WO2015182649A1 - アスファルト組成物 - Google Patents
アスファルト組成物 Download PDFInfo
- Publication number
- WO2015182649A1 WO2015182649A1 PCT/JP2015/065224 JP2015065224W WO2015182649A1 WO 2015182649 A1 WO2015182649 A1 WO 2015182649A1 JP 2015065224 W JP2015065224 W JP 2015065224W WO 2015182649 A1 WO2015182649 A1 WO 2015182649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- block copolymer
- mass
- polymer
- block
- asphalt composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B26/045—Polyalkenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
- C08F297/04—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
- C08F297/044—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a coupling agent
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/10—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B26/14—Polyepoxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/26—Bituminous materials, e.g. tar, pitch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L95/00—Compositions of bituminous materials, e.g. asphalt, tar, pitch
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/18—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0061—Block (co-)polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/0075—Uses not provided for elsewhere in C04B2111/00 for road construction
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2555/00—Characteristics of bituminous mixtures
- C08L2555/20—Mixtures of bitumen and aggregate defined by their production temperatures, e.g. production of asphalt for road or pavement applications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2555/00—Characteristics of bituminous mixtures
- C08L2555/30—Environmental or health characteristics, e.g. energy consumption, recycling or safety issues
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2555/00—Characteristics of bituminous mixtures
- C08L2555/40—Mixtures based upon bitumen or asphalt containing functional additives
- C08L2555/80—Macromolecular constituents
- C08L2555/84—Polymers comprising styrene, e.g., polystyrene, styrene-diene copolymers or styrene-butadiene-styrene copolymers
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/18—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
- E01C7/182—Aggregate or filler materials, except those according to E01C7/26
Definitions
- the present invention relates to an asphalt composition.
- asphalt compositions have been widely used for applications such as road pavement, waterproof sheets, sound insulation sheets, and roofing. At that time, many attempts have been made to improve the properties by adding various polymers to asphalt.
- the polymer ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, rubber latex, block copolymer composed of conjugated diene and vinyl aromatic hydrocarbon, and the like are used.
- Patent Documents 1 to 3 have not yet obtained satisfactory results, and further improvement is desired for lowering the temperature during production. Furthermore, it is difficult to control fine bubbles with the technology for reducing the mixing temperature at the time of manufacturing as described above, or the mixture of the asphalt composition and the aggregate is added by adding an amount of additive required for reducing the mixing temperature. It has also been found that there is a problem that the peeling resistance of the aggregate is deteriorated or the additive is thermally deteriorated depending on the additive.
- the problem to be solved by the present invention is to provide an asphalt composition having a low mixing temperature and a low viscosity at the time of production, and having little deterioration of the polymer in the asphalt composition.
- An object of the present invention is to provide an asphalt composition having high peeling resistance of aggregates when mixed with aggregates.
- the present inventors can obtain an asphalt composition having a low mixing temperature during production and a low viscosity of the asphalt composition by using a polymer having a specific molecular structure.
- the present inventors have found that the polymer in the asphalt composition is less deteriorated and the peeling resistance of the aggregate can be increased when it is a mixture of the asphalt composition and the aggregate.
- the present invention is as follows.
- the block copolymer (a) includes a block copolymer (a-1) and a block copolymer (a-2),
- the block copolymer (a-1) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units
- the block copolymer (a-2) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units
- the content of the block copolymer (a-1) in the total mass of the block copolymer (a) is from 40% by mass to 85% by mass
- the content of the block copolymer (a-2) in the total mass of the block copolymer (a) is from 15% by mass to 60% by mass
- the content of the vinyl aromatic monomer unit in the block copolymer (a) is 34% by mass or more and 55% by
- the block copolymer (a-1) has one polymer block mainly composed of vinyl aromatic monomer units and one polymer block mainly composed of conjugated diene monomer units
- the block copolymer (a-2) has two or more polymer blocks mainly composed of vinyl aromatic monomer units and one or more polymer blocks mainly composed of conjugated diene monomer units.
- the block copolymer (a-2) has (SB) n + 1, B- (SB) n + 1, S- (BS) n, S- (BS) n- X, [(SB) k] mX, and [(SB) kS] mX (wherein m is an integer of 2 to 6, n and k are each independently S is a polymer block mainly composed of vinyl aromatic monomer units, B is a polymer block mainly composed of conjugated diene monomer units, and X is a coupling.
- the block copolymer (a-2) is at least (SB) 3-X (S is a polymer block mainly composed of a vinyl aromatic monomer unit, and B is a conjugated diene monomer unit.
- the ratio of the vinyl aromatic monomer block content to the total content of vinyl aromatic monomer units in the block copolymer (a) is in the range of 90.0 to 99.0% by mass.
- the block copolymer (b) is contained in an amount of 0.5 to 10% by mass
- the block copolymer (b) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units,
- the asphalt composition according to any one of [1] to [6], wherein the content of the vinyl aromatic monomer unit in the block copolymer (b) is 24% by mass or more and less than 34% by mass.
- the block copolymer (b) includes a block copolymer (b-1) and a block copolymer (b-2),
- the block copolymer (b-1) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units
- the block copolymer (b-2) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units
- the content of the block copolymer (b-1) in the total mass of the block copolymer (b) is 5% by mass or more and 40% by mass or less
- the content of the block copolymer (b-2) in the total mass of the block copolymer (b) is from 60% by mass to 95% by mass
- the number average molecular weight of the block copolymer (b-1) is in the range of 60,000 to 150,000
- the number average molecular weight of the block copolymer (b-2)
- the block copolymer (b-1) has one polymer block mainly composed of vinyl aromatic monomer units and one polymer block mainly composed of conjugated diene monomer units
- the block copolymer (b-2) has two or more polymer blocks mainly composed of vinyl aromatic monomer units and one or more polymer blocks mainly composed of conjugated diene monomer units.
- the asphalt composition according to any one of the above. [11] A road comprising the asphalt composition according to any one of [1] to [10] and an aggregate.
- the asphalt composition of the present invention has a low mixing temperature at the time of production, a low viscosity, a little deterioration of the polymer in the asphalt composition, and the aggregate of the asphalt composition and the aggregate when it is made into an aggregate. High peel resistance.
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
- the present invention is not limited to the following embodiment, and can be implemented with various modifications within the scope of the gist.
- the asphalt composition of the present embodiment contains 1 to 15% by mass of the block copolymer (a) and asphalt (c),
- the block copolymer (a) includes a block copolymer (a-1) and a block copolymer (a-2),
- the block copolymer (a-1) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units
- the block copolymer (a-2) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units,
- the content of the block copolymer (a-1) in the total mass of the block copolymer (a) is from 40% by mass to 85% by mass
- the content of the block copolymer (a-2) in the total mass of the block copolymer (a) is from 15% by mass to 60% by mass
- the content of the vinyl aromatic monomer unit in the block copolymer (a) is 3
- the constitutional unit constituting the block copolymer is referred to as “ ⁇ monomer unit”, and when describing as a polymer material, “unit” is omitted and simply “ ⁇ monomer” is described. To do.
- “mainly” means that the content of a predetermined monomer unit in the block is preferably 60% by mass or more, more preferably 80% by mass or more, and still more preferably. Means 90% by mass or more, more preferably 95% by mass or more. Although there is no restriction
- the block copolymer (a) includes a block copolymer (a-1) and a block copolymer (a-2).
- the block copolymer (a-1) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units
- the block copolymer (a-2) has a polymer block mainly composed of a vinyl aromatic monomer unit and a polymer block mainly composed of a conjugated diene monomer unit
- the block copolymer (a- The number average molecular weight of 2) is 1.5 to 5.0 times the number average molecular weight of the block copolymer (a-1).
- the block copolymer (a-1) preferably has one polymer block mainly composed of vinyl aromatic monomer units and one polymer block mainly composed of conjugated diene monomer units.
- the block copolymer (a-2) may have two or more polymer blocks mainly composed of vinyl aromatic monomer units and one or more polymer blocks mainly composed of conjugated diene monomer units. preferable.
- the block copolymer (a-1) preferably contains at least one block copolymer selected from the group consisting of SB and the following formulas (i) to (iii): a-2) preferably contains at least one block copolymer selected from the group consisting of the following formulas (i) to (vi).
- S represents a polymer block mainly composed of vinyl aromatic monomer units
- B represents a polymer block mainly composed of conjugated diene monomer units
- X represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium
- m is an integer of 2 to 6
- n and k are each independently an integer of 1 to 4.
- the values of m, n and k in (i) to (vi) may be the same or different.
- the structures such as molecular weight and composition may be the same or different.
- X represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium. From the viewpoint of controlling the molecular weight of the block, X is preferably a coupling residue.
- the coupling agent is not particularly limited.
- Etc. The block copolymer (a-2) may be a mixture of a coupling body in which X is a residue of a coupling agent and a block copolymer having no X.
- X is preferably an alkoxysilane compound or an epoxy compound, more preferably an epoxy compound, from the viewpoint of the heat deterioration resistance of the block copolymer during production of the asphalt composition.
- alkoxysilane compounds include, but are not limited to, tetraalkoxysilane compounds such as tetramethoxysilane and the like; tetraaroxysilane compounds such as tetraphenoxysilane and the like; methyltriethoxysilane And alkylalkoxysilane compounds having two or more alkoxy groups such as the same; alkyltrioxysilane compounds having two or more aryloxy groups such as methyltriphenoxysilane and the like; vinyltrimethoxy Alkenylalkoxysilane compounds having two or more alkoxy groups such as silane and the like; and halogenoalkoxysilane compounds such as trimethoxychlorosilane and the like It is below. Of these, alkylalkoxysilanes having 2 to 4 alkylalkoxy groups are preferred from the viewpoint of heat resistance deterioration and block copolymer production.
- Examples of the epoxy compound are not particularly limited, and examples thereof include polyepoxidized vegetable oils such as epoxidized soybean oil or epoxidized linseed oil, epoxidized polybutadiene, or epoxidized tetraallyl ether pentaerythritol.
- the epoxy compound which has a fanyl group is preferable at the point of heat-resistant deterioration and the manufacturing property of a block copolymer.
- the number of alkoxy silyl groups and epoxy groups in the alkoxy silane compound and epoxy compound is determined by the low mixing temperature of the asphalt composition, the low viscosity of the asphalt composition, the low degradation of the polymer in the asphalt composition, the asphalt composition and the aggregate. 2-5, more preferably 2-4, still more preferably 3-4, and particularly preferably 4, from the viewpoint of high peeling resistance of the aggregate when it is made into a mixture.
- each block need not be clearly distinguished.
- a copolymer block of a vinyl aromatic monomer unit and a conjugated diene monomer unit may be present. A plurality of these may coexist.
- the polymer block (S) mainly composed of vinyl aromatic monomer units a plurality of segments having different contents of vinyl aromatic monomer units may coexist.
- the block copolymer (a-2) used in the present embodiment has a low mixing temperature during the production of the asphalt composition, a low viscosity of the asphalt composition, a small deterioration of the polymer in the asphalt composition, an asphalt composition and a bone (SB) mX (m is an integer of 2 to 4), and S is mainly composed of vinyl aromatic monomer units in terms of the high peeling resistance of the aggregate when mixed with the material.
- B is a polymer block mainly composed of a conjugated diene monomer unit, and X is a residue of a coupling agent or a residue of a polymerization initiator.) It preferably contains at least one block copolymer, (SB) 3-X (S is a polymer block mainly composed of vinyl aromatic monomer units, and B is a conjugated diene monomer unit. Is a polymer block mainly composed of X And more preferably contains a block copolymer represented by a coupling agent.).
- the block copolymer (a-2) preferably further contains (SB) 3-X and (SB) 4-X.
- the ratio of the block copolymer (a-1) used in the present embodiment to the total mass of the block copolymer (a) is determined by the low mixing temperature of the asphalt composition, the low viscosity of the asphalt composition, the weight in the asphalt composition. In terms of deterioration with little coalescence, it is 40% by mass or more, preferably 55% by mass or more, more preferably 62% by mass or more, and further preferably 67% by mass or more. Further, it is 85% by mass or less, preferably 80% by mass or less, in terms of high elongation recovery property of the asphalt composition and high peeling resistance of the aggregate when the asphalt composition and the aggregate are mixed. It is more preferably at most mass%, more preferably at least 72 mass%.
- the ratio of the block copolymer (a-2) used in the present embodiment to the total mass of the block copolymer (a) is such that the asphalt composition has a high elongation recovery property, and the mixture of the asphalt composition and the aggregate.
- the content is 15% by mass or more, preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 28% by mass or more.
- in terms of low mixing temperature of the asphalt composition, low viscosity of the asphalt composition, and little deterioration of the polymer in the asphalt composition it is 60 mass% or less, preferably 45 mass% or less, and preferably 38 mass% or less. More preferred is 33% by mass or less.
- the number average molecular weight of the block copolymer (a-1) used in the present embodiment is such that the softening point of the asphalt composition is high, and the high peeling resistance of the aggregate when the asphalt composition and the aggregate are mixed. And 20,000 or more, preferably 30,000 or more, and more preferably 40,000 or more. Further, in terms of low mixing temperature of the asphalt composition, low viscosity of the asphalt composition, and little deterioration of the polymer in the asphalt composition, it is 73,000 or less, preferably 67,000 or less, and 6.0 Is more preferable, and 50,000 or less is more preferable.
- the number average molecular weight of the block copolymer (a-2) used in this embodiment is a high softening point of the asphalt composition, and a high peeling resistance point of the aggregate when the asphalt composition and the aggregate are mixed.
- the number average molecular weight of the block copolymer (a-1) is 1.5 to 5.0 times, preferably 1.7 to 4.0 times, and preferably 1.8 to 3.0 times. More preferably.
- the block copolymer (a-2) is (SB) mX
- the number average molecular weight of (SB) mX is high in the softening point and high tensile recovery property of the asphalt composition.
- the number average molecular weight is preferably.
- the number average molecular weight of a polymer can be calculated
- the content of the vinyl aromatic monomer unit in the block copolymer (a) used in the present embodiment is the high softening point of the asphalt composition, the aggregate of the aggregate when the asphalt composition and the aggregate are mixed. In terms of high peeling resistance, it is 34% by mass or more, preferably 35% by mass or more, more preferably 40% by mass or more, and further preferably 42% by mass or more. Further, the content of the vinyl aromatic monomer unit in the block copolymer (a) is such that the mixing temperature is low during the production of the asphalt composition, the viscosity of the asphalt composition is low, and the polymer in the asphalt composition is small. In view of deterioration and flexibility of the asphalt composition, it is 55% by mass or less, preferably 50% by mass or less, more preferably 48% by mass or less, further preferably 45% by mass or less, and particularly preferably 44% by mass or less.
- the content of the vinyl aromatic monomer unit in the block copolymer (a) is not a value for each component, but the content of the vinyl aromatic monomer unit as a whole of the block copolymer (a). That is, the average value of the content of vinyl aromatic monomer units in each component.
- content of the vinyl aromatic monomer unit in a block copolymer (a) can be measured by the method as described in the Example mentioned later.
- the ratio (block ratio) of the vinyl aromatic monomer block content to the total content of vinyl aromatic monomer units in the block copolymer (a) used in this embodiment is high softening of the asphalt composition. 90% or more is preferable, 93% or more is more preferable, 95% or more is further preferable, and 96% is more preferable in terms of the high elongation recovery property of the asphalt composition and the high peeling resistance of the aggregate when the asphalt mixture is formed. The above is particularly preferable.
- the block ratio is preferably 99% or less from the viewpoint of low mixing temperature of the asphalt composition, low viscosity of the asphalt composition, little deterioration of the polymer in the asphalt composition, and flexibility of the asphalt composition. % Or less is more preferable.
- the ratio (block ratio) of the vinyl aromatic monomer block content to the total content of vinyl aromatic monomer units in the block copolymer (a) is: (Vinyl aromatic monomer block content in block copolymer (a)) / (total content of vinyl aromatic monomer units in block copolymer (a)) ⁇ 100 .
- the vinyl aromatic monomer block means a polymer block mainly composed of vinyl aromatic monomer units.
- the vinyl aromatic monomer block content in the block copolymer (a) and the total content of vinyl aromatic monomer units in the block copolymer (a) are described later.
- the value obtained by the method described in the example is described later.
- the ratio of the vinyl aromatic monomer block content to the total content of vinyl aromatic monomer units in the block copolymer (a) is, for example, molecular weight, polymerization temperature, monomer addition rate, It can be changed by the time interval for adding the added monomer and the next monomer, the polar compound, the randomizing agent, the stirring speed of the polymerization reactor, and the like.
- the amount of the conjugated diene after 1 minute or more and less than 21 minutes have elapsed since reaching the peak temperature appearing at the end of the polymerization of the vinyl aromatic monomer unit and after the temperature has decreased by 1 ° C. or less from the peak temperature.
- the block ratio can be 90% or more and 99% or less.
- the ratio of the vinyl aromatic monomer block content to the total content of vinyl aromatic monomer units in the block copolymer (a) is not a value for each component, but a block copolymer ( a) The value as a whole, that is, the average value of each component.
- the melt flow rate (MFR, 200 ° C., 5 kgf) of the block copolymer (a) used in the present embodiment is preferably 3 g / 10 min or more, more preferably 5 g / 10 min or more in terms of manufacturability. / 10 minutes or more is more preferable.
- the melt flow rate (MFR, 200 ° C., 5 kgf) of the block copolymer (a) is preferably 100 g / 10 min or less from the viewpoint of low polymer addition amount added to asphalt and recoverability after tension, and 50 g / 10 minutes or less is more preferable, and 30 g / 10 minutes or less is more preferable.
- the asphalt composition of the present embodiment has a low mixing temperature during production, low viscosity, high tensile recovery, little deterioration of the polymer in the asphalt composition, and aggregate when the asphalt composition and aggregate are mixed. From the viewpoint of high peeling resistance, it is preferable that the block copolymer (b) is further contained in an amount of 0.5 to 10 mass%.
- the block copolymer (b) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units, Content of the vinyl aromatic monomer unit in a block copolymer (b) is 24 mass% or more and less than 34 mass%.
- the block copolymer (b) is described below. It preferably contains a block copolymer (b-1) and a block copolymer (b-2), At this time, the block copolymer (b-1) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units.
- b-2) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units, and the number average of the block copolymer (b-2) The molecular weight is 1.5 to 5.0 times the number average molecular weight of the block copolymer (b-1).
- the block copolymer (b-1) preferably has one polymer block mainly composed of vinyl aromatic monomer units and one polymer block mainly composed of conjugated diene monomer units.
- the block copolymer (b-2) may have two or more polymer blocks mainly composed of vinyl aromatic monomer units and one or more polymer blocks mainly composed of conjugated diene monomer units. preferable.
- the structures of SB and formulas (i) to (iii) can be exemplified as in the case of the block copolymer (a-1).
- Examples of the structure of the block copolymer (b-2) include the structures of the formulas (i) to (vi) similar to the above-mentioned block copolymer (a-2).
- the block copolymer (b) and the block copolymer (b-2) are a high softening point of the asphalt composition, a tensile recovery property of the asphalt composition, and an aggregate when the mixture of the asphalt composition and the aggregate is used. From the viewpoint of high peeling resistance, it is preferable to contain a block copolymer represented by SBS or (SB) 2-X.
- the content of -1) is preferably 40% by mass or less, more preferably 35% by mass or less, further preferably 30% by mass or less, and particularly preferably 20% by mass or less.
- the lower limit of the content of the block copolymer (b-1) is not particularly limited, but is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more.
- the content of the block copolymer (b-2) in the total mass of the block copolymer (b) is preferably 95% by mass or less, more preferably 90% by mass or less, and further 85% by mass or less. preferable.
- the lower limit of the content of the block copolymer (b-2) is not particularly limited, but is preferably 60% by mass or more, preferably 65% by mass or more, more preferably 70% by mass or more, and 80% by mass. % Or more is more preferable.
- the block copolymer (b) is a mixture of (SB) 2 -X (block copolymer (b-2)) and SB (block copolymer (b-1)). More preferred. Further, the number average molecular weight of the block copolymer (b-1) is 60,000 or more in view of the high softening point and the peeling resistance of the aggregate when it is a mixture of the asphalt composition and the aggregate. Yes, 70,000 or more is preferable, and 80,000 or more is more preferable. Moreover, it is 150,000 or less at the point of the low mixing temperature at the time of manufacture, and a low viscosity, 130,000 or less are preferable, 110,000 are more preferable, and 100,000 or less are more preferable.
- the number average molecular weight of the block copolymer (b-1) is preferably not less than the number average molecular weight of the block copolymer (a-1).
- the number average molecular weight of the block copolymer (b-2) used in this embodiment is such that the mixing temperature is low at the time of production, and the high peeling resistance of the aggregate when it is a mixture of the low viscosity asphalt composition and the aggregate.
- the number average molecular weight of the block copolymer (b-1) is 1.5 to 5.0 times, preferably 1.7 to 4.0 times, and preferably 1.8 to 3.0 times. It is more preferable that
- the mass ratio of the block copolymer (a) and the block copolymer (b) is as follows: the high softening point of the asphalt composition, the high tensile recovery of the asphalt composition, and the mixture of the asphalt composition and the aggregate. From the viewpoint of high peeling resistance of the aggregate, the mass of the block copolymer (a) / the mass of the block copolymer (b) is preferably 70/30 or less, more preferably 60/40 or less, and 50/50 or less. Is more preferable.
- the mass of the block copolymer (a) / the mass of the block copolymer (b) is preferably 20/80 or more, and 30/70 The above is more preferable, and 40/60 or more is more preferable.
- the block polymer (a) and / or block copolymer (b) used in the present embodiment is a conjugated diene monomer in the polymer in terms of the high softening point of the asphalt composition and the high heat deterioration resistance of the polymer. It is preferable that the double bond contained in the body unit is hydrogenated.
- the hydrogenation rate of the double bond contained in the conjugated diene monomer unit is preferably 10 mol% or more, more preferably 20 mol% or more, from the viewpoint of high softening point of the asphalt composition and high heat deterioration resistance during storage. 30 mol% or more is more preferable.
- the hydrogenation rate of the double bond amount contained in the conjugated diene monomer unit is preferably 75 mol% or less from the viewpoint of high compatibility with asphalt. 50 mol% or less is more preferable, and 40 mol% or less is still more preferable. From the viewpoint of a higher softening point, it is preferable that at least the block polymer (a) is hydrogenated, and it is more preferable that both the block polymers (a) and (b) are hydrogenated.
- conjugated diene monomer unit is referred to as a “conjugated diene monomer unit” regardless of before and after hydrogenation.
- the hydrogenation rate of the double bond amount can be adjusted by controlling the hydrogenation amount and the hydrogenation reaction time in the hydrogenation step. Moreover, in this embodiment, a hydrogenation rate can be calculated
- the vinyl content in the conjugated diene monomer unit before hydrogenation of the block polymer (a) and the block copolymer (b) used in this embodiment has high compatibility with asphalt and low asphalt composition. In terms of viscosity, 8 mol% or more is preferable, 10 mol% or more is more preferable, and 12 mol% or more is more preferable.
- the vinyl content in the conjugated diene monomer unit before hydrogenation of the block polymer (a) and the block copolymer (b) is 25 mol% in terms of little deterioration of the polymer in the asphalt composition. The following is preferable, 20 mol% or less is more preferable, and 16 mol% or less is more preferable.
- the polymer used in the present embodiment is, for example, a polymerization step in which a polymer is obtained by polymerizing at least a conjugated diene monomer and a vinyl aromatic monomer using a lithium compound as a polymerization initiator in a hydrocarbon solvent.
- a hydrogenation step of hydrogenating a double bond in the conjugated diene monomer unit of the obtained polymer and a desolvation step of removing the solvent of the solution containing the polymer can be sequentially performed for production.
- a polymer is obtained by polymerizing a monomer containing at least a conjugated diene monomer and a vinyl aromatic monomer in a hydrocarbon solvent using a lithium compound as a polymerization initiator.
- the hydrocarbon solvent used in the polymerization step is not particularly limited.
- aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, and octane; cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, etc.
- aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene. These may be used alone or in combination of two or more.
- Polymerization initiator Although it does not specifically limit as a lithium compound used as a polymerization initiator in a superposition
- Such an organic lithium compound is not particularly limited.
- ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, hexamethylenedilithium, butadienyl Examples include dilithium and isoprenyl dilithium. These may be used alone or in combination of two or more.
- the conjugated diene monomer is not particularly limited.
- 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3- Examples thereof include diolefins having a pair of conjugated double bonds such as pentadiene, 2-methyl-1,3-pentadiene, and 1,3-hexadiene.
- 1,3-butadiene and isoprene are preferable from the viewpoint of economy.
- 1,3-butadiene is more preferable. These may be used individually by 1 type and may use 2 or more types together.
- the vinyl aromatic monomer is not particularly limited.
- styrene ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N, N-dimethyl-p-aminoethylstyrene, And vinyl aromatic compounds such as N, N-diethyl-p-aminoethylstyrene.
- styrene is preferred from the viewpoint of economy. These may be used alone or in combination of two or more.
- conjugated diene monomer and the vinyl aromatic monomer In addition to the conjugated diene monomer and the vinyl aromatic monomer, other monomers copolymerizable with the conjugated diene monomer and the vinyl aromatic monomer can also be used.
- Ethers such as tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether
- Amines such as a triethylamine and tetramethylethylenediamine
- the polymerization method carried out in the polymerization step is not particularly limited, and known methods can be applied.
- Known methods include, for example, Japanese Patent Publication No. 36-19286, Japanese Patent Publication No. 43-171979, Japanese Patent Publication No. 46-32415, Japanese Patent Publication No. 49-36957, Japanese Patent Publication No. 48-2423, and Japanese Patent Publication No. Sho. Examples thereof include the methods described in JP-A-48-4106, JP-B-56-28925, JP-A-59-166518, JP-A-60-186777, and the like.
- Deactivation process It is preferable to deactivate the active terminal of the polymer by the deactivation step.
- the method of deactivating the active terminal of the polymer can be achieved by reacting with a compound having an active terminal and active hydrogen.
- the compound which has active hydrogen is not specifically limited, Alcohol and water are preferable at the economical point.
- the hydrogenation step is a step in which a hydrogenation reaction is performed on a part of the double bond in the conjugated diene monomer unit of the polymer obtained in the polymerization step.
- the catalyst used in the hydrogenation reaction is not particularly limited.
- a supported heterogeneous catalyst in which a metal such as Ni, Pt, Pd, or Ru is supported on a support such as carbon, silica, alumina, or diatomaceous earth.
- the catalyst include a homogeneous catalyst using organic Li, organic Al, organic Mg, and the like.
- a homogeneous catalyst system using organic Li, organic Al, organic Mg, or the like as a reducing agent for the titanocene compound is preferable from the viewpoints of economy, heat aging resistance or weather resistance of the polymer.
- the hydrogenation method is not particularly limited.
- the method described in JP-B-42-8704, JP-B-43-6636, preferably JP-B-63-4841 and JP-B-63-5401 The method described in the gazette is mentioned.
- hydrogenated block copolymer solution can be obtained by hydrogenation in the presence of a hydrogenation catalyst in an inert solvent.
- the hydrogenation reaction can be any of a batch process, a continuous process, or a combination thereof.
- the hydrogenation reaction is not particularly limited, but is preferably performed after the step of deactivating the active terminal of the polymer described above from the viewpoint of high hydrogenation activity.
- the conjugated bond of the vinyl aromatic monomer unit may be hydrogenated.
- the hydrogenation rate of the conjugated bond in all vinyl aromatic monomer units is preferably 30 mol% or less, more preferably 10 mol% or less, and further preferably 3 mol% or less.
- the minimum of the hydrogenation rate of the conjugated bond in all vinyl aromatic monomers is although it does not specifically limit, Preferably it is 0 mol% or more, More preferably, it is 1 mol% or more.
- the solvent removal step is a step of removing the solvent of the solution containing the polymer.
- the solvent removal method is not particularly limited, and examples thereof include a steam stripping method and a direct solvent removal method.
- the amount of residual solvent in the polymer obtained by the solvent removal step is preferably 2% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.2% by mass or less, and still more. Preferably it is 0.05 mass% or less, More preferably, it is 0.01 mass% or less. Further, the lower limit of the amount of the residual solvent in the polymer is not particularly limited, but is preferably less, more preferably 0% by mass, but usually 0.01% by mass in terms of economy at the time of solvent removal. This is the range of 0.1% by mass.
- the antioxidant is not particularly limited, and examples thereof include phenolic antioxidants such as radical scavengers, phosphorus antioxidants such as peroxide decomposers, and sulfur antioxidants. Moreover, you may use the antioxidant which has both performances together. These may be used alone or in combination of two or more.
- the addition amount of the phenolic antioxidant is preferably 0.05 parts by mass or more with respect to 100 parts by mass of the block copolymer in terms of high low-temperature manufacturability and little deterioration of the polymer during mixing. 0.10% by mass or more is more preferable, and 0.20% by mass or more is more preferable. Moreover, the addition amount of the phenolic antioxidant is preferably 1.00% by mass or less with respect to 100 parts by mass of the block copolymer in view of high peeling resistance and economical efficiency of the aggregate. 0.5 mass% or less is more preferable, 0.4 mass% or less is further more preferable, and 0.3 mass% or less is particularly preferable.
- a deashing process for removing metal in the polymer and a neutralization process for adjusting the pH of the polymer for example, addition of an acid, before the solvent removal process Or carbon dioxide gas may be added.
- the asphalt that can be used in the present embodiment is not particularly limited.
- asphalt that is obtained as a by-product during petroleum refining (petroleum asphalt), a natural product (natural asphalt), or these and petroleum What mixed is mentioned. Its main component is called bitumen.
- bitumen Specific examples include, but are not limited to, straight asphalt, semi-blown asphalt, blown asphalt, solvent deasphalted asphalt, tar, pitch, cutback asphalt added with oil, asphalt emulsion, and the like. These may be used as a mixture.
- aromatic heavy mineral oils such as petroleum-type solvent extraction oil, aroma-type hydrocarbon process oil, or an extract, to various asphalts.
- Suitable asphalt includes straight asphalt having a penetration (measured according to JIS-K2207) of preferably 30 or more and 300 or less, more preferably 40 or more and 200 or less, and further preferably 45 or more and 150 or less.
- the content of the block polymer (a) in the asphalt composition of the present embodiment includes a high softening point of the asphalt composition, an elongation recovery property of the asphalt composition, a high ductility of the asphalt composition, an asphalt composition and an aggregate.
- the content is 1% by mass or more, and preferably 2% by mass or more.
- the content of the block polymer (a) in the asphalt composition is such that the mixing temperature of the asphalt composition is low, the viscosity of the asphalt composition is low, the polymer in the asphalt composition is less deteriorated, and economical. It is 15 mass% or less, 12 mass% or less is preferable and 10 mass% or less is more preferable.
- the content of asphalt (c) in the asphalt composition of the present embodiment includes a high softening point of the asphalt composition, an elongation recovery property of the asphalt composition, a high ductility of the asphalt composition, and a mixture of the asphalt composition and the aggregate. 99 mass% or less is preferable at the point of the high peeling resistance of an aggregate when it is made, 97 mass% or less is preferable, and 96 mass% or less is more preferable.
- the content of asphalt (c) in the asphalt composition is 75 masses in terms of low mixing temperature of the asphalt composition, low viscosity of the asphalt composition, little deterioration of the polymer in the asphalt composition, and economical efficiency. % Or more is preferable, 85 mass% or more is preferable, 88 mass% or more is preferable, and 90 mass% or more is more preferable.
- the content of the block polymer (b) is preferably 2 to 8% by mass, more preferably 3 to 7% by mass. Preferably, it is 4 to 6% by mass.
- the asphalt composition of the present embodiment can be blended with any petroleum resin as necessary.
- the type of petroleum resin is not particularly limited.
- aliphatic petroleum resins such as C5 petroleum resins, aromatic petroleum resins such as C9 petroleum resins, and alicyclics such as dicyclopentadiene petroleum resins.
- Petroleum resins such as petroleum petroleum resins and C5 / C9 copolymer petroleum resins, and hydrogenated petroleum resins obtained by hydrogenating these petroleum resins can be used.
- the quantity of petroleum resin Preferably it is 1 to 10 mass parts with respect to 100 mass parts of asphalt, More preferably, it is 2 to 6 mass parts.
- the asphalt composition of the present embodiment can be blended with any additive as necessary.
- the type of additive is not particularly limited as long as it is generally used for blending thermoplastic resins and rubber-like polymers.
- the type of additive is not particularly limited as long as it is generally used for blending thermoplastic resins and rubber-like polymers.
- the type of additive is not particularly limited as long as it is generally used for blending thermoplastic resins and rubber-like polymers.
- the type of additive is not particularly limited as long as it is generally used for blending thermoplastic resins and rubber-like polymers.
- the type of additive is not particularly limited as long as it is generally used for blending thermoplastic resins and rubber-like polymers.
- Inorganic fillers such as carbon black, pigments such as iron oxide, stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearamide, lubricants, mold release agents, paraffinic process oil, Softeners and plasticizers such as naphthenic
- an anti-peeling agent may be added to prevent the asphalt composition and the aggregate from being peeled when mixed with the aggregate.
- Resin acid is suitable as an anti-peeling agent, and is a polycyclic diterpene having 20 carbon atoms having a carboxyl group, and is any one of abietic acid, dehydroabietic acid, neoabietic acid, pimaric acid, isopimaric acid, and parastolic acid Examples thereof include rosin containing one or more kinds. Moreover, you may add a fatty acid or fatty-acid amide in order to function as a peeling prevention agent and a lubricant.
- the production method of the asphalt composition of the present embodiment is not particularly limited. Moreover, there is no restriction
- the stirring time is usually 30 minutes to 6 hours, but a shorter one is preferable from the viewpoint of economy.
- the stirring speed may be appropriately selected depending on the apparatus to be used, but is usually 100 ppm or more and 8,000 rpm or less.
- the asphalt composition of this embodiment can be manufactured at a lower temperature.
- the asphalt composition of the present embodiment may contain other polymers in addition to the above block copolymer.
- other polymers include, but are not limited to, olefin elastomers such as natural rubber, polyisoprene rubber, polybutadiene rubber, styrene butadiene rubber, and ethylene propylene copolymer; chloroprene rubber, acrylic rubber, and ethylene vinyl acetate copolymer. Etc.
- the asphalt composition of the present embodiment can be used in the fields of road pavement, roofing / waterproof sheet, and sealant, and can be suitably used particularly in the field of road pavement. Of these, road pavement is preferred.
- aggregates As an example for road pavement, an example in which a large amount of aggregate is mixed with the asphalt composition of the present embodiment and used can be given.
- aggregates There are no limitations on aggregates, and for example, any aggregate for paving as described in the “Asphalt Paving Guidelines” published by the Japan Road Association can be used. , Gravel, steel slag, etc.
- asphalt-coated aggregates and recycled aggregates obtained by coating these aggregates with asphalt can also be used.
- Other similar granular materials such as artificial sintered aggregate, sintered foam aggregate, artificial lightweight aggregate, ceramic grains, loxobite, aluminum grains, plastic grains, ceramics, emery, construction waste, fibers, etc. may be used. it can.
- Aggregates are generally classified into coarse aggregates, fine aggregates, and fillers.
- Coarse aggregate is an aggregate that remains on a 2.36 mm sieve.
- No. 7 crushed stone with a particle size range of 2.5 to 5 mm No. 6 crushed stone with a particle size range of 5 to 13 mm, and a particle size range of 13 to 20 mm.
- one or more kinds of coarse aggregates having various particle size ranges are mixed.
- a material, a synthetic aggregate, or the like can be used. These coarse aggregates may be coated with about 0.3 to 1% by weight of straight asphalt with respect to the aggregates.
- Fine aggregate means an aggregate that passes through a 2.36 mm sieve and stops at a 0.075 mm sieve.
- river sand, hill sand, mountain sand, sea sand, screenings, crushed stone dust, silica sand, artificial Examples include sand, glass cullet, foundry sand, and recycled aggregate crushed sand.
- Fillers pass through a 0.075 mm sieve and include, for example, screenings filler, stone powder, slaked lime, cement, incinerator ash, clay, talc, fly ash, carbon black, etc.
- Even rubber powder, cork powder, wood powder, resin powder, fiber powder, pulp, artificial aggregate, etc. can be used as a filler as long as it passes through a 0.075 mm sieve. it can.
- Coarse aggregates, fine aggregates or fillers may be used singly, but generally one or more kinds are mixed and used.
- the content of the aggregate in the asphalt mixture is preferably in the range of 85% by mass or more and 98% by mass or less from the viewpoint of obtaining an asphalt composition having a high mass loss loss at the time of oil adhesion and a high strength reduction, 90 mass% or more and 97 mass% or less are more preferable.
- the mixing temperature of an asphalt composition and an aggregate is normally mixed in the range of 120 to 200 degreeC. If necessary, the asphalt composition may be emulsified in water.
- the measuring method regarding the polymer and asphalt composition in an Example and a comparative example is as follows.
- reaction solution after the hydrogenation reaction was poured into a large amount of methanol to precipitate and collect the block copolymer.
- block copolymer was extracted with acetone, and the extract was vacuum-dried and used as a sample for 1H-NMR measurement. The conditions for 1H-NMR measurement are described below.
- Block ratio (vinyl aromatic monomer block content in block copolymer (a)) / total content of vinyl aromatic monomer units in block copolymer (a) ⁇ 100 ⁇ Number average molecular weight>
- the number average molecular weight was measured by GPC (apparatus manufactured by Waters). In the GPC measurement, tetrahydrofuran was used as the solvent, and the temperature was set to 35 ° C.
- the molecular weight of the peak of the chromatogram was determined using a calibration curve (created using the peak molecular weight of standard polystyrene) determined from measurement of commercially available standard polystyrene. The said molecular weight was made into the number average molecular weight (polystyrene conversion molecular weight).
- Block copolymer 1 equivalent to block copolymer (a)
- a stainless steel autoclave with a stirrer and a jacket with an internal volume of 10 L was washed, dried, and purged with nitrogen.
- the autoclave was charged with 5720 g of cyclohexane and 304 g of pre-purified styrene, and warm water was passed through the jacket to set the contents at about 40 ° C.
- octadecyl-3- (3,5-dibutyl-t-butyl-4-hydroxyphenyl) propionate is added to 100 parts by mass of the block copolymer to the obtained block copolymer solution. Then, they were sufficiently mixed to obtain a block copolymer 1.
- the number average molecular weight of the SB structure is 48,000
- the number average molecular weight of (SB) 3-X is three times the number average molecular weight of the SB structure
- the number of (SB) 4-X The average molecular weight was four times the number average molecular weight of the SB structure.
- S is a polymer block mainly composed of vinyl aromatic monomer units
- B is a polymer block mainly composed of conjugated diene monomer units
- X is a coupling agent. It is a residue or a residue of a polymerization initiator.
- the content of the vinyl aromatic monomer unit was 38% by mass, and the block ratio of the block copolymer (a) was 97% by mass.
- Block copolymer 2 equivalent to block copolymer (a)
- a stainless steel autoclave with a stirrer and a jacket with an internal volume of 10 L was washed, dried, and purged with nitrogen.
- the autoclave was charged with 5720 g of cyclohexane and 344 g of pre-purified styrene, and warm water was passed through the jacket to set the contents at about 40 ° C.
- octadecyl-3- (3,5-dibutyl-t-butyl-4-hydroxyphenyl) propionate is added to 100 parts by mass of the block copolymer to the obtained block copolymer solution. Then, they were sufficiently mixed to obtain a block copolymer 2.
- the number average molecular weight of the SB structure is 44,000
- the number average molecular weight of (SB) 3-X is three times the number average molecular weight of the SB structure
- the number of (SB) 4-X The average molecular weight was four times the number average molecular weight of the SB structure.
- the content of the vinyl aromatic monomer unit was 43% by mass, and the block ratio of the block copolymer (a) was 97% by mass.
- Block copolymer 3 equivalent to block copolymer (a)
- the block copolymer 2 21 minutes after reaching the maximum temperature (53 ° C.) due to the polymerization of styrene, and 6 ° C. lower than the maximum temperature, the butadiene (1,3-butadiene was added to the autoclave. ) 456 g was added, and 30 seconds after the butadiene was almost completely polymerized and reached the maximum temperature (89 ° C.), except that tetraethoxysilane was added as a coupling agent to the autoclave and coupled.
- the block copolymer 3 was produced by the same method.
- the number average molecular weight of the SB structure is 44,000
- the number average molecular weight of (SB) 3-X is three times the number average molecular weight of the SB structure
- the number of (SB) 4-X The average molecular weight was four times the number average molecular weight of the SB structure.
- the content of the vinyl aromatic monomer unit was 43% by mass, and the block ratio of the block copolymer (a) was 99.5% by mass.
- Block copolymer 4 equivalent to block copolymer (a)
- a stainless steel autoclave with a stirrer and a jacket with an internal volume of 10 L was washed, dried, and purged with nitrogen.
- the autoclave was charged with 5720 g of cyclohexane and 344 g of pre-purified styrene, and warm water was passed through the jacket to set the contents at about 40 ° C.
- octadecyl-3- (3,5-dibutyl-t-butyl-4-hydroxyphenyl) propionate is added to 100 parts by mass of the block copolymer to the obtained block copolymer solution. Then, it was sufficiently mixed to obtain a block copolymer 4.
- the content of the vinyl aromatic monomer unit was 43% by mass, and the block ratio of the block copolymer (a) was 97% by mass.
- Block copolymer 5 equivalent to block copolymer (a)
- the method for producing the block copolymer 4 as soon as the maximum temperature (51 ° C.) is reached by polymerization of styrene, 456 g of butadiene (1,3-butadiene) is added to the autoclave, and the polymerization is continued. 30 seconds after the polymer was almost completely polymerized and reached the maximum temperature (89 ° C.), a block copolymer 5 was produced in the same manner except that a coupling agent was added to the autoclave.
- the content of the vinyl aromatic monomer unit was 43% by mass, and the block ratio of the block copolymer (a) was 89% by mass.
- Block copolymer 6 equivalent to block copolymer (a)
- a stainless steel autoclave with a stirrer and a jacket with an internal volume of 10 L was washed, dried, and purged with nitrogen.
- the autoclave was charged with 5720 g of cyclohexane and 280 g of pre-purified styrene, and warm water was passed through the jacket to set the contents at about 40 ° C.
- octadecyl-3- (3,5-dibutyl-t-butyl-4-hydroxyphenyl) propionate is added to 100 parts by mass of the block copolymer to the obtained block copolymer solution. Then, it was sufficiently mixed to obtain a block copolymer 6.
- the number average molecular weight of the SB structure was 69,000, and the number average molecular weight of (SB) 2-X was twice the number average molecular weight of the SB structure.
- the content of the vinyl aromatic monomer unit was 35% by mass, and the block ratio of the block copolymer (a) was 97% by mass.
- Block copolymer 7 equivalent to block copolymer (b)
- a stainless steel autoclave with a stirrer and a jacket with an internal volume of 10 L was washed, dried, and purged with nitrogen.
- the autoclave was charged with 5720 g of cyclohexane and 240 g of pre-purified styrene, and warm water was passed through the jacket to set the contents at about 40 ° C.
- n-butyllithium cyclohexane solution (0.70 g in pure content) was added to the autoclave to start polymerization of styrene.
- the content of the vinyl aromatic monomer unit was 30% by mass, and the block ratio of the block copolymer (a) was 97% by mass.
- Block copolymer 8 equivalent to block copolymer (a)
- the block copolymer 8 was produced in the same manner except that the amount of the coupling agent was changed.
- the content of the vinyl aromatic monomer unit was 43% by mass, and the block ratio of the block copolymer (a) was 97% by mass.
- Block copolymer 9 equivalent to block copolymer (a)
- a block copolymer 9 was produced in the same manner except that the amount of the coupling agent was changed.
- the number average molecular weight of the SB structure was 58,000, and the number average molecular weight of (SB) 2-X was twice the number average molecular weight of the SB structure.
- the content of the vinyl aromatic monomer unit was 43% by mass, and the block ratio of the block copolymer (a) was 97% by mass.
- Block copolymer 10 Not applicable to block copolymer (a) or (b))
- the block copolymer 10 was produced by the same method except that the amount of the coupling agent was changed.
- the content of the vinyl aromatic monomer unit was 43% by mass, and the block ratio of the block copolymer (a) was 97% by mass.
- Block copolymer 11 equivalent to block copolymer (a)
- Preparation example of hydrogenation catalyst Into a reaction vessel purged with nitrogen, 1 L of dried and purified cyclohexane was added, 100 mmol of bis (cyclopentadienyl) titanium dichloride was added, and an n-hexane solution containing 200 mmol of trimethylaluminum was added with sufficient stirring. For about 3 days to obtain a hydrogenation catalyst. In the production method of the block copolymer 1, after adding a coupling agent, deactivating by adding water, 32 mol of double bond in the conjugated diene monomer unit in the block copolymer is obtained by the hydrogenation catalyst.
- the block copolymer 11 was obtained in the same manner as the production method of the block copolymer 1 except that% was hydrogenated.
- the number average molecular weight of the SB structure is 48,000
- the number average molecular weight of (SB) 3-X is three times the number average molecular weight of the SB structure
- the number of (SB) 4-X The average molecular weight was four times the number average molecular weight of the SB structure.
- content of a vinyl aromatic monomer unit was 38 mass%
- the block rate of the block copolymer (a) was 97 mass%.
- Block copolymer 12 equivalent to block copolymer (b)
- the hydrogenated catalyst prepared by the manufacturing method of the block copolymer 11 is used.
- a block copolymer 12 was obtained by producing in the same manner as the production method of the block copolymer 7, except that 32 mol% of double bonds in the monomer unit was hydrogenated.
- Examples 1 to 20 and Comparative Examples 1 to 4 ⁇ Method for producing asphalt composition> 500 g of straight asphalt 60-80 [manufactured by Shin Nippon Oil Co., Ltd.] was put into a 750 mL metal can, and the metal can was sufficiently immersed in a 160 ° C. oil bath. Next, while stirring the melted asphalt at a rotational speed of 4000 rpm, a predetermined amount of each polymer is added to the asphalt as shown in Table 1 or 2, and after the addition, the mixture is stirred for 120 minutes to obtain an asphalt composition. Produced.
- melt viscosity The melt viscosity of the asphalt composition at 160 ° C. was measured with a Brookfield viscometer. The lower the melt viscosity of the asphalt composition, the better the manufacturability, and it was evaluated as “O”, “ ⁇ ”, “X” in order from the following criteria.
- melt viscosity is less than 300 mPa * s: (circle) Melt viscosity is 300 mPa ⁇ s or more and less than 350 mPa ⁇ s: ⁇ Melt viscosity is 350 mPa ⁇ s or more: ⁇ -Table 2: When the addition amount of a block copolymer is 8 mass%, melt viscosity is less than 600 mPa * s: (circle) Melt viscosity is 600 mPa ⁇ s or more and less than 700 mPa ⁇ s: ⁇ Melt viscosity is 700 mPa ⁇ s or more: ⁇
- a softening point is 60 degreeC or more: (circle) Softening point of 56 ° C or higher and lower than 60 ° C: ⁇ Softening point less than 56 ° C: ⁇ -Table 2: Softening point is 85 degreeC or more when the addition amount of a block copolymer is 8 mass%: (circle) Softening point is 80 ° C or higher and lower than 85 ° C: ⁇ Softening point less than 80 ° C: ⁇
- ⁇ Evaluation criteria ⁇ -Table 1 When the addition amount of a block copolymer is 5 mass%, elongation is 50 cm or more: (circle) Elongation is 30 cm or more and less than 50 cm: ⁇ Elongation is less than 30 cm: ⁇ -Table 2: When the addition amount of the block copolymer is 8% by mass, the elongation is 60 cm or more. Elongation is 50 cm or more and less than 60 cm: ⁇ Elongation is less than 50 cm: ⁇
- the asphalt composition containing 5% by mass of the polymer produced by the above method was stored at 180 ° C., sampled after a predetermined time, and the change in the molecular weight distribution of the block copolymer was analyzed by GPC. Due to thermal degradation of the polymer, the peak height of the largest peak area among the polymer peaks obtained by GPC is lowered. Therefore, the heat resistance of the polymer in the number of days when the peak height change by the following formula is 30% or more. Degradability was evaluated.
- Change in peak height peak height of polymer before storage / peak height of polymer after a predetermined time ⁇ 100
- the asphalt composition had better heat resistance deterioration when the number of days when the change in the peak height of the polymer was 30% or more was longer, and was evaluated as ⁇ , ⁇ , and X in order from the following criteria.
- ⁇ Evaluation criteria The number of days when the change in the peak height of the polymer is 30% or more is 2 days or more.
- the number of days when the change in the peak height of the polymer is 30% or more is 1 day or more and less than 2 days: ⁇
- the number of days when the change in the peak height of the polymer is 30% or more is less than one day: ⁇
- peel area ratio is less than 2%: ⁇ Peel area ratio is 2% or more and less than 3.5%: ⁇ Peeling area ratio is 3.5% or more and less than 5%: ⁇ Peel area ratio is 5% or more: ⁇
- the block, B is a mixture containing two or more polymers selected from the group consisting of general formulas of a polymer block mainly composed of conjugated diene monomer units, and SB and S in (a)
- the total amount of —B—X is 40% by mass or more and 85% by mass or less, and the content of the vinyl aromatic monomer unit in (a) is 34% by mass or more and 55% by mass or less, and in (a)
- the number average molecular weight of SB and SBX is in the range of 20,000 to 73,000, For
- the asphalt composition of the present invention can be used in the fields of road pavement, roofing / waterproof sheets, and sealants, and particularly preferably in the field of road pavement.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Civil Engineering (AREA)
- Architecture (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Road Paving Structures (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
例えば、添加剤として発泡剤を添加し、発生した微細な泡によって製造温度を低下させたり、添加剤として水を加えることによりアスファルトを液状化させたり、飽和脂肪酸及びリン酸を多塩基酸アルコールエステルとともに添加することにより、製造時の混合温度低下を検討している。
ブロック共重合体(a)を1~15質量%とアスファルト(c)とを含有するアスファルト組成物であって、
前記ブロック共重合体(a)がブロック共重合体(a-1)とブロック共重合体(a-2)とを含み、
前記ブロック共重合体(a-1)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(a-2)が、ビニル芳香族単量体単位を主体とする重合体ブロックを及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(a)の総質量におけるブロック共重合体(a-1)の含有量が40質量%以上85質量%以下であり、
前記ブロック共重合体(a)の総質量におけるブロック共重合体(a-2)の含有量が15質量%以上60質量%以下であり、
前記ブロック共重合体(a)中のビニル芳香族単量体単位の含有量が34質量%以上55質量%以下であり、
前記ブロック共重合体(a-1)の数平均分子量が2.0万~7.3万の範囲にあり、
前記ブロック共重合体(a-2)の数平均分子量が、ブロック共重合体(a-1)の数平均分子量の1.5~5.0倍である、アスファルト組成物。
[2]
前記ブロック共重合体(a-1)が、ビニル芳香族単量体単位を主体とする重合体ブロックを1つ及び共役ジエン単量体単位を主体とする重合体ブロックを1つ有し、
前記ブロック共重合体(a-2)が、ビニル芳香族単量体単位を主体とする重合体ブロックを2つ以上及び共役ジエン単量体単位を主体とする重合体ブロックを1つ以上有する、[1]に記載のアスファルト組成物。
[3]
前記ブロック共重合体(a-2)が、(S-B)n+1、B-(S-B)n+1、S-(B-S)n、S-(B-S)n-X、[(S-B)k]m-X、及び[(S-B)k-S]m-X(各式中、mは2~6の整数であり、n及びkはそれぞれ独立して1~4の整数であり、Sはビニル芳香族単量体単位を主体とする重合体ブロックであり、Bは共役ジエン単量体単位を主体とする重合体ブロックであり、Xはカップリング剤の残基又は重合開始剤の残基である。)からなる群より選ばれる少なくとも一つのブロック共重合体を含有する、[1]又は[2]に記載のアスファルト組成物。
[4]
前記ブロック共重合体(a-2)が、少なくとも(S-B)3-X(Sはビニル芳香族単量体単位を主体とする重合体ブロックであり、Bは共役ジエン単量体単位を主体とする重合体ブロックであり、Xはカップリング剤である。)で表されるブロック共重合体を含有する、[1]~[3]のいずれかに記載のアスファルト組成物。
[5]
前記ブロック共重合体(a)中のブロック共重合体(a-1)の含有量が55質量%以上85質量%以下である、[1]~[4]のいずれかに記載のアスファルト組成物。
[6]
前記ブロック共重合体(a)中のビニル芳香族単量体単位の総含有量に対する、ビニル芳香族単量体ブロック含有量の割合が、90.0~99.0質量%の範囲である、[1]~[5]のいずれかに記載のアスファルト組成物。
[7]
さらに、ブロック共重合体(b)を0.5~10質量%含み、
前記ブロック共重合体(b)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(b)中のビニル芳香族単量体単位の含有量が24質量%以上34質量%未満である、[1]~[6]のいずれかに記載のアスファルト組成物。
[8]
前記ブロック共重合体(b)がブロック共重合体(b-1)とブロック共重合体(b-2)とを含み、
前記ブロック共重合体(b-1)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(b-2)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(b)の総質量におけるブロック共重合体(b-1)の含有量が5質量%以上40質量%以下であり、
前記ブロック共重合体(b)の総質量におけるブロック共重合体(b-2)の含有量が60質量%以上95質量%以下であり、
前記ブロック共重合体(b-1)の数平均分子量が6万~15万の範囲にあり、
前記ブロック共重合体(b-2)の数平均分子量が、ブロック共重合体(b-1)の数平均分子量の1.5~5.0倍である、
[7]に記載のアスファルト組成物。
[9]
前記ブロック共重合体(b-1)が、ビニル芳香族単量体単位を主体とする重合体ブロックを1つ及び共役ジエン単量体単位を主体とする重合体ブロックを1つ有し、
前記ブロック共重合体(b-2)が、ビニル芳香族単量体単位を主体とする重合体ブロックを2つ以上及び共役ジエン単量体単位を主体とする重合体ブロックを1つ以上有する、[8]に記載のアスファルト組成物。
[10]
前記ブロック共重合体(a)及び/又はブロック共重合体(b)が、共役ジエン単量体単位の二重結合が水素添加されたブロック共重合体である、[1]~[9]のいずれかに記載のアスファルト組成物。
[11]
[1]~[10]のいずれかに記載のアスファルト組成物と骨材とを含有してなる道路。
本実施形態のアスファルト組成物は、ブロック共重合体(a)を1~15質量%とアスファルト(c)とを含有し、
ブロック共重合体(a)がブロック共重合体(a-1)とブロック共重合体(a-2)とを含み、
ブロック共重合体(a-1)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
ブロック共重合体(a-2)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(a)の総質量におけるブロック共重合体(a-1)の含有量が40質量%以上85質量%以下であり、
前記ブロック共重合体(a)の総質量におけるブロック共重合体(a-2)の含有量が15質量%以上60質量%以下であり、
前記ブロック共重合体(a)中のビニル芳香族単量体単位の含有量が34質量%以上55質量%以下であり、
前記ブロック共重合体(a-1)の数平均分子量が2.0万~7.3万の範囲にあり、
前記ブロック共重合体(a-2)の数平均分子量が、ブロック共重合体(a-1)の数平均分子量の1.5~5.0倍である、
アスファルト組成物である。
本実施形態において、ブロック共重合体(a)は、ブロック共重合体(a-1)とブロック共重合体(a-2)とを含む。ブロック共重合体(a-1)は、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
ブロック共重合体(a-2)は、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、ブロック共重合体(a-2)の数平均分子量は、ブロック共重合体(a-1)の数平均分子量の1.5~5.0倍である。
ブロック共重合体(a-1)は、ビニル芳香族単量体単位を主体とする重合体ブロックを1つ及び共役ジエン単量体単位を主体とする重合体ブロックを1つ有することが好ましく、ブロック共重合体(a-2)は、ビニル芳香族単量体単位を主体とする重合体ブロックを2つ以上及び共役ジエン単量体単位を主体とする重合体ブロックを1つ以上有することが好ましい。
ブロック共重合体(a-1)は、S-B及び下記の式(i)~(iii)からなる群より選ばれる少なくとも一つのブロック共重合体を含有することが好ましく、ブロック共重合体(a-2)は、下記の式(i)~(vi)からなる群より選ばれる少なくとも一つのブロック共重合体を含有することが好ましい。
B-(S-B)n+1 ・・・(ii)
S-(B-S)n ・・・(iii)
S-(B-S)n-X ・・・(iv)
[(S-B)k]m-X ・・・(v)
[(S-B)k-S]m-X ・・・(vi)
上記式(i)~(vi)中、Sは、ビニル芳香族単量体単位を主体とする重合体ブロックを表し、Bは、共役ジエン単量体単位を主体とする重合体ブロックを表し、Xは、カップリング剤の残基又は多官能有機リチウム等の重合開始剤の残基を表し、mは2~6の整数であり、n及びkはそれぞれ独立して1~4の整数である。(i)~(vi)のm、n及びkの値は同じであっても異なっていてもよい。
また、本実施形態に用いるブロック共重合体(a-2)のブロック共重合体(a)の総質量における割合は、アスファルト組成物の高い伸長回復性、アスファルト組成物と骨材との混合物にした時の骨材の高い剥離抵抗性の点で、15質量%以上であり、20質量%以上が好ましく、25質量%以上がより好ましく、28質量%以上がさらに好ましい。また、アスファルト組成物の低い混合温度、アスファルト組成物の低い粘度、アスファルト組成物中の重合体の少ない劣化の点で、60質量%以下であり、45質量%以下が好ましく、38質量%以下がより好ましく、33質量%以下がさらに好ましい。
本実施形態に用いるブロック共重合体(a-2)の数平均分子量は、アスファルト組成物の高い軟化点、アスファルト組成物と骨材との混合物にした時の骨材の高い剥離抵抗性の点で、ブロック共重合体(a-1)の数平均分子量の1.5~5.0倍であり、1.7~4.0倍であることが好ましく、1.8~3.0倍であることがより好ましい。
(ブロック共重合体(a)中のビニル芳香族単量体ブロック含有量)/(ブロック共重合体(a)中のビニル芳香族単量体単位の総含有量)×100で求めることができる。
ブロック共重合体(b)中のビニル芳香族単量体単位の含有量が24質量%以上34質量%未満である。
この時ブロック共重合体(b-1)は、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、ブロック共重合体(b-2)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、ブロック共重合体(b-2)の数平均分子量は、ブロック共重合体(b-1)の数平均分子量の1.5~5.0倍である。
ブロック共重合体(b-1)は、ビニル芳香族単量体単位を主体とする重合体ブロックを1つ及び共役ジエン単量体単位を主体とする重合体ブロックを1つ有することが好ましく、ブロック共重合体(b-2)は、ビニル芳香族単量体単位を主体とする重合体ブロックを2つ以上及び共役ジエン単量体単位を主体とする重合体ブロックを1つ以上有することが好ましい。
ブロック共重合体(b-2)の構造としては、前述のブロック共重合体(a-2)と同様の式(i)~(vi)の構造を例示することができる。
また、ブロック共重合体(b)の総質量におけるブロック共重合体(b-2)の含有量は95質量%以下であることが好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましい。該ブロック共重合体(b-2)の含有量の下限は特に限定されないが60質量%以上であることが好ましく、65質量%以上であることが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。
また、ブロック共重合体(b-1)の数平均分子量は、ブロック共重合体(a-1)の数平均分子量以上であることが好ましい。
本実施形態に用いるブロック共重合体(b-2)の数平均分子量は、製造時の低い混合温度、低い粘度アスファルト組成物と骨材との混合物にした時の骨材の高い剥離抵抗性の点で、ブロック共重合体(b-1)の数平均分子量の1.5~5.0倍であり、1.7~4.0倍であることが好ましく、1.8~3.0倍であることがより好ましい。
より高い軟化点の点で、少なくともブロック重合体(a)が水素添加されたものが好ましく、ブロック重合体(a)及び(b)共に水素添加されたものがさらに好ましい。
本実施形態で用いる重合体は、例えば、炭化水素溶媒中、リチウム化合物を重合開始剤として、少なくとも共役ジエン単量体とビニル芳香族単量体とを重合させて重合体を得る重合工程、得られた重合体の共役ジエン単量体単位中の二重結合に水素添加する水素添加工程、重合体を含む溶液の溶媒を脱溶剤する脱溶剤工程を順次行い、製造することができる。
重合工程においては、炭化水素溶媒中、リチウム化合物を重合開始剤として、少なくとも共役ジエン単量体とビニル芳香族単量体を含む単量体を重合させて重合体を得る。
重合工程において用いる炭化水素溶媒としては、特に限定されないが、例えば、ブタン、ペンタン、ヘキサン、イソペンタン、ヘプタン、オクタン等の脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素等が挙げられる。これらは1種のみを単独で使用してもよく、2種以上を混合して使用してもよい。
重合工程において重合開始剤として用いるリチウム化合物としては、特に限定されないが、例えば、有機モノリチウム化合物、有機ジリチウム化合物、有機ポリリチウム化合物等の分子中に一個以上のリチウム原子を結合した化合物が挙げられる。このような有機リチウム化合物としては、特に限定されないが、例えば、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ヘキサメチレンジリチウム、ブタジエニルジリチウム、イソプレニルジリチウム等が挙げられる。これらは1種のみを単独で使用してもよく、2種以上を併用してもよい。
共役ジエン単量体としては、特に限定されないが、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン等の1対の共役二重結合を有するジオレフィンが挙げられる。このなかでも、経済性の点で、好ましくは、1,3-ブタジエン、イソプレンが挙げられる。また、機械強度の観点から、1,3-ブタジエンがより好ましい。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
失活工程により重合体の活性末端を失活することが好ましい。重合体の活性末端を失活する方法は、活性末端と活性水素を有する化合物と反応させることで達成できる。活性水素を有する化合物は特に限定されないが、経済性の点で、アルコールや水が好ましい。
水素添加工程は、重合工程で得られた重合体の共役ジエン単量体単位中の二重結合の一部に水素添加反応する工程である。水素添加反応に使用される触媒としては、特に限定されないが、例えば、Ni、Pt、Pd、Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等の担体に担持させた担持型不均一系触媒;Ni、Co、Fe、Cr等の有機塩又はアセチルアセトン塩と有機Al等の還元剤とを用いるいわゆるチーグラー型触媒;Ru、Rh等の有機金属化合物等のいわゆる有機錯触媒、或いはチタノセン化合物に還元剤として有機Li、有機Al、有機Mg等を用いる均一触媒が挙げられる。このなかでも、経済性、重合体の耐熱老化性あるいは耐候性の観点で、チタノセン化合物に還元剤として有機Li、有機Al、有機Mg等を用いる均一触媒系が好ましい。
脱溶剤工程は、重合体を含む溶液の溶媒を脱溶剤する工程である。脱溶剤方法としては、特に限定されないが、スチームストリッピング法や直接脱溶媒法が挙げられる。
<アスファルト(c)>
本実施形態で用いることができるアスファルトとしては、特に限定されないが、例えば、石油精製の際の副産物(石油アスファルト)、又は天然の産出物(天然アスファルト)として得られるもの、もしくはこれらと石油類を混合したもの等が挙げられる。その主成分は瀝青(ビチューメン)と呼ばれるものである。具体的には、特に限定されないが、例えば、ストレートアスファルト、セミブローンアスファルト、ブローンアスファルト、溶剤脱瀝アスファルト、タール、ピッチ、オイルを添加したカットバックアスファルト、アスファルト乳剤等が挙げられる。これらは混合して使用してもよい。また、各種アスファルトに石油系溶剤抽出油、アロマ系炭化水素系プロセスオイルあるいはエキストラクト等の芳香族系重質鉱油等を添加してもよい。
本実施形態のアスファルト組成物中のブロック重合体(a)の含有量は、アスファルト組成物の高い軟化点、アスファルト組成物の伸長回復性、アスファルト組成物の高い延性、アスファルト組成物と骨材との混合物にした時の骨材の高い剥離抵抗性の点で、1質量%以上であり、2質量%以上が好ましい。また、アスファルト組成物中のブロック重合体(a)の含有量は、アスファルト組成物の低い混合温度、アスファルト組成物の低い粘度、アスファルト組成物中の重合体の少ない劣化、経済性の点で、15質量%以下であり、12質量%以下が好ましく、10質量%以下がより好ましい。
本実施形態のアスファルト組成物中のアスファルト(c)の含有量は、アスファルト組成物の高い軟化点、アスファルト組成物の伸長回復性、アスファルト組成物の高い延性、アスファルト組成物と骨材との混合物にした時の骨材の高い剥離抵抗性の点で、99質量%以下が好ましく、97質量%以下が好ましく、96質量%以下がより好ましい。また、アスファルト組成物中のアスファルト(c)の含有量は、アスファルト組成物の低い混合温度、アスファルト組成物の低い粘度、アスファルト組成物中の重合体の少ない劣化、経済性の点で、75質量%以上が好ましく、85質量%以上が好ましく、88質量%以上が好ましく、90質量%以上がより好ましい。
骨材に限定はなく、例えば、社団法人日本道路協会発行の「アスファルト舗装要綱」に記載されている舗装用の骨材であればどのようなものでも使用でき、具体的には、砕石、玉石、砂利、鉄鋼スラグ等である。また、これらの骨材にアスファルトを被覆したアスファルト被覆骨材及び再生骨材なども使用できる。その他、これに類似する粒状材料で、人工焼成骨材、焼成発泡骨材、人工軽量骨材、陶磁器粒、ルクソバイト、アルミニウム粒、プラスチック粒、セラミックス、エメリー、建設廃材、繊維等も使用することができる。
骨材は、一般に、粗骨材、細骨材、及びフィラーに大別される。
粗骨材とは2.36mmふるいに留まる骨材であって、一般には粒径範囲2.5~5mmの7号砕石、粒径範囲5~13mmの6号砕石、粒径範囲13~20mmの5号砕石、更には、粒径範囲20~30mmの4号砕石などの種類があるが、本実施形態においてはこれら種々の粒径範囲の粗骨材の1種又は2種以上を混合した骨材、或いは、合成された骨材などを使用することができる。これらの粗骨材には、骨材に対して0.3~1重量%程度のストレートアスファルトを被覆しておいてもよい。
細骨材とは、2.36mmふるいを通過し、かつ、0.075mmふるいに止まる骨材をいい、例えば、川砂、丘砂、山砂、海砂、スクリーニングス、砕石ダスト、シリカサンド、人工砂、ガラスカレット、鋳物砂、再生骨材破砕砂などが挙げられる。
フィラーとは、0.075mmふるいを通過するものであって、例えば、スクリーニングスのフィラー分、石粉、消石灰、セメント、焼却炉灰、クレー、タルク、フライアッシュ、カーボンブラックなどであるが、このほか、ゴム粉粒、コルク粉粒、木質粉粒、樹脂粉粒、繊維粉粒、パルプ、人工骨材等であっても、0.075mmふるいを通過するものであれば、フィラーとして使用することができる。
粗骨材、細骨材あるいはフィラーは、単独で用いてもよいが、一般的には、1種以上混合して用いられる。
アスファルト混合物中の骨材の含有量は、油付着時の高い耐質量損失や高い耐強度低下を有するアスファルト組成物を得るという観点からは、85質量%以上、98質量%以下の範囲が好ましく、90質量%以上、97質量%以下、がより好ましい。
アスファルト混合物の製造方法に関しては、特に制限はないが、アスファルト組成物と骨材との混合温度は、通常、120℃以上、200℃以下の範囲で混合される。
必要に応じて、アスファルト組成物の水中に乳化させて用いてもよい。
水添前の重合体を使用し、I.M.Kolthoff,etal.,J.Polym.Sci.1,p.429(1946)に記載の四酸化オスミウム酸法でビニル芳香族単量体ブロック含有量を測定した。重合体の分解にはオスミウム酸0.1g/125mL第3級ブタノール溶液を用いた。
ブロック共重合体中のビニル含有量、共役ジエン中の不飽和基の水素添加率及びビニル芳香族単量体単位の含有量を、核磁気共鳴スペクトル解析(NMR)により、下記の条件で測定した。
(測定条件)
測定機器 :JNM-LA400(JEOL製)
溶媒 :重水素化クロロホルム
測定サンプル :ポリマーを水素添加する前後の抜き取り品
サンプル濃度 :50mg/mL
観測周波数 :400MHz
化学シフト基準:TMS(テトラメチルシラン)
パルスディレイ:2.904秒
スキャン回数 :64回
パルス幅 :45°
測定温度 :26℃
<ブロック共重合体(a)中のビニル芳香族単量体単位の総含有量に対する、ビニル芳香族単量体ブロック含有量の割合(ブロック率)>
上記測定方法で求めたビニル芳香族単量体ブロック含有量及びビニル芳香族単量体単位の含有量の値を用いて下記式により算出した。
ブロック率=(ブロック共重合体(a)中のビニル芳香族単量体ブロック含有量)/ブロック共重合体(a)中のビニル芳香族単量体単位の総含有量)×100
<数平均分子量>
数平均分子量は、GPC〔装置は、ウォーターズ製〕で測定した。該GPC測定において溶媒にはテトラヒドロフランを用い、温度を35℃とした。クロマトグラムのピークの分子量を、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して求めた。当該分子量を数平均分子量(ポリスチレン換算分子量)とした。
上記GPCから得られた各ピーク間曲線の変曲点を垂直分割し、総面積に対する各分割面積の比を、それぞれの成分の面積比とし、質量比率を求めた。各ピーク間変曲点については、EcoSEC波形分離ソフトを用いてガウシアン近似によるフィッティング処理によりピーク分割を行い、各ピークの交差する点を変曲点とした。
(ブロック共重合体1:ブロック共重合体(a)に相当)
攪拌機及びジャケット付きの内容量10Lのステンレス製オートクレーブを、洗浄、乾燥、窒素置換した。該オートクレーブに、シクロヘキサン5720g、予め精製したスチレン304gを仕込み、ジャケットに温水を通水して内容物を約40℃に設定した。
S-B / (S-B)3-X / (S-B)4-X =73/17/10質量% であり、
S-B構造の数平均分子量は、4.8万、(S-B)3-Xの数平均分子量はS-B構造の数平均分子量の3倍、(S-B)4-Xの数平均分子量はS-B構造の数平均分子量の4倍であった。
攪拌機及びジャケット付きの内容量10Lのステンレス製オートクレーブを、洗浄、乾燥、窒素置換した。該オートクレーブに、シクロヘキサン5720g、予め精製したスチレン344gを仕込み、ジャケットに温水を通水して内容物を約40℃に設定した。
得られたブロック共重合体2は、ブロック共重合体の混合物であり、構造の比率は、
S-B / (S-B)3-X / (S-B)4-X =71/18/11質量% であり、
S-B構造の数平均分子量は、4.4万、(S-B)3-Xの数平均分子量はS-B構造の数平均分子量の3倍、(S-B)4-Xの数平均分子量はS-B構造の数平均分子量の4倍であった。
上記ブロック共重合体2の製造方法において、スチレンの重合により、最高温度(53℃)に達してから21分後、最高温度から6℃低下した後に、前記オートクレーブに、ブタジエン(1,3-ブタジエン)456gを添加し、ブタジエンがほぼ完全に重合して最高温度(89℃)に達してから30秒後に、前記オートクレーブに、カップリング剤として、テトラエトキシシランを添加し、カップリングさせた以外は、同じ方法でブロック共重合体3を製造した。
S-B / (S-B)3-X / (S-B)4-X =71/18/11質量% であり、
S-B構造の数平均分子量は、4.4万、(S-B)3-Xの数平均分子量はS-B構造の数平均分子量の3倍、(S-B)4-Xの数平均分子量はS-B構造の数平均分子量の4倍であった。
攪拌機及びジャケット付きの内容量10Lのステンレス製オートクレーブを、洗浄、乾燥、窒素置換した。該オートクレーブに、シクロヘキサン5720g、予め精製したスチレン344gを仕込み、ジャケットに温水を通水して内容物を約40℃に設定した。
S-B / (S-B)2-X =70/30質量% であり、
S-B構造の数平均分子量は、5.8万、(S-B)2-Xの数平均分子量はS-B構造の数平均分子量の2倍であった。
上記ブロック共重合体4の製造方法において、スチレンの重合により、最高温度(51℃)に達したら直ぐに、前記オートクレーブに、ブタジエン(1,3-ブタジエン)456gを添加し、重合を継続し、ブタジエンがほぼ完全に重合して最高温度(89℃)に達してから30秒後に、前記オートクレーブに、カップリング剤を添加した以外は、同じ方法でブロック共重合体5を製造した。
S-B / (S-B)2-X =70/30質量% であり、
S-B構造の数平均分子量は、5.8万、(S-B)2-Xの数平均分子量はS-B構造の数平均分子量の2倍であった。
攪拌機及びジャケット付きの内容量10Lのステンレス製オートクレーブを、洗浄、乾燥、窒素置換した。該オートクレーブに、シクロヘキサン5720g、予め精製したスチレン280gを仕込み、ジャケットに温水を通水して内容物を約40℃に設定した。
S-B / (S-B)2-X =65/35質量% であり、
S-B構造の数平均分子量は、6.9万、(S-B)2-Xの数平均分子量はS-B構造の数平均分子量の2倍であった。
攪拌機及びジャケット付きの内容量10Lのステンレス製オートクレーブを、洗浄、乾燥、窒素置換した。該オートクレーブに、シクロヘキサン5720g、予め精製したスチレン240gを仕込み、ジャケットに温水を通水して内容物を約40℃に設定した。
得られたブロック共重合体7は、ブロック共重合体の混合物であり、構造の比率は、
S-B / (S-B)2-X =20/80質量% であり、
S-B構造の数平均分子量は、7.5万、(S-B)2-Xの数平均分子量はS-B構造の数平均分子量の2倍であった。
上記ブロック共重合体4の製造方法において、カップリング剤量を変量した以外は同じ方法でブロック共重合体8を製造した。
S-B / (S-B)2-X =60/40質量% であり、
S-B構造の数平均分子量は、5.8万、(S-B)2-Xの数平均分子量はS-B構造の数平均分子量の2倍であった。
上記ブロック共重合体4の製造方法において、カップリング剤量を変量した以外は同じ方法でブロック共重合体9を製造した。
得られたブロック共重合体9は、ブロック共重合体の混合物であり、構造の比率は、
S-B / (S-B)2-X =57/43質量% であり、
S-B構造の数平均分子量は、5.8万、(S-B)2-Xの数平均分子量はS-B構造の数平均分子量の2倍であった。
上記ブロック共重合体4の製造方法において、カップリング剤量を変量した以外は同じ方法でブロック共重合体10を製造した。
S-B / (S-B)2-X =35/65質量% であり、
S-B構造の数平均分子量は、5.8万、(S-B)2-Xの数平均分子量はS-B構造の数平均分子量の2倍であった。
〈水添触媒の調製例〉
窒素置換した反応容器に、乾燥及び精製したシクロヘキサン1Lを入れ、ビス(シクロペンタジエニル)チタニウムジクロリド100mmolを添加し、十分に攪拌しながらトリメチルアルミニウム200mmolを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させ、水添触媒を得た。
上記ブロック共重合体1の製造方法において、カップリング剤添加後に、水を加えて失活後、上記の水添触媒で、ブロック共重合体における共役ジエン単量体単位中の二重結合の32mol%を水素添加した以外は、ブロック共重合体1の製造方法と同様に製造してブロック共重合体11を得た。
得られたブロック共重合体11は、ブロック共重合体の混合物であり、構造の比率は、
S-B / (S-B)3-X / (S-B)4-X =73/17/10質量% であり、
S-B構造の数平均分子量は、4.8万、(S-B)3-Xの数平均分子量はS-B構造の数平均分子量の3倍、(S-B)4-Xの数平均分子量はS-B構造の数平均分子量の4倍であった。
また、ブロック共重合体1において、ビニル芳香族単量体単位の含有量は38質量%であり、ブロック共重合体(a)のブロック率は、97質量%であった。
上記ブロック共重合体7の製造方法において、カップリング剤添加後に、水を加えて失活後、上記ブロック共重合体11の製造方法で調製した水添触媒で、ブロック共重合体における共役ジエン単量体単位中の二重結合の32mol%を水素添加した以外は、ブロック共重合体7の製造方法と同様に製造してブロック共重合体12を得た。
得られたブロック共重合体12は、ブロック共重合体の混合物であり、構造の比率は、
S-B / (S-B)2-X =20/80質量% であり、
S-B構造の数平均分子量は、7.5万、(S-B)2-Xの数平均分子量はS-B構造の数平均分子量の2倍であった。
また、ブロック共重合体7において、ビニル芳香族単量体単位の含有量は30質量%であり、ブロック共重合体(a)のブロック率は、97質量%であった。
<アスファルト組成物の製造方法>
750mLの金属缶にストレートアスファルト60-80〔新日本石油(株)製〕を500g投入し、160℃のオイルバスに金属缶を充分に浸した。次に、溶融状態のアスファルトを、4000rpmの回転速度で攪拌しながら、表1又は2に示すとおり所定量の各重合体を前記アスファルトに添加し、添加後に120分間、撹拌してアスファルト組成物を作製した。
上記作製したアスファルト組成物の各物性を以下の方法により測定した。該測定結果を表1及び2に示す。
上記のアスファルト組成物の製造方法に従い、表1又は2に示すとおり所定量の各重合体を前記アスファルトに添加後、160℃で所定時間溶融混練した。200メッシュのステンレス製金網を用いて、溶融混練したアスファルト組成物をすくい、前記金網上に重合体の粒が残っていない状態を完全溶解したと判断した。
完全溶解時間が短い方が、アスファルト組成物の低温製造性が良く、以下の基準で順に、○、△、×と評価した。
〔評価基準〕
90分以内に重合体が完全溶解した場合 :○
90分を超えて120分以内に重合体が完全溶解した場合 :△
120分経過しても重合体が完全溶解しなかった場合 :×
ブルックフィールド型粘度計により、160℃のアスファルト組成物の溶融粘度を測定した。
アスファルト組成物は溶融粘度が低い方が、製造性が良く、以下の基準で良い順から○、△、×と評価した。
〔評価基準〕
・表1;ブロック共重合体の添加量が5質量%の場合
溶融粘度が300mPa・s未満 :○
溶融粘度が300mPa・s以上350mPa・s未満 :△
溶融粘度が350mPa・s以上 :×
・表2;ブロック共重合体の添加量が8質量%の場合
溶融粘度が600mPa・s未満 :○
溶融粘度が600mPa・s以上700mPa・s未満 :△
溶融粘度が700mPa・s以上 :×
JIS-K2207に準じて、アスファルト組成物の軟化点を、リング&ボール法にて測定した。規定の環に試料を充填し、グリセリン液中に水平に支え、試料の中央に3.5gの球を置き、液温を5℃/minの速度で上昇させたとき、球の重さで試料が環台の底板に触れた時の温度を測定した。
アスファルト組成物は軟化点が高い方が、耐流動性が良く、以下の基準で良い順から○、△、×と評価した。
〔評価基準〕
・表1;ブロック共重合体の添加量が5質量%の場合
軟化点が60℃以上 :○
軟化点が56℃以上60℃未満 :△
軟化点が56℃未満 :×
・表2;ブロック共重合体の添加量が8質量%の場合
軟化点が85℃以上 :○
軟化点が80℃以上85℃未満 :△
軟化点が80℃未満 :×
JIS-K2207に準じて、恒温水浴槽で25℃に保った試料に規定の針が5秒間に進入する長さを測定した。
アスファルト組成物は針入度が高い方が、耐疲労性が良く、以下の基準で良い順から○、△、×と評価した。
〔評価基準〕
・表1;ブロック共重合体の添加量が5質量%の場合
針入度が45dmm以上 :○
針入度が40dmm以上45dmm未満 :△
針入度が40dmm未満 :×
・表2;ブロック共重合体の添加量が8質量%の場合
針入度が45dmm以上 :○
針入度が40dmm以上45dmm未満 :△
針入度が40dmm未満 :×
JIS-K2207に準じて、試料を形枠に流し込み、規定の形状にした後、恒温水浴内で15℃に保ち、次に試料を5cm/minの速度で引っ張ったとき、試料が切れるまでに伸びた距離(伸度)を測定した。
アスファルト組成物は伸度が高い方が、耐低温ひび割れ性が良く、以下の基準で良い順から○、△、×と評価した。
〔評価基準〕
・表1;ブロック共重合体の添加量が5質量%の場合
伸度が50cm以上 :○
伸度が30cm以上50cm未満 :△
伸度が30cm未満 :×
・表2;ブロック共重合体の添加量が8質量%の場合
伸度が60cm以上 :○
伸度が50cm以上60cm未満 :△
伸度が50cm未満 :×
JEAASに準じて、試料を所定の容器に入れ、その際にテンションヘッドの上面と試料面とが同じ高さになる様に調節後、恒温水浴槽で25℃に保った試料を引張試験機により500mm/minの速度で引張し、その時の変位と荷重とのグラフからタフネスを測定した。
アスファルト組成物はタフネスが高い方が、骨材飛散抵抗性が良く、以下の基準で良い順から○、△、×と評価した。
〔評価基準〕
・表1;ブロック共重合体の添加量が5質量%の場合
タフネスが15N・m以上 :○
タフネスが8N・m以上15N・m未満 :△
タフネスが8N・m未満 :×
・表2;ブロック共重合体の添加量が8質量%の場合
タフネスが30N・m以上 :○
タフネスが20N・m以上30N・m未満 :△
タフネスが20N・m未満 :×
テナシティは、JEAASに準じて、上記タフネスの同じ方法で測定した。
アスファルト組成物はテナシティが高い方が、骨材飛散抵抗性が良く、以下の基準で良い順から○、△、×と評価した。
〔評価基準〕
・表1;ブロック共重合体の添加量が5質量%の場合
テナシティが8N・m以上 :○
テナシティが4N・m以上8N・m未満 :△
テナシティが4N・m未満 :×
上記方法で作製した重合体を5質量%含有したアスファルト組成物を180℃で貯蔵し、所定時間経過後にサンプリングし、ブロック共重合体の分子量分布の変化をGPCで解析した。
重合体の熱劣化により、GPCで得られる重合体のピークの中で最も大きなピーク面積のピーク高さが低くなるため、下記式によるピーク高さ変化が30%以上となる日数で重合体の耐熱劣化性を評価した。
ピーク高さ変化=貯蔵前の重合体のピーク高さ/所定時間経過後の重合体のピーク高さ×100
アスファルト組成物は重合体のピーク高さの変化が30%以上となる日数が長い方が、耐熱劣化性が良く、以下の基準で良い順から○、△、×と評価した。
〔評価基準〕
重合体のピーク高さの変化が30%以上となる日数が2日以上 :○
重合体のピーク高さの変化が30%以上となる日数が1日以上2日未満 :△
重合体のピーク高さの変化が30%以上となる日数が1日未満 :×
(アスファルト組成物と骨材との剥離抵抗性)
社団法人日本道路協会発行の舗装調査・試験法便覧(平成19年6月初版第1刷)の第2分冊A017粗骨材の剥離抵抗性試験方法に準じてアスファルト組成物と骨材との剥離抵抗性試験を行った。なお、骨材は生産地が栃木県下都賀郡岩舟町の硬質砂岩を用いた。
〔評価基準〕
剥離面積率が2%未満 :◎
剥離面積率が2%以上3.5%未満 :○
剥離面積率が3.5%以上5%未満 :△
剥離面積率が5%以上 :×
[(S-B)k]m-X、及び[(S-B)k-S]m-X(m、n及びkは整数、Sはビニル芳香族単量体単位を主体とする重合体ブロック、Bは共役ジエン単量体単位を主体とする重合体ブロック)の一般式からなる群より選ばれる重合体を二つ以上含有する混合物からなり、且つ
(a)中のS―B及びS-B-Xの総量が40質量%以上85質量%以下で、且つ
(a)中のビニル芳香族単量体単位の含有量が34質量%以上55質量%以下で、且つ
(a)中のS-B及びS-B-Xの数平均分子量が2.0万~7.3万の範囲にある、
ことを特徴とするアスファルト組成物とすることで、初めて、アスファルト組成物の製造時の混合温度が低く、アスファルト組成物の粘度が低く、アスファルト組成物中の重合体の劣化が少なく、アスファルト組成物と骨材との混合物にした時の骨材の剥離抵抗性が高くできることが分かる。
本出願は、2014年5月29日出願の日本特許出願(特願2014-111763号)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (11)
- ブロック共重合体(a)を1~15質量%とアスファルト(c)とを含有するアスファルト組成物であって、
前記ブロック共重合体(a)がブロック共重合体(a-1)とブロック共重合体(a-2)とを含み、
前記ブロック共重合体(a-1)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(a-2)が、ビニル芳香族単量体単位を主体とする重合体ブロックを及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(a)の総質量におけるブロック共重合体(a-1)の含有量が40質量%以上85質量%以下であり、
前記ブロック共重合体(a)の総質量におけるブロック共重合体(a-2)の含有量が15質量%以上60質量%以下であり、
前記ブロック共重合体(a)中のビニル芳香族単量体単位の含有量が34質量%以上55質量%以下であり、
前記ブロック共重合体(a-1)の数平均分子量が2.0万~7.3万の範囲にあり、
前記ブロック共重合体(a-2)の数平均分子量が、ブロック共重合体(a-1)の数平均分子量の1.5~5.0倍である、アスファルト組成物。 - 前記ブロック共重合体(a-1)が、ビニル芳香族単量体単位を主体とする重合体ブロックを1つ及び共役ジエン単量体単位を主体とする重合体ブロックを1つ有し、
前記ブロック共重合体(a-2)が、ビニル芳香族単量体単位を主体とする重合体ブロックを2つ以上及び共役ジエン単量体単位を主体とする重合体ブロックを1つ以上有する、請求項1に記載のアスファルト組成物。 - 前記ブロック共重合体(a-2)が、(S-B)n+1、B-(S-B)n+1、S-(B-S)n、S-(B-S)n-X、[(S-B)k]m-X、及び[(S-B)k-S]m-X(各式中、mは2~6の整数であり、n及びkはそれぞれ独立して1~4の整数であり、Sはビニル芳香族単量体単位を主体とする重合体ブロックであり、Bは共役ジエン単量体単位を主体とする重合体ブロックであり、Xはカップリング剤の残基又は重合開始剤の残基である。)からなる群より選ばれる少なくとも一つのブロック共重合体を含有する、請求項1又は2に記載のアスファルト組成物。
- 前記ブロック共重合体(a-2)が、少なくとも(S-B)3-X(Sはビニル芳香族単量体単位を主体とする重合体ブロックであり、Bは共役ジエン単量体単位を主体とする重合体ブロックであり、Xはカップリング剤である。)で表されるブロック共重合体を含有する、請求項1~3のいずれか一項に記載のアスファルト組成物。
- 前記ブロック共重合体(a)中のブロック共重合体(a-1)の含有量が55質量%以上85質量%以下である、請求項1~4のいずれか一項に記載のアスファルト組成物。
- 前記ブロック共重合体(a)中のビニル芳香族単量体単位の総含有量に対する、ビニル芳香族単量体ブロック含有量の割合が、90.0~99.0質量%の範囲である、請求項1~5のいずれか一項に記載のアスファルト組成物。
- さらに、ブロック共重合体(b)を0.5~10質量%含み、
前記ブロック共重合体(b)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(b)中のビニル芳香族単量体単位の含有量が24質量%以上34質量%未満である、請求項1~6のいずれか一項に記載のアスファルト組成物。 - 前記ブロック共重合体(b)がブロック共重合体(b-1)とブロック共重合体(b-2)とを含み、
前記ブロック共重合体(b-1)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(b-2)が、ビニル芳香族単量体単位を主体とする重合体ブロック及び共役ジエン単量体単位を主体とする重合体ブロックを有し、
前記ブロック共重合体(b)の総質量におけるブロック共重合体(b-1)の含有量が5質量%以上40質量%以下であり、
前記ブロック共重合体(b)の総質量におけるブロック共重合体(b-2)の含有量が60質量%以上95質量%以下であり、
前記ブロック共重合体(b-1)の数平均分子量が6万~15万の範囲にあり、
前記ブロック共重合体(b-2)の数平均分子量が、ブロック共重合体(b-1)の数平均分子量の1.5~5.0倍である、
請求項7に記載のアスファルト組成物。 - 前記ブロック共重合体(b-1)が、ビニル芳香族単量体単位を主体とする重合体ブロックを1つ及び共役ジエン単量体単位を主体とする重合体ブロックを1つ有し、
前記ブロック共重合体(b-2)が、ビニル芳香族単量体単位を主体とする重合体ブロックを2つ以上及び共役ジエン単量体単位を主体とする重合体ブロックを1つ以上有する、請求項8に記載のアスファルト組成物。 - 前記ブロック共重合体(a)及び/又はブロック共重合体(b)が、共役ジエン単量体単位の二重結合が水素添加されたブロック共重合体である、請求項1~9のいずれか一項に記載のアスファルト組成物。
- 請求項1~10のいずれか一項に記載のアスファルト組成物と骨材とを含有してなる道路。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA201692184A EA033134B1 (ru) | 2014-05-29 | 2015-05-27 | Асфальтовая композиция |
BR112016026469A BR112016026469A2 (pt) | 2014-05-29 | 2015-05-27 | Composição de asfalto |
EP15798866.8A EP3150673B1 (en) | 2014-05-29 | 2015-05-27 | Asphalt composition |
US15/314,564 US10351475B2 (en) | 2014-05-29 | 2015-05-27 | Asphalt composition |
MYPI2016704269A MY182810A (en) | 2014-05-29 | 2015-05-27 | Asphalt composition |
KR1020167025439A KR101829567B1 (ko) | 2014-05-29 | 2015-05-27 | 아스팔트 조성물 |
SG11201609760XA SG11201609760XA (en) | 2014-05-29 | 2015-05-27 | Asphalt composition |
CN201580021325.0A CN106232730B (zh) | 2014-05-29 | 2015-05-27 | 沥青组合物 |
MX2016015608A MX2016015608A (es) | 2014-05-29 | 2015-05-27 | Composicion de asfalto. |
JP2016523532A JP6255492B2 (ja) | 2014-05-29 | 2015-05-27 | アスファルト組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-111763 | 2014-05-29 | ||
JP2014111763 | 2014-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015182649A1 true WO2015182649A1 (ja) | 2015-12-03 |
Family
ID=54698973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065224 WO2015182649A1 (ja) | 2014-05-29 | 2015-05-27 | アスファルト組成物 |
Country Status (12)
Country | Link |
---|---|
US (1) | US10351475B2 (ja) |
EP (1) | EP3150673B1 (ja) |
JP (1) | JP6255492B2 (ja) |
KR (1) | KR101829567B1 (ja) |
CN (1) | CN106232730B (ja) |
BR (1) | BR112016026469A2 (ja) |
EA (1) | EA033134B1 (ja) |
MX (1) | MX2016015608A (ja) |
MY (1) | MY182810A (ja) |
SG (1) | SG11201609760XA (ja) |
TW (1) | TWI553053B (ja) |
WO (1) | WO2015182649A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI627232B (zh) * | 2015-12-30 | 2018-06-21 | 科騰聚合物美國有限責任公司 | 用於瀝青改質及再生之油凝膠 |
JP2019183124A (ja) * | 2018-04-04 | 2019-10-24 | 旭化成株式会社 | アスファルト含有防水シート用添加剤、アスファルト含有防水シートの製造方法、アスファルト組成物、及びアスファルト含有防水シート |
WO2020054168A1 (ja) * | 2018-09-10 | 2020-03-19 | 出光興産株式会社 | アスファルト組成物およびアスファルト合材 |
WO2021261241A1 (ja) * | 2020-06-22 | 2021-12-30 | 旭化成株式会社 | 水添共重合体、樹脂組成物、成形体、及び粘着性フィルム |
WO2024135803A1 (ja) * | 2022-12-23 | 2024-06-27 | 株式会社Nippo | アスファルト混合物の製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6028120B1 (ja) * | 2016-06-06 | 2016-11-16 | 光工業株式会社 | 常温舗装用アスファルト舗装材 |
JP6776449B2 (ja) * | 2017-06-14 | 2020-10-28 | 旭化成株式会社 | アスファルト組成物 |
DE102019107726B4 (de) * | 2018-04-04 | 2024-09-26 | Asahi Kasei Kabushiki Kaisha | Zusatz für bitumenhaltige Dichtungsbahn, Verfahren zur Herstellung einer bitumenhaltigen Dichtungsbahn, Bitumenzusammensetzung und Verwendung der Bitumenzusammensetzung |
CN110093043B (zh) * | 2019-04-17 | 2021-07-16 | 广州鸿绵合成材料有限公司 | 一种沥青降粘剂及其制备方法和应用 |
CN112745691B (zh) * | 2019-10-30 | 2022-06-14 | 中国石油化工股份有限公司 | 两种端基极性化sbs制备热贮存稳定的改性沥青 |
CN112062504A (zh) * | 2020-08-14 | 2020-12-11 | 深圳市交通工程试验检测中心有限公司 | 冷拌混凝土及其制备方法 |
CN112592597B (zh) * | 2020-12-16 | 2022-03-15 | 湖北工业大学 | 一种低温抗位移非固化橡胶沥青的制备方法 |
CN112745063A (zh) * | 2021-01-13 | 2021-05-04 | 武汉理工大学 | 一种阻燃温拌胶囊自愈合沥青混凝土及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08165435A (ja) * | 1994-12-14 | 1996-06-25 | J S R Shell Elastomer Kk | アスファルト組成物 |
JPH08225711A (ja) * | 1995-02-20 | 1996-09-03 | J S R Shell Elastomer Kk | アスファルト組成物 |
JPH0912898A (ja) * | 1995-06-27 | 1997-01-14 | Nippon Elastomer Kk | アスファルト組成物 |
JP2010509469A (ja) * | 2006-11-13 | 2010-03-25 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | ビチューメンエマルジョン |
JP2010526180A (ja) * | 2007-05-01 | 2010-07-29 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | ビチューメン結合材組成物およびこれを調製するための方法 |
JP2011518244A (ja) * | 2008-04-17 | 2011-06-23 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | 路盤アスファルト舗装用途において用いるためのブロックコポリマーおよびポリマー改質瀝青バインダ組成物 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5036119A (en) * | 1989-10-16 | 1991-07-30 | Shell Oil Company | Process for preparing bituminous composition |
JP2835360B2 (ja) | 1990-03-30 | 1998-12-14 | 日本エラストマー株式会社 | アスファルト組成物 |
TW446733B (en) * | 1998-03-05 | 2001-07-21 | Japan Elastomer Co Ltd | Block copolymer composition for modifying asphalt and asphalt composition comprising the same |
JP2001072862A (ja) | 1999-06-30 | 2001-03-21 | Nichireki Co Ltd | アスファルト組成物とその製造方法並びに用途 |
JP4435338B2 (ja) | 1999-08-25 | 2010-03-17 | 株式会社Nippo | 舗装用加熱混合物 |
JP2002332606A (ja) | 2001-05-10 | 2002-11-22 | Seikitokyu Kogyo Co Ltd | アスファルト舗装施工性改善剤およびそれを利用した舗装構築方法 |
US20040077789A1 (en) * | 2002-01-10 | 2004-04-22 | Keiichi Toda | Block copolymer |
EP1852446B1 (en) * | 2005-02-21 | 2012-01-25 | Asahi Kasei Chemicals Corporation | Hydrogenated block copolymer and composition thereof |
ES2467240T3 (es) * | 2005-12-29 | 2014-06-12 | Firestone Polymers, Llc | Aglutinantes de asfalto modificado y composiciones de pavimentación de asfalto |
KR20090052767A (ko) * | 2007-11-21 | 2009-05-26 | 금호석유화학 주식회사 | 스티렌계 복합 블록 공중합체 혼합물의 제조방법 및 이를함유한 개질 아스팔트 조성물 |
US20110251347A1 (en) * | 2008-08-05 | 2011-10-13 | Graves Daniel F | Styrene/butadiene diblock copolymer-containing blends that are not an agglomeration and a process for preparation |
JP5615679B2 (ja) | 2010-11-29 | 2014-10-29 | 昭和シェル石油株式会社 | ポリマー改質アスファルト組成物 |
-
2015
- 2015-05-27 SG SG11201609760XA patent/SG11201609760XA/en unknown
- 2015-05-27 EA EA201692184A patent/EA033134B1/ru not_active IP Right Cessation
- 2015-05-27 JP JP2016523532A patent/JP6255492B2/ja active Active
- 2015-05-27 MX MX2016015608A patent/MX2016015608A/es unknown
- 2015-05-27 EP EP15798866.8A patent/EP3150673B1/en active Active
- 2015-05-27 MY MYPI2016704269A patent/MY182810A/en unknown
- 2015-05-27 CN CN201580021325.0A patent/CN106232730B/zh active Active
- 2015-05-27 US US15/314,564 patent/US10351475B2/en active Active
- 2015-05-27 BR BR112016026469A patent/BR112016026469A2/pt not_active Application Discontinuation
- 2015-05-27 WO PCT/JP2015/065224 patent/WO2015182649A1/ja active Application Filing
- 2015-05-27 KR KR1020167025439A patent/KR101829567B1/ko active IP Right Grant
- 2015-05-28 TW TW104117240A patent/TWI553053B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08165435A (ja) * | 1994-12-14 | 1996-06-25 | J S R Shell Elastomer Kk | アスファルト組成物 |
JPH08225711A (ja) * | 1995-02-20 | 1996-09-03 | J S R Shell Elastomer Kk | アスファルト組成物 |
JPH0912898A (ja) * | 1995-06-27 | 1997-01-14 | Nippon Elastomer Kk | アスファルト組成物 |
JP2010509469A (ja) * | 2006-11-13 | 2010-03-25 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | ビチューメンエマルジョン |
JP2010526180A (ja) * | 2007-05-01 | 2010-07-29 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | ビチューメン結合材組成物およびこれを調製するための方法 |
JP2011518244A (ja) * | 2008-04-17 | 2011-06-23 | クレイトン・ポリマーズ・ユー・エス・エル・エル・シー | 路盤アスファルト舗装用途において用いるためのブロックコポリマーおよびポリマー改質瀝青バインダ組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3150673A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI627232B (zh) * | 2015-12-30 | 2018-06-21 | 科騰聚合物美國有限責任公司 | 用於瀝青改質及再生之油凝膠 |
JP2019183124A (ja) * | 2018-04-04 | 2019-10-24 | 旭化成株式会社 | アスファルト含有防水シート用添加剤、アスファルト含有防水シートの製造方法、アスファルト組成物、及びアスファルト含有防水シート |
WO2020054168A1 (ja) * | 2018-09-10 | 2020-03-19 | 出光興産株式会社 | アスファルト組成物およびアスファルト合材 |
WO2021261241A1 (ja) * | 2020-06-22 | 2021-12-30 | 旭化成株式会社 | 水添共重合体、樹脂組成物、成形体、及び粘着性フィルム |
WO2024135803A1 (ja) * | 2022-12-23 | 2024-06-27 | 株式会社Nippo | アスファルト混合物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3150673B1 (en) | 2019-03-20 |
KR101829567B1 (ko) | 2018-02-14 |
CN106232730B (zh) | 2019-04-16 |
JP6255492B2 (ja) | 2017-12-27 |
EP3150673A4 (en) | 2017-08-02 |
MY182810A (en) | 2021-02-05 |
MX2016015608A (es) | 2017-04-25 |
TW201602216A (zh) | 2016-01-16 |
BR112016026469A2 (pt) | 2017-08-15 |
CN106232730A (zh) | 2016-12-14 |
EP3150673A1 (en) | 2017-04-05 |
US10351475B2 (en) | 2019-07-16 |
KR20160122818A (ko) | 2016-10-24 |
JPWO2015182649A1 (ja) | 2017-04-20 |
US20170197879A1 (en) | 2017-07-13 |
TWI553053B (zh) | 2016-10-11 |
SG11201609760XA (en) | 2016-12-29 |
EA033134B1 (ru) | 2019-08-30 |
EA201692184A1 (ru) | 2017-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6255492B2 (ja) | アスファルト組成物 | |
JP6373365B2 (ja) | アスファルト組成物 | |
JP6776449B2 (ja) | アスファルト組成物 | |
US10138319B2 (en) | Polymer and asphalt composition | |
KR101820618B1 (ko) | 중합체 및 아스팔트 조성물 | |
JP6504949B2 (ja) | 改質アスファルト組成物及び改質アスファルト混合物 | |
JP2016210878A (ja) | 改質アスファルト組成物、及び改質アスファルト混合物、並びにこれらの製造方法 | |
JP2018150430A (ja) | アスファルト組成物及び改質アスファルト混合物 | |
JP2016210647A (ja) | 改質アスファルト組成物、及び改質アスファルト混合物、並びにこれらの製造方法 | |
JP2016035037A (ja) | アスファルト組成物 | |
JP6646362B2 (ja) | 改質アスファルト乳剤 | |
JP2016210876A (ja) | 改質アスファルトマスターバッチ、改質アスファルト組成物、及び改質アスファルト混合物、並びにこれらの製造方法 | |
JP6607672B2 (ja) | 重合体及びアスファルト組成物 | |
JP4656987B2 (ja) | アスファルト組成物 | |
JP6917252B2 (ja) | アスファルト組成物及び防水シート | |
JP4672446B2 (ja) | アスファルト組成物 | |
JP2024120842A (ja) | ブロック共重合体、アスファルト組成物、及び改質アスファルト混合物 | |
TW202325761A (zh) | 嵌段共聚物、瀝青組合物、及改質瀝青混合物 | |
JP2022066733A (ja) | ブロック共重合体、アスファルト組成物、及び改質アスファルト混合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15798866 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167025439 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016523532 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015798866 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015798866 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016026469 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201692184 Country of ref document: EA Ref document number: MX/A/2016/015608 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15314564 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 112016026469 Country of ref document: BR Kind code of ref document: A2 Effective date: 20161111 |