performs channel estimation on each of the transmitting antenna ports according to a pilot sequence corresponding to each transmitting antenna port.
  • the receiver performs channel estimation on each transmit antenna port according to the pilot sequence corresponding to each transmit antenna port.
  • the receiver determines the frequency domain transfer function of each transmit antenna port according to the pilot sequence corresponding to each transmit antenna port, or determines The channel state parameters of the respective transmit antenna ports, such as the channel matrix 11, the multipath delay, and the like.
  • the receiver receives each OFDM symbol after the transmitter transmits the inserted pilot sequence, and the pilot sequence in each OFDM symbol is a pilot sequence superposed by each transmitting antenna port, and the receiver according to each transmitting antenna port.
  • the corresponding pilot pattern extracts the superposed pilot sequence from each OFDM symbol, and performs channel estimation according to the superposed pilot sequence, since the pilot patterns corresponding to the transmitting antenna ports of the transmitter are the same, that is, each The transmit antenna port only needs to use one pilot pattern, which can save the time-frequency resources used by the transmit pilot sequence.
  • the length of the pilot sequence may be a static constant or a variable.
  • the pilot sequence is mainly determined by the number of transmit antenna ports of the transmitter and the number of multipaths of the wireless channel. In an actual communication system, the number of transmit antenna ports of different transmitters may be different. Meanwhile, the number of multipaths of wireless channels in different environments is also different. Therefore, the length of the pilot sequence is dynamically changed.
  • the number M of OFDM symbols included in one pilot pattern may also be a constant or a variable. When M is a variable, M depends on the coherence time and the duration of the OFDM symbol, and the duration of the OFDM symbol and the channel bandwidth and the Fourier transform. Points are related.
  • the channel bandwidth of the communication system changes, if the Fourier transform points do not change, then The duration of the OFDM symbol will change. In addition, the Doppler shift will vary even if the channel bandwidth is constant. Therefore, the number M of OFDM symbols included in the pilot pattern is dynamically changed.
  • FIG. 6 is a flowchart of still another method for inserting a pilot sequence according to an embodiment of the present invention. As shown in FIG. 6, the method provided in this embodiment is shown in FIG. Including the following steps:
  • Step 401 The transmitter sends a capability negotiation request to the receiver, where the capability negotiation request includes the number of transmit antenna ports used by the transmitter, and the information of the pilot pattern used by each transmit antenna port, where the information of the pilot pattern may be a transmitter.
  • the receiver uses the identification of the pilot pattern, determines which pilot pattern the transmitter uses based on the identification of the pilot pattern, so that the receiver subsequently extracts the pilot sequence from the pilot pattern.
  • the number of the antenna ports that the transmitter sends to the receiver is to enable the receiver to perform channel estimation according to the number of the transmit antenna ports and other parameters.
  • Step 402 After receiving the capability negotiation request, the receiver measures the number of multipaths included in the radio channel from the transmitter to the receiver and the Doppler frequency shift of the radio channel according to the training sequence sent by the transmitter.
  • the training sequence is sent by the transmitter.
  • the training sequence is mainly used for measuring the multipath quantity and Doppler frequency of the receiver.
  • the receiver measures the multipath quantity and the Doppler frequency according to the training sequence. Do too much explanation.
  • Step 403 The receiver returns a capability negotiation response to the transmitter, where the capability negotiation response includes: a tap coefficient of the receiver, a multipath quantity, and a Doppler frequency shift.
  • the capability negotiation response may further include: a channel bandwidth and a Fourier transform point, so that the transmitter determines the duration of the OFDM symbol according to the channel bandwidth and the Fourier transform point number, where the Fourier transform point number and the pilot pattern include The number of subcarriers is the same.
  • the duration of the OFDM symbol can also be set based on empirical values, in which case the transmitter does not need to acquire the channel bandwidth and the Fourier transform points.
  • Step 404 The transmitter receives a capability negotiation response sent by the receiver.
  • the transmitter and the receiver After the capability negotiation is completed, the transmitter and the receiver perform related configuration according to the parameters included in the capability negotiation response. For example, configuring a pilot sequence according to the number of multipaths and the number of transmit antenna ports The length, the duration of the OFDM symbol is configured according to the channel bandwidth, the Fourier transform point, and the Doppler shift. After the configuration is completed, the transmitter and the receiver can perform the methods in the first embodiment and the second embodiment.
  • the method of the embodiments of the present invention mainly uses a set of orthogonal pilot sequences to distinguish different transmit antenna ports of the transmitter, that is, to replace the time-frequency orthogonal in the prior art by code division orthogonal, because the code division is adopted.
  • the same pilot pattern can be used for each transmitting antenna port, that is, the pilot sequences of the transmitting antenna ports can completely overlap in the frequency domain and the time domain, thereby reducing the time frequency occupied by the transmitting pilot sequence.
  • the resource, and the method provided by the embodiment of the present invention the time-frequency resource occupied by the pilot sequence does not increase with the increase of the transmit antenna of the MIMO system, and only needs to increase the orthogonal pilot sequence regardless of the number of transmit antennas. , the corresponding increase of time-frequency resources is not required, thereby improving the spectrum efficiency and throughput of the entire system.
  • FIG. 7 is a schematic structural diagram of a transmitter according to an embodiment of the present invention. As shown in FIG. 7, the transmitter provided in this embodiment includes: an inserting module 51 and a sending module 52.
  • the insertion module 51 is configured to insert the pilot sequences corresponding to the sending antenna ports into the transmitting antenna ports according to the pilot patterns corresponding to the transmitting antenna ports by using the orthogonal pilot sequences that are different from each other.
  • Corresponding pilot patterns are included in each of the orthogonal frequency division multiplexing OFDM symbols, wherein the pilot sequences are in one-to-one correspondence with the transmitting antenna ports of the transmitter, and ⁇ is a positive integer greater than or equal to 2,
  • the pilot patterns corresponding to the transmit antenna ports are the same; the sending module 52 is configured to send the OFDM symbols after the insertion module 51 is inserted into the pilot sequence to the receiver.
  • the length of each pilot sequence is greater than or equal to a product of the number of transmit antenna ports and the number of multipaths, and the multipath number is a wireless channel between the transmitter and the receiver.
  • the number of multipaths is 4
  • 4 is the Doppler shift
  • is the duration of the 0FDM symbol.
  • the number of pilot elements of the pilot sequence inserted in each OFDM symbol is equal,
  • the number of pilot elements is the length of the pilot sequence and the pilot pattern included
  • the inserting module 51 is specifically configured to: Transmitting a pilot pattern corresponding to the antenna port, and inserting an nth pilot element of the pilot sequence corresponding to each of the transmitting antenna ports into a qth sub of the p-th OFDM symbol of the pilot pattern corresponding to each of the transmitting antenna ports
  • M is the number of OFDM symbols included in the pilot pattern
  • is the number of subcarriers included in the pilot pattern.
  • the transmitter of this embodiment may further include: a generating module, configured to generate the mutually different orthogonal pilot sequences according to the following formula:
  • the generating module is further configured to: acquire the tap coefficients of the receiver before generating the mutually different orthogonal pilot sequences.
  • the generating module is further configured to: acquire the multipath quantity, the Doppler frequency shift, and a duration of the OFDM symbol.
  • the transmitter provided in this embodiment can be used to implement the technical solutions in the embodiments shown in FIG. 2 and FIG. 3, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of a receiver according to an embodiment of the present invention.
  • the receiver provided in this embodiment includes: a receiving module 61, an extracting module 62, an identifying module 63, and Channel estimation module 64.
  • the receiving module 61 is configured to receive each orthogonal frequency division multiplexing OFDM symbol after the inserted pilot sequence sent by the transmitter;
  • the extracting module 62 is configured to extract a pilot sequence superposed by each of the transmitting antenna ports from the respective OFDM symbols received by the receiving module 61 according to a pilot pattern corresponding to each transmitting antenna port of the transmitter, where The pilot patterns corresponding to the transmit antenna ports are the same, and the number of transmit antenna ports of the transmitter is a positive integer greater than or equal to 2;
  • the identification module 63 is configured to identify, from the superimposed pilot sequence extracted by the extraction module 62, a pilot sequence corresponding to each of the transmit antenna ports, where the pilot sequence corresponding to each transmit antenna port Different from each other and orthogonal;
  • the channel estimation module 64 is configured to perform channel estimation on each of the transmitting antenna ports according to a pilot sequence corresponding to each of the transmitting antenna ports identified by the identifying module 63.
  • the identifying module 63 is specifically configured to: first, calculate, according to the tap coefficient, the number of subcarriers included in the pilot pattern, and the number of the transmitting antenna ports, respectively, corresponding to the sending antenna ports a pseudo-inverse matrix, the pseudo-inverse matrix corresponding to each of the transmitting antenna ports has orthogonality; and then, the respective transmissions are identified from the superposed pilot sequences according to a pseudo-inverse matrix corresponding to each of the transmitting antenna ports The pilot sequence corresponding to the antenna port.
  • the channel estimation module 64 is specifically configured to: determine a frequency domain transfer function of each of the transmit antenna ports according to a pilot sequence corresponding to each of the transmit antenna ports.
  • the receiver provided in this embodiment can be used to implement the technical solutions of the embodiment shown in FIG. 2 and FIG. 5, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of another transmitter according to an embodiment of the present invention.
  • the transmitter 700 includes: a processor 71, a memory 72, a transmitter 73, and a bus 74.
  • the memory 72 and the sending The processor 73 is connected to the processor 71 via a bus 74.
  • the memory 72 is used to store instructions, and the processor 71 is configured to execute the instructions stored in the memory 72.
  • the processor 71 is configured to use different ones.
  • the orthogonal pilot sequence is inserted into the pilot pattern corresponding to the transmit antenna port, and the pilot sequence corresponding to each transmit antenna port is inserted into each orthogonal frequency division multiplexing included in the pilot pattern corresponding to each transmit antenna port.
  • the transmitter 73 is configured to send each OFDM symbol after the pilot sequence is inserted to the receiver.
  • the length of each pilot sequence is greater than or equal to a product of the number of transmit antenna ports and the number of multipaths, and the multipath number is a wireless channel between the transmitter and the receiver.
  • the number of multipaths for the coherence time, 4 , is the Doppler shift, . TM ⁇ is 0FDM symbol duration.
  • the number of pilot elements of the pilot sequence inserted in each OFDM symbol is equal to the number of the pilot elements, and the length of the pilot sequence is included in the pilot pattern.
  • the processor 71 is specifically configured to: a pilot pattern corresponding to each of the transmitting antenna ports, and inserting an nth pilot element of the pilot sequence corresponding to each of the transmitting antenna ports into a corresponding guide of each of the transmitting antenna ports
  • N PPT ⁇ N is the length of the pilot sequence
  • M is the number of OFDM symbols included in the pilot pattern
  • is the pilot pattern included Number of subcarriers.
  • the processor 71 is further configured to: acquire a tap coefficient of the receiver, and acquire the multipath quantity, the Doppler frequency shift, and the foregoing, before generating the different orthogonal pilot sequences The duration of the OFDM symbol.
  • the transmitter provided in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2 and FIG. 3, and the specific implementation manner and the technical effect are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of another receiver according to an embodiment of the present invention.
  • the receiver 800 of this embodiment includes: a processor 81, a memory 82, a receiver 83, and a bus 84, where the memory 82 and receiver 83 are coupled to processor 81 via bus 84, which is used to store instructions for execution of said memory 82.
  • the instruction is specifically configured to perform the following operations:
  • the receiver 83 is configured to receive each orthogonal frequency division multiplexing OFDM symbol after the inserted pilot sequence sent by the transmitter;
  • the processor 81 is configured to extract, from the OFDM symbols, a pilot sequence superposed by each of the transmit antenna ports according to a pilot pattern corresponding to each transmit antenna port of the transmitter, where the each transmit The pilot pattern corresponding to the antenna port is the same, and the number of the transmitting antenna ports of the transmitter is a positive integer greater than or equal to 2;
  • the processor 81 is further configured to: identify, from the superposed pilot sequence, a pilot sequence corresponding to each of the transmit antenna ports, where the pilot sequences corresponding to the transmit antenna ports are different from each other and Orthogonal
  • the processor 81 is further configured to: perform channel estimation on each of the transmit antenna ports according to a pilot sequence corresponding to each of the transmit antenna ports.
  • the processor 81 When the processor 81 identifies the pilot sequence corresponding to each of the transmit antenna ports from the superposed pilot sequence, the processor 81 is specifically configured to: according to the tap coefficient, the number of subcarriers included in the pilot pattern, and the The number of the transmit antenna ports is respectively calculated as a pseudo inverse matrix corresponding to each of the transmit antenna ports, and the pseudo inverse matrix corresponding to each of the transmit antenna ports has orthogonality; and then, according to the pseudo inverse matrix corresponding to each of the transmit antenna ports A pilot sequence corresponding to each of the transmitting antenna ports is identified in the superposed pilot sequence.
  • the processor 81 When the processor 81 performs channel estimation on each of the transmitting antenna ports according to the pilot sequence corresponding to each of the transmitting antenna ports, the processor 81 is specifically configured to: determine, according to the pilot sequence corresponding to each of the transmitting antenna ports, The frequency domain transfer function of each transmit antenna port.
  • the processor 81 calculates the pseudo inverse matrix corresponding to each of the transmitting antenna ports according to the tap coefficients, the number of subcarriers included in the pilot pattern, and the number of the transmitting antenna ports
  • the processor 81 is specifically configured to:
  • D k (C ⁇ * Ck)- 1 * C ⁇ , which is the conjugate transpos
  • the processor 81 further uses the pseudo-inverse matrix corresponding to each of the transmitting antenna ports according to the tap coefficient, the number of subcarriers included in the pilot pattern, and the number of the transmitting antenna ports. And obtaining: the number of subcarriers included in the pilot pattern and the number of the transmit antenna ports.
  • the receiver provided in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 2 and FIG. 5, and the specific implementation and technical effects are similar, and details are not described herein again.
  • a person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be implemented by hardware related to program instructions, and the foregoing program may be stored in a computer readable storage medium, when executed, The foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供的导频序列的插入、提取方法和设备,包括:发送机使用N t个互不相同的正交导频序列,按照N t个发送天线端口对应的导频图样,将所述各发送天线端口对应的导频序列插入所述各发送天线端口对应的导频图样所包括的各个OFDM符号内,其中,所述N t个导频序列与所述发送机的N t个发送天线端口一一对应,N t为大于等于2的正整数,所述各发送天线端口对应的导频图样相同。所述方法由于通过正交的导频序列区分不同的发送天线端口,所以各发送天线端口可以使用完全相同的导频图样,从而能够减少发送导频序列占用的时频资源,而且导频序列占用的时频资源不会随着MIMO系统发送天线端口的增加而增加,从而提高了整个系统的频谱效率和吞吐量。

Description

导频序列的插入、 提取方法和设备 技术领域 本发明实施例涉及通信技术, 尤其涉及一种导频序列的插入、 提取方法 和设备。 背景技术 多输入多输出 (Multiple-Input Multiple-Output,简称 MIMO)技术是无线通 信系统提升信道容量的重要手段。在理想情况下, 一个包含 Nt根发送天线和 Nr根接收天线的系统可以近似获得 NtxNr倍的容量提升。对于任意一根接收 天线, 它在瞬间时刻会接收到来自 Nt根发送天线的叠加信号。每一根接收天 线需要根据叠加后的信号分别估计出每一根发送天线的信道信息, 在接收天 线估计每一根发送天线的信道信息之前, 首先需要识别不同发送天线端口, 不同发送天线端口使用的参考信号 (Reference Signal, 简称 RS) 不同, 接收 天线主要是通过参考信号识别发送天线的端口, 因此, 如何利用较少的资源 开销去准确完成多天线系统的端口识别是一个急需解决的问题。
长期演进 (Long Term Evolution, 简称 LTE)系统采用时频正交的方法来 区分发送天线端口, 即不同的发送天线插入 RS的时间和频率均不相同。 图 1 为 LTE系统采用 4根发送天线时的参考信号的图样 (mapping) , 如图 1所 示, 参考信号的图样为二维图样, 包括时间和频率两个维度, 发送端有 4根 发送天线, 分别为天线 0、 天线 1、 天线 2和天线 3, ^表示天线 0插入参考 信号的时频点, 表示天线 1插入参考信号的时频点, ^表示天线 2插入参 考信号的时频点, 表示天线 3插入参考信号的时频点, 除插入参考信号的 时频点外的时频点为插入用户数据的时频点。 通过图 1可知, 各天线发送发 送参考信号的时频点互不相同, 从而能够根据时频点区分不同发送天线, 各 天线发送发送的参考信号相同。
但是, 现有技术也存在以下问题: 发送参考信号占用的时频资源随着 MIMO发送天线数量的增加将会正比例地增加, 而且, 分配给某一根发送天 线的发送参考信号的时频资源不能被其他天线使用, 造成严重的时频资源浪 费, 降低了整个系统的频谱效率和吞吐量。 发明内容
本发明实施例提供一种导频序列的插入、 提取方法和设备, 能够减少发 送导频序列占用的时频资源, 从而提高了整个系统的频谱效率和吞吐量。
本发明第一方面提供一种导频序列的插入方法, 包括:
发送机使用 ^个互不相同的正交导频序列,按照 N '个发迭天线端口对 应的导频图样, 将所述各发送天线端口对应的导频序列插入各发送天线端 口对应的导频图样包括的各个正交频分复用 OFDM符号内,其中,所述 ^ 个导频序列与所述发送机的 ^个发送天线端口一一对应, ^为大于等于 2 的正整数, 所述各发送天线端口对应的导频图样相同;
所述发送机将插入导频序列后的各个 OFDM符号发送给接收机。
结合本发明第一方面, 在本发明第一方面的第一种可能的实现方式中, 所述各导频序列的长度大于或等于所述发送天线端口数 ^与多径数量的 乘积, 所述多径数量为所述发送机与所述接收机之间的无线信道的多径数
结合本发明第一方面以及本发明第一方面的第一种可能的实现方式, 在本发明第一方面的第二种可能的实现方式中, 所述导频图样包括的
OFDM符号的数量
Figure imgf000004_0001
其中, ^为相干时间, 4 , 为多普勒 频移, TOFDM为 OFDM符号的时长。
结合本发明第一方面, 在本发明第一方面的第三种可能的实现方式中, 每个 OFDM符号内插入的导频序列的导频元素的个数相等, 所述导频元 素的个数为所述导频序列的长度与所述导频图样包括的 OFDM符号的数 每个 OFDM符号内插入的导频序列的导频元素的个数不相等。 结合本发明第一方面的第三种可能的实现方式, 在本发明第一方面的 第五种可能的实现方式中, 当每个 OFDM符号内插入的导频元素的个数 相等时, 所述发送机按照所述各发送天线端口对应的导频图样, 将所述各 发送天线端口对应的导频序列插入所述各发送天线端口对应的导频图样 包括的各个正交频分复用 OFDM符号内, 包括:
所述发送机按照所述各发送天线端口对应的导频图样, 将所述各发送 天线端口对应的导频序列的第 n个导频元素插入所述各发送天线端口对应 的导频图样的第 p个 OFDM符号的第 q个子载波上,其中 '
Figure imgf000005_0001
q = mod(n - \, N /M) + p ^ " = 1, ..., N, p = \, ...,M ^ q , NFFT , Ν为所述导频序 列的长度, Μ为所述导频图样包括的 OFDM符号的数量, ^为所述导频 图样包括的子载波数。
结合本发明第一方面的以及第一方面的第一种至第五种可能的实现 方式, 在本发明第一方面的第六种可能的实现方式中, 所述发送机使用 ^ 个互不相同的正交导频序列, 按照 ^个发送天线端口对应的导频图样, 将 所述各发送天线端口对应的导频序列插入各发送天线端口对应的导频图 样包括的各个正交频分复用 OFDM符号内之前, 还包括: 所述发送机根据以下公式生成所述 ^个互不相同的正交导频序列: pilot(m, n) = e , 其中, ,")表示第 n个发送天线端口对 应的导频序列的第 m个导频元素, Μ = .Ά , n = \, ..., Nt , 为所述发送 机的发送天线端口数, 为所述导频图样包括的子载波数, 为所述 第七种可能的实现方式中, 所述发送机根据以下公式生成所述 ^个互不相 同的正交导频序列之前, 还包括:
所述发送机获取所述接收机的抽头系数。
结合本发明第一方面的第六种可能的实现方式, 在本发明第一方面的 第八种可能的实现方式中, 所述发送机生成 ^个互不相同的正交导频序列 之前, 还包括:
所述发送机获取所述多径数量、 所述多普勒频移和所述 OFDM符号 的时长。
本发明第二方面提供一种导频序列的提取方法, 包括:
接收机接收发送机发送的插入导频序列后的各个正交频分复用
OFDM符号;
所述接收机根据所述发送机的各发送天线端口对应的导频图样从所 述各个 OFDM符号中提取所述各发送天线端口叠加后的导频序列,其中, 所述各发送天线端口对应的导频图样相同, 所述发送机的发送天线端口数 ^为大于等于 2的正整数;
所述接收机从所述叠加后的导频序列中识别出所述各发送天线端口 对应的导频序列, 其中, 所述各发送天线端口对应的导频序列互不相同并 且正交;
所述接收机根据所述各发送天线端口对应的导频序列对所述各发送 天线端口分别进行信道估计。
结合本发明第二方面, 在本发明第二方面的第一种可能的实现方式中, 所述接收机从所述叠加后的导频序列中识别出所述各发送天线端口对应 的导频序列, 包括:
所述接收机根据抽头系数、所述导频图样包括的子载波数和所述发送 天线端口数 ^分别计算所述各发送天线端口对应的伪逆矩阵, 所述各发送 天线端口对应的伪逆矩阵具有正交性;
所述接收机根据所述各发送天线端口对应的伪逆矩阵从所述叠加后 的导频序列中识别出所述各发送天线端口对应的导频序列;
所述接收机根据所述各发送天线端口对应的导频序列对所述各发送 天线端口分别进行信道估计, 包括:
所述接收机根据所述各发送天线端口对应的导频序列确定所述各发 送天线端口的频域传递函数。
结合本发明第二方面的第一种可能的实现方式, 在本发明第二方面的 第二种可能的实现方式中, 所述接收机根据抽头系数、 所述导频图样包括 的子载波数和所述发送天线端口数 ^分别计算所述各发送天线端口对应 的伪逆矩阵, 包括: 所述接收机根据以下公式计算矩阵 Α, Λ = -α- , αe N附 , 其中, m=n , η = ··'Ν' , 为所述导频图样包括的子载波数, N 为所 述接收机的抽头系数;
所述接收机分别取所述矩阵 A的第 K列生成 ^个对角矩阵, 并将所 述各对角矩阵分别与所述矩阵 A相乘得到 ^个矩阵 , k = l, .., Nt . 所述接收机根据所述矩阵 分别生成生成矩阵 , Ck iB^— ' Bk}; 所述接收机根据以下公式分别计算所述各发送天线端口对应的伪逆 矩阵 A, Dk = (C^ * Ck)-1 * C^, 为矩阵 的共轭转置矩阵, ( ― 1表示对 矩阵 X求逆。
结合本发明第二方面的第一种和第二种可能的实现方式, 在本发明第 二方面的第三种可能的实现方式中, 所述接收机根据抽头系数、 所述导频 图样包括的子载波数和所述发送天线端口数 ^分别计算所述各发送天线 端口对应的伪逆矩阵之前, 还包括: 所述接收机获取所述导频图样包括的子载波数和所述发送天线端口 数 。 本发明第三方面提供一种发送机, 包括:
插入模块, 用于使用 ^个互不相同的正交导频序列, 按照 ^个发送天 线端口对应的导频图样, 将所述各发送天线端口对应的导频序列插入各发 送天线端口对应的导频图样包括的各个正交频分复用 OFDM符号内, 其 中, 所述 个导频序列与所述发送机的 ^个发送天线端口一一对应, 为 大于等于 2的正整数, 所述各发送天线端口对应的导频图样相同;
发送模块, 用于将所述插入模块插入导频序列后的各个 OFDM符号 发送给接收机。
结合本发明第三方面, 在本发明第三方面的第一种可能的实现方式中, 所述各导频序列的长度大于或等于所述发送天线端口数 ^与多径数量的 乘积, 所述多径数量为所述发送机与所述接收机之间的无线信道的多径数
结合本发明第三方面以及本发明第三方面的第一种可能的实现方式, 在本发明第三方面的第二种可能的实现方式中, 所述导频图样包括的
T 1
M < ~ T =——
OFDM符号的数量 其中, 为相干时间, 为多普勒 频移, To 为 OFDM符号的时长。
结合本发明第三方面, 在本发明第三方面的第三种可能的实现方式中, 每个 OFDM符号内插入的导频序列的导频元素的个数相等, 所述导频元 素的个数为所述导频序列的长度与所述导频图样包括的 OFDM符号的数 量的比值。
结合本发明第三方面, 在本发明第三方面的第四种可能的实现方式中, 每个 OFDM符号内插入的导频序列的导频元素的个数不相等。
结合本发明第三方面的第三种可能的实现方式, 在本发明第三方面的 第五种可能的实现方式中, 当每个 OFDM符号内插入的导频元素的个数 相等时, 所述插入模块具体用于:
按照所述各发送天线端口对应的导频图样, 将所述各发送天线端口对 应的导频序列的第 n个导频元素插入所述各发送天线端口对应的导频图样
= n - l + 1
的第 p个 OFDM符号的第 q个子载波上, 其中, _ LH」+ ,
q = mod(n - l, N/M) + p ^ w = l, ..., N, p .,M , q ,NFFT , Ν为所述导频序 列的长度, Μ为所述导频图样包括的 OFDM符号的数量, ^为所述导频 图样包括的子载波数。
结合本发明第三方面的以及第三方面的第一种至第五种可能的实现 方式, 在本发明第三方面的第六种可能的实现方式中, 还包括:
生成模块, 用于根据以下公式生成所述 ^个互不相同的正交导频序列:
Figure imgf000009_0001
个发送天线端口对 应的导频序列的第 m个导频元素, m = U T , " = 1,···,Μ, 为所述发送 机的发送天线端口数, 为所述导频图样包括的子载波数, 为所述 接收机的抽头系数。
结合本发明第三方面的第六种可能的实现方式, 在本发明第三方面的 第七种可能的实现方式中, 所述生成模块还用于: 获取所述接收机的抽头 结合本发明第三方面的第六种可能的实现方式, 在本发明第三方面的 第八种可能的实现方式中, 所述生成模块还用于: 获取所述多径数量、 所 述多普勒频移和所述 OFDM符号的时长。
本发明第四方面提供一种接收机, 包括:
接收模块, 用于接收发送机发送的插入导频序列后的各个正交频分复 用 OFDM符号; 提取模块, 用于根据所述发送机的各发送天线端口对应的导频图样从 所述接收模块接收的所述各个 OFDM符号中提取所述各发送天线端口叠 加后的导频序列, 其中, 所述各发送天线端口对应的导频图样相同, 所述 发送机的发送天线端口数 ^为大于等于 2的正整数;
识别模块, 用于从所述提取模块提取的所述叠加后的导频序列中识别 出所述各发送天线端口对应的导频序列, 其中, 所述各发送天线端口对应 的导频序列互不相同并且正交;
信道估计模块, 用于根据所述识别模块识别出的所述各发送天线端口 对应的导频序列对所述各发送天线端口分别进行信道估计。
结合本发明第四方面, 在本发明第四方面的第一种可能的实现方式中, 所述识别模块具体用于:
根据抽头系数、所述导频图样包括的子载波数和所述发送天线端口数
^分别计算所述各发送天线端口对应的伪逆矩阵, 所述各发送天线端口对 应的伪逆矩阵具有正交性;
根据所述各发送天线端口对应的伪逆矩阵从所述叠加后的导频序列 中识别出所述各发送天线端口对应的导频序列;
所述信道估计模块具体用于: 根据所述各发送天线端口对应的导频序 列确定所述各发送天线端口的频域传递函数。
结合本发明第四方面的第一种可能的实现方式, 在本发明第四方面的 第二种可能的实现方式中, 所述识别模块具体用于: 根据以下公式计算矩阵 A, A = M , a^=e NrrT ,其中, m = U附, n =u , 为所述导频图样包括的子载波数, 为所述接收机的抽 头系数;
分别取所述矩阵 A的第 K列生成 ^个对角矩阵, 并将所述各对角矩 阵分别与所述矩阵 A相乘得到 个矩阵 , k = l, ..., Nt . 根据所述矩阵 分别生成生成矩阵 , Ck : ^^ ^!^ 根据以下公式分别计算所述各发送天线端口对应的伪逆矩阵 ,
Dk = (Ck * Ck)-1 * C^, 为矩阵 的共轭转置矩阵, ^)—1表示对矩阵 X求 逆。
结合本发明第四方面的第一种和第二种可能的实现方式, 在本发明第 四方面的第三种可能的实现方式中, 还包括: 获取模块, 用于获取所述导频图样包括的子载波数和所述发送天线端 口数 。
本发明第五方面提供一种发送机, 包括: 处理器、 存储器和发送器, 所述存储器用于存储指令, 所述处理器用于执行所述存储器存储的所述指 所述处理器, 用于使用 ^个互不相同的正交导频序列, 按照 ^个发送 天线端口对应的导频图样, 将所述各发送天线端口对应的导频序列插入各 发送天线端口对应的导频图样包括的各个正交频分复用 OFDM符号内, 其中, 所述 ^个导频序列与所述发送机的 ^个发送天线端口一一对应, Ν' 为大于等于 2的正整数, 所述各发送天线端口对应的导频图样相同;
所述发送器, 用于将插入导频序列后的各个 OFDM符号发送给接收 机。
结合本发明第五方面, 在本发明第五方面的第一种可能的实现方式中, 所述各导频序列的长度大于或等于所述发送天线端口数 ^与多径数量的 乘积, 所述多径数量为所述发送机与所述接收机之间的无线信道的多径数
结合本发明第五方面以及本发明第五方面的第一种可能的实现方式, 在本发明第五方面的第二种可能的实现方式中, 所述导频图样包括的
Figure imgf000011_0001
其中, ^为相干时间, 4 , 为多普勒 频移, TOFDM为 OFDM符号的时长。
结合本发明第五方面, 在本发明第五方面的第三种可能的实现方式中, 每个 OFDM符号内插入的导频序列的导频元素的个数相等, 所述导频元 素的个数为所述导频序列的长度与所述导频图样包括的 OFDM符号的数 量的比值。
结合本发明第五方面, 在本发明第五方面的第四种可能的实现方式中, 每个 OFDM符号内插入的导频序列的导频元素的个数不相等。
结合本发明第五方面的第三种可能的实现方式, 在本发明第五方面的 第五种可能的实现方式中, 当每个 OFDM符号内插入的导频元素的个数 相等时, 所述处理器具体用于:
按照所述各发送天线端口对应的导频图样, 将所述各发送天线端口对 应的导频序列的第 n个导频元素插入所述各发送天线端口对应的导频图样 的第 p个 OFDM符号的第 q个子载波上, 其中, LN/M」 ,
q = mod(n - N /M) + p f n = \ ., N, p二 ,—,M, q = l, ..., NPPT ^ N为所述导频序 列的长度, M为所述导频图样包括的 OFDM符号的数量, ^为所述导频 图样包括的子载波数。
结合本发明第五方面的以及第五方面的第一种至第五种可能的实现 方式,在本发明第五方面的第六种可能的实现方式中,所述处理器还用于: 在使用所述 ^个互不相同的正交导频序列之前, 根据以下公式生成所述 ^ 个互不相同的正交导频序列: pilot{m, n) = e N附 , 其中, to ,")表示第 n个发送天线端口对 应的导频序列的第 m个导频元素, m = H , " = 1,···,Μ, 为所述发送 机的发送天线端口数, 为所述导频图样包括的子载波数, 为所述 接收机的抽头系数。 结合本发明第五方面的第六种可能的实现方式, 在本发明第五方面的 第七种可能的实现方式中, 所述处理器还用于: 在生成所述 个互不相同 的正交导频序列之前, 获取所述接收机的抽头系数。
结合本发明第五方面的第六种可能的实现方式, 在本发明第五方面的 第八种可能的实现方式中, 所述处理器还用于: 在生成所述 ^个互不相同 的正交导频序列之前, 获取所述多径数量、 所述多普勒频移和所述 OFDM 符号的时长。
本发明第六方面提供一种接收机, 包括: 处理器、 存储器和接收器, 所述存储器用于存储指令, 所述处理器用于执行所述存储器存储的所述指 令,
所述接收器, 用于接收发送机发送的插入导频序列后的各个正交频分 复用 OFDM符号;
所述处理器, 用于根据所述发送机的各发送天线端口对应的导频图样 从所述各个 OFDM符号中提取所述各发送天线端口叠加后的导频序列, 其中, 所述各发送天线端口对应的导频图样相同, 所述发送机的发送天线 端口数 ^为大于等于 2的正整数;
所述处理器还用于: 从所述叠加后的导频序列中识别出所述各发送天 线端口对应的导频序列, 其中, 所述各发送天线端口对应的导频序列互不 相同并且正交;
所述处理器还用于: 根据所述各发送天线端口对应的导频序列对所述 各发送天线端口分别进行信道估计。
结合本发明第六方面, 在本发明第六方面的第一种可能的实现方式中, 所述处理器在从所述叠加后的导频序列中识别出所述各发送天线端口对 应的导频序列时, 具体用于:
根据抽头系数、所述导频图样包括的子载波数和所述发送天线端口数 ^分别计算所述各发送天线端口对应的伪逆矩阵, 所述各发送天线端口对 应的伪逆矩阵具有正交性;
根据所述各发送天线端口对应的伪逆矩阵从所述叠加后的导频序列 中识别出所述各发送天线端口对应的导频序列;
所述处理器在根据所述各发送天线端口对应的导频序列对所述各发 送天线端口分别进行信道估计时, 具体用于:
根据所述各发送天线端口对应的导频序列确定所述各发送天线端口 的频域传递函数。
结合本发明第六方面的第一种可能的实现方式, 在本发明第六方面的 第二种可能的实现方式中, 所述处理器在根据抽头系数、 所述导频图样包 括的子载波数和所述发送天线端口数 ^分别计算所述各发送天线端口对 应的伪逆矩阵时, 具体用于: 根据以下公式计算矩阵 A, A = M , a ,其中, m = U η = ··'Ν , 为所述导频图样包括的子载波数, 为所述接收机的抽 头系数;
分别取所述矩阵 A的第 K列生成 ^个对角矩阵, 并将所述各对角矩 阵分别与所述矩阵 A相乘得到 ^个矩阵 , k = l, .. , Nt . 根据所述矩阵 分别生成生成矩阵 , Ck : ^^ ^!^
根据以下公式分别计算所述各发送天线端口对应的伪逆矩阵 , Dk = (C^ * Ck)-1 * C^, 为矩阵 的共轭转置矩阵, ^)—1表示对矩阵 X求 逆。
结合本发明第六方面的第一种和第二种可能的实现方式, 在本发明第 六方面的第三种可能的实现方式中, 所述处理器在根据抽头系数、 所述导 频图样包括的子载波数和所述发送天线端口数 ^分别计算所述各发送天 线端口对应的伪逆矩阵之前, 还用于: 获取所述导频图样包括的子载波数和所述发送天线端口数 ^。 本发明实施例提供的导频序列的插入、 提取方法和设备, 通过使用多 个正交的导频序列来区分不同的发送天线端口, 导频序列与发送天线端口 一一对应, 由于通过正交的导频序列区分不同的发送天线端口, 所以各发 送天线端口可以使用完全相同的导频图样, 从而能够减少发送导频序列占 用的时频资源,而且导频序列占用的时频资源不会随着 MIMO系统发送天 线端口的增加而增加, 不论发送天线端口增加多少, 只需要增加正交的导 频序列即可, 不需要增加时频资源, 从而提高了整个系统的频谱效率和吞 吐量。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为 LTE系统采用 4根发送天线时的参考信号的图样;
图 2为本发明的基本处理流程示意图;
图 3为本发明实施例提供的一种导频序列的插入方法的流程图; 图 4为本发明实施例提供的一种导频图样的结构示意图;
图 5为本发明实施例提供的一种导频序列的提取方法的流程图; 图 6为本发明实施例提供的又一种导频序列的插入方法的流程图; 图 7为本发明实施例提供的一种发送机的结构示意图;
图 8为本发明实施例提供的一种接收机的结构示意图;
图 9为本发明实施例提供的另一种发送机的结构示意图;
图 10为本发明实施例提供的另一种接收机的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
在介绍本发明各实施例之前, 首先介绍一下本发明各实施例的应用场 景,本发明主要应用在多输入多输出正交频分复用( Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing, 简称 MIMO-OFDM) 系统中, 图 2为本发明的基本处理流程示意图, 如图 2所示, 该基本处理 流程主要包括以下歩骤:
歩骤 101、发送机的编码器根据预设的 MIMO编码策略完成信道编码, 输出编码信号。
歩骤 102、 发送机的调制器根据预设的星座图将编码器输出的编码信 号码流调制为 I/O两路的复信号, 并向位置映射模块输出该复信号。
歩骤 103、 发送机的发送天线根据预设的规则使用正交的导频序列, 并向位置映射模块输出该导频序列。
歩骤 104、 发送机的位置映射模块根据导频图样将调制器输出的复信 号和发送天线输出的导频序列插入对应的时频点, 输出插入后的频域信号。
歩骤 105、 发送机的逆快速傅里叶变换 (Inverse Fast Fourier
Transformation,简称 IFFT )模块对位置映射模块输出的频域信号进行 IFFT 变换, 输出变换后的时域信号。
歩骤 106、发送机的各发送天线在 IFFT模块输出的时域信号之前添加 循环前缀。
歩骤 107、 发送机的各发送天线将添加循环前缀后的信号发射出去, 多根发送天线发射的信号经历无线信道后在时域上叠加在一起。
歩骤 108、 接收机的接收天线接收多根发送天线发送的叠加信号, 完 成时间同歩和去循环前缀的操作,并且缓存输出一个导频图样内的 OFDM 符号, 该 OFDM符号为时域信号。
歩骤 109、 接收机的快速傅里叶变换(Fast Fourier Transformation, 简 称 FFT ) 模块通过 FFT变换将接收天线输出的时域信号变换成频域信号。
歩骤 110、 接收机根据与发送机一样的导频图样从 FFT模块输出的频 域信号的导频插入位置提取叠加后的导频序列。
歩骤 111、 接收机根据一定的算法利用信号叠加后的导频序列分别估 计出每一根发送天线到达本接收天线的无线信道状态信息, 并输出各发送天 线的无线信道状态信息。
歩骤 112、 接收机根据与发送机一样的导频图样从 FFT模块输出的频 域信号的非导频插入位置提取有用数据。
歩骤 113、 接收机根据歩骤 111估计得到的各发送天线的无线信道状 态信息和歩骤 112中提取的有用数据完成信道均衡。
歩骤 114、接收机的解调器采用与调制器相同的星座图完成信号解调, 输出解调信号。
歩骤 115、接收机的 MIMO解码模块根据解调器输出的解调信号完成 MIMO解码操作, 并解码后的比特流送入上层协议栈。
上述歩骤是一个典型的 MIMO-OFDM基本处理流程, 以下将通过具 体的实施例对本发明提供的导频序列的插入方法进行详细的说明。
图 3为本发明实施例提供的一种导频序列的插入方法的流程图, 如图
3所示, 本实施例的方法可以包括:
歩骤 201、 发送机使用 ^个互不相同的正交导频序列, 按照 ^个发送 天线端口对应的导频图样, 将各发送天线端口对应的导频序列插入各发送 天线端口对应的导频图样包括的各个 OFDM符号内, 其中, ^个导频序 列与发送机的 个发送天线端口一一对应, ^为大于等于 2的正整数, 各 发送天线端口对应的导频图样相同。
发送机共有 ^个发送天线端口, 这里的发送天线端口是逻辑端口, 并 不等同于发送机的物理天线, 通常情况下一个物理天线对应一个发送天线 端口, 但在有些情况下一个物理天线可以对应多个发送天线端口, 本发明 并不对此进行限制。
本实施例中, 每个导频序列对应于一个发送天线端口, 即各个发送天 线端口使用的导频序列正交, 发送机可以采用现有的任意一种方式生成导 频序列, 本发明并不对导频序列的生成方式进行限制。
导频图样为二维导频图样, 包括时间和频率两个维度, 频率维度上每 个频率对应一个子载波,时间维度上每个时间单位对应 1个 OFDM符号, 本发明各实施例中提到的导频图样包括的 OFDM符号的数量是指导频图 样在时间维度上的 OFDM符号的总数, 导频图样包括的子载波数是指导 频图样在频率维度上的子载波的总数。
发送机将导频序列的导频元素按照导频图样分别插入到导频图样的 各个 OFDM符号内, 每个导频序列包括多个导频元素, 导频序列的长度 等于该导频序列包括的导频元素的个数。 一种方式中, 每个 OFDM符号 内插入的导频序列的导频元素的个数相等, 即发送机将导频序列的导频元 素平均的插入到每个 OFDM符号, 导频元素的个数为导频序列的长度与 导频图样包括的 OFDM符号的数量的比值。 另一种方式中, 每个 OFDM 符号内插入的导频序列的导频元素的个数不相等, 本发明中并不对导频序 列的插入方式进行限制。
本实施例中, 主要通过导频序列的正交性区分多个发送天线端口, 因 此, 各发送天线端口可以使用相同的时频点发送导频序列, 也就是说各发 送天线端口可以使用相同的导频图样。 而现有技术中, 通过不同的时频点 区分多个发送天线端口, 一个时频点只能被一个发送天线端口使用, 各发 送天线端口使用的导频图样不同, 从而造成时频资源的浪费。 和现有技术 相比, 本实施例的方法, 由于各发送天线端口使用相同的导频图样, 从而 节省了发送导频序列占用的时频资源, 提高了时频资源的利用率。
歩骤 202、发送机将插入导频序列后的各个 OFDM符号发送给接收机。 发送机将插入导频序列后的各个 OFDM符号发送给接收机, 以使接 收机从各 OFDM符号内提取出各发送天线端口叠加后的导频序列, 并根 据叠加后的导频序列对各发送天线端口分别进行信道估计。
本实施例提供的方法, 接收机通过使用多个正交的导频序列来区分不 同的发送天线端口, 导频序列与发送天线端口一一对应, 由于通过正交的 导频序列区分不同的发送天线端口, 所以各发送天线端口可以使用完全相 同的导频图样, 从而能够减少发送导频序列占用的时频资源, 而且本实施 例提供的方法,导频序列占用的时频资源不会随着 MIMO系统发送天线端 口的增加而增加, 不论发送天线端口增加多少, 只需要增加正交的导频序 列即可,不需要增加时频资源,从而提高了整个系统的频谱效率和吞吐量。
在上述实施例一中, 发送机在使用 个正交的导频序列之前, 还需要 生成该 ^个正交的导频序列, 一种实现方式中, 发送机根据以下公式生成 个正交的导频序列: , n、 = e Nfft , 其中, 'to( ,")表示第 n 个发送天线端口对应的导频序列的第 m个导频元素, 其中, Μ = .Ί , " = 1,···,^, 为发送机的发送天线端口数, 为导频图样包括的子载波 数, 为接收机的抽头系数。 发送机根据以上公式生成 ^个正交的导频 序列之前, 还需要获取接收机的抽头系数, 对于发送机来说, 在导频图样 已知的情况下, 导频图样包括的子载波数也是已知的。 发送机获取接收机的抽头系数具体可通过以下两种方式: 一种方式中, 发送机预先配置好该接收机的抽头系数; 另一种方式中, 发送机向接收机 发送能力协商请求, 能力协商请求消息用于获取接收机的抽头系数, 接收 机收到该能力协商请求后, 向发送机返回能力协商响应, 能力协商响应中 包括接收机的抽头系数。
需明确的是, 上述例子只是列举了一种导频序列的生成方式, 当然, 发送机还可以采用其他的方式生成导频序列, 本实施例并不对导频序列的 生成方式进行限制。
在本发明优选的实现方式中, 导频序列的长度可以大于或等于发送天 线端口数 ^与多径数量的乘积, 主要目的是对抗无线信道的多径循环多普 勒频移, 多径数量是指发送机和接收机之间的无线信道的多径数量, 无线 信道的多径数量在一定的环境和时间内是固定不变, 并且发送机和接收机 可以获取到。
发送机生成各发送天线端口对应的导频序列之后, 将各导频序列保存 在接收机上, 在使用导频序列时, 发送机按照各发送天线端口对应的导频 图样, 将各发送天线端口对应的导频序列插入到各发送天线端口对应的导 频图样所包括的各个 OFDM符号内。
本实施例中, 各发送天线端口对应的导频图样相同, 图 4为本发明实 施例提供的一种导频图样的结构示意图, 图 4中横轴为时间维度, 共有 16 个 OFDM符号, 纵轴为频率维度, 共有 64个子载波, 导频图样上的时频 点按照作用分为导频插入点和非导频插入点, 导频插入点用来插入导频序 列, 非导频插入点用来插入有用信号。 图中灰色区域为导频插入点, 除导 频插入点外的时频点为非导频插入点。 和图 1所示的导频图样不同, 图 1 中天线 0、 天线 1、 天线 2和天线 3的参考信号插入的时频点互不重叠, 也就是说在每个时频点只能插入一个天线的参考信号, 因此, 接收机根据 时频点的位置区别各个天线, 各天线使用的参考信号完全相同。 假设发送 机有 4根发送天线, 则图 4中天线 0、 天线 1、 天线 2和天线 3的导频序 列插入的时频点互相重叠, 也就是说每个时频点上均可以插入天线 0、 天 线 1、 天线 2和天线 3的导频序列的导频元素, 天线 0、 天线 1、 天线 2 和天线 3的导频序列在时域和频域上是重叠的, 因此, 接收机无法根据时 频点来区别各个天线, 由于天线 0、 天线 1、 天线 2和天线 3的各自使用 的导频序列是正交的, 接收机能够根据导频序列区别各个天线。
图 4所示的只是一种可能的导频图样,发送机可以采用任何导频图样, 本发明并不对导频图样进行限制。 导频图样可以预先保存在发送机和接收 机上, 当发送机和接收机中保存有多个导频图样时, 在发送机向接收机发 送数据之前, 发送机需要预先通知接收机自己使用哪个导频图样, 或者, 发送机和接收机也可以预先约定好使用哪个导频图样。在具体实现的过程 中, 发送机和接收机可以对各导频图样添加标识, 通过标识区分不同的导 频图样,发送机在发送数据前,将要使用的导频图样的标识发送给接收机, 接收机根据导频图样的标识确定发送机使用的导频图样。
发送机根据导频图样在各 OFDM符号内插入导频序列,当每个 OFDM 符号内插入的导频元素的个数相等时, 发送机可以采用以下方式将导频序 列插入到各 OFDM符号内:发送机按照各发送天线端口对应的导频图样, 将各发送天线端口对应的导频序列的第 n个导频元素插入导频图样的第 p 个 OFDM符号的第 q个子载波上, p和 q表示导频序列的第 n个导频元素 在导频图样中的位置, p和 q可以通过以下公式计算, LN/M」 , q = mod(n - l, N /M) + p ^ n = \ ., N, p = .,M, N为导频序列的长度, M为 导频图样包括的 OFDM符号的数量, , 为导频图样包括的 子载波数。 可以理解的是, 使用不同的导频图样, 在确定导频元素的插入 位置时使用的公式不同, 即计算 p和 q的公式有所不同, 本实施例中的 p 和 q的计算公式对应于图 4中的导频图样。
在一种可选的的实现方式中, 导频图样包括的 OFDM符号的数量
J。丽,其中, 为相干时间, 4 , 为多普勒频移, i。丽为 OFDM 符号的时长, 此处 M的取值范围主要目的是对抗无线信道的多径循环多 普勒频移。 图 5为本发明实施例提供的一种导频序列的提取方法的流程图, 如图 5所示, 本实施例提供的方法包括以下歩骤:
歩骤 301、接收机接收发送机发送的插入导频序列后的各个 OFDM符 号, 各 OFDM符号内的导频序列为发送机的各发送天线端口叠加后的导 频序列, 接收机根据各发送天线端口对应的导频图样从各个 OFDM符号 中提取叠加后的导频序列, 其中, 各发送天线端口对应的导频图样相同, 发送机的发送天线端口数 ^为大于等于 2的正整数。
一种实现方式中,接收机接收到 M个 OFDM符号后才提取导频序列, 另一种实现方式中, 接收机也可以每接收到一个 OFDM符号提取一次导 频元素, 然后, 将每次提取到的导频元素组成一个完整的导频序列。 接收 机提取的导频序列为各发送天线端口叠加后的导频序列, 接收机提取导频 序列时使用的导频图样与发送机插入导频序列时使用的导频图样相同。 具 体的, 接收机接收的信号包括叠加后的导频序列以及叠加后的有用信号, 接收机根据导频图样从导频图样的导频插入位置提取叠加后的导频序列。 本实施例中, 由于各个发送天线端口使用的导频图样相同, 接收机只需要 提取一次导频序列, 并且提取的导频序列为各个发送天线端口叠加后的导 频序列。 现有技术中, 由于每个发送天线端口使用的导频图样不相同, 因 此, 接收机需要针对每个发送天线端口提取一次导频序列, 每个发送天线 端口提取的导频序列都是独立的, 即各发送天线端口的导频序列不是叠加 在一起的。
歩骤 302、 接收机从叠加后的导频序列中识别出各发送天线端口对应 的导频序列, 其中, 各发送天线端口对应的导频序列互不相同并且正交。 接收机要对各发送天线端口进行信道估计, 首先要从叠加后的导频序 列中将各发送天线端口对应的导频序列识别出来, 然后, 根据各发送天线 端口对应的导频序列对各发送天线端口进行信道估计, 其中, 各发送天线 端口对应的导频序列互不相同并且正交。
接收机从叠加后的导频序列中识别出各发送天线端口对应的导频序 列, 可以通过以下方式: 首先, 接收机根据抽头系数、 导频图样包括的子 载波数和发送机的发送天线端口数分别计算各发送天线端口对应的伪逆 矩阵, 每个发送天线端口对应一个伪逆矩阵, 各发送天线端口对应的伪逆 矩阵具有正交性。 然后, 接收机根据各发送天线端口对应的伪逆矩阵从叠 加后的导频序列中识别出各发送天线端口对应的导频序列。 具体地, 接收 机用各发送天线端口对应的伪逆矩阵与叠加后的导频序列相乘, 得到各发 送天线端口对应的导频序列, 上述方式利用了伪逆矩阵的正交性使得每次 矩阵乘法得到的导频序列特定地对应于某个发送天线端口, 而叠加在一起 的其他发送天线端口的导频序列则被抑制。
本实施例中, 接收机根据抽头系数、 导频图样包括的子载波数和发送 机的发送天线端口数 ^分别计算各发送天线端口对应的伪逆矩阵, 具体包 括以下几个歩骤:
、 接收机根据以下公式计算矩阵 A,
Figure imgf000022_0001
为所述接收机的抽头系数, 为导频图样 包含的子载波数。 接收机根据抽头系数、 导频图样包括的子载波数和发送机的发送天线 端口数 ^分别计算各发送天线端口对应的伪逆矩阵之前, 必须获取发送天 线端口数 ^、 导频图样包括的子载波数、 接收机的抽头系数, 具体的, 如 果发送天线端口数 ^为变量, 则发送天线端口数 ^可以由发送机发送给接 收机, 如果发送天线端口数 ^为常量, 则发送天线端口数 ^可以预先配置 好, 导频图样包括的子载波数和接收机的抽头系数对接收机来说是已知的。
第二歩、 接收机分别取矩阵 A的第 K列生成 ^个对角矩阵, 并将各 对角矩阵分别与矩阵 A相乘得到 ^个矩阵 , k二 … ,Nt , 对角矩阵的对角 线元素为矩阵 A的第 K列, 对角矩阵的其他元素均为零。 第三歩、 接收机根据矩阵 分别生成生成矩阵 , (^二^^…^!^。 举例来说, 当有 4个发送天线端口时, k的取值为 1、 2、 3、 4, 即在 第二歩生成 4个矩阵 ι、 、 假设矩阵 Α、 Β2、 Β3、 分别为 4χ 4 矩阵, 则当 k的取值为 1时, 矩阵 等于 当 k的取值为 2时, 矩阵 为一个 的矩阵,矩阵 由 和 A组成,依次类推,矩阵 C3为一个 4 X 12的 矩阵,矩阵 ( 3由 、 和 组成,矩阵 C4为一个 4 X 16的矩阵,矩阵 (:4由 、 、 和 组成。
第四歩、接收机根据以下公式分别计算各发送天线端口对应的伪逆矩 阵 , D^ CC^ Ck)-1 * ^,, 为矩阵 的共轭转置矩阵, )— 1表示对矩 阵 X求逆。
歩骤 303、 接收机根据各发送天线端口对应的导频序列对各发送天线 端口分别进行信道估计。
接收机根据各发送天线端口对应的导频序列对各发送天线端口分别 进行信道估计具体为: 接收机根据各发送天线端口对应的导频序列确定各 发送天线端口的频域传递函数, 或者, 确定各发送天线端口的信道状态参 数, 信道状态参数例如是信道矩阵11、 多径时延等。
本实施例提供的方法, 接收机接收发送机发送插入导频序列后的各个 OFDM符号, 各 OFDM符号内的导频序列为各发送天线端口叠加后的导 频序列, 接收机根据各发送天线端口对应的导频图样从各个 OFDM符号 中提取出叠加后的导频序列, 并根据叠加后的导频序列进行信道估计, 由 于发送机的各发送天线端口对应的导频图样相同, 也就是说各发送天线端 口只需要使用一个导频图样, 从而能够节省发送导频序列占用的时频资源。
本发明各实施例中, 导频序列的长度可以为一个静态的常量, 也可以 是一变量。 当导频序列为变量时, 导频序列主要由发送机的发送天线端口 数和无线信道的多径数量决定。 在实际通信系统中, 不同发送机的发送天 线端口数可能不同, 同时, 不同环境下的无线信道的多径数量也不同, 因 此, 导频序列的长度是动态变化的。 另外, 一个导频图样内包括的 OFDM 符号数量 M也可以为常量或变量,当 M为变量时, M取决于相干时间 和 OFDM符号的时长, 而 OFDM符号的时长与信道带宽和傅里叶变换点数 有关。 当通信系统的信道带宽发生变化时, 如果傅里叶变换点数不变, 那 么 OFDM符号的时长将发生变化。 此外, 即使信道带宽不变, 其多普勒 频移也会有所差异。 所以, 导频图样内包括的 OFDM符号的数量 M是动 态变化的。
当上述参数动态变化时, 会使得导频图样以及其他可能用到的参数发 生变化。 因此, 发送机和接收机之间应该协商好上述参数, 然后再执行上 述实施例二和实施例三的方法。本发明实施例三中主要介绍参数动态变化 时的处理流程, 图 6为本发明实施例提供的又一种导频序列的插入方法的 流程图, 如图 6所示, 本实施例提供的方法包括以下歩骤:
歩骤 401、 发送机向接收机发送能力协商请求, 能力协商请求包括发 送机采用的发送天线端口的数量, 各发送天线端口采用的导频图样的信息 其中, 导频图样的信息可以为发送机使用的导频图样的标识, 接收机 根据导频图样的标识确定发送机使用了哪个导频图样, 以便接收机在后续 根据该导频图样去提取导频序列。 发送机向接收机发送天线端口的数量, 是为了使接收机能够根据发送天线端口的数量以及其他一些参数进行信 道估计, 具体的过程可参照实施例二中的描述, 这里不再赘述。
歩骤 402、 接收机在接收到能力协商请求后, 根据发送机发送的训练 序列测量从发送机到接收机的无线信道的包含的多径数量以及无线信道 的多普勒频移。
训练序列由发送机发送, 该训练序列主要用于接收机进行多径数量和 多普勒频移的测量, 接收机根据训练序列测量多径数量和多普勒频移为现 有技术, 这里不做过多的说明。
歩骤 403、接收机向发送机返回能力协商响应,能力协商响应中包括: 接收机的抽头系数、 多径数量、 多普勒频移。
该能力协商响应中还可以包括: 信道带宽和傅里叶变换点数, 以使发 送机根据信道带宽和傅里叶变换点数确定 OFDM符号的时长, 其中, 傅 里叶变换点数与导频图样包括的子载波数相同。 OFDM符号的时长还可以 根据经验值设定,这时,发送机就不需要获取信道带宽和傅里叶变换点数。
歩骤 404、 发送机接收接收机发送的能力协商响应。
发送机和接收机在能力协商完成后, 根据能力协商响应中包含的各参 数进行相关的配置。例如根据多径数量和发送天线端口数配置导频序列的 长度, 根据信道带宽、 傅里叶变换点数、 多普勒频移配置 OFDM符号的 时长, 在配置完成后, 发送机和接收机就可以执行上述实施例一和实施例 二中方法。
本发明各实施例的方法主要是通过利用一组正交的导频序列区分发 送机的不同发送天线端口, 即以码分正交来替代现有技术中的时频正交, 由于采用码分正交的方法, 各发送天线端口可以使用完全相同的导频图样, 即各发送天线端口的导频序列在频域和时域上可以完全重叠, 因此, 能够 减少发送导频序列占用的时频资源, 并且本发明实施例提供的方法, 导频 序列占用的时频资源不会随着 MIMO系统发送天线的增加而增加,不论发 送天线数量增加多少, 只需要增加正交的导频序列即可, 不需要相应的增 加时频资源, 从而提高了整个系统的频谱效率和吞吐量,
图 7为本发明实施例提供的一种发送机的结构示意图, 如图 7所示, 本实施例提供的发送机包括: 插入模块 51和发送模块 52。
其中, 插入模块 51, 用于使用 ^个互不相同的正交导频序列, 按照 ^ 个发送天线端口对应的导频图样, 将所述各发送天线端口对应的导频序列 插入各发送天线端口对应的导频图样包括的各个正交频分复用 OFDM符 号内, 其中, 所述 个导频序列与所述发送机的 个发送天线端口一一对 应, ^为大于等于 2的正整数,所述各发送天线端口对应的导频图样相同; 发送模块 52, 用于将所述插入模块 51插入导频序列后的各个 OFDM 符号发送给接收机。 可选地, 所述各导频序列的长度大于或等于所述发送天线端口数 ^与 多径数量的乘积, 所述多径数量为所述发送机与所述接收机之间的无线信 道的多径数量。
Figure imgf000025_0001
其中, 为相干时间, 4 , 为多普勒频移, ^ 为 0FDM符号的时长。
可选地,每个 OFDM符号内插入的导频序列的导频元素的个数相等, 所述导频元素的个数为所述导频序列的长度与所述导频图样包括的
OFDM符号的数量的比值。
可选地, 每个 OFDM符号内插入的导频序列的导频元素的个数不相 当每个 OFDM符号内插入的导频元素的个数相等时, 插入模块 51具 体用于: 按照所述各发送天线端口对应的导频图样, 将所述各发送天线端 口对应的导频序列的第 n个导频元素插入所述各发送天线端口对应的导频 图样的第 p个 OFDM符号的第 q个子载波上, 其中, LN /M」 , q = mod(n - N /M) + p ^ n = \ ., N, p二 ,—,M, q = l, ...,NPPT ^ N为所述导频序 列的长度, M为所述导频图样包括的 OFDM符号的数量, ^为所述导频 图样包括的子载波数。
进一歩地, 本实施例的发送机, 还可以包括: 生成模块, 用于根据以 下公式生成所述 ^个互不相同的正交导频序列:
-] 2n(m -\)Ntaps
pilot(m, n) = e N^ , 其中, to ,")表示第 n个发送天线端口对 应的导频序列的第 m个导频元素, m = , N , " = 1,···,Μ, 为所述发送 机的发送天线端口数, 为所述导频图样包括的子载波数, 为所述 接收机的抽头系数。
所述生成模块在生成所述 ^个互不相同的正交导频序列之前, 还用于: 获取所述接收机的抽头系数。 所述生成模块还用于: 获取所述多径数量、 所述多普勒频移和所述 OFDM符号的时长。
本实施例提供的发送机, 可用于执行图 2和图 3所示实施例的技术方 案, 具体实现方式和技术效果类似, 这里不再赘述。
图 8为本发明实施例提供的一种接收机的结构示意图, 如图 8所示, 本实施例提供的接收机包括: 接收模块 61、 提取模块 62、 识别模块 63和 信道估计模块 64。
其中, 接收模块 61, 用于接收发送机发送的插入导频序列后的各个正 交频分复用 OFDM符号;
提取模块 62,用于根据所述发送机的各发送天线端口对应的导频图样 从所述接收模块 61接收的所述各个 OFDM符号中提取所述各发送天线端 口叠加后的导频序列, 其中, 所述各发送天线端口对应的导频图样相同, 所述发送机的发送天线端口数 ^为大于等于 2的正整数;
识别模块 63, 用于从所述提取模块 62提取的所述叠加后的导频序列 中识别出所述各发送天线端口对应的导频序列, 其中, 所述各发送天线端 口对应的导频序列互不相同并且正交;
信道估计模块 64, 用于根据所述识别模块 63识别出的所述各发送天 线端口对应的导频序列对所述各发送天线端口分别进行信道估计。
一种可选地实现方式中, 识别模块 63具体用于: 首先, 根据抽头系 数、所述导频图样包括的子载波数和所述发送天线端口数 ^分别计算所述 各发送天线端口对应的伪逆矩阵, 所述各发送天线端口对应的伪逆矩阵具 有正交性; 然后, 根据所述各发送天线端口对应的伪逆矩阵从所述叠加后 的导频序列中识别出所述各发送天线端口对应的导频序列。
所述信道估计模块 64具体用于: 根据所述各发送天线端口对应的导 频序列确定所述各发送天线端口的频域传递函数。
一种可行的实现方式中, 所述识别模块 63具体用于: 根据以下公式 计算矩阵 A, = m n = e Nm , 其中, ιη = \, · · ·, Ν附 , n = \ , Ntaps , NFFT 为所述导频图样包括的子载波数, 为所述接收机的抽头系数; 然后, 分别取所述矩阵 A的第 K列生成 ^个对角矩阵, 并将所述各对角矩阵分 别与所述矩阵 A相乘得到 ^个矩阵 , k ^ l,- , Nt ; 其次, 根据所述矩阵 A 分别生成生成矩阵 , Ck iB^— ' Bk}; 最后, 根据以下公式分别计算所 述各发送天线端口对应的伪逆矩阵 , Dk = (C^ * Ck)-1 * C^, 为矩阵 的共轭转置矩阵, ( )—1表示对矩阵 X求逆。 进一歩地, 本实施例的接收机还可以包括: 获取模块, 用于获取所述 导频图样包括的子载波数和所述发送天线端口数 ^。
本实施例提供的接收机可用于执行图 2和图 5所述实施例的技术方案, 具体实现方式和技术效果类似, 这里不再赘述。
图 9为本发明实施例提供的另一种发送机的结构示意图,如图 9所示, 该发送机 700包括:处理器 71、存储器 72、发送器 73以及总线 74 ;其中, 存储器 72和发送器 73通过总线 74与处理器 71连接, 存储器 72用于存 储指令,处理器 71用于执行存储器 72存储的该指令,具体执行以下操作: 所述处理器 71,用于使用 ^个互不相同的正交导频序列, 按照 ^个发 送天线端口对应的导频图样, 将所述各发送天线端口对应的导频序列插入 各发送天线端口对应的导频图样包括的各个正交频分复用 OFDM符号内, 其中, 所述 ^个导频序列与所述发送机的 ^个发送天线端口一一对应, Ν' 为大于等于 2的正整数, 所述各发送天线端口对应的导频图样相同; 所述发送器 73, 用于将插入导频序列后的各个 OFDM符号发送给接 收机。
可选地, 所述各导频序列的长度大于或等于所述发送天线端口数 ^与 多径数量的乘积, 所述多径数量为所述发送机与所述接收机之间的无线信 道的多径数量。
Figure imgf000028_0001
其中, 为相干时间, 4 , 为多普勒频移, 。™ί0FDM符号的时长。 可选地,每个 OFDM符号内插入的导频序列的导频元素的个数相等 所述导频元素的个数为所述导频序列的长度与所述导频图样包括的 可选地, 每个 OFDM符号内插入的导频序列的导频元素的个数不相 当每个 OFDM符号内插入的导频元素的个数相等时, 所述处理器 71 具体用于: 按照所述各发送天线端口对应的导频图样, 将所述各发送天线 端口对应的导频序列的第 n个导频元素插入所述各发送天线端口对应的导
= n - l + 1 频图样的第 p个 OFDM符号的第 q个子载波上, 其中, _ LH」+ , q = mod(n - N /M) + p ^ n = \ ., N p = l, ...,M, q = l, ..., NPPT ^ N为所述导频序 列的长度, M为所述导频图样包括的 OFDM符号的数量, ^为所述导频 图样包括的子载波数。
本实施例中, 处理器 71还用于: 在使用 个互不相同的正交导频序 列之前, 根据以下公式生成所述 ^个互不相同的正交导频序列: pilot{m, n) =
Figure imgf000029_0001
, 其中, to ,")表示第 n个发送天线端口对 应的导频序列的第 m个导频元素, m = H , " = 1,···,Μ, 为所述发送 机的发送天线端口数, 为所述导频图样包括的子载波数, 为所述 接收机的抽头系数。
处理器 71在生成所述 ^个互不相同的正交导频序列之前, 还用于: 获取所述接收机的抽头系数, 以及获取所述多径数量、 所述多普勒频移和 所述 OFDM符号的时长。
本实施例提供的发送机, 可用于执行图 2和图 3所示的方法实施例的 技术方案, 具体实现方式和技术效果类似, 这里不再赘述。
图 10为本发明实施例提供的另一种接收机的结构示意图, 如图 10所 示, 本实施例的接收机 800包括: 处理器 81、 存储器 82、 接收器 83和总 线 84, 其中, 存储器 82和接收器 83通过总线 84与处理器 81连接, 所述 存储器 82用于存储指令, 所述处理器 81用于执行所述存储器 82存储的 所述指令, 具体用于执行以下操作:
所述接收器 83,用于接收发送机发送的插入导频序列后的各个正交频 分复用 OFDM符号;
所述处理器 81,用于根据所述发送机的各发送天线端口对应的导频图 样从所述各个 OFDM符号中提取所述各发送天线端口叠加后的导频序列, 其中, 所述各发送天线端口对应的导频图样相同, 所述发送机的发送天线 端口数 ^为大于等于 2的正整数;
所述处理器 81还用于: 从所述叠加后的导频序列中识别出所述各发 送天线端口对应的导频序列, 其中, 所述各发送天线端口对应的导频序列 互不相同并且正交;
所述处理器 81还用于: 根据所述各发送天线端口对应的导频序列对 所述各发送天线端口分别进行信道估计。
处理器 81在从所述叠加后的导频序列中识别出所述各发送天线端口 对应的导频序列时, 具体用于: 根据抽头系数、 所述导频图样包括的子载 波数和所述发送天线端口数 ^分别计算所述各发送天线端口对应的伪逆 矩阵, 所述各发送天线端口对应的伪逆矩阵具有正交性; 然后, 根据所述 各发送天线端口对应的伪逆矩阵从所述叠加后的导频序列中识别出所述 各发送天线端口对应的导频序列。
所述处理器 81在根据所述各发送天线端口对应的导频序列对所述各 发送天线端口分别进行信道估计时, 具体用于: 根据所述各发送天线端口 对应的导频序列确定所述各发送天线端口的频域传递函数。
所述处理器 81在根据抽头系数、 所述导频图样包括的子载波数和所 述发送天线端口数 ^分别计算所述各发送天线端口对应的伪逆矩阵时, 具 体用于: 首先, 根据以下公式计算矩阵 Α, Λ = -α- , - e ^ , 其中, m = H T , n = U鄉 , 为所述导频图样包括的子载波数, N 为所 述接收机的抽头系数; 然后, 分别取所述矩阵 A的第 K列生成 ^个对角 矩阵, 并将所述各对角矩阵分别与所述矩阵 A相乘得到 ^个矩阵 , k = '、Nt ,其次,根据所述矩阵 分别生成生成矩阵 , Ck : ^^ ^!^ 最后, 根据以下公式分别计算所述各发送天线端口对应的伪逆矩阵 , Dk = (C^ * Ck)-1 * C^, 为矩阵 的共轭转置矩阵, ( ― 1表示对矩阵 X求 逆。
本实施例中, 所述处理器 81在根据抽头系数、 所述导频图样包括的 子载波数和所述发送天线端口数 ^分别计算所述各发送天线端口对应的 伪逆矩阵之前, 还用于: 获取所述导频图样包括的子载波数和所述发送天 线端口数 ^。
本实施例提供的接收机可用于执行图 2和图 5所示的方法实施例的技 术方案, 具体实现方式和技术效果类似, 这里不再赘述。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程 序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种导频序列的插入方法, 其特征在于, 包括:
发送机使用 个互不相同的正交导频序列,按照 个发送天线端口对 应的导频图样, 将所述各发送天线端口对应的导频序列插入各发送天线端 口对应的导频图样包括的各个正交频分复用 OFDM符号内,其中,所述 ^ 个导频序列与所述发送机的 ^个发送天线端口一一对应, ^为大于等于 2 的正整数, 所述各发送天线端口对应的导频图样相同;
所述发送机将插入导频序列后的各个 OFDM符号发送给接收机。
2、 根据权利要求 1所述的方法, 其特征在于, 所述各导频序列的长 度大于或等于所述发送天线端口数 ^与多径数量的乘积, 所述多径数量为 所述发送机与所述接收机之间的无线信道的多径数量。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述导频图样包
T 1
M≤ ~ c— Tc =——
括的 OFDM符号的数量 其中, ^为相干时间, A为 多普勒频移, 为 OFDM符号的时长。
4、 根据权利要求 1所述的方法, 其特征在于, 每个 OFDM符号内插 入的导频序列的导频元素的个数相等, 所述导频元素的个数为所述导频序 列的长度与所述导频图样包括的 OFDM符号的数量的比值。
5、 根据权利要求 1所述的方法, 其特征在于, 每个 OFDM符号内插 入的导频序列的导频元素的个数不相等。
6、 根据权利要求 4所述的方法, 其特征在于, 当每个 OFDM符号内 插入的导频元素的个数相等时, 所述发送机按照所述各发送天线端口对应 的导频图样, 将所述各发送天线端口对应的导频序列插入所述各发送天线 端口对应的导频图样包括的各个正交频分复用 OFDM符号内, 包括: 所述发送机按照所述各发送天线端口对应的导频图样, 将所述各发送 天线端口对应的导频序列的第 n个导频元素插入所述各发送天线端口对应 n - \
P + 1 的导频图样的第 p个 OFDM符号的第 q个子载波上,其中, NIM q = mod(n - N /M) + p f n = \ ., N, p二 ,—,M, q = l, ...,NPPT ^ N为所述导频序 列的长度, M为所述导频图样包括的 OFDM符号的数量, ^为所述导频 图样包括的子载波数。
7、根据权利要求 1-6中任一项所述的方法, 其特征在于, 所述发送机 使用 ^个互不相同的正交导频序列, 按照 ^个发送天线端口对应的导频图 样, 将所述各发送天线端口对应的导频序列插入各发送天线端口对应的导 频图样包括的各个正交频分复用 OFDM符号内之前, 还包括:
所述发送机根据以下公式生成所述 ^个互不相同的正交导频序列: pilot{m, n) = e , 其中, ," )表示第 n个发送天线端口对 应的导频序列的第 m个导频元素, m = H , " = 1,···,Μ, 为所述发送 机的发送天线端口数, 为所述导频图样包括的子载波数, 为所述 接收机的抽头系数。
8、 根据权利要求 7所述的方法, 其特征在于, 所述发送机根据以下 式生成所述^个互不相同的正交导频序列之前, 还包括:
所述发送机获取所述接收机的抽头系数。
9、 根据权利要求 7所述的方法, 其特征在于, 所述发送机生成 ^个 互不相同的正交导频序列之前, 还包括:
所述发送机获取所述多径数量、 所述多普勒频移和所述 OFDM符号 的时长。
10、 一种导频序列的提取方法, 其特征在于, 包括:
接收机接收发送机发送的插入导频序列后的各个正交频分复用
OFDM符号; 所述接收机根据所述发送机的各发送天线端口对应的导频图样从所 述各个 OFDM符号中提取所述各发送天线端口叠加后的导频序列,其中, 所述各发送天线端口对应的导频图样相同, 所述发送机的发送天线端口数 ^为大于等于 2的正整数;
所述接收机从所述叠加后的导频序列中识别出所述各发送天线端口 对应的导频序列, 其中, 所述各发送天线端口对应的导频序列互不相同并 且正交;
所述接收机根据所述各发送天线端口对应的导频序列对所述各发送 天线端口分别进行信道估计。
11、 根据权利要求 10所述的方法, 其特征在于, 所述接收机从所述 叠加后的导频序列中识别出所述各发送天线端口对应的导频序列, 包括: 所述接收机根据抽头系数、所述导频图样包括的子载波数和所述发送 天线端口数 分别计算所述各发送天线端口对应的伪逆矩阵, 所述各发送 天线端口对应的伪逆矩阵具有正交性;
所述接收机根据所述各发送天线端口对应的伪逆矩阵从所述叠加后 的导频序列中识别出所述各发送天线端口对应的导频序列;
所述接收机根据所述各发送天线端口对应的导频序列对所述各发送 天线端口分别进行信道估计, 包括:
所述接收机根据所述各发送天线端口对应的导频序列确定所述各发 送天线端口的频域传递函数。
12、 根据权利要求 11所述的方法, 其特征在于, 所述接收机根据抽 头系数、所述导频图样包括的子载波数和所述发送天线端口数 ^分别计算 所述各发送天线端口对应的伪逆矩阵, 包括:
- j2nmn 所述接收机根据以下公式计算矩阵 Α, Λ = -α- , a = e N附 , 其中, m = H T , n = U鄉 s, 为所述导频图样包括的子载波数, N 为所 述接收机的抽头系数; 所述接收机分别取所述矩阵 A的第 K列生成 ^个对角矩阵, 并将所 述各对角矩阵分别与所述矩阵 A相乘得到 ^个矩阵 , k = l, .. , Nt . 所述接收机根据所述矩阵 分别生成生成矩阵 , Ck fB^— ' Bk}; 所述接收机根据以下公式分别计算所述各发送天线端口对应的伪逆 矩阵 A, Dk = (C^ * Ck)-1 * C^, 为矩阵 的共轭转置矩阵, ( ― 1表示对 矩阵 X求逆。
13、 根据权利要求 11或 12所述的方法, 其特征在于, 所述接收机根 据抽头系数、所述导频图样包括的子载波数和所述发送天线端口数 ^分别 计算所述各发送天线端口对应的伪逆矩阵之前, 还包括:
所述接收机获取所述导频图样包括的子载波数和所述发送天线端口 数
14、 一种发送机, 其特征在于, 包括:
插入模块, 用于使用 ^个互不相同的正交导频序列, 按照 ^个发送天 线端口对应的导频图样, 将所述各发送天线端口对应的导频序列插入各发 送天线端口对应的导频图样包括的各个正交频分复用 OFDM符号内, 其 中, 所述 ^个导频序列与所述发送机的 个发送天线端口一一对应, Ν'为 大于等于 2的正整数, 所述各发送天线端口对应的导频图样相同;
发送模块, 用于将所述插入模块插入导频序列后的各个 OFDM符号 发送给接收机。
15、 根据权利要求 14所述的发送机, 其特征在于, 所述各导频序列 的长度大于或等于所述发送天线端口数 ^与多径数量的乘积, 所述多径数 量为所述发送机与所述接收机之间的无线信道的多径数量。
16、 根据权利要求 14或 15所述的发送机, 其特征在于, 所述导频图 样包括的 OFDM符号的数量 ^歷 , 其中, 为相干时间, 4^, ^ 为多普勒频移, 为 OFDM符号的时长。
17、 根据权利要求 14所述的发送机, 其特征在于, 每个 OFDM符号 内插入的导频序列的导频元素的个数相等, 所述导频元素的个数为所述导 频序列的长度与所述导频图样包括的 OFDM符号的数量的比值。
18、 根据权利要求 14所述的发送机, 其特征在于, 每个 OFDM符号 内插入的导频序列的导频元素的个数不相等。
19、 根据权利要求 17所述的发送机, 其特征在于, 当每个 OFDM符 号内插入的导频元素的个数相等时, 所述插入模块具体用于:
按照所述各发送天线端口对应的导频图样, 将所述各发送天线端口对 应的导频序列的第 n个导频元素插入所述各发送天线端口对应的导频图样 的第 p个 OFDM符号的第 q个子载波上, 其中, LN/M」 , q = mod(n - N /M) + p f n = \ ., N, p二 ,—,M, q = l, ..., NPPT ^ N为所述导频序 列的长度, M为所述导频图样包括的 OFDM符号的数量, ^为所述导频 图样包括的子载波数。
20、 根据权利要求 14-19中任一项所述的发送机, 其特征在于, 还包 括:
生成模块, 用于根据以下公式生成所述 ^个互不相同的正交导频序列:
-] 2n(m -\)Ntaps
pilot(m, n) = e N^ , 其中, to ,")表示第 n个发送天线端口对 应的导频序列的第 m个导频元素, m = , N , " = 1,···,Μ, 为所述发送 机的发送天线端口数, 为所述导频图样包括的子载波数, 为所述 接收机的抽头系数。
21、 根据权利要求 20所述的发送机, 其特征在于, 所述生成模块还 用于: 获取所述接收机的抽头系数。
22、 根据权利要求 20所述的发送机, 其特征在于, 所述生成模块还 用于: 获取所述多径数量、 所述多普勒频移和所述 OFDM符号的时长。
23、 一种接收机, 其特征在于, 包括:
接收模块, 用于接收发送机发送的插入导频序列后的各个正交频分复 用 OFDM符号;
提取模块, 用于根据所述发送机的各发送天线端口对应的导频图样从 所述接收模块接收的所述各个 OFDM符号中提取所述各发送天线端口叠 加后的导频序列, 其中, 所述各发送天线端口对应的导频图样相同, 所述 发送机的发送天线端口数 ^为大于等于 2的正整数;
识别模块, 用于从所述提取模块提取的所述叠加后的导频序列中识别 出所述各发送天线端口对应的导频序列, 其中, 所述各发送天线端口对应 的导频序列互不相同并且正交;
信道估计模块, 用于根据所述识别模块识别出的所述各发送天线端口 对应的导频序列对所述各发送天线端口分别进行信道估计。
24、 根据权利要求 23所述的接收机, 其特征在于, 所述识别模块具 体用于:
根据抽头系数、所述导频图样包括的子载波数和所述发送天线端口数
^分别计算所述各发送天线端口对应的伪逆矩阵, 所述各发送天线端口对 应的伪逆矩阵具有正交性;
根据所述各发送天线端口对应的伪逆矩阵从所述叠加后的导频序列 中识别出所述各发送天线端口对应的导频序列;
所述信道估计模块具体用于: 根据所述各发送天线端口对应的导频序 列确定所述各发送天线端口的频域传递函数。
25、 根据权利要求 24所述的接收机, 其特征在于, 所述识别模块具 体用于: 根据以下公式计算矩阵 A, A = M , a^=e NrrT ,其中, m = U附, n =u , 为所述导频图样包括的子载波数, 为所述接收机的抽 头系数; 分别取所述矩阵 A的第 K列生成 ^个对角矩阵, 并将所述各对角矩 阵分别与所述矩阵 A相乘得到 个矩阵 , k = l, ..., Nt . 根据所述矩阵 分别生成生成矩阵 , Ck fBy ' Bk}; 根据以下公式分别计算所述各发送天线端口对应的伪逆矩阵 ,
Dk = (Ck * Ck)-1 * C^, 为矩阵 的共轭转置矩阵, ^)—1表示对矩阵 X求 逆。
26、 根据权利要求 24或 25所述的接收机, 其特征在于, 还包括: 获取模块, 用于获取所述导频图样包括的子载波数和所述发送天线端 口数 。
27、 一种发送机, 包括: 处理器、 存储器和发送器, 所述存储器用于 存储指令,所述处理器用于执行所述存储器存储的所述指令,其特征在于, 所述处理器, 用于使用 ^个互不相同的正交导频序列, 按照 ^个发送 天线端口对应的导频图样, 将所述各发送天线端口对应的导频序列插入各 发送天线端口对应的导频图样包括的各个正交频分复用 OFDM符号内, 其中, 所述 ^个导频序列与所述发送机的 ^个发送天线端口一一对应, Ν' 为大于等于 2的正整数, 所述各发送天线端口对应的导频图样相同;
所述发送器, 用于将插入导频序列后的各个 OFDM符号发送给接收 机。
28、 根据权利要求 27所述的发送机, 其特征在于, 所述各导频序列 的长度大于或等于所述发送天线端口数 ^与多径数量的乘积, 所述多径数 量为所述发送机与所述接收机之间的无线信道的多径数量。
29、 根据权利要求 27或 28所述的发送机, 其特征在于, 所述导频图 样包括的 OFDM符号的数量 ^歷 , 其中, 为相干时间, 4^, ^ 为多普勒频移, 为 OFDM符号的时长。
30、 根据权利要求 27所述的发送机, 其特征在于, 每个 OFDM符号 内插入的导频序列的导频元素的个数相等, 所述导频元素的个数为所述导 频序列的长度与所述导频图样包括的 OFDM符号的数量的比值。
31、 根据权利要求 27所述的发送机, 其特征在于, 每个 OFDM符号 内插入的导频序列的导频元素的个数不相等。
32、 根据权利要求 30所述的发送机, 其特征在于, 当每个 OFDM符 号内插入的导频元素的个数相等时, 所述处理器具体用于:
按照所述各发送天线端口对应的导频图样, 将所述各发送天线端口对 应的导频序列的第 n个导频元素插入所述各发送天线端口对应的导频图样 的第 p个 OFDM符号的第 q个子载波上, 其中, LN/M」 ,
q = mod(n - N /M) + p f n = \ ., N, p二 ,—,M, q = l, ..., NPPT ^ N为所述导频序 列的长度, M为所述导频图样包括的 OFDM符号的数量, ^为所述导频 图样包括的子载波数。
33、 根据权利要求 27-32中任一项所述的发送机, 其特征在于, 所述 处理器还用于: 在使用所述 ^个互不相同的正交导频序列之前, 根据以下 公式生成所述 ^个互不相同的正交导频序列: pilot{m, n) = e N , 其中, to ,")表示第 n个发送天线端口对 应的导频序列的第 m个导频元素, m = H , " = 1,···,Μ, 为所述发送 机的发送天线端口数, 为所述导频图样包括的子载波数, 为所述 接收机的抽头系数。
34、 根据权利要求 33所述的发送机, 其特征在于, 所述处理器还用 于: 在生成所述 ^个互不相同的正交导频序列之前, 获取所述接收机的抽 头系数。
35、 根据权利要求 33所述的发送机, 其特征在于, 所述处理器还用 于: 在生成所述 ^个互不相同的正交导频序列之前, 获取所述多径数量、 所述多普勒频移和所述 OFDM符号的时长。
36、 一种接收机, 包括: 处理器、 存储器和接收器, 所述存储器用于 存储指令,所述处理器用于执行所述存储器存储的所述指令,其特征在于, 所述接收器, 用于接收发送机发送的插入导频序列后的各个正交频分 复用 OFDM符号;
所述处理器, 用于根据所述发送机的各发送天线端口对应的导频图样 从所述各个 OFDM符号中提取所述各发送天线端口叠加后的导频序列, 其中, 所述各发送天线端口对应的导频图样相同, 所述发送机的发送天线 端口数 ^为大于等于 2的正整数;
所述处理器还用于: 从所述叠加后的导频序列中识别出所述各发送天 线端口对应的导频序列, 其中, 所述各发送天线端口对应的导频序列互不 相同并且正交;
所述处理器还用于: 根据所述各发送天线端口对应的导频序列对所述 各发送天线端口分别进行信道估计。
37、 根据权利要求 36所述的接收机, 其特征在于, 所述处理器在从 所述叠加后的导频序列中识别出所述各发送天线端口对应的导频序列时, 具体用于:
根据抽头系数、所述导频图样包括的子载波数和所述发送天线端口数
^分别计算所述各发送天线端口对应的伪逆矩阵, 所述各发送天线端口对 应的伪逆矩阵具有正交性;
根据所述各发送天线端口对应的伪逆矩阵从所述叠加后的导频序列 中识别出所述各发送天线端口对应的导频序列;
所述处理器在根据所述各发送天线端口对应的导频序列对所述各发 送天线端口分别进行信道估计时, 具体用于:
根据所述各发送天线端口对应的导频序列确定所述各发送天线端口 的频域传递函数。
38、 根据权利要求 37所述的接收机, 其特征在于, 所述处理器在根 据抽头系数、所述导频图样包括的子载波数和所述发送天线端口数 ^分别 计算所述各发送天线端口对应的伪逆矩阵时, 具体用于: 根据以下公式计算矩阵 A, A = M , a ,其中, m = U附, η = · ·' Ν' , 为所述导频图样包括的子载波数, 为所述接收机的抽 头系数;
分别取所述矩阵 A的第 K列生成 ^个对角矩阵, 并将所述各对角矩 阵分别与所述矩阵 A相乘得到 ^个矩阵 , k = l, .., Nt . 根据所述矩阵 分别生成生成矩阵 , Ck : ^^ ^!^
根据以下公式分别计算所述各发送天线端口对应的伪逆矩阵 ,
Dk = (Ck * Ck)-1 * C^, 为矩阵 的共轭转置矩阵, ^)—1表示对矩阵 X求 逆。
39、 根据权利要求 37或 38所述的接收机, 其特征在于, 所述处理器 在根据抽头系数、所述导频图样包括的子载波数和所述发送天线端口数 ^ 分别计算所述各发送天线端口对应的伪逆矩阵之前, 还用于:
获取所述导频图样包括的子载波数和所述发送天线端口数 ^。
PCT/CN2014/074022 2014-03-25 2014-03-25 导频序列的插入、提取方法和设备 WO2015143621A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480056716.1A CN105637827B (zh) 2014-03-25 2014-03-25 导频序列的插入、提取方法和设备
PCT/CN2014/074022 WO2015143621A1 (zh) 2014-03-25 2014-03-25 导频序列的插入、提取方法和设备
US15/255,479 US10135589B2 (en) 2014-03-25 2016-09-02 Inserting and extracting pilot sequences

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074022 WO2015143621A1 (zh) 2014-03-25 2014-03-25 导频序列的插入、提取方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/255,479 Continuation US10135589B2 (en) 2014-03-25 2016-09-02 Inserting and extracting pilot sequences

Publications (1)

Publication Number Publication Date
WO2015143621A1 true WO2015143621A1 (zh) 2015-10-01

Family

ID=54193864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074022 WO2015143621A1 (zh) 2014-03-25 2014-03-25 导频序列的插入、提取方法和设备

Country Status (3)

Country Link
US (1) US10135589B2 (zh)
CN (1) CN105637827B (zh)
WO (1) WO2015143621A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599912A (zh) * 2018-04-25 2018-09-28 北京师范大学 一种生成导频图样的方法、装置、电子设备及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170195159A1 (en) * 2014-08-01 2017-07-06 Lg Electronics Inc. Method for transmitting and identifying pilot sequence in wireless communication system
EP4117247A1 (en) * 2015-06-30 2023-01-11 Huawei Technologies Co., Ltd. Pilot sequence transmission method and apparatus
US10123329B2 (en) * 2015-10-07 2018-11-06 Intel IP Corporation Long training field in uplink multi-user multiple-input multiple-output communications
CN107547094B (zh) * 2016-06-29 2023-08-22 华为技术有限公司 一种信号传输方法及装置
EP3553962B1 (en) * 2016-12-23 2021-07-28 Huawei Technologies Co., Ltd. Signal transmission method and base station
CN108282312B (zh) * 2017-01-06 2020-09-01 电信科学技术研究院 一种上行传输方法、终端及基站
CN110855336B (zh) 2018-08-20 2022-04-22 华为技术有限公司 指示和确定预编码向量的方法以及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100046412A1 (en) * 2008-08-22 2010-02-25 Texas Instruments Incorporated Reference signal structures for more than four antennas
CN101867403A (zh) * 2010-06-13 2010-10-20 中兴通讯股份有限公司 一种测量参考信号的多天线发送方法、终端和基站
WO2011015065A1 (zh) * 2009-08-07 2011-02-10 中兴通讯股份有限公司 一种参考信号的发送方法
CN102916920A (zh) * 2011-08-05 2013-02-06 华为技术有限公司 一种导频信号发送方法和设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242214B (zh) * 2002-10-25 2012-09-05 高通股份有限公司 无线多输入多输出通信系统内生成导频的方法
CN100563124C (zh) * 2006-09-07 2009-11-25 华为技术有限公司 多天线多载波系统中的导频序列发送方法及系统
WO2008103317A2 (en) * 2007-02-16 2008-08-28 Interdigital Technology Corporation Precoded pilot transmission for multi-user and single user mimo communications
US8379752B2 (en) * 2008-03-19 2013-02-19 General Dynamics C4 Systems, Inc. Methods and apparatus for multiple-antenna communication of wireless signals with embedded synchronization/pilot sequences
DE602008002930D1 (de) * 2008-08-01 2010-11-18 Panasonic Corp Ressourcenblockzuordnung für wiederholte Symbole
KR101689597B1 (ko) * 2009-02-09 2016-12-26 엘지전자 주식회사 하향링크 mimo 시스템에 있어서, 참조 신호 전송 방법
CN101931447A (zh) * 2009-06-22 2010-12-29 华为技术有限公司 上行数据发送方法及装置
US8654734B2 (en) * 2010-06-01 2014-02-18 Texas Instruments Incorporated Multi-cell channel state information-reference symbol patterns for long term evolution extended cyclic prefix and code division multiplexing-time multiplexing
CN102035767B (zh) * 2010-12-10 2013-10-09 华为技术有限公司 信道估计方法和装置
CN102685890B (zh) * 2011-03-08 2017-11-14 中兴通讯股份有限公司 一种导频的发送方法及系统
US8467363B2 (en) * 2011-08-17 2013-06-18 CBF Networks, Inc. Intelligent backhaul radio and antenna system
US20130121304A1 (en) * 2011-11-11 2013-05-16 Motorola Mobility Llc Acknowledgement signaling in wireless communication network
US9160515B2 (en) * 2013-04-04 2015-10-13 Intel IP Corporation User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay
US9571242B2 (en) * 2013-04-26 2017-02-14 Intel Deutschland Gmbh Methods and devices for mitigating interference
CN103581622A (zh) 2013-12-10 2014-02-12 安徽省徽商集团有限公司 智能终端远程视频监控方法及其系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100046412A1 (en) * 2008-08-22 2010-02-25 Texas Instruments Incorporated Reference signal structures for more than four antennas
WO2011015065A1 (zh) * 2009-08-07 2011-02-10 中兴通讯股份有限公司 一种参考信号的发送方法
CN101867403A (zh) * 2010-06-13 2010-10-20 中兴通讯股份有限公司 一种测量参考信号的多天线发送方法、终端和基站
CN102916920A (zh) * 2011-08-05 2013-02-06 华为技术有限公司 一种导频信号发送方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599912A (zh) * 2018-04-25 2018-09-28 北京师范大学 一种生成导频图样的方法、装置、电子设备及存储介质
CN108599912B (zh) * 2018-04-25 2020-10-30 北京师范大学 一种生成导频图样的方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
US10135589B2 (en) 2018-11-20
US20160373226A1 (en) 2016-12-22
CN105637827B (zh) 2019-08-20
CN105637827A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2015143621A1 (zh) 导频序列的插入、提取方法和设备
US10104666B2 (en) Method and system for compensating for doubly selective channel and related apparatus
JP2018537011A5 (zh)
CN101815042B (zh) 一种正交频分复用系统信道估计方法和装置
CA2736959A1 (en) Efficient multiplexing of reference signal and data in a wireless communication system
JP2008544602A (ja) 時間および周波数チャネル推定
JP2012503445A (ja) 無線通信システムにおいてデータ及び基準信号を多重化するための方法及び装置
EP1776798A1 (en) Method for determining a residual frequency offset, communication system, method for transmitting a message, transmitter, method for processing a message and receiver
JP2004336746A (ja) 多重アンテナを用いる直交周波分割多重システムにおけるチャネルの推定装置及び方法
WO2016026115A1 (zh) 一种生成、处理频分多波形信号的方法和装置
CA2945375C (en) Sparse ordered iterative group multi-antenna channel estimation
WO2011082543A1 (zh) 正交掩码生成装置、解调参考信号生成装置和方法
CN107171984A (zh) 一种异步多载波系统频域信道估计方法
CN106534030A (zh) 一种基于802.11n多天线OFDM系统中联合训练序列和导频的信道估计方法
JP2009505554A (ja) Mimo−ofdmシステムにおけるチャネル推定方法およびチャネル推定のためのトレーニング信号生成方法
CN107615847B (zh) 一种传输信息的方法、装置和系统
CN109302240A (zh) 基于双选择衰落信道的低复杂度osdm串行均衡方法
TWI279112B (en) A diversity receiver
CN103873220B (zh) 一种pucch的信号检测方法及设备
WO2012045244A1 (zh) 低复杂度高性能的信道估计方法及装置
CN104079306A (zh) 一种接收机的操作方法和信号接收设备
US9306691B2 (en) Methods and devices for transmission of signals in a telecommunication system
WO2007119451A1 (ja) Mimo通信装置及びその通信方法
CN104717173B (zh) 基于信道去耦的子载波复数均衡无线通信方法
JP5645613B2 (ja) 無線通信システム、送信機および受信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887160

Country of ref document: EP

Kind code of ref document: A1