WO2015184603A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2015184603A1
WO2015184603A1 PCT/CN2014/079149 CN2014079149W WO2015184603A1 WO 2015184603 A1 WO2015184603 A1 WO 2015184603A1 CN 2014079149 W CN2014079149 W CN 2014079149W WO 2015184603 A1 WO2015184603 A1 WO 2015184603A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
heat
pipe
electronic device
different
Prior art date
Application number
PCT/CN2014/079149
Other languages
English (en)
French (fr)
Inventor
靳林芳
惠晓卫
杨向阳
周绍鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480001490.5A priority Critical patent/CN104488371B/zh
Priority to JP2016566282A priority patent/JP6486965B2/ja
Priority to PCT/CN2014/079149 priority patent/WO2015184603A1/zh
Priority to US15/311,927 priority patent/US10409340B2/en
Priority to EP14894059.6A priority patent/EP3131376B1/en
Priority to CN201710762882.9A priority patent/CN107613724B/zh
Publication of WO2015184603A1 publication Critical patent/WO2015184603A1/zh
Priority to US16/529,075 priority patent/US11144101B2/en
Priority to US17/474,564 priority patent/US11789504B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body

Definitions

  • the present invention relates to the field of heat dissipation technologies, and in particular, to an electronic device. Background technique
  • LTE Long Term Evolution
  • the present invention provides an electronic device to solve the technical problem of poor heat dissipation performance of the electronic device in the prior art, and improve the heat dissipation performance of the electronic device.
  • an embodiment of the present application provides an electronic device, where the electronic device includes a heat generating component, and the heat generating component is disposed on a circuit board PCB, and the electronic device further includes:
  • the heat pipe group includes at least two heat pipes, the heat pipe group is located on the heat generating component, and at least one characteristic parameter of each heat pipe in the heat pipe group is different from each other, and each heat pipe of the heat pipe group is optimal The working area is different.
  • the heat resistance of each heat pipe in the heat pipe group ranges from 0.05 to 1 ° C/W.
  • the characteristic parameters are: a diameter of a heat pipe, a cross-sectional area of a capillary layer of a heat pipe, a quality of a heat pipe, a type of a working medium of the heat pipe, a pipe of the heat pipe, and the same pipe One or more of the thickness of the heat pipe.
  • a thermal interface material is disposed between the heat generating component and the heat pipe set.
  • the heating element is a CPU, GPU or CPU and GPU.
  • the heat pipe group includes two heat pipes, and the characteristic parameter is a pipe diameter of the heat pipe;
  • the diameters of the first heat pipe and the second heat pipe are different in the two heat pipes.
  • the first heat pipe and the second heat pipe are the same as the pipe diameter of the heat pipe, the first heat pipe is the same.
  • the diameter of the tube is greater than the diameter of the second heat pipe, the first heat pipe is a high temperature high efficiency heat pipe, and the second heat pipe is a low temperature high efficiency heat pipe; or
  • the characteristic parameter is a cross-sectional area of a capillary layer of the heat pipe
  • the cross-sectional area of the capillary layer of the first heat pipe and the second heat pipe are different between the two heat pipes, and when the first heat pipe and the second heat pipe are the same as the cross-sectional area of the capillary layer of the heat pipe, the other characteristic parameters are the same.
  • the first heat pipe is a high temperature high efficiency heat pipe; the second heat pipe is a low temperature high efficiency heat pipe; or the first heat pipe has a capillary layer cross-sectional area larger than the second heat pipe cross-sectional area;
  • the characteristic parameter is the quality of the heat pipe
  • the first heat pipe and the second heat pipe of the two heat pipes are different in quality.
  • the first heat pipe is the same.
  • the mass of the injected heat is equal to the actual capillary demand, and the mass of the second heat pipe is lower than the actual capillary demand, the first heat pipe is a high temperature heat pipe; the second heat pipe is a low temperature heat pipe; or
  • the characteristic parameter is a working medium of a heat pipe
  • the working heat of the first heat pipe and the second heat pipe are different between the two heat pipes, when the first heat pipe and the first heat pipe
  • the latent heat of the working medium of the first heat pipe is greater than the latent heat of the working medium of the second heat pipe
  • the first heat pipe is a high temperature high efficiency heat pipe.
  • the second heat pipe is a low temperature high efficiency heat pipe.
  • an electronic device in a second aspect, includes a heat generating component, and the heat generating component is disposed on a circuit board PCB, and the electronic device further includes:
  • the heat pipe includes at least two independent heat conduction channels, wherein the heat pipe is located on the heating element, and at least one characteristic parameter of each heat conduction channel in the heat pipe is different from each other, and the heat conduction channels of the heat pipe are the most The preferred working areas are different.
  • the thermal resistance of each heat conducting channel of the heat pipes ranges from 0.05 to 1 ° C/W.
  • the characteristic parameters are: a diameter of a heat conduction channel, a cross-sectional area of a capillary layer of a heat conduction channel, a work quality of a heat conduction channel, a type of a heat conduction channel, and a pipe of a heat conduction channel And one or more of the thickness of the tubing of the thermally conductive channel.
  • a thermal interface material is disposed between the heat generating component and the heat pipe.
  • an electronic device in a third aspect, includes a heating element, the heating element is disposed on a circuit board PCB, and the electronic device further includes a first heat pipe and a second heat pipe: the first heat pipe and the The heating element is disposed on the same side of the PCB, and the first heat pipe is connected to the heating element;
  • the second heat pipe is disposed at a second position of the PCB, and the second heat pipe is connected to the heat generating component through a heat conductive metal, wherein a back surface of the second position of the PCB is provided with the heat generating component;
  • the at least one characteristic parameter of the first heat pipe and the second heat pipe are different, the first heat pipe is different from the optimal working area of the second heat pipe, and the first heat pipe and the second heat pipe When the heat pipe works in the corresponding optimal working area, the thermal resistance of the first heat pipe and the second heat pipe ranges from 0.05 to 1 ° C/W.
  • the first heat pipe is connected to the heat generating component, specifically: The first heat pipe is located on the heating element, and a thermal interface material is disposed between the first heat pipe and the heating element; or
  • the first heat pipe and the heat generating component are connected by the heat conducting metal, and the heat conducting metal is a copper plating layer of the PCB.
  • the characteristic parameters are: the diameter of the heat pipe, the cross-sectional area of the capillary of the heat pipe, the quality of the heat pipe, the type of the heat pipe, the pipe of the heat pipe, and the heat pipe of the same pipe One or more of the thickness of the pipe.
  • heat dissipation of the mobile electronic device is implemented by using a heat pipe, and heat of the heat generating component follows the electronic device
  • a corresponding heat pipe group is disposed on the same heating element, and the heat pipe group includes at least two heat pipes, and the optimal working areas of the heat pipes are different;
  • the maximum heat transfer capacity of the heat pipe will be different, so the heat pipes with different characteristic parameters can be heat-dissipated for different working states of the heat-generating component.
  • FIG. 1 is a schematic structural diagram of an electronic device according to a first embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an electronic device according to a second embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an electronic device according to Embodiment 1 of the third embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an electronic device according to Embodiment 2 of Embodiment 3 of the present application. detailed description
  • a heat pipe is an effective heat transfer element.
  • the heat pipe has a very high thermal conductivity and is generally composed of a casing, a die and a working medium (working medium).
  • the heat pipe (thermal conductivity k: k>5000W/mK) has become a major choice for mobile terminal devices to meet the high heat chip solution. Because the heat of the mobile terminal device is not constant, but varies according to the application of the mobile terminal device, and the range of the change is relatively large, so the difference between the high power consumption and the low power consumption of the mobile terminal device is relatively small. In large cases, it is difficult to achieve a good heat dissipation effect considering that a heat pipe is difficult to be compatible with the low-power area of the mobile terminal device and the heat dissipation of high power consumption.
  • the heat pipe with the maximum heat flux Qmax - HP > 8W needs to be used for heat dissipation.
  • HP's full name is Heat pipe; however, when users use mobile terminals daily, the power consumption (Qnormal-DP) is generally Qnormal-DP ⁇ 3W, and the corresponding heat pipe can be used to dissipate heat by Qmax-HP > 3W. Therefore, if a heat pipe is used and the gap between the high power consumption and the low power consumption of the mobile terminal device is large, a heat pipe generally cannot achieve a good heat dissipation effect.
  • the maximum heat transfer capacity (Qmax-HP) of the heat pipe will be different considering the characteristics of the heat pipe.
  • the characteristics of the heat pipe include the size, diameter, length, and the like of the heat pipe.
  • the corresponding Qmax-HP is a fixed value.
  • the heat pipe works in the best working area (when the thermal resistance is lowest), its heat conduction performance is the best.
  • the thermal resistance value is large because the heat pipe is not fully started.
  • the heat exchanger can't replenish the demand of the heating zone in time, causing the heat pipe to burn out and the temperature of the heating component (such as CPU or GPU) to rise continuously.
  • the heat generating component mentioned in the embodiment of the present invention refers to an element which radiates heat to the surroundings during operation.
  • the most common CPU and GPU in electronic devices The most common CPU and GPU in electronic devices.
  • the heat generating elements mentioned in the embodiments of the present invention are not limited to the two elements of the CPU and the GPU.
  • the embodiment of the present invention provides an electronic device, and the electronic device is provided in consideration of the above-mentioned characteristics and problems in the heat dissipation of the electronic device by using a heat pipe.
  • the heating element is disposed on the circuit board PCB;
  • the heat pipe group includes at least two heat pipes, the heat pipe group is located on the heat generating component, and at least one characteristic parameter of each heat pipe in the heat pipe group is different from each other, and the heat pipe group of the heat pipe group is the most The working area is different; wherein, when the heat pipes in the heat pipe group work in the corresponding optimal working area, the heat resistance of at least two heat pipes in the heat pipe group ranges from 0.05 to: rc/w.
  • the characteristic parameters may be: the diameter of the heat pipe, the sectional area of the capillary layer, the working mass (ie, the filling amount of the working medium), the type of the working medium, and the pipe of the heat pipe (in the embodiment of the invention, the pipe of the heat pipe may be copper or aluminum) And at least one or more of the tube thicknesses of the heat pipes of the same pipe.
  • the optimal working area may mean that when the power consumption of the heat generating component is large (for example, the power consumption is about 10 W or more), a heat pipe in the heat pipe group dissipates the heat generating component, in which case The heat resistance of a heat pipe is relatively low or the lowest, and the thermal resistance of one heat pipe is relatively low or the lowest is compared with the heat resistance of the heat pipe in other cases for heat dissipation of the heat generating component; When the power consumption is low (for example, the power consumption is about 2 ⁇ 3w), another heat pipe in the heat pipe group dissipates the heat generating component. In this case, the heat resistance of the other heat pipe is lower or lowest.
  • the lower or lower thermal resistance of the other heat pipe is compared with the thermal resistance of the heat pipe in other cases for heat dissipation of the heat generating component.
  • Each heat pipe in the heat pipe group dissipates the heat generating component when the heat resistance is relatively low or lowest, that is, the heat pipes in the heat pipe group work in the corresponding optimal working area.
  • a corresponding heat pipe group is disposed on the same heat generating component, and the heat pipe group includes at least two heat pipes, and
  • the optimal working area of each heat pipe is different; that is, the maximum heat transfer amount of each heat pipe will be different, so the heat pipes of different characteristic parameters can be heat-dissipated for different working states of the heat generating component.
  • Embodiment 1 Embodiment 1
  • an embodiment of the present application provides an electronic device, including: a heating element, the heating element is disposed on a circuit board PCB; a heat pipe group, the heat pipe group includes at least two heat pipes, the heat pipe group is located on the heat generating component, and at least one characteristic parameter of each heat pipe in the heat pipe group is different from each other, and each heat pipe of the heat pipe group is optimal The working area is different.
  • the heat resistance of at least two heat pipes in the heat pipe group ranges from 0.05 to 1 ° C/W.
  • the heat resistance of the heat pipe when the heat pipe works in the optimal working area, may be rc/w (degrees Celsius/watt). In a specific application, when the heat pipe works in the optimal working area, the heat pipe The thermal resistance is generally in the range of 0.05 ⁇ 1 °C/W (Celsius/Watt).
  • the characteristic parameter may be: a pipe diameter of the heat pipe, a cross-sectional area of the capillary layer, a working mass (ie, a filling amount of the working medium), a type of the working medium, and a pipe of the heat pipe (the heat pipe in the embodiment of the invention)
  • the pipe may be one or more of the thickness of the heat pipe of copper or aluminum) and the same pipe, because by changing the characteristic parameters of the heat pipe, the optimal working area of the heat pipe or the maximum heat transfer amount will change accordingly, so Setting the characteristic parameters of each heat pipe in the heat pipe group to different values may make the optimal working areas of the heat pipes in the heat pipe group not coincide, so that the heat pipes in the heat pipe group are respectively in the optimal working area under different power consumption. It can meet the requirements of heat conduction in different scenarios of heating elements.
  • the heat pipe group may include a plurality of heat pipes, and the optimal working areas of the heat pipes are different. Because the characteristic parameters of the heat pipe determine the optimal working area of the heat pipe, and the characteristic parameters of the optimal working area of the heat pipe are determined to be various, and changing any one of the characteristic parameters can change the optimal working area of the heat pipe, so the present invention is implemented. In the example, the characteristic parameters of the heat pipes are different from each other, so that the optimal working areas of the heat pipes are different. In order to explain the solution provided by the embodiment of the present invention in more detail, the following describes the solutions of the embodiments of the present invention for three common characteristic parameters: the heat pipe diameter, the parameter capillary layer cross-sectional area, the work quality and the working medium type.
  • the implementation method includes: the implementation of the heat pipe group may also include a plurality of heat pipes, for example, three heat pipes or four heat pipes, wherein, in the first mode, the characteristic parameter of the heat pipe diameter in the characteristic parameter is changed, the embodiment of the present invention corresponds to
  • the implementation is as follows (the specific structure is shown in Figure 1): The diameters of the first heat pipe 101 and the second heat pipe 102 are different in the two heat pipes, wherein the first heat pipe is the same as the other heat pipe except the pipe diameter of the second heat pipe. The pipe diameter is larger than the pipe diameter of the second heat pipe.
  • the first heat pipe is a high temperature high efficiency heat pipe
  • the second heat pipe is a low temperature high efficiency heat pipe.
  • the high temperature heat pipe is a large diameter heat pipe
  • the low temperature heat pipe is a small diameter heat pipe
  • the heat pipe diameter is different (normal parameter design).
  • the optimal working area or heat transfer size, the use of heat pipes with different pipe diameters can ensure that the best working areas of the two heat pipes do not coincide, so as to meet the heat conduction of heating elements (such as: CPU and / or GPU) in different scenarios. Claim.
  • the characteristic parameter of the cross-sectional area of the capillary layer of the heat pipe in the characteristic parameter is changed, and the corresponding implementation manner of the embodiment of the present invention is (the specific structure is shown in FIG. 2):
  • the cross-sectional area of the capillary layer of the first heat pipe 201 and the second heat pipe 202 in the two heat pipes is different.
  • the first heat pipe and the second heat pipe are the same as the cross-sectional area of the capillary layer of the heat pipe
  • the first The capillary layer cross-sectional area of a heat pipe 201 is larger than the capillary layer cross-sectional area of the second heat pipe 202.
  • the first heat pipe 201 is a high temperature high efficiency heat pipe; and the second heat pipe 202 is a low temperature high efficiency heat pipe.
  • the cross-sectional area of different capillary layers will affect the heat transfer capacity of the heat pipe.
  • the cross-sectional area of the capillary layer of the low-temperature high-efficiency heat pipe is smaller than that of the high-temperature heat pipe.
  • the capillary structure may be a copper powder structure, a mesh structure, a fiber structure or a groove structure.
  • the low-temperature high-efficiency heat pipe has a low heat transfer rate, so when the heat-generating component (which can be a CPU and/or a GPU) consumes less power (the power consumption is about 2 ⁇ 3w), the low-temperature efficient heat pipe starts up completely and works at the best work. Zone, effective for heat dissipation of low-power heating components.
  • the heat-generating component which can be a CPU and/or a GPU
  • the power consumption is about 2 ⁇ 3w
  • the heating element CPU and / or GPU
  • power consumption is about 10w or more
  • the high-temperature and high-efficiency heat pipe is fully activated, and the high-temperature and high-efficiency heat pipe works in the optimal working area; The effect of component heat dissipation.
  • the third embodiment is to change the characteristic parameter of the quality parameter in the characteristic parameter, and the corresponding implementation manner of the embodiment of the present invention is:
  • the working quality of the first heat pipe and the second heat pipe are different in the two heat pipes.
  • the quality of the first heat pipe is injected. Equal to the actual capillary demand, the quality of the second heat pipe injection is lower than the actual capillary demand.
  • the first heat pipe is a high temperature high efficiency heat pipe; and the second heat pipe is a low temperature high efficiency heat pipe.
  • the optimal working area of the low temperature efficient and high temperature efficient heat pipes do not coincide.
  • the first heat pipe is filled with the work mass equal to the actual capillary demand, so that the optimal working area of the first heat pipe moves to a larger power consumption, thereby achieving full working of the first heat pipe working medium under the large power consumption of the heat generating component.
  • the second heat pipe is used as the low-temperature high-efficiency heat pipe to inject the work quality smaller than the actual capillary demand of the heat pipe, and keeps the optimal working area of the second heat pipe to move to a smaller power consumption, thereby realizing the heating element
  • the working fluid of the second heat pipe is fully operated under a small power consumption. Therefore, the high-temperature and high-efficiency heat pipe can transfer heat under the large power consumption, and the low-temperature and high-efficiency heat pipe can fully start the heat transfer under the small power consumption. It is ensured that the heat generating components (CPU and / or GPU) can meet the heat conduction requirements under different working scenarios (different power consumption states of the heating elements).
  • the characteristic parameter of the working medium type of the heat pipe in the characteristic parameter is changed, and the corresponding implementation manner of the embodiment of the present invention is:
  • the working medium of the first heat pipe and the second heat pipe are different in the two heat pipes.
  • the first heat pipe and the second heat pipe are the same as the latent heat of the heat pipe, the working conditions of the first heat pipe are the same.
  • the latent heat is greater than the latent heat of the working medium of the second heat pipe.
  • the first heat pipe is a high temperature high efficiency heat pipe; and the second heat pipe is a low temperature high efficiency heat pipe.
  • the heat transfer capacity of the heat pipe is related to the latent heat of the working medium.
  • the types of the working materials of the first heat pipe and the second heat pipe are different in the two heat pipes, wherein the low temperature high efficiency heat pipe is added with less latent heat.
  • the working medium is decyl alcohol, R134A, acetone, etc., while the high-temperature and high-efficiency heat pipe is added with a latent heat such as water, so that the two heat pipes have different heat transfer capacities.
  • a heating element such as a CPU or GPU
  • a heat pipe filled with a low-latency heat medium ie, a low-temperature heat pipe
  • a high-latency heat such as water.
  • the quality heat pipe ie high temperature and high efficiency heat pipe
  • the heating element is in a high-power working environment, it is filled with a high-latency heat medium heat pipe (ie, a high-temperature heat-efficient heat pipe) such as water to start the work completely. It ensures that the heating elements meet the heat transfer requirements in different working scenarios (different power consumption states of the heating elements).
  • Each of the above heat pipes is designed to separately describe the influence of one characteristic parameter of the heat pipe on the optimal working area of the heat pipe, but in actual applications, multiple characteristic parameters of each heat pipe in the heat pipe group can be set to be different.
  • the value of each heat pipe in the heat pipe group corresponds to the optimum working area.
  • the solution provided by the embodiment of the present invention is further described below with reference to specific examples, and specifically includes: a plurality of heat pipes may be included, and the plurality of heat pipes are implemented in the same manner as the two heat pipes. If the heat pipe has changed the characteristic parameter of the pipe diameter, the optimal working area of the two heat pipes is different.
  • the high-temperature high-efficiency heat pipe is a large-diameter heat pipe, and the low-temperature high-efficiency heat pipe is a small-diameter heat pipe, but based on actual needs, it is also required.
  • the corresponding implementation can also be:
  • the cross-sectional area of the capillary layer of the first heat pipe and the second heat pipe in the heat pipe group is different: generally, the heat transfer capacity of the heat pipe decreases with the decrease of the diameter, and the main reason is that the capillary layer is designed inside the heat pipe.
  • the cross-sectional area is different. Therefore, the heat pipe with smaller diameter is designed as the low-temperature high-efficiency heat pipe, and the larger diameter heat pipe is used as the high-temperature high-efficiency heat pipe, and the optimal working area of the two heat pipes can be completely different.
  • the cross-sectional area of the capillary layer of the low-temperature high-efficiency heat pipe can be further reduced, and the low-temperature efficient
  • the optimal working area of the heat pipe moves to a smaller power consumption, which can further ensure that the optimal working areas of the two heat pipes do not coincide, thereby realizing the heat conduction requirement of the heating element (which may be a CPU or a GPU) in different power consumption scenarios.
  • the quality of the first heat pipe and the second heat pipe in the heat pipe group are different: on the basis of different pipe diameters, the quality of the low-temperature high-efficiency heat pipe is reduced (it is also possible to increase the high-temperature and high-efficiency work quality at the same time, or not).
  • the optimal working area of the two heat pipes can be further opened on the basis of changing the pipe diameter, thereby realizing the heat conduction requirement of the heating element in different scenarios.
  • the first heat pipe and the second heat pipe are heat pipes of different diameters, and the low-temperature high-efficiency heat pipe is designed to have a smaller cross-sectional area of the capillary layer (less than the normal cross-sectional area), further adding a low-latency heat working medium, and the work quality is smaller than the normal design.
  • the quantity enables the low-temperature high-efficiency heat pipe to reach the optimal working area under the smaller power consumption of the heating element. Therefore, it can be ensured that the optimal working areas of the two different diameter heat pipes are completely non-coincident, so that the heat pipe group can meet the heat conduction requirement of the heat dissipation temperature of the heating element.
  • a thermal interface material is provided between the heat pipe group and the heat generating component.
  • the heat pipe group is disposed as a whole on any of the heat generating components, and in the specific use, at least two heat pipes in the heat pipe group may be fixed to the heat generating component by a certain fixing component; in addition, in this embodiment, Since each heat pipe works independently, the at least two heat pipes may exist independently, but the heat pipes of different characteristic parameters may be disposed on the same heating element when the heat pipe group is disposed.
  • an embodiment of the present invention further provides an electronic device including a heating element 301, and the heating element 301 is disposed on a circuit board PCB.
  • the electronic device further includes:
  • the heat pipe 302 includes at least two independent heat conduction channels 302a, wherein the heat pipes are located on the heat generating component, and at least one characteristic parameter of each heat conduction channel 302a in the heat pipe is different from each other, and each heat conduction in the heat pipe
  • the optimal working area of the channel 302a is different.
  • the thermal resistance of each heat conducting channel 302a of the heat pipe ranges from 0.05 to 1 ° C/W. .
  • the characteristic parameter may be: a diameter of a heat conduction channel, a heat conduction channel Cross-sectional area of the capillary layer, the quality of the heat-conducting channel, the type of the heat-transfer channel, the tube of the heat-conducting channel
  • the tube of the heat pipe may be copper or aluminum
  • one or more of the thickness of the heat-conducting channel because by changing the characteristic parameters of the heat pipe, the optimal working area of the heat pipe or the maximum heat transfer amount
  • the size will change accordingly, so the characteristic parameters of the heat conduction channels in the heat pipe can be set to different values, so that the optimal working areas of the heat conduction channels in the heat pipe do not overlap, so that the heat conduction channels in the heat pipe are different in the heating elements.
  • the power consumption is in the optimal working area, which can meet the heat conduction requirements of different heating elements.
  • At least one or more of the diameter, the capillary layer cross-sectional area, the working substance type, and the work quality of the at least two independent heat conduction channels are different.
  • the heat pipe includes a plurality of heat conduction channels of different working areas, so that the heat pipe provided by the embodiment of the present invention is covered by the optimal working area of the heat pipe with respect to the heat pipe having only one hot channel.
  • the scope is about doubled. Therefore, by using the heat pipe provided by the embodiment of the present invention to dissipate heat from any of the heat generating components, the heat dissipation requirement of the different power consumption of the heat generating component can be maximized.
  • a thermal interface material is provided between the heat pipe group and the heat generating component.
  • an embodiment of the present invention further provides an electronic device including a heating element 401, and the heating element is disposed on a circuit board PCB, the electronic device further includes a first heat pipe 402 and a second heat pipe.
  • 403 :
  • the first heat pipe 402 and the heat generating component 401 are disposed on the same side of the PCB, and the first heat pipe 402 is connected to the heat generating component 401;
  • the second heat pipe 403 is disposed at a second position of the PCB, and the second heat pipe is connected to the heat generating component through a heat conductive metal, wherein the heat generating component is disposed on a back surface of the second position of the PCB 401 ;
  • the characteristic parameters of the first heat pipe 402 and the second heat pipe 403 are different.
  • the first heat pipe 402 is different from the optimal working area of the second heat pipe 403.
  • the first heat pipe 402 and the second heat pipe 403 are operated in the corresponding optimal working area, the first heat pipe 402 and the The thermal resistance of the second heat pipe 403 ranges from 0.05 to TC/W.
  • the specific implementation manner of the first heat pipe 402 connected to the heat generating component 401 includes a plurality of types, and two alternative modes are provided below:
  • the first heat pipe 402 is located on the heating element 401, and a thermal interface material is disposed between the first heat pipe and the heat generating component;
  • the first heat pipe 402 is connected to the heat generating component 401 through the heat conducting metal, wherein the heat conducting metal is the PCB copper layer.
  • placing the heat pipe on the side of the heat generating component also minimizes the effect of the heat pipe on the thickness of the electronic device.
  • the first heat pipe 402 may be a low temperature high efficiency heat pipe; and the second heat pipe 403 may be a high temperature high efficiency heat pipe.
  • the characteristic parameters are: the diameter of the heat pipe, the cross-sectional area of the capillary layer of the heat pipe, the working mass of the heat pipe, the type of the working medium of the heat pipe, and the pipe of the heat pipe (in the embodiment of the present invention, the pipe of the heat pipe may be copper) Or aluminum) and one or more of the tube thicknesses of the heat pipes of the same tube.
  • the setting of the high-temperature heat-efficiency heat pipe and the low-temperature high-efficiency heat pipe characteristic parameter in the foregoing embodiment 2 and the third embodiment is the same as that in the first embodiment.
  • a corresponding heat pipe group is disposed on the same heating element, and the heat pipe group includes at least two heat pipes, and the optimal working areas of the heat pipes are different; that is, the maximum heat transfer amount of each heat pipe It will be different, so the heat pipes with different characteristic parameters can be heat-dissipated for different working states of the heating elements. Therefore, the technical problem of poor heat dissipation performance of the electronic device in the prior art is solved, and the heat dissipation performance of the electronic device is improved.
  • a heat pipe in the heat pipe group is activated to dissipate heat from the heating element.
  • the heat pipe is called a high-temperature high-efficiency heat pipe, and the high temperature may refer to a heat pipe that dissipates heat as a heat-generating component.
  • High efficiency which can mean that the heat pipe can efficiently dissipate heat from the heating element when the power consumption of the heating element is large.
  • the power consumption of the heating element is low (for example, the power consumption is about 2 ⁇ 3w)
  • another heat pipe in the heat pipe group is activated to dissipate the heat generating component. In this case, the other heat pipe is called low temperature.
  • High-efficiency heat pipe wherein the low temperature can refer to the low power consumption of the heating element, and the other heat pipe is the heat-dissipating component of the heat-generating component, which is high-efficiency, and can mean that the heat-generating component can efficiently dissipate heat when the power consumption of the heating component is low.
  • the solution provided by the embodiment of the invention avoids the problem of high thermal resistance and poor heat transfer performance of the high-power heat pipe in low-power applications; and avoids burning of the low-power heat pipe in high-power applications.
  • the dry phenomenon causes the heat pipe to fail and the heat transfer capability is poor.
  • the electronic device can be various electronic devices such as a mobile phone, a tablet computer, and a game machine.
  • the combined heat pipe provided by the embodiment of the invention can be flexibly arranged according to the compact layout of the mobile phone product, and meets the requirements of compact size and PCB layout limitation, and reduces design constraints, especially the performance of low temperature and high efficiency heat pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种电子设备,该电设备包括发热元件,并且该发热元件设置在电路板PCB上,该电子设备还包括:热管组,所述热管组包括至少两根热管,所述热管组位于所述发热元件上,所述热管组中各热管的至少一个特性参数互不相同,所述热管组中各热管的最佳工作区不相同,其中,所述热管组中各热管在对应的最佳工作区工作时,所述热管组中至少两根热管的热阻范围为0.05~1℃/W。上述电子设备解决了现有技术中电子设备存在的散热性能差的技术问题,提高了电子设备的散热性能。

Description

一种电子设备
技术领域
本发明涉及散热技术领域, 特别涉及一种电子设备。 背景技术
随着长期演进(Long Term Evolution, LTE )技术的迅速普及, 移动互联 网将提供高清晰度、 高性能的多媒体应用, 使得移动数据业务快速增长, 移 动终端设备功耗将大幅度增加, 向有限空间内的散热设计提出了前所未有的 挑战。
移动终端设备工作散热的表面高温区, 对应 L型电路板( Printed Circuit Board, PCB )上主 CPU位置,介于功耗集中于中央处理器( Central Processing Unit, CPU )和图形处理器 Graphic Processing Unit, GPU ), 热设计上温度分 布不均比较严重。原有连接冷热区的压铸镁合金(导热系数 k: k < 70W/m-K ), 石墨膜(厚度 t: t=0.02 ~ 0.1mm; 导热系数 k: k= ~ 1200W/m-K )导热性能无 法满足用户更高的热设计要求。 因此, 如何对移动终端有效散热是业界急需 解决的问题。 发明内容
本发明提供一种电子设备, 以解决现有技术中电子设备存在的散热性能 差的技术问题, 提高电子设备的散热性能。
第一方面, 本申请实施例提供一种电子设备, 所述电子设备包括发热元 件, 所述发热元件设置在电路板 PCB上, 所述电子设备还包括:
热管组, 所述热管组包括至少两根热管, 所述热管组位于所述发热元件 上, 所述热管组中各热管的至少一个特性参数互不相同, 所述热管组中各热 管的最佳工作区不相同, 其中, 所述热管组中各热管在对应的最佳工作区工 作时, 所述热管组中各热管的热阻范围为 0.05~1 °C/W。 结合第一方面, 在第一种可能的实现方式中, 所述特性参数为: 热管的 管径、 热管的毛细层截面积、 热管的工质量、 热管的工质种类、 热管的管材 和相同管材的热管的管材厚度中的一种或多种。
结合第一方面或者第一方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述发热元件与所述热管组之间设有热界面材料。
结合第一方面或者第一方面第一种可能的实现方式至第二种可能的实现 方式中的任一种可能的实现方式, 在第三种可能的实现方式中, 所述发热元 件为 CPU、 GPU或 CPU和 GPU。
结合第一种可能的实现方式, 在第四种可能的实现方式中, 所述热管组 包括两根热管, 所述特性参数为热管的管径;
所述两根热管中第一热管与第二热管的管径不相同, 当所述第一热管与 所述第二热管除热管的管径外其他特性参数相同的情况下 , 所述第一热管的 管径大于所述第二热管的管径, 则所述第一热管为高温高效热管, 所述第二 热管为低温高效热管; 或
所述特性参数为热管的毛细层截面积;
所述两根热管中第一热管与第二热管的毛细层截面积不相同, 当所述第 一热管与所述第二热管除热管的毛细层截面积外其他特性参数相同的情况 下, 所述第一热管的毛细层截面积大于所述第二热管的毛细层截面积, 则所 述第一热管为高温高效热管; 所述第二热管为低温高效热管; 或
所述特性参数为热管的工质量;
所述两根热管中第一热管与第二热管的工质量不相同, 当所述第一热管 与所述第二热管除热管的工质量外其他特性参数相同的情况下 , 所述第一热 管注入的工质量等于实际毛细需求, 所述第二热管注入的工质量低于实际毛 细需求, 则所述第一热管为高温高效热管; 所述第二热管为低温高效热管; 或
所述特性参数为热管的工质;
所述两根热管中第一热管与第二热管的工质不相同, 当所述第一热管与 所述第二热管除热管的潜热外其他特性参数相同的情况下, 所述第一热管的 工质的潜热大于所述第二热管的工质的潜热, 则所述第一热管为高温高效热 管; 所述第二热管为低温高效热管。
第二方面, 提供一种电子设备, 所述电子设备包括发热元件, 所述发热 元件设置在电路板 PCB上, 所述电子设备还包括:
热管, 所述热管中包括至少两个独立的导热通道, 所述热管位于所述发 热元件上, 所述热管中各导热通道的至少一个特性参数互不相同, 所述热管 中各导热通道的最佳工作区不相同, 其中, 所述热管的各导热通道在对应的 最佳工作区工作时, 所述热管的各导热通道的热阻范围为 0.05~1 °C/W。
结合第二方面, 在第二种可能的实现方式中, 所述特性参数为: 导热通 道的直径、 导热通道的毛细层截面积、 导热通道的工质量、 导热通道工质种 类、 导热通道的管材和导热通道的管材厚度中的一种或多种。
结合第二方面或者第二方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述发热元件与所述热管之间设有热界面材料。
第三方面, 提供一种电子设备, 所述电子设备包括发热元件, 所述发热 元件设置在电路板 PCB上, 所述电子设备还包括第一热管和第二热管: 所述第一热管与所述发热元件设置在 PCB的同一侧, 所述第一热管与所 述发热元件相连;
所述第二热管设置在所述 PCB的第二位置, 所述第二热管通过导热金属 与所述发热元件相连, 其中, 所述 PCB的所述第二位置的背面设置有所述发 热元件;
其中, 所述第一热管与所述第二热管的至少一个特性参数不相同, 所述 第一热管与所述第二热管的最佳工作区不相同, 所述第一热管和所述第二热 管在对应的最佳工作区工作时, 所述第一热管和所述第二热管的热阻范围为 0.05~1 °C/W。
结合第三方面, 在第一种可能的实现方式中, 所述第一热管与所述发热 元件相连, 具体为: 所述第一热管位于所述发热元件上, 所述第一热管与所述发热元件之间 设置有热界面材料; 或
所述第一热管与所述发热元件通过所述导热金属相连, 所述导热金属为 所述 PCB的铺铜层。
结合第三方面, 在第二种可能的实现方式中, 特性参数为: 热管的管径、 热管的毛细层截面积、 热管的工质量、 热管的工质种类、 热管的管材和相同 管材的热管的管材厚度中的一种或多种。
本申请实施例中的上述一个或多个技术方案, 至少具有如下有益效果: 本发明实施例所提供的方案中, 利用热管实现移动电子设备的散热, 并且针 对发热元件的热量随着电子设备的不同工作状态而变化的特点, 本发明所提 供的方案中, 在同一个发热元件上设置对应的热管组, 热管组中包括至少两 根热管, 并且各个热管的最佳工作区不相同; 即各热管的最大热传量会不相 同, 所以不同特性参数的热管则可以针对发热元件的不同工作状态进行散热 处理。
附图说明
图 1为本申请实施例一中方式一提供的一种电子设备的结构示意图; 图 2为本申请实施例一中方式二提供的一种电子设备的结构示意图; 图 3为本申请实施例二提供的一种电子设备的结构示意图;
图 4为本申请实施例三中方式一提供的一种电子设备的结构示意图; 图 5为本申请实施例三中方式二提供的一种电子设备的结构示意图。 具体实施方式
热管是一种有效的传热元件。 热管具有极高热导效果, 一般由管壳、 管 芯和工质 (工作介质)组成。 热管 (导热系数 k: k>5000W/m-K)成为移动终端 设备迎接高发热芯片解决方案的一大选择。 因为移动终端设备的发热并不恒定, 而是根据移动终端设备所运行的应 用随时变化的, 而且变化的范围也比较大, 所以当移动终端设备的高功耗与 低功耗散热之间差距较大时, 考虑到一根热管很难兼容移动终端设备的低功 耗区以及高功耗的散热, 难以达到很好的散热效果。 例如:
移动终端设备运行 CPU满负荷的高功耗 (最大功耗 Qmax_DP>8W, 其中 DP的全称为 Design Power)的应用时,则需要釆用最大热传量 Qmax— HP > 8W 的热管进行散热, 其中 HP的全称为 Heat pipe; 但用户日常使用移动终端时, 功耗( Qnormal— DP ) 一般在 Qnormal— DP <3W,则对应的可以釆用 Qmax— HP > 3W的热管进行散热。 所以如果釆用一根热管, 而且移动终端设备的高功耗 与低功耗散热之间差距较大时, 一根热管一般不能达到很好的散热效果。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明 中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所 有其他实施例, 都属于本发明保护的范围。
对于一根热管而言, 考虑到热管的特性不同, 对应热管的最大热传量 ( Qmax— HP )也会不同。 其中, 热管的特性包括热管的尺寸、 直径、 长度等。 每根热管设计完成后对应的 Qmax— HP均为固定值,热管在最佳工作区工作时 (热阻最低时), 其热传导性能最佳。 而当发热元件在低功耗工作时, 因热管 未完全启动工作, 热阻值较大。 当其在高功耗工作时 (超过 Qmax— HP ), 热 管工质不能及时补充加热区对工作的需求, 造成热管出现加热端烧干, 发热 元件(如 CPU或 GPU )温度持续上升的问题。
在本发明实施例中所提到的发热元件是指工作过程中会向周围散发热量 的元件。 例如: 电子设备中最常见的 CPU和 GPU。 但本发明实施例中所提到 的发热元件并不局限于 CPU和 GPU这两种元件。
考虑到利用一根热管对电子设备散热会存在上述特性和问题, 所以综合 分析上述热管特性和问题后, 本发明实施例提供一种电子设备, 该电子设备 包括:
发热元件, 该发热元件设置在电路板 PCB上;
热管组, 所述热管组中包括至少两根热管, 所述热管组位于所述发热元 件上, 并且该热管组中各热管的至少一个特性参数互不相同, 所述热管组中 各热管的最佳工作区不相同; 其中, 所述热管组中各热管在对应的最佳工作 区工作时, 所述热管组中至少两才艮热管的热阻范围为 0.05〜: rc/w。
其中, 特性参数可以是: 热管的管径、 毛细层截面积、 工质量(即工质 的填充量)、 工质种类、 热管的管材(在本发明实施例中热管的管材可以为铜 或铝)和相同管材的热管的管材厚度中的至少一项或多项。
可以理解的是, 最佳工作区可以是指, 在发热元件的功耗较大时 (例如 功耗大约在 10w以上), 热管组中的一根热管对发热元件进行散热, 在这种情 况下, 一根热管的热阻比较低或最低, 其中一根热管的热阻比较低或最低是 相对于这根热管在其他情况下为发热元件进行散热时的热阻比较而言的; 在 发热元件的功耗较低时 (例如功耗大约是 2~3w ), 热管组中的另一根热管对 发热元件进行散热, 在这种情况下, 另一根热管的热阻比较低或最低, 其中 另一根热管的热阻比较低或最低是相对于这根热管在其他情况下为发热元件 进行散热时的热阻比较而言的。 热管组中的各热管在热阻比较低或最低的情 况下, 对发热元件进行散热, 即为热管组中各热管工作在对应的最佳工作区。
鉴于发热元件的热量随着电子设备的不同工作状态而变化的特点, 本发 明实施例所提供的方案中, 在同一个发热元件上设置对应的热管组, 热管组 中包括至少两根热管, 并且各热管的最佳工作区不相同; 即各热管的最大热 传量会不相同, 所以不同特性参数的热管则可以针对发热元件的不同工作状 态进行散热处理。
下面结合附图对本发明实施例可实现的实施方式进行详细说明: 实施例一
请参考图, 本申请实施例提供一种电子设备, 该电子设备包括: 发热元件, 该发热元件设置在电路板 PCB上; 热管组, 所述热管组包括至少两根热管, 所述热管组位于所述发热元件 上, 所述热管组中各热管的至少一个特性参数互不相同, 所述热管组中各热 管的最佳工作区不相同, 其中, 所述热管组中各热管在对应的最佳工作区工 作时, 所述热管组中至少两才艮热管的热阻范围为 0.05~1 °C/W。
在本发明实施例中, 所述当热管工作在最佳工作区时, 热管的热阻可以 是 rc/w (摄氏度 /瓦), 在具体的应用中热管工作在最佳工作区时, 热管的热 阻一般会在 0.05~1 °C/W (摄氏度 /瓦) 范围内。
在本发明实施例中, 所述特性参数可以是: 热管的管径、 毛细层截面积、 工质量(即工质的填充量)、 工质种类、 热管的管材(在本发明实施例中热管 的管材可以为铜或铝)和相同管材的热管的管材厚度中的一种或多种, 因为 通过改变热管的特性参数, 热管的最佳工作区或者最大热传量大小会随之改 变, 所以将热管组中各热管的特性参数设置成不同的值, 则会使得热管组中 各热管的最佳工作区不重合, 从而热管组中各热管在不同的功耗下分别处于 最佳工作区, 能够满足发热元件不同场景下热传导的要求。
在本发明实施例中, 所述热管组中可以包括多根热管, 并且各热管的最 佳工作区都不相同。 因为热管的特性参数决定了热管的最佳工作区, 而且决 定热管最佳工作区的特性参数包括多种, 改变特性参数中的任意一种都可以 改变热管的最佳工作区, 所以本发明实施例中各热管的特性参数互不相同, 使得各热管的最佳工作区不相同的实现方式也包括多种。 为了更加详细的说 明本发明实施例所提供的方案, 以下针对热管管径、 参数毛细层截面积、 工 质量和工质种类这三种比较常见的特性参数对本发明实施例的方案进行说 明, 可选实现方式包括: 的实现中热管组中也可以包括多根热管, 例如三根热管或四根热管, 其中, 方式一、 改变特性参数中热管管径这一项特性参数, 则本发明实施例对 应的实现方式为 (具体结构如图 1所示): 所述两根热管中第一热管 101与第二热管 102的管径不相同, 其中, 当 第一热管与第二热管除热管的管径外其他特性参数相同的情况下, 所述第一 热管的管径大于所述第二热管的管径。 所述第一热管为高温高效热管, 所述 第二热管为低温高效热管。
在本发明实施例中, 当热管组中的热管选用不同直径的热管时, 高温高 效热管为大直径热管,低温高效热管为小直径热管, 热管直径的不同导致(正 常的参数设计) 热管有着不同的最佳工作区或者热传量大小, 釆用管径不相 同的热管能够确保两根热管最佳工作区不重合, 这样可以满足发热元件(例 如: CPU和 /或 GPU ) 不同场景下热传导的要求。
方式二、 改变特性参数中热管毛细层截面积这一项特性参数, 则本发明 实施例对应的实现方式为 (具体结构如图 2所示):
所述两根热管中第一热管 201与第二热管 202的毛细层截面积不相同, 当第一热管与第二热管除热管的毛细层截面积外其他特性参数相同的情况 下, 所述第一热管 201的毛细层截面积大于所述第二热管 202的毛细层截面 积。 所述第一热管 201为高温高效热管; 所述第二热管 202为低温高效热管。
不同的毛细层截面积会影响热管的传热能力, 低温高效热管的毛细层截 面积比高温高效热管的毛细层截面积小。 毛细结构可以是铜粉烧结(powder ) 结构、 丝网 (mesh ) 结构、 纤维(fiber )结构或沟槽(groove )结构。
低温高效热管的热传量较低, 因此当发热元件(可以是 CPU和 /或 GPU ) 功耗较小时(功耗大约是 2~3w ), 该低温高效热管完全启动工作, 工作在最 佳工作区, 有效的起到对低功耗发热元件散热的效果。
而当发热元件( CPU和 /或 GPU )功耗较大时(功耗大约在 10w以上 ), 高温高效热管完全启动, 高温高效热管工作在最佳工作区; 有效的起到对高 功耗发热元件散热的效果。
改变毛细层截面积的大小, 使得低温高效和高温高效热管的最佳工作区 不重合, 确保发热元件 (可以是 CPU和 /或 GPU )在不同的工作场景 (对应 发热元件的不同功耗) 的散热需求。 方式三、 改变特性参数中工质量这一项特性参数, 则本发明实施例对应 的实现方式为:
所述两根热管中第一热管与第二热管的工质量不相同, 当第一热管与第 二热管除热管的工质量外其他特性参数相同的情况下, 所述第一热管注入的 工质量等于实际毛细需求, 所述第二热管注入的工质量低于实际毛细需求。 所述第一热管为高温高效热管; 所述第二热管为低温高效热管。
改变工质量使得低温高效和高温高效热管最佳工作区不重合。 具体操作, 第一热管充入等于实际毛细需求的工质量, 使得第一热管的最佳工作区向较 大功耗移动, 从而实现在发热元件的较大功耗下第一热管工质充分工作 (实 现高温高效热管的散热效果); 第二热管作为低温高效热管则注入小于热管实 际毛细需求的工质量, 保持第二热管的最佳工作区向较小功耗移动, 从而实 现在发热元件的较小功耗下第二热管的工质充分工作。 从而实现较大的功耗 下高温高效热管传递热量, 而小功耗下低温高效热管完全启动充分传热。 确 保发热元件( CPU和 /或 GPU )在不同的工作场景(发热元件的不同功耗状态) 下, 所述热管组都能满足热传导的需求。
方式四、 改变特性参数中热管的工质种类这一特性参数, 则本发明实施 例对应的实现方式为:
则所述两根热管中第一热管与第二热管的工质种类不相同, 当第一热管 与第二热管除热管的潜热外其他特性参数相同的情况下 , 所述第一热管的工 质的潜热大于所述第二热管的工质的潜热。 所述第一热管为高温高效热管; 所述第二热管为低温高效热管。
热管的传热能力和工质的潜热有关。 为了使两根热管中第一热管与第二 热管的最佳工作区不相同, 两根热管中第一热管与第二热管的工质的种类不 相同, 其中, 低温高效热管加入潜热较小的工质如曱醇、 R134A、 丙酮等, 而 高温高效热管则加入水等潜热较大工质, 从而实现两个热管有不同的传热能 力。 因此当发热元件(如 CPU或 GPU )在低功耗工作场景时, 填入低潜热工 质的热管 (即低温高效热管)开始在最佳工作区工作, 而填入水等高潜热工 质的热管 (即高温高效热管) 则未完全启动。 当发热元件在高功耗工作场景 时, 填入水等高潜热工质热管 (即高温高效热管) 完全启动工作。 确保了发 热元件在不同的工作场景 (发热元件的不同功耗状态) 满足热传导的需求。
上述每种热管的设计方式只是单独的介绍了热管的某一个特性参数对热 管最佳工作区的影响, 但是在实际的应用中还可将热管组中各热管的多个特 性参数都设置成不同的值, 从而使得热管组中的每个热管对应的最佳工作区 不同。 以下结合具体的事例对本发明实施例所提供的方案作进一步的描述, 具体包括: 中可以包括多根热管, 多根热管的实现方式与两个热管相同。 如果热管已经 改变了管径这一项特性参数, 两个热管的最佳工作区已经不相同了, 高温高 效热管为大直径热管, 低温高效热管为小直径热管, 但是基于实际的需求, 还需要对两根热管的最佳工作区进行调整, 则对应的实现方式还可以是:
( 1 )热管组中的第一热管和第二热管的毛细层截面积不相同:一般来讲, 热管随着直径的降低其传热能力也随之降低, 其主要原因是热管内部设计毛 细层截面积不同。 因此设计时直径较小热管作为低温高效热管, 直径较大热 管作为高温高效热管, 且两根热管最佳工作区可以完全不同, 同时, 可进一 步降低低温高效热管的毛细层截面积, 使低温高效热管最佳工作区向更小功 耗移动,可以进一步确保两根热管最佳工作区不重合,从而实现发热元件(可 以是 CPU或 GPU )在不同功耗场景下的热传导要求。
( 2 )热管组中的第一热管和第二热管的工质量不相同: 管径不相同的基 础上, 降低低温高效热管的工质量(也可同时增加高温高效工质量, 也可不 加), 可以使得两根热管的最佳工作区在改变管径的基础上进一步拉开, 从而 实现发热元件在不同场景下的热传导要求。
( 3 )热管组中的第一热管和第二热管的工质不相同: 管径不相同的基础 上, 改变低温高效热管中填充的工质, 选择潜热较低的如曱醇、 四氟乙烷
( R-134A )、 丙酮等工质, 可进一步使得低温高效热管的最佳工作区向小功耗 区移动, 从而实现器件不同场景下的热传导要求。
上述方式(1 )、 ( 2 )和(3 )是以两种特性参数影响热管最佳工作区为例 进行的说明, 在实际的应用中也可以是更多的参数同时作用, 从而实现热管 组中各热管的最佳工作区不相同的目的。 例如:
第一热管和第二热管为不同直径的热管, 并且将低温高效热管设计为更 小 (小于正常的截面积) 的毛细层截面积, 进一步添加低潜热的工质, 同时 工质量小于正常设计的量, 使得低温高效热管在发热元件更小功耗下达到最 佳工作区。 从而可以确保两个不同直径热管最佳工作区完全不重合, 使得热 管组能够满足发热元件大范围散热温度的热传导要求。 在具体的应用中, 为了达到了更好的传热效果: 所述热管组与所述发热元件 之间设有热界面材料。
上述实施例中, 热管组作为一个整体设置在任一发热元件上, 在具体的 使用中热管组中的至少两根热管可以是通过一定的固定元件固定在发热元 件; 另外, 在该实施例中, 因为每根热管都是独立工作的, 所以所述至少两 个热管也可是独立存在, 只是在设置热管组的时候将不同特性参数的热管设 置在同一发热元件上即可。
实施例二
如图 3所示, 本发明实施例还提供另外一种电子设备, 该电子设备包括 发热元件 301 , 并且该发热元件 301设置在电路板 PCB上, 该电子设备还包 括:
热管 302, 所述热管中包括至少两个独立的导热通道 302a, 所述热管位 于所述发热元件上, 所述热管中各导热通道 302a的至少一个特性参数互不相 同, 所述热管中各导热通道 302a的最佳工作区不相同, 其中, 所述热管的各 导热通道 302a在对应的最佳工作区工作时,所述热管的各导热通道 302a的热 阻范围为 0.05~1 °C/W。
在本发明实施例中, 所述特性参数可以是: 导热通道的直径、 导热通道 的毛细层截面积、 导热通道的工质量、 导热通道工质种类、 导热通道的管材
(在本发明实施例中热管的管材可以为铜或铝)和导热通道的管材厚度中的 一种或多种, 因为通过改变热管的特性参数, 热管的最佳工作区或者最大热 传量的大小会随之改变, 所以将热管中各导热通道的特性参数可以设置成不 同的值, 则会使得热管中各导热通道的最佳工作区不重合, 从而热管中各导 热通道在发热元件不同的功耗下分别处于最佳工作区, 能够满足发热元件不 同场景下热传导的要求。
所以本发明实施例中, 所述至少两个独立的导热通道的直径、 毛细层截 面积、 工质种类、 工质量中的至少一项或多项均不相同。
在本发明实施例中, 热管中包括多个不同工作区的导热通道, 从而使得 本发明实施例提供的热管相对于只有一个热通道的热管而言, 本发明提供热 管的最佳工作区所覆盖的范围要大约大一倍。 所以利用本发明实施例所提供 的热管对任一发热元件进行散热, 能够最大限度的兼顾到发热元件的不同功 耗的散热需求。 在具体的应用中, 为了达到了更好的传热效果: 所述热管组与所述发热元件 之间设有热界面材料。
实施例三
如图 4所示, 本发明实施例还提供另外一种电子设备, 该电设备包括发 热元件 401 , 并且该发热元件设置在电路板 PCB上, 该电子设备还包括第一 热管 402和第二热管 403:
所述第一热管 402与所述发热元件 401设置在 PCB的同一侧面, 所述第 一热管 402与所述发热元件 401相连;
所述第二热管 403设置在所述 PCB的第二位置, 所述第二热管通过导热 金属与所述发热元件相连, 其中, 所述 PCB的所述第二位置的背面设置有所 述发热元件 401 ;
其中, 所述第一热管 402与所述第二热管 403的特性参数不相同, 所述 第一热管 402与所述第二热管 403的最佳工作区不相同, 所述第一热管 402 和所述第二热管 403在对应的最佳工作区工作时, 所述第一热管 402和所述 第二热管 403的热阻范围为 0.05〜: TC/W。
在本发明实施例中第一热管 402与所述发热元件 401相连的具体实现方 式包括多种, 以下提供两种可选的方式:
如图 4所示, 方式一:
所述第一热管 402位于所述发热元件 401上, 所述第一热管与所述发热 元件之间设有热界面材料;
如图 5所示, 方式二:
所述第一热管 402与所述发热元件 401通过所述导热金属相连, 其中所 述导热金属为所述 PCB铺铜层。
在该实施例中, 将热管设置在发热元件的旁侧还可以最大限度的减小热 管对电子设备厚度的影响。
在本发明实施例中, 为了更好的实现散热效果, 所述第一热管 402可以 为低温高效热管; 所述第二热管 403可以为高温高效热管。
在本发明实施例中, 特性参数为: 热管的管径、 热管的毛细层截面积、 热管的工质量、 热管的工质种类、 热管的管材(在本发明实施例中热管的管 材可以为铜或铝)和相同管材的热管的管材厚度中的一种或多种。
前述实施例二和实施例三中高温高效热管和低温高效热管特性参数的设 置和实施例一的方式相同, 具体的请参阅实施例一的描述, 在此不再详述。
本发明的一个或多个实施例, 至少可以实现如下技术效果:
本发明实施例所提供的方案中, 在同一个发热元件上设置对应的热管组, 热管组中包括至少两根热管, 并且各热管的最佳工作区不相同; 即各热管的 最大热传量会不相同, 所以不同特性参数的热管则可以针对发热元件的不同 工作状态进行散热处理。 从而解决现有技术中电子设备存在的散热性能差的 技术问题, 提高了电子设备的散热性能。
可以理解的是: 当发热元件的功耗较大时(例如功耗大约在 10w以上 ), 热管组中的一根热管启动, 对发热元件进行散热, 在这种情况下, 这根热管 被称为高温高效热管, 其中高温可以指发热元件功耗较大的情况下一个热管 为发热元件散热, 高效, 可以是指在发热元件功耗较大的情况下, 这根热管 可以为发热元件高效散热。当发热元件的功耗较低时(例如功耗大约是 2~3w ), 热管组中的另一根热管启动, 对发热元件进行散热, 在这种情况下, 另一根 热管被称为低温高效热管, 其中低温可以指发热元件功耗较低的情况另一根 热管为发热元件散热, 高效, 可以是指在发热元件功耗较低的情况下, 另一 根热管可以为发热元件高效散热。
另, 本发明实施例所提供的方案, 避免高功耗热管在低功耗应用时, 热 阻大, 传热性能差的问题; 同时也避免低功耗热管在高功耗应用时, 出现烧 干现象, 导致热管失效, 传热能力差的问题。
其中电子设备可以为手机、 平板电脑、 游戏机等各种电子设备。
本发明实施例所提供的组合式热管可根据手机类产品布局紧凑特点灵活 布局, 满足体积紧凑和 PCB布局限制, 减少设计制约, 特别是发挥低温高效 热管性能。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 脱离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变 型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。

Claims

权 利 要 求
1、 一种电子设备, 所述电子设备包括发热元件, 所述发热元件设置在电 路板 PCB上, 其特征在于, 所述电子设备还包括:
热管组, 所述热管组包括至少两根热管, 所述热管组位于所述发热元件 上, 所述热管组中各热管的至少一个特性参数互不相同, 所述热管组中各热 管的最佳工作区不相同, 其中, 所述热管组中各热管在对应的最佳工作区工 作时, 所述热管组中各热管的热阻范围为 0.05~1 °C/W。
2、 如权利要求 1所述的电子设备, 其特征在于, 所述特性参数为: 热管 的管径、 热管的毛细层截面积、 热管的工质量、 热管的工质种类、 热管的管 材和相同管材的热管的管材厚度中的一种或多种。
3、 如权利要求 1或 2所述的电子设备, 其特征在于, 所述发热元件与所 述热管组之间设有热界面材料。
4、 如权利要求 1-3任一所述的电子设备, 其特征在于, 所述发热元件为 CPU, GPU或 CPU和 GPU。
5、 如权利要求 2所述的电子设备, 其特征在于, 所述热管组包括两根热 管, 所述特性参数为热管的管径;
所述两根热管中第一热管与第二热管的管径不相同, 当所述第一热管与 所述第二热管除热管的管径外其他特性参数相同的情况下 , 所述第一热管的 管径大于所述第二热管的管径, 则所述第一热管为高温高效热管, 所述第二 热管为低温高效热管; 或
所述特性参数为热管的毛细层截面积;
所述两根热管中第一热管与第二热管的毛细层截面积不相同, 当所述第 一热管与所述第二热管除热管的毛细层截面积外其他特性参数相同的情况 下, 所述第一热管的毛细层截面积大于所述第二热管的毛细层截面积, 则所 述第一热管为高温高效热管; 所述第二热管为低温高效热管; 或 所述两根热管中第一热管与第二热管的工质量不相同, 当所述第一热管 与所述第二热管除热管的工质量外其他特性参数相同的情况下 , 所述第一热 管注入的工质量等于实际毛细需求, 所述第二热管注入的工质量低于实际毛 细需求, 则所述第一热管为高温高效热管; 所述第二热管为低温高效热管; 或
所述特性参数为热管的工质;
所述两根热管中第一热管与第二热管的工质不相同, 当所述第一热管与 所述第二热管除热管的工质外其他特性参数相同的情况下, 所述第一热管的 工质的潜热大于所述第二热管的工质的潜热, 则所述第一热管为高温高效热 管; 所述第二热管为低温高效热管。
6、 一种电子设备, 所述电子设备包括发热元件, 所述发热元件设置在电 路板 PCB上, 其特征在于, 所述电子设备还包括:
热管, 所述热管中包括至少两个独立的导热通道, 所述热管位于所述发 热元件上, 所述热管中各导热通道的至少一个特性参数互不相同, 所述热管 中各导热通道的最佳工作区不相同, 其中, 所述热管的各导热通道在对应的 最佳工作区工作时, 所述热管的各导热通道的热阻范围为 0.05~1 °C/W。
7、 如权利要求 6所述的电子设备, 其特征在于, 所述特性参数为: 导热 通道的直径、 导热通道的毛细层截面积、 导热通道的工质量、 导热通道工质 种类、 导热通道的管材和导热通道的管材厚度中的一种或多种。
8、 如权利要求 6或 7所述的电子设备, 其特征在于, 所述发热元件与所 述热管之间设有热界面材料。
9、 一种电子设备, 所述电子设备包括发热元件, 所述发热元件设置在电 路板 PCB上, 其特征在于, 所述电子设备还包括第一热管和第二热管: 所述第一热管与所述发热元件设置在 PCB的同一侧, 所述第一热管与所 述发热元件相连;
所述第二热管设置在所述 PCB的第二位置, 所述第二热管通过导热金属 与所述发热元件相连, 其中, 所述 PCB的所述第二位置的背面设置有所述发 热元件;
其中, 所述第一热管与所述第二热管的至少一个特性参数不相同, 所述 第一热管与所述第二热管的最佳工作区不相同, 所述第一热管和所述第二热 管在对应的最佳工作区工作时, 所述第一热管和所述第二热管的热阻范围为
0.05~1 °C/W。
10、 如权利要求 9所述的电子设备, 其特征在于, 所述第一热管与所述 发热元件相连, 具体为:
所述第一热管位于所述发热元件上, 所述第一热管与所述发热元件之间 设置有热界面材料; 或
所述第一热管与所述发热元件通过所述导热金属相连, 所述导热金属为 所述 PCB的铺铜层。
11、如权利要求 9或 10所述的电子设备, 其特征在于, 所述特性参数为: 热管的管径、 热管的毛细层截面积、 热管的工质量、 热管的工质种类、 热管 的管材和相同管材的热管的管材厚度中的一种或多种。
PCT/CN2014/079149 2014-06-04 2014-06-04 一种电子设备 WO2015184603A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201480001490.5A CN104488371B (zh) 2014-06-04 2014-06-04 一种电子设备
JP2016566282A JP6486965B2 (ja) 2014-06-04 2014-06-04 電子デバイス
PCT/CN2014/079149 WO2015184603A1 (zh) 2014-06-04 2014-06-04 一种电子设备
US15/311,927 US10409340B2 (en) 2014-06-04 2014-06-04 Electronic device
EP14894059.6A EP3131376B1 (en) 2014-06-04 2014-06-04 Electronic device
CN201710762882.9A CN107613724B (zh) 2014-06-04 2014-06-04 一种电子设备
US16/529,075 US11144101B2 (en) 2014-06-04 2019-08-01 Electronic device
US17/474,564 US11789504B2 (en) 2014-06-04 2021-09-14 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079149 WO2015184603A1 (zh) 2014-06-04 2014-06-04 一种电子设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/311,927 A-371-Of-International US10409340B2 (en) 2014-06-04 2014-06-04 Electronic device
US16/529,075 Continuation US11144101B2 (en) 2014-06-04 2019-08-01 Electronic device

Publications (1)

Publication Number Publication Date
WO2015184603A1 true WO2015184603A1 (zh) 2015-12-10

Family

ID=52761448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079149 WO2015184603A1 (zh) 2014-06-04 2014-06-04 一种电子设备

Country Status (5)

Country Link
US (3) US10409340B2 (zh)
EP (1) EP3131376B1 (zh)
JP (1) JP6486965B2 (zh)
CN (2) CN104488371B (zh)
WO (1) WO2015184603A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104488371B (zh) * 2014-06-04 2017-11-17 华为技术有限公司 一种电子设备
CN104866047A (zh) * 2015-05-29 2015-08-26 广东欧珀移动通信有限公司 一种cpu散热结构和终端
CN107144160B (zh) * 2017-04-19 2019-10-18 北京空间飞行器总体设计部 一种工作于160k至220k温区的双回路深冷环路热管
CN212673920U (zh) * 2017-12-28 2021-03-09 古河电气工业株式会社 散热器
JP7161343B2 (ja) * 2018-08-27 2022-10-26 新光電気工業株式会社 冷却器
JP7216894B2 (ja) * 2019-03-25 2023-02-02 カシオ計算機株式会社 電子装置及び投影装置
CN113544868A (zh) * 2019-07-09 2021-10-22 茹利亚诺·安弗洛尔 一种晶体管和音频驱动器与散热器之间的改进热耦合
US11249264B2 (en) * 2020-07-02 2022-02-15 Google Llc Thermal optimizations for OSFP optical transceiver modules
US20210059073A1 (en) * 2020-11-05 2021-02-25 Intel Corporation Heterogeneous heat pipes
US11356542B2 (en) 2020-11-11 2022-06-07 Frore Systems Inc. Mobile device having a high coefficient of thermal spreading
CN112612350A (zh) * 2020-12-25 2021-04-06 苏州浪潮智能科技有限公司 一种服务器散热系统和方法
US11782281B2 (en) 2021-07-30 2023-10-10 Meta Platforms Technologies, Llc Thermal management system for electronic device
US11698536B2 (en) 2021-07-30 2023-07-11 Meta Platforms Technologies, Llc Thermal management system for electronic device
JP7217792B1 (ja) 2021-10-20 2023-02-03 レノボ・シンガポール・プライベート・リミテッド 電子機器の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2671129Y (zh) * 2004-01-09 2005-01-12 杨洪武 发热电子元件的热管散热器
CN1985231A (zh) * 2004-06-08 2007-06-20 辉达公司 用于有效冷却处理器的系统
CN101374401A (zh) * 2007-08-20 2009-02-25 辉达公司 与电路板一起使用的可控热传递介质系统及方法
CN201541416U (zh) * 2009-08-28 2010-08-04 鈤新科技股份有限公司 不同热管管径的导热结构及具有该结构的散热器
CN103021877A (zh) * 2012-12-22 2013-04-03 中国船舶重工集团公司第七0九研究所 一种采用双路径传热的高密度芯片散热方法
CN103228118A (zh) * 2012-01-31 2013-07-31 神讯电脑(昆山)有限公司 电子装置的加速启动模块及其方法
CN203243660U (zh) * 2013-04-16 2013-10-16 讯凯国际股份有限公司 大小头热管散热器及具有该散热器的显卡散热模块

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355942A (en) * 1991-08-26 1994-10-18 Sun Microsystems, Inc. Cooling multi-chip modules using embedded heat pipes
JP3020790B2 (ja) * 1993-12-28 2000-03-15 株式会社日立製作所 ヒートパイプ式冷却装置とこれを用いた車両制御装置
JPH08130385A (ja) * 1994-10-31 1996-05-21 Toshiba Corp 電子回路基板及びその冷却方法
US5513070A (en) * 1994-12-16 1996-04-30 Intel Corporation Dissipation of heat through keyboard using a heat pipe
US6160223A (en) * 1998-06-03 2000-12-12 At&T Corporation Heat pipe attached to a printed wiring board
JP4223628B2 (ja) * 1999-05-20 2009-02-12 ティーエス ヒートロニクス 株式会社 電子機器冷却装置
US6349035B1 (en) * 2000-09-29 2002-02-19 Compaq Information Technologies Group, L.P. Method and apparatus for tooless mating of liquid cooled cold plate with tapered interposer heat sink
JP2003218570A (ja) * 2002-01-24 2003-07-31 Ts Heatronics Co Ltd 放熱装置
EP1454218A1 (en) * 2002-04-06 2004-09-08 Zalman Tech Co., Ltd. Chipset cooling device of video graphic adapter card
US7299859B2 (en) * 2003-04-28 2007-11-27 Lucent Technologies Inc. Temperature control of thermooptic devices
WO2005013657A1 (ja) * 2003-08-01 2005-02-10 Fujitsu Limited 電子機器の冷却装置
JP2005078966A (ja) * 2003-09-01 2005-03-24 Seiko Epson Corp 光源装置、光源装置の製造方法、投射型表示装置
JP4391366B2 (ja) * 2003-09-12 2009-12-24 古河電気工業株式会社 ヒートパイプを備えたヒートシンクおよびその製造方法
US8569939B2 (en) * 2004-09-15 2013-10-29 Seoul Semiconductor Co., Ltd. Luminous device with heat pipe and method of manufacturing heat pipe lead for luminous device
US7190577B2 (en) * 2004-09-28 2007-03-13 Apple Computer, Inc. Cooling system with integrated passive and active components
CA2611578A1 (en) * 2005-06-23 2006-12-28 Telefonaktiebolaget L M Ericsson (Publ) Cooling asssembly
CN100529636C (zh) * 2005-09-05 2009-08-19 鸿富锦精密工业(深圳)有限公司 热管及其制备方法
TWI305131B (en) * 2005-09-08 2009-01-01 Ind Tech Res Inst Heat dissipation device and composite material with high thermal conductivity
JP4267629B2 (ja) * 2006-01-31 2009-05-27 株式会社東芝 電子機器
DE102006030833A1 (de) * 2006-07-04 2008-01-10 Pari GmbH Spezialisten für effektive Inhalation Verfahren und Vorrichtung für die Reinigung der Verneblermembran in einem Inhalationstherapiegerät
TWM309143U (en) * 2006-09-08 2007-04-01 Micro Star Int Co Ltd Circuit board with a perforated structure of a heat pipe
US7515423B2 (en) * 2006-09-22 2009-04-07 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
JP4762120B2 (ja) * 2006-11-24 2011-08-31 株式会社東芝 電子機器、冷却装置
US20100188811A1 (en) * 2007-07-05 2010-07-29 Aeon Lighting Technology Inc. Memory cooling device
CN101370371B (zh) * 2007-08-17 2011-06-08 富准精密工业(深圳)有限公司 散热模组及用于该散热模组的散热器
JP2009104241A (ja) * 2007-10-19 2009-05-14 Toshiba Corp 電子機器
JP4357569B2 (ja) * 2008-01-31 2009-11-04 株式会社東芝 電子機器
CN101534626B (zh) * 2008-03-14 2011-06-08 富准精密工业(深圳)有限公司 散热模组组合及其散热器组合
WO2009121737A1 (de) * 2008-04-03 2009-10-08 Siemens Aktiengesellschaft Substrat mit flachem wärmerohr
US7742299B2 (en) * 2008-05-09 2010-06-22 Intel Corporation Piezo fans for cooling an electronic device
US20090277614A1 (en) * 2008-05-12 2009-11-12 Shih-Yuan Lin Heat dissipating device and heat conduction structure thereof
CN101776941B (zh) * 2009-01-08 2013-03-13 富准精密工业(深圳)有限公司 散热装置
CN101478868B (zh) * 2009-01-23 2012-06-13 北京奇宏科技研发中心有限公司 散热装置
CN101861079A (zh) * 2009-04-10 2010-10-13 富准精密工业(深圳)有限公司 散热装置
CN101861078A (zh) * 2009-04-10 2010-10-13 富准精密工业(深圳)有限公司 散热装置及其制造方法
JP4558086B1 (ja) * 2009-06-22 2010-10-06 株式会社東芝 電子機器
US8423967B2 (en) * 2009-07-01 2013-04-16 International Business Machines Corporation Automated level-based targeted test configuration
CN101945561A (zh) * 2009-07-07 2011-01-12 富准精密工业(深圳)有限公司 散热装置及其制造方法
US20110048677A1 (en) * 2009-08-31 2011-03-03 Kuo-Len Lin Heat-conducting assembly for heat pipes of different diameters and heat sink having the same
JP2011124456A (ja) * 2009-12-12 2011-06-23 Molex Inc 冷却装置、電子機器
CN102105035A (zh) * 2009-12-21 2011-06-22 富准精密工业(深圳)有限公司 散热模组
KR101609253B1 (ko) * 2010-01-11 2016-04-06 삼성전자주식회사 반도체 모듈의 소켓 장치
WO2011093852A1 (en) * 2010-01-26 2011-08-04 Hewlett-Packard Development Company, L.P. Heat sink with multiple vapor chambers
US20110225818A1 (en) * 2010-03-19 2011-09-22 Shih-Bin Chiu Method of manufacturing an led illuminator device
TWM400605U (en) * 2010-11-09 2011-03-21 Sunteng New Technology Co Ltd Improved heat dissipating structure
CN102878843A (zh) * 2011-07-15 2013-01-16 富瑞精密组件(昆山)有限公司 热管
US8658721B2 (en) * 2011-09-07 2014-02-25 Lg Chem, Ltd. Antifoaming agent for vinyl chloride resin slurry
CN103036394A (zh) * 2011-09-29 2013-04-10 台达电子企业管理(上海)有限公司 一种用于中高压变频器的散热装置
TWM426988U (en) * 2011-10-27 2012-04-11 Cooler Master Co Ltd Thin type heat pipe
CN103096678B (zh) * 2011-10-27 2017-09-15 全亿大科技(佛山)有限公司 散热装置
TWI531303B (zh) * 2011-11-16 2016-04-21 宏碁股份有限公司 散熱模組
CN103167780B (zh) * 2011-12-16 2016-06-08 台达电子企业管理(上海)有限公司 功率模块用复合式散热器组件
EP2856315A4 (en) * 2012-05-30 2016-02-17 Intel Corp TERMINATION REQUEST BETWEEN A HETEROGEN GROUP OF PROCESSORS
WO2014003762A1 (en) * 2012-06-28 2014-01-03 Hewlett-Packard Development Company, L.P. Conversion of an object for a hardware device into health control information
WO2014077081A1 (ja) * 2012-11-15 2014-05-22 東芝ホームテクノ株式会社 ヒートパイプ、スマートフォン、タブレット端末または携帯情報端末
US10091911B2 (en) * 2012-12-11 2018-10-02 Infinera Corporation Interface card cooling using heat pipes
US9703335B2 (en) * 2013-01-14 2017-07-11 Dell Products L.P. Information handling system chassis with anisotropic conductance
US9121645B2 (en) * 2013-02-11 2015-09-01 Google Inc. Variable thickness heat pipe
US9144178B2 (en) * 2013-03-01 2015-09-22 International Business Machines Corporation Selective clamping of electronics card to coolant-cooled structure
US9192043B2 (en) * 2013-07-01 2015-11-17 Hamilton Sundstrand Corporation PWB cooling system with heat dissipation through posts
AT514605B1 (de) 2013-07-30 2015-02-15 Hans Künz GmbH Schienenfahrwerksgruppe
US9459669B2 (en) * 2014-01-28 2016-10-04 Dell Products L.P. Multi-component shared cooling system
US9826073B2 (en) * 2014-05-27 2017-11-21 Lg Electronics Inc. Watch type mobile terminal
CN104488371B (zh) * 2014-06-04 2017-11-17 华为技术有限公司 一种电子设备
JP5970581B1 (ja) * 2015-03-30 2016-08-17 株式会社フジクラ 携帯型電子機器用熱拡散板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2671129Y (zh) * 2004-01-09 2005-01-12 杨洪武 发热电子元件的热管散热器
CN1985231A (zh) * 2004-06-08 2007-06-20 辉达公司 用于有效冷却处理器的系统
CN101374401A (zh) * 2007-08-20 2009-02-25 辉达公司 与电路板一起使用的可控热传递介质系统及方法
CN201541416U (zh) * 2009-08-28 2010-08-04 鈤新科技股份有限公司 不同热管管径的导热结构及具有该结构的散热器
CN103228118A (zh) * 2012-01-31 2013-07-31 神讯电脑(昆山)有限公司 电子装置的加速启动模块及其方法
CN103021877A (zh) * 2012-12-22 2013-04-03 中国船舶重工集团公司第七0九研究所 一种采用双路径传热的高密度芯片散热方法
CN203243660U (zh) * 2013-04-16 2013-10-16 讯凯国际股份有限公司 大小头热管散热器及具有该散热器的显卡散热模块

Also Published As

Publication number Publication date
US11789504B2 (en) 2023-10-17
JP6486965B2 (ja) 2019-03-20
CN107613724A (zh) 2018-01-19
EP3131376A4 (en) 2017-04-26
CN107613724B (zh) 2020-04-28
EP3131376B1 (en) 2021-08-04
EP3131376A1 (en) 2017-02-15
CN104488371A (zh) 2015-04-01
JP2017520106A (ja) 2017-07-20
CN104488371B (zh) 2017-11-17
US20220004235A1 (en) 2022-01-06
US20170102745A1 (en) 2017-04-13
US20190354147A1 (en) 2019-11-21
US11144101B2 (en) 2021-10-12
US10409340B2 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2015184603A1 (zh) 一种电子设备
TWI257543B (en) Equalizing temperature device
TW201248104A (en) Liquid cooling device
CN103429061A (zh) 空腹热管散热器
TW202028675A (zh) 相變散熱裝置
CN105517424B (zh) 双向互补电子器件基板防失效热管均温散热装置及其方法
CN111913550A (zh) 一种可插拔的散热系统
CN104142724A (zh) 一种应用于机箱的微型热管结构
CN207678163U (zh) 一种散热器
CN212786409U (zh) 一种散热装置及其应用的电子设备
CN212460507U (zh) 一种可插拔的散热系统
CN209768050U (zh) 一种液态金属散热装置以及电子设备
CN210402259U (zh) 一种强制对流的冷却散热片
CN110494016B (zh) 一种散热装置及终端电子设备
JP6725180B2 (ja) 電子デバイス
CN201229139Y (zh) 具有双段式毛细结构的热管
CN211346466U (zh) 一种集成散热器及其应用的电子设备
CN205378476U (zh) 一种用于超薄电子产品的热管
CN207704390U (zh) 一种电脑主机的散热器
CN212367780U (zh) 一种冷却装置、电子设备
CN202562345U (zh) 热管散热结构
TWI242403B (en) Method for fabricating heat superconducting bumps/sheets using electroplating
TWM261009U (en) Heat dissipation component for installing in expansion slot
CN103217040A (zh) 热管散热结构
TW200418358A (en) Method and device applying solid and liquid phase change in a heating electronic device to store heat and dissipate heat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566282

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014894059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014894059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15311927

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE