WO2015182066A1 - 温度センサおよび、それを用いた装置、および温度測定方法 - Google Patents

温度センサおよび、それを用いた装置、および温度測定方法 Download PDF

Info

Publication number
WO2015182066A1
WO2015182066A1 PCT/JP2015/002522 JP2015002522W WO2015182066A1 WO 2015182066 A1 WO2015182066 A1 WO 2015182066A1 JP 2015002522 W JP2015002522 W JP 2015002522W WO 2015182066 A1 WO2015182066 A1 WO 2015182066A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
voltage
infrared
pixel portions
output
Prior art date
Application number
PCT/JP2015/002522
Other languages
English (en)
French (fr)
Inventor
浩 山中
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2016523117A priority Critical patent/JP6673199B2/ja
Priority to US15/309,517 priority patent/US10641660B2/en
Priority to CN201580027008.XA priority patent/CN106461467B/zh
Publication of WO2015182066A1 publication Critical patent/WO2015182066A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/56Electrical features thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/068Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling parameters other than temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/20Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J2005/066Differential arrangement, i.e. sensitive/not sensitive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J2005/106Arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J2005/528Periodic comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • G01J5/804Calibration using atmospheric correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present disclosure relates to a temperature sensor that measures the temperature of an object, an apparatus using the temperature sensor, and a temperature measurement method.
  • An infrared sensor is used in a cooking apparatus or the like as a temperature sensor for measuring the temperature of an object such as food.
  • the infrared sensor signal correction method disclosed in Patent Document 1 includes a first correction step and a second correction step.
  • the first correction step includes a step of adding or subtracting the offset correction amount A based on the environmental temperature.
  • the second correction step is performed after the first correction step, and includes a step of multiplying the correction coefficient B based on the environmental temperature.
  • an infrared sensor signal SIR corresponding to the amount of infrared energy is output as a voltage value.
  • the offset correction amount A is a correction amount determined by a function of the type of the infrared sensor unit of the infrared sensor device and the environmental temperature.
  • the offset correction amount A is expressed by a function including a third-order and / or second-order term of the environmental temperature.
  • the offset correction amount A is, for example, measured for a measurement object having a constant temperature under a plurality of conditions with different environmental temperatures. Then, by plotting the ambient temperature on the horizontal axis and the infrared sensor signal on the vertical axis, the infrared sensor signal at that time is obtained as a function of the ambient temperature. That is, the offset correction amount A at each environmental temperature is determined.
  • the correction coefficient B is a coefficient having no unit, and is multiplied by the signal after the offset correction amount A is added to or subtracted from the first correction signal.
  • the correction based on the environmental temperature is performed by performing the two-stage correction as described above.
  • the temperature sensor of Patent Document 2 includes an infrared sensor, a thermistor, and a calculation unit.
  • the infrared sensor is constituted by a thermopile and converts heat energy into electric energy.
  • the thermistor measures the temperature of the infrared sensor.
  • the calculation unit is composed of an IC element, and calculates the temperature of the object to be measured based on the output voltages of the infrared sensor and the thermistor. In this infrared sensor, the temperature of the infrared sensor is measured by a thermistor, and the output voltage of the infrared sensor is corrected based on the output voltage of the thermistor.
  • the temperature sensor includes first infrared measurement means, second infrared measurement means, and a calculation unit.
  • the first infrared measuring means measures the infrared ray emitted from the object and outputs a first voltage.
  • the second infrared measurement means measures infrared rays emitted from the periphery of the object and outputs a second voltage.
  • the calculation unit calculates the output temperature of the object using the first voltage, calculates the ambient temperature of the object using the second voltage, and calculates the temperature of the object by correcting the output temperature using the ambient temperature.
  • the apparatus includes an operation unit that operates in accordance with a correction signal from the calculation unit.
  • the temperature measurement method of the present disclosure measures infrared rays emitted from an object, outputs a first voltage, Measure the infrared radiation radiated from around the object, and output the second voltage, The output voltage of the object is calculated from the first voltage, The second voltage calculates the ambient temperature of the object, The temperature of the object is calculated by correcting the output temperature based on the ambient temperature.
  • FIG. 1 is a cross-sectional view of a temperature sensor according to the present embodiment.
  • FIG. 2 is a perspective view of the temperature sensor with the package lid removed according to the present embodiment.
  • FIG. 3 is a perspective view of the package lid viewed from the opening according to the present embodiment.
  • FIG. 4 is a cross-sectional view of an apparatus having a temperature sensor according to the present embodiment.
  • FIG. 5 is a top view of an essential part of the infrared sensor according to the present embodiment.
  • FIG. 6 is a top view of an essential part of the infrared sensor according to the present embodiment.
  • FIG. 7 is a cross-sectional view taken along line 7-7 in FIG.
  • FIG. 8 is an equivalent circuit diagram of the infrared sensor according to the present embodiment.
  • FIG. 1 is a cross-sectional view of a temperature sensor according to the present embodiment.
  • FIG. 2 is a perspective view of the temperature sensor with the package lid removed according to the present embodiment.
  • FIG. 3 is a
  • FIG. 9 is a block diagram of an apparatus having a temperature sensor according to the present embodiment.
  • FIG. 10 is a diagram showing a detection region of the temperature sensor according to the present embodiment.
  • FIG. 11 is a diagram showing a Gaussian filter used for correction of the temperature sensor according to the present embodiment.
  • FIG. 12 is a diagram showing a second-order differential filter used for correction of the temperature sensor according to the present embodiment.
  • FIG. 13 is a diagram showing experimental results of the temperature sensor according to the present embodiment.
  • the correction method is complicated.
  • the arithmetic processing becomes complicated and processing time is required. Therefore, a high performance arithmetic circuit is required. Furthermore, it is difficult to sufficiently reflect the influence of the ambient temperature of the object.
  • FIG. 1 is a cross-sectional view of a temperature sensor 1 according to this embodiment.
  • FIG. 2 is a perspective view of the temperature sensor 1 with the package lid 25 removed according to the present embodiment.
  • FIG. 3 is a perspective view of the package lid 25 as seen from the opening according to the present embodiment.
  • FIG. 4 is a cross-sectional view of the device 5 having the temperature sensor 1 according to the present embodiment.
  • FIG. 5 is a top view of an essential part of the infrared sensor 2 according to the present embodiment.
  • FIG. 6 is a top view of an essential part of the infrared sensor 2 according to the present embodiment.
  • FIG. 7 is a cross-sectional view taken along line 7-7 in FIG.
  • FIG. 8 is an equivalent circuit diagram of the infrared sensor 2 according to the present embodiment.
  • FIG. 9 is a block diagram of the device 5 having the temperature sensor 1 according to the present embodiment.
  • the interlayer insulating film 44 and the passivation film 46 are omitted in FIGS.
  • the temperature sensor 1 of the present disclosure includes a first infrared measurement unit, a second infrared measurement unit, and a calculation unit 7.
  • the first infrared measurement means measures the infrared radiation emitted from the object 6 and outputs a first voltage (output voltage).
  • the second infrared measurement means measures infrared rays emitted from the periphery of the object 6 and outputs a second voltage (output voltage).
  • the calculation unit 7 calculates the output temperature T out of the object 6 using the first voltage, calculates the ambient temperature T amb of the object 6 using the second voltage, and corrects the output temperature T out using the ambient temperature T amb. As a result, the temperature T obj of the object 6 is calculated.
  • the first infrared measuring means and the second infrared measuring means are shared by the infrared sensor 2.
  • the first infrared measurement means and the second infrared measurement means may be configured using separate infrared sensors.
  • the temperature sensor 1 includes an infrared sensor 2 (infrared measuring means) and a calculation unit 7.
  • the calculation unit 7 has an IC element 3.
  • the infrared sensor 2 and the calculation unit 7 are housed in a package 4.
  • the temperature sensor 1 is attached to the device 5 (see FIG. 4).
  • the infrared sensor 2 measures the temperature of the object 6 and outputs an output signal.
  • the calculation unit 7 corrects the output signal from the infrared sensor 2 and transmits a correction signal to the operation unit 8 installed in the apparatus 5.
  • the operation unit 8 operates the device 5 according to the correction signal from the calculation unit 7.
  • the detection area 70 see FIG.
  • one side of the area S1 of the object 6 to be measured to be detected is a side P1
  • one side of the area S2 corresponding to the detection region 70 of the temperature sensor 1 is a side P2.
  • the package 4 has a package body 24 and a package lid 25.
  • the package body 24 has a base body 30 made of an insulating material and an electromagnetic shield layer 32.
  • the infrared sensor 2 and the calculation unit 7 are mounted side by side on the base body 30.
  • the package lid 25 and the package body 24 are airtightly joined so as to surround the infrared sensor 2 and the calculation unit 7.
  • the package lid 25 includes a metal cap 26 and an infrared transmitting member 28.
  • the metal cap 26 is installed on the surface of the package body 24.
  • An opening 27 is formed at a location corresponding to the infrared sensor 2 of the metal cap 26.
  • the infrared transmitting member 28 closes the opening 27 and transmits infrared light.
  • An infrared transmitting member 28 is disposed above the infrared sensor 2.
  • the infrared transmitting member 28 is configured by a lens.
  • the infrared transmitting member 28 converges infrared rays to the infrared sensor 2.
  • a lens is used as the infrared transmitting member 28.
  • the infrared transmitting member 28 is not limited to a lens, and may be a flat material, for example.
  • the infrared sensor 2 has a pixel portion 13 (non-contact infrared detecting element), a wiring portion (not shown), and a terminal portion (not shown).
  • the pixel unit 13 includes a thermal infrared detection unit 11 and a pixel switching unit 40.
  • a temperature sensing unit 10 which is a thermoelectric conversion unit is embedded.
  • the temperature sensing unit 10 is constituted by a thermopile, and converts thermal energy by infrared rays emitted from an object to be measured into electrical energy.
  • the pixel switching unit 40 is composed of the MOS transistor 12 and is used for extracting the output voltage of the temperature sensing unit 10.
  • the pixel unit 13 is arranged on the semiconductor substrate 14 in a one-dimensional or two-dimensional manner with a rows and b columns.
  • the pixel unit 13 is not limited to 8 rows and 8 columns, and may be a rows and b columns (a ⁇ 1, b ⁇ 1). That is, the number of pixel portions 13 may be one.
  • the infrared sensor 2 may be movable without being fixed to the base body 30.
  • an operation such as a reciprocating movement is performed without fixing the infrared sensor 2.
  • the area which can be detected with the infrared sensor 2 can be enlarged compared with the case where the infrared sensor 2 is fixed.
  • the effect of the present embodiment can be obtained by moving the infrared sensor 2.
  • the thermal infrared detection unit 11 includes a support unit 34 and a detection unit 36.
  • the support part 34 is configured by laminating a first thin film structure part 16, an infrared absorption part 17, an interlayer insulating film 44, and a passivation film 46.
  • the first thin film structure portion 16 is formed of a silicon oxide film.
  • the infrared absorber 17 is formed of a silicon nitride film.
  • the support portion 34 is formed on the semiconductor substrate 14 and around the cavity portion 15.
  • the detection unit 36 is configured by laminating the first thin film structure unit 16, the infrared absorption unit 17, the temperature sensing unit 10 (or the infrared absorption layer 50), the interlayer insulating film 44, and the passivation film 46. Yes.
  • the detection unit 36 is formed above the semiconductor substrate 14.
  • a cavity 15 is formed between the detection unit 36 and the semiconductor substrate 14. That is, the cavity 15 is formed immediately below the detection unit 36.
  • Infrared rays are absorbed by the infrared ray absorbing portion 17.
  • the first thin film structure portion 16 is separated into a plurality of second thin film structure portions 18 by a plurality of linear slits 19.
  • the second thin film structure portion 18 is disposed on the upper portion of the cavity portion 15. Adjacent second thin film structures 18 are connected to each other by a connecting piece 38 (see FIG. 5).
  • the MOS transistor 12 includes a second conductivity type source region (not shown) and a second conductivity type drain region (not shown) in a first conductivity type well region (not shown) formed on the surface of the semiconductor substrate 14. (Not shown) are formed apart from each other. In the present embodiment, the well region constitutes a channel formation region (not shown). In the equivalent circuit diagram of FIG. 8, the temperature sensing unit 10 is represented by a graphical symbol of resistance.
  • the infrared sensor 2 has eight (b) first (b) first electrodes in which one end of the temperature sensing unit 10 of eight (b) pixel units 13 in each column is connected via the source region and the drain region of the MOS transistor 12. Wiring 20 is provided.
  • the infrared sensor 2 includes a plurality of Zener diodes each having a cathode connected to each of the second wirings 21 in order to prevent an overvoltage from being applied between the gate electrode and the source electrode of each MOS transistor 12. 29.
  • the zener diode 29 has an anode electrode (not shown) formed in the first diffusion region and two cathode electrodes (not shown) formed in the second diffusion region.
  • the anode electrode of the Zener diode 29 is electrically connected to the fifth pad Vzd.
  • One cathode electrode of the Zener diode 29 is electrically connected to the gate electrode of the MOS transistor 12 connected to the second wiring 21 through one second wiring 21.
  • the other cathode electrode of the Zener diode 29 is electrically connected to one of the second pads Vsel 1 to Vsel 8 connected to the second wiring 21.
  • the infrared sensor 2 includes a sixth pad Vsu for substrate bias to which the semiconductor substrate 14 is connected.
  • the infrared sensor 2 includes eight (a) second wires 21, eight (b) third wires 22, and eight (b) fourth wires 23. ing. Eight second wirings 21 are formed for each row. The well regions of the MOS transistors 12 in each row are connected to the eight third wirings 22. The other ends of the eight temperature sensing units 10 in each row are connected to the eight fourth wirings 23.
  • the infrared sensor 2 includes eight (b) first pads V out1 to V out8 , eight (a) second pads V sel1 to V sel8 , a third pad V ch , 4 pads V refin .
  • the eight first pads V out1 to V out8 are for output, and the first wiring 20 is connected thereto.
  • Eight second pads V sel1 to V sel8 are for selecting the pixel portion 13, and the second wirings 21 are connected thereto.
  • a third wiring 22 is connected to the third pad Vch .
  • the fourth pad V refin is for a reference bias and is connected to the fourth wiring 23.
  • the calculation unit 7 has an IC element 3 that calculates the temperature of the object to be measured based on the output voltage of the infrared sensor 2.
  • FIG. 10 is a diagram showing a detection region 70 of the temperature sensor 1 according to the present embodiment.
  • an area SS1 corresponding to the area S1 of the object 6 and a detection region 70 are shown.
  • the number in the detection area 70 corresponds to each pixel unit 13 of the infrared sensor 2.
  • a black body furnace having a size of 10,000 mm 2 is installed as the object 6 at a position 200 mm away from the temperature sensor 1. And the temperature of this blackbody furnace is measured.
  • the output temperature T out is calculated using the following equation (3), where V out is the output voltage output from the infrared sensor 2 to the computing unit 7 and A, B, and C are coefficients. The details of the calculation for deriving the output temperature from the output voltage are described in Japanese Patent Application Laid-Open No. 2012-13517.
  • the output voltage V out of the infrared sensor 2 is expressed according to Planck's radiation law and expressed in accordance with the temperature T obj of the object 6 and the absorbed energy density of the infrared sensor 2 and the Stefan-Boltzmann law. Then, the temperature T obj of the object 6 is calculated using an arithmetic expression obtained on the assumption that it is proportional to the difference from the radiant energy density of the infrared sensor 2 depending on the temperature of the infrared sensor 2. Thereby, the detection accuracy of the temperature T obj of the object 6 can be improved.
  • V out of the object 6 is calculated using an arithmetic expression obtained on the assumption that it is proportional to the difference between the absorbed energy density and the radiant energy density of the infrared sensor 2.
  • T obj is expressed by using the output voltage V out of the infrared sensor 2 by the equation (3).
  • the absorbed energy density is expressed by Planck's radiation law depending on the temperature T obj of the object 6.
  • the radiant energy density is expressed according to the Stefan-Boltzmann law and depends on the temperature of the infrared sensor 2.
  • the output temperature T out is calculated as the temperature detected by the infrared sensor 2.
  • the output temperature T out of the infrared sensor 2 includes not only the object temperature T obj of the object 6 but also the ambient temperature T amb of the object 6. Therefore, if the temperature of the object 6 is calculated only from the output temperature T out of the infrared sensor 2, a deviation from the actual temperature of the object 6 occurs. The magnitude of this deviation increases as the difference between the object temperature T obj and the ambient temperature T amb increases.
  • the object temperature T obj of the object 6 can be accurately measured by performing correction using the ambient temperature T amb .
  • the infrared sensor 2 includes a pixel unit 13 of 8 rows and 8 columns, and the output temperature T out of the infrared sensor 2 and the ambient temperature T amb of the object 6 are calculated from the output voltage of the pixel unit 13. is doing.
  • the method of calculating the output temperature T out and the ambient temperature T amb assuming that the size of the object 6 is about 5 rows and 3 columns in the detection region 70 of the pixel unit 13 of 8 rows and 8 columns. Is described below.
  • the temperatures detected at the four corners of the detection region 70 of the infrared sensor 2 shown in FIG. 10, that is, the detection regions A1, A8, A57, and A64 are referred to as the ambient temperature T amb .
  • the output temperature T out is calculated from the temperature detected in the detection region other than the detection regions A1, A8, A57, A64 (hereinafter referred to as the object temperature detection region Fobj ).
  • a column including the detection region A4, that is, a column composed of the detection regions A4, A12, A20, A28, A36, A44, A52, A60 (hereinafter referred to as a determination column). L) is obtained.
  • the output voltage of each pixel of the determination column L is compared, when the output voltage at the center of the determination column L is larger than the output voltage at both ends, that is, the output voltages of the detection regions A28 and A36 are detected regions.
  • A4 and A60 it is determined that the temperature of the object 6 is higher than the temperature around the object 6.
  • the output voltage of each pixel of the determination column L is compared, the output voltage at the center of the determination column L is smaller than the output voltage at both ends, that is, the output voltages of the detection regions A28 and A36 are the detection region.
  • the output voltage at the center of the determination column L is smaller than the output voltage at both ends, that is, the output voltages of the detection regions A28 and A36 are the detection region.
  • the temperature derived from the output voltage of the pixel having the maximum output voltage in the object temperature detection region F obj is output.
  • the temperature is T out .
  • the temperature derived from the output voltage of the pixel having the minimum output voltage in the object temperature detection region F obj is set as the output temperature.
  • the object 6 is placed not at the center of the object temperature detection area F obj but at the end, and it is possible to determine whether the temperature of the object 6 is higher or lower than the surrounding temperature from the result of the determination sequence L. There are cases where it is not possible. In such a case, for example, the determination may be performed using the detection areas A25 to A32 as the determination row, or another column as the second determination column L. That is, the determination column L is not limited to the detection areas A4, A12, A20, A28, A36, A44, A52, and A60, and another row or column may be used.
  • a Gaussian filter is executed for each detection area. Thereby, the data in the detection area is smoothed.
  • An example of a Gaussian filter is shown in FIG.
  • the value of a certain detection area is multiplied by the values in the Gaussian filter of FIG. 11 and all of them are added to obtain the value of a certain detection area.
  • the secondary differential filter shown in FIG. 12 is executed.
  • the second order differential filter a temperature inflection point existing between a plurality of objects can be extracted, and a portion surrounded by the temperature inflection points can be detected as an object.
  • the temperature of the object 6 is calculated separately for the object detected as the object 6.
  • the temperature of the object 6 may be calculated as described above.
  • the ambient temperature T amb is calculated based on the output voltage of the ambient temperature detection region F amb . Specifically, among the output voltages of the detection areas A1, A8, A57, and A64 of the ambient temperature detection area F amb , it is derived from the average value of the output voltages of the two detection areas remaining by excluding the maximum value and the minimum value. Is calculated as the ambient temperature T amb .
  • the ambient temperature T amb can be detected accurately.
  • the entire outer periphery of the pixel unit 13 may be used as an ambient temperature detection region.
  • the object temperature detection region F obj becomes narrow.
  • the output temperature T out and the ambient temperature T amb are obtained using one infrared sensor 2.
  • the output temperature T out and the ambient temperature T amb may be measured separately using two infrared sensors. That is, the output temperature T out may be calculated by the first infrared sensor (first infrared measurement means), and the ambient temperature T amb may be calculated by the second infrared sensor (second infrared measurement means).
  • the second infrared sensor may be installed in a direction not detecting the temperature of the object 6 (for example, a ceiling or a wall).
  • a thermistor or the like may be used.
  • the ambient temperature T amb is calculated.
  • the present invention is not limited to this.
  • the ambient temperature T amb may be calculated from the average value of all output voltages in the ambient temperature detection region F amb .
  • the pixel portions 13 are arranged in a two-dimensional form of 8 rows and 8 columns.
  • the temperature detected in the detection region corresponding to the pixel portions at both ends may be set as the ambient temperature T amb .
  • the temperature detected in the detection region corresponding to the pixel portion other than the pixel portions at both ends may be set as the output temperature Tout .
  • FIG. 13 shows the relationship between the output temperature T out and the object temperature T obj obtained as described above.
  • FIG. 13 shows the result of changing the size of the object to large, medium, and small with the size of the 10,000 mm 2 object 6 used in this experiment as the middle.
  • the output temperature T out is calculated from the equation (3).
  • the output temperature T out is known.
  • the output temperature T out is expressed as a linear expression of the object temperature T obj as shown in Expression (4).
  • the inclination d can be expressed by a quadratic expression of A as shown in Expression (5) using the length A of one side of the object 6, the area A 2 of the object 6, and the constants d 1 , d 2 , and d 3 .
  • intercept e can be expressed by a quadratic expression of size A as shown in Expression (6) using constants e 1 , e 2 , and e 3 .
  • T out can be regarded as a linear expression, so the coefficients e 1 , e 2 , and e 3 are expressed as (7)
  • the constants e 11 , e 12 , e 21 , e 22 , e 31 , and e 32 can be used to represent the primary temperature of the ambient temperature T amb. .
  • Equation (2) is obtained. That is, the output temperature T out is defined as the area A 2 of the object 6, the length A of one side of the object 6, the ambient temperature T amb , the constants d 1 , d 2 , d 3 , e 11 , e 12 , e 21 , e 22. , E 31 , and e 32 , the object temperature T obj can be expressed as in equation (2).
  • Table 1 shows an example of results obtained by experimentally determining the constants d 1 , d 2 , d 3 , e 11 , e 12 , e 21 , e 22 , e 31 , and e 32 .
  • the constants d 1 and d 2 are 1/100 or less compared to the constant d 3
  • the constants e 11 , e 12 , e 21 , and e 22 are 1/100 or less compared to the constant e 32. It is.
  • the object temperature T obj is expressed as the equation (1), omitting the constants d 1 , d 2 , e 11 , e 12 , e 21 , and e 22 . That is, by correcting the output temperature T out , the object temperature T obj can be expressed by equation (1).
  • the object temperature T obj can be calculated with high accuracy with a simple calculation.
  • the object temperature T obj may be calculated using equation (2).
  • the expression (2) is used, the calculation becomes complicated, but the object temperature T obj can be calculated using the length A and the area A 2 of one side of the object 6. Therefore, the object temperature T obj can be measured with higher accuracy.
  • a method of measuring the size of the object 6 for example, a method of calculating the size of the object 6 from the output voltage of each pixel unit in the object temperature detection region F obj by the temperature sensor 1 can be considered.
  • another sensor that measures the size of the object 6 may be provided.
  • an object size acquisition unit for measuring the size of the object 6 may be provided.
  • the average size of the objects 6 under the usage conditions of the temperature sensor 1 is recorded in advance in the calculation unit 7 as the object size acquisition means.
  • the object temperature T obj may be calculated using the average size. In this way, the object temperature T obj can be measured more accurately than when the object temperature T obj is calculated using the equation (1) without providing a means for measuring the size of the object.
  • the calculated value and the experimental value agree well if they are within the range of 253 K ( ⁇ 20 ° C.) or more and 373 K (100 ° C.) or less, and 0.99.
  • the above correlation coefficient is obtained.
  • the temperature sensor 1 is provided with a calculation unit 7 that calculates the object temperature T obj .
  • the calculation unit 7 may not be provided in the temperature sensor 1 and another configuration may be used.
  • the calculation unit 7 may be provided in a microcomputer or the like of a device such as a microwave oven that operates based on the measurement result of the temperature sensor 1.
  • the present disclosure can calculate the temperature of an object using a low-order function. Therefore, the temperature of the object can be measured efficiently and accurately.
  • the temperature sensor of the present disclosure can measure the object temperature with high accuracy by performing correction using the ambient temperature of the object to be measured and the size of the object. Therefore, it is particularly useful in a cooking apparatus or the like that measures the temperature of an object such as a microwave oven and heats the object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 温度センサは、第1の赤外線測定手段と、第2の赤外線測定手段と、演算部とを備える。第1の赤外線測定手段は、物体から放射された赤外線を測定し、第1の電圧を出力する。第2の赤外線測定手段は、物体の周辺から放射された赤外線を測定し、第2の電圧を出力する。演算部は、第1の電圧により、物体の出力温度を算出し、第2の電圧により、物体の周辺温度を算出し、周辺温度により出力温度を補正することにより、物体の温度を算出する。

Description

温度センサおよび、それを用いた装置、および温度測定方法
 本開示は、物体の温度を測定する温度センサおよび、それを用いた装置、および温度測定方法に関する。
 食品などの物体の温度を測定する温度センサとして、赤外線センサが調理装置等に用いられている。
 特許文献1の赤外線センサ信号の補正方法は、第1補正工程と、第2補正工程とを有している。第1補正工程は、環境温度に基づいたオフセット補正量Aを加算又は減算する工程を有している。第2補正工程は、第1補正工程の後に行われ、環境温度に基づいた補正係数Bを乗算する工程を有している。
 測定対象物から放射される赤外線が、赤外線センサ部に到達すると、赤外線エネルギー量に対応した赤外線センサ信号SIRが電圧値として出力される。
 第1補正工程において、赤外線センサ信号SIRに対して環境温度より求まるオフセット補正量Aを加算又は減算することにより、第1補正信号が得られる。ここで、オフセット補正量Aとは、赤外線センサ装置の赤外線センサ部の種類と環境温度の関数により定まる補正量である。オフセット補正量Aは、環境温度の3次及び/又は2次の項を含む関数で表される。
 オフセット補正量Aは、例えば、一定温度の測定対象物を、環境温度が異なる複数の条件下で測定する。そして、そのときの赤外線センサ信号から、横軸に環境温度、縦軸に赤外線センサ信号をプロッティングすることにより、環境温度の関数として得られる。すなわち、各環境温度におけるオフセット補正量Aが定まる。
 次に、第2補正工程として、第1補正信号に環境温度より求まる補正係数Bを乗算すると、環境温度に対して略一定の第2補正信号が得られる。ここで、補正係数Bは、単位を持たない係数であり、第1補正信号に対してオフセット補正量Aが加算又は減算された後の信号に対して乗算される。
 上記のように2段階の補正をすることにより、環境温度に基づいた補正を行うことが開示されている。
 また、特許文献2の温度センサは、赤外線センサと、サーミスタと、演算部を備えている。赤外線センサは、サーモパイルにより構成され熱エネルギーを電気エネルギーに変換する。サーミスタは、赤外線センサの温度を測定する。演算部は、IC素子で構成されており、赤外線センサとサーミスタの出力電圧に基づいて測定対象である物体の温度を演算する。この赤外線センサでは、サーミスタによって赤外線センサの温度を測定し、サーミスタの出力電圧に基づいて赤外線センサの出力電圧を補正している。
特開2012-78160号公報 特開2012-13517号公報
 本開示の温度センサは、第1の赤外線測定手段と、第2の赤外線測定手段と、演算部とを備える。第1の赤外線測定手段は、物体から放射された赤外線を測定し、第1の電圧を出力する。第2の赤外線測定手段は、物体の周辺から放射された赤外線を測定し、第2の電圧を出力する。演算部は、第1の電圧により、物体の出力温度を算出し、第2の電圧により、物体の周辺温度を算出し、周辺温度により出力温度を補正することにより、物体の温度を算出する。
 また、本開示の装置は、上記温度センサに加えて、演算部からの補正信号に応じて動作する動作部を備える。
 また、本開示の温度測定方法は、物体から放射された赤外線を測定し、第1の電圧を出力し、
物体の周辺から放射された赤外線を測定し、第2の電圧を出力し、
第1の電圧により、物体の出力温度を算出し、
第2の電圧により、物体の周辺温度を算出し、
周辺温度により出力温度を補正することにより、物体の温度を算出する。
図1は、本実施の形態による温度センサの断面図である。 図2は、本実施の形態によるパッケージ蓋をはずした状態での温度センサの斜視図である。 図3は、本実施の形態による開口部からみたパッケージ蓋の斜視図である。 図4は、本実施の形態による温度センサを有する装置の断面図である。 図5は、本実施の形態による赤外線センサの要部上面図である。 図6は、本実施の形態による赤外線センサの要部上面図である。 図7は、図6の線7-7における断面図である。 図8は、本実施の形態による赤外線センサの等価回路図である。 図9は、本実施の形態による温度センサを有する装置のブロック図である。 図10は、本実施の形態による温度センサの検知領域を示す図である。 図11は、本実施の形態による温度センサの補正に用いられるガウシアンフィルタを示す図である。 図12は、本実施の形態による温度センサの補正に用いられる二次微分フィルタを示す図である。 図13は、本実施の形態による温度センサの実験結果を示す図である。
 従来の温度センサでは、補正の方法が複雑である。また、高次の関数を用いるため、演算処理が複雑となり、処理時間がかかる。そのため、高性能な演算回路が必要となる。さらに、物体の周辺温度の影響を十分に反映するのが困難である。
 (実施の形態)
 以下に、本実施の形態の温度センサについて、図面を用いながら説明する。
 図1は、本実施の形態による温度センサ1の断面図である。図2は、本実施の形態によるパッケージ蓋25をはずした状態での温度センサ1の斜視図である。図3は、本実施の形態による開口部からみたパッケージ蓋25の斜視図である。図4は、本実施の形態による温度センサ1を有する装置5の断面図である。図5は、本実施の形態による赤外線センサ2の要部上面図である。図6は、本実施の形態による赤外線センサ2の要部上面図である。図7は、図6の線7-7における断面図である。図8は、本実施の形態による赤外線センサ2の等価回路図である。図9は、本実施の形態による温度センサ1を有する装置5のブロック図である。なお、構成をわかりやすくするために、図5、図6において、層間絶縁膜44と、パッシベーション膜46は省略している。
 本開示の温度センサ1は、第1の赤外線測定手段と、第2の赤外線測定手段と、演算部7とを備える。第1の赤外線測定手段は、物体6から放射された赤外線を測定し、第1の電圧(出力電圧)を出力する。第2の赤外線測定手段は、物体6の周辺から放射された赤外線を測定し、第2の電圧(出力電圧)を出力する。演算部7は、第1の電圧により、物体6の出力温度Toutを算出し、第2の電圧により、物体6の周辺温度Tambを算出し、周辺温度Tambにより出力温度Toutを補正することにより、物体6の温度Tobjを算出する。
 なお、本実施の形態では、第1の赤外線測定手段と、第2の赤外線測定手段を、赤外線センサ2により兼用している。しかし、第1の赤外線測定手段と、第2の赤外線測定手段を、別々の赤外線センサを用いて構成してもよい。
 以下、温度センサ1について詳細に説明する。温度センサ1は、赤外線センサ2(赤外線測定手段)と、演算部7とを有している。演算部7は、IC素子3を有している。赤外線センサ2と演算部7は、パッケージ4に収納されている。温度センサ1は、装置5に取り付けられている(図4参照)。赤外線センサ2は、物体6の温度を測定し、出力信号を出力する。演算部7は、赤外線センサ2からの出力信号を補正し、装置5に設置されている動作部8に補正信号を送信する。動作部8は、演算部7からの補正信号に応じて、装置5を動作させる。なお、本実施の形態では、温度センサ1の検知領域70(図10参照)と、測定対象の物体6の温度センサ1に対向する面を正方形としている。そして、図4において、検知される測定対象の物体6の面積S1の一辺を辺P1とし、温度センサ1の検知領域70に対応する面積S2の一辺を辺P2としている。
 図1に示すように、パッケージ4は、パッケージ本体24と、パッケージ蓋25とを有している。パッケージ本体24は、絶縁材料からなる基体30と、電磁シールド層32とを有している。基体30に、赤外線センサ2と、演算部7とが横並びで実装されている。パッケージ蓋25と、パッケージ本体24とは、赤外線センサ2と演算部7を囲むように気密に接合されている。
 パッケージ蓋25は、メタルキャップ26と、赤外線透過部材28とで構成されている。メタルキャップ26は、パッケージ本体24の表面に設置されている。メタルキャップ26の赤外線センサ2に対応する箇所には、開口部27が形成されている。赤外線透過部材28は、開口部27を閉塞し、且つ、赤外線を透過する。赤外線センサ2の上方に赤外線透過部材28が配置されている。赤外線透過部材28はレンズで構成されている。赤外線透過部材28は、赤外線センサ2へ赤外線を収束する。なお、本実施の形態において、赤外線透過部材28としてレンズを用いているが、赤外線透過部材28はレンズに限らず、例えば、平板状の物質でも良い。
 赤外線センサ2は、画素部13(非接触赤外線検知素子)と、配線部(図示せず)と、端子部(図示せず)とを有している。画素部13は、熱型赤外線検出部11と、画素切替え部40とを有している。熱型赤外線検出部11には、熱電変換部である感温部10が埋設されている。感温部10は、サーモパイルにより構成されており、測定対象である物体から放射された赤外線による熱エネルギーを電気エネルギーに変換する。画素切替え部40は、MOSトランジスタ12で構成されており、感温部10の出力電圧を取り出すために用いられる。
 画素部13は、半導体基板14上に、a行b列の1次元状あるいは2次元状に配置されている。
 なお、図8に示すように、本実施の形態では、画素部13が8行8列(a=8、b=8)で構成されている例を説明している。しかし、画素部13は、8行8列に限らず、a行b列(a≧1、b≧1)であればよい。すなわち、画素部13は一つでもよい。
 また、赤外線センサ2は、基体30に固定せずに、移動可能であってもよい。特に、画素部13が一つである場合(a=1、b=1)など、画素部13の数が少ない場合には、赤外線センサ2を固定せずに往復移動等の動作をさせるのが好ましい。こうすることにより、赤外線センサ2を固定した場合に比べて赤外線センサ2で検知できる面積を広くできる。このように、画素部13の数が少ない場合でも、赤外線センサ2を動かすことによって、本実施の形態の効果が得られる。
 熱型赤外線検出部11は、支持部34と、検出部36とを有している。支持部34は、第1の薄膜構造部16と、赤外線吸収部17と、層間絶縁膜44と、パッシベーション膜46とが積層されて構成されている。第1の薄膜構造部16は、シリコン酸化膜で形成されている。赤外線吸収部17は、シリコン窒化膜で形成されている。支持部34は、半導体基板14の上で、且つ、空洞部15の周辺に形成されている。
 検出部36は、第1の薄膜構造部16と、赤外線吸収部17と、感温部10(あるいは赤外線吸収層50)と、層間絶縁膜44、とパッシベーション膜46とが積層されて構成されている。検出部36は、半導体基板14の上方に形成されている。検出部36と半導体基板14との間には空洞部15が形成されている。すなわち、検出部36の直下には、空洞部15が形成されている。赤外線吸収部17において、赤外線が吸収される。赤外線吸収層50を形成することにより、第1の薄膜構造部16の反りが抑制される。第1の薄膜構造部16は、複数の線状のスリット19により、複数の第2の薄膜構造部18に分離されている。第2の薄膜構造部18は、空洞部15の上部に配置されている。隣接する第2の薄膜構造部18同士は連結片38により連結されている(図5参照)。
 MOSトランジスタ12は、半導体基板14の表面に形成された第1導電形のウェル領域(図示せず)内で、第2導電形のソース領域(図示せず)と第2導電形のドレイン領域(図示せず)とが離間して形成されている。本実施の形態では、ウェル領域がチャネル形成用領域(図示せず)を構成している。図8の等価回路図では、感温部10を抵抗の図記号で表してある。
 赤外線センサ2は、各列の8個(b個)の画素部13の感温部10の一端がMOSトランジスタ12のソース領域―ドレイン領域を介して接続された8本(b本)の第1の配線20を備えている。
 また、赤外線センサ2は、各MOSトランジスタ12のゲート電極とソース電極との間に過電圧が印加されるのを防止するために、第2の配線21のそれぞれにカソードが接続された複数のツェナダイオード29を備えている。
 ツェナダイオード29は、第1拡散領域にアノード電極(図示せず)が形成され、第2拡散領域に2つのカソード電極(図示せず)が形成されている。ツェナダイオード29のアノード電極は、第5のパッドVzdと電気的に接続されている。ツェナダイオード29の一方のカソード電極が、1つの第2の配線21を介して第2の配線21に接続されたMOSトランジスタ12のゲート電極と電気的に接続されている。ツェナダイオード29の他方のカソード電極が、第2の配線21に接続された第2のパッドVsel1~Vsel8の1つと電気的に接続されている。
 また、赤外線センサ2は、半導体基板14が接続された基板バイアス用の第6のパッドVsuを備えている。
 また、赤外線センサ2は、8本(a本)の第2の配線21と、8本(b本)の第3の配線22と、8本(b本)の第4の配線23とを備えている。8本の第2の配線21は、各行毎に形成されている。8本の第3の配線22には、各行のMOSトランジスタ12のウェル領域が接続されている。8本の第4の配線23には、各列の8個の感温部10の他端が接続されている。
 赤外線センサ2は、8個(b個)の第1のパッドVout1~Vout8と、8個(a個)の第2のパッドVsel1~Vsel8と、第3のパッドVchと、第4のパッドVrefinとを備えている。8個の第1のパッドVout1~Vout8は出力用であり、第1の配線20がそれぞれ接続されている。8個の第2のパッドVsel1~Vsel8は画素部13選択用であり、第2の配線21がそれぞれ接続されている。第3のパッドVchには、第3の配線22が接続されている。第4のパッドVrefinは基準バイアス用であり、第4の配線23が通接続されている。上記の構成により、赤外線センサ2は、すべての感温部10の出力電圧を時系列的に読み出せる。すなわち、MOSトランジスタ12が、順次、オン状態になるようにそれぞれの画素部13を選択するための第2のパッドVsel1~Vsel8の電位を制御することにより、それぞれの画素部13の出力電圧が順次読み出される。
 演算部7は、赤外線センサ2の出力電圧に基づいて測定対象の物体の温度を演算するIC素子3を有している。
 次に温度センサ1を用いた物体温度の算出方法を説明する。
 図10は、本実施の形態による温度センサ1の検知領域70を示す図である。図10では、物体6の面積S1に対応する面積SS1と、検知領域70が示されている。検知領域70内の番号は、赤外線センサ2の各画素部13に対応している。
 なお、本実施の形態における実験では、温度センサ1から200mm離れた位置に物体6として10,000mmの大きさの黒体炉を設置している。そして、この黒体炉の温度を測定している。
 赤外線センサ2から演算部7に出力された出力電圧をVoutとし、A、B、Cを係数として以下の(3)式を用いて、出力温度Toutを算出する。なお、出力電圧から出力温度を導く演算の詳細については、特開2012-13517に記載されている。
Figure JPOXMLDOC01-appb-M000001
 (3)式を用いて、赤外線センサ2の出力電圧Voutを、プランクの放射則に従って表され物体6の温度Tobjに依存する赤外線センサ2の吸収エネルギー密度と、ステファン-ボルツマンの法則に従って表され赤外線センサ2の温度に依存する赤外線センサ2の放射エネルギー密度との差分に比例すると仮定して求められた演算式を用いて物体6の温度Tobjを演算する。このことにより、物体6の温度Tobjの検出精度を向上できる。
 赤外線センサ2の吸収エネルギー密度と放射エネルギー密度との差分に比例すると仮定して得られる演算式を用いて物体6のVoutを演算する。Tobjは、(3)式により、赤外線センサ2の出力電圧Voutを用いて表される。吸収エネルギー密度は、物体6の温度Tobjに依存するプランクの放射則で表される。放射エネルギー密度は、ステファン-ボルツマンの法則に従って表され、赤外線センサ2の温度に依存する。
 赤外線センサ2で検出した温度として出力温度Toutが算出される。しかし、実際の赤外線センサ2では、図4や図10に示すように、赤外線センサ2の検知領域70の面積S2よりも測定対象の物体6の面積S1が小さい場合、測定対象の物体6だけではなく物体6の周辺の温度も検出される。このため、赤外線センサ2の出力温度Toutには、物体6の物体温度Tobjだけではなく、物体6の周辺温度Tambも含まれている。そのため、赤外線センサ2の出力温度Toutだけで物体6の温度を算出すると、物体6の実際の温度とずれが生じる。そして、このずれの大きさは物体温度Tobjと周辺温度Tambの差が大きいほど大きくなる。本実施の形態では、周辺温度Tambを用いて補正をすることにより、物体6の物体温度Tobjを正確に測定できる。
 本実施の形態では、赤外線センサ2は8行8列の画素部13で構成されており、画素部13の出力電圧から赤外線センサ2の出力温度Toutと、物体6の周辺温度Tambを算出している。
 図10に示すように、8行8列の画素部13の検知領域70のうち、物体6の大きさが5行3列程度であるとして、出力温度Toutと周辺温度Tambの算出の方法を以下に説明する。
 図10に示す赤外線センサ2の検知領域70の四隅、すなわち、検知領域A1、A8、A57、A64(以下、周辺温度検知領域Fambとする)で検出される温度を周辺温度Tambとする。そして、検知領域A1、A8、A57、A64以外の検知領域(以下、物体温度検知領域Fobjとする)で検出される温度を出力温度Toutを算出する。
 まず、出力温度Toutの算出の方法について説明する。出力温度Toutを算出する検知領域の中で、検知領域A4が含まれる列、すなわち、検知領域A4、A12、A20、A28、A36、A44、A52、A60で構成される列(以下、判定列Lとする)の出力電圧を取得する。ここで、判定列Lの各画素の出力電圧を比較したときに、判定列Lの中央部の出力電圧が両端の出力電圧よりも大きい場合、すなわち、検知領域A28、A36の出力電圧が検知領域A4、A60よりも大きい場合、物体6の温度が物体6の周辺の温度よりも高いと判定する。一方で、判定列Lの各画素の出力電圧を比較したときに、判定列Lの中央部の出力電圧が両端の出力電圧よりも小さい場合、すなわち、検知領域A28、A36の出力電圧が検知領域A4、A60よりも小さい場合、物体6の温度が周辺の温度よりも低いと判定する。
 ここで、判定列Lの結果において、中央部の出力電圧が両端の出力電圧よりも大きい場合、物体温度検知領域Fobjのうち、出力電圧が最大である画素の出力電圧から導き出される温度を出力温度Toutとする。また、判定列Lの結果において、中央部の出力電圧が両端の出力電圧よりも小さい場合、物体温度検知領域Fobjのうち、出力電圧が最小である画素の出力電圧から導き出される温度を出力温度Toutとする。このように出力温度Toutを算出することにより、物体6の温度が周辺の温度よりも高い場合でも、低い場合でも、出力温度Toutが決定される。
 なお、物体6が物体温度検知領域Fobjの中央ではなく、端の方に置かれており、判定列Lの結果では物体6の温度が周辺の温度よりも高いか低いか判定をすることができない場合も考えられる。そのような場合は、例えば、検知領域A25~A32を判定行として判定を行ったり、別の列を第2の判定列Lとして、判定すればよい。すなわち、判定列Lは検知領域A4、A12、A20、A28、A36、A44、A52、A60に限られたものではなく、別の行や列を用いてもよい。
 また、測定対象の物体6が複数ある場合には、判定する列によって中央部の出力が両端の出力よりも大きい場合と、中央部の出力が両端の出力よりも小さい場合とが混在している場合がある。すなわち、判定列の中で、あるいは、判定列の選び方によって出力の最大値、最小値が複数存在することになる。そのような場合には、検知領域のすべてに対して、以下の手順で複数の物体を分離し、それぞれの物体に対して、物体6の温度を算出すればよい。
 まず、検知領域のひとつひとつに対して、ガウシアンフィルタを実行する。これにより検知領域のデータが平滑化される。ガウシアンフィルタの例を図11に示す。この例では、ある検知領域の値に、図11のガウシアンフィルタの中の値をそれぞれ乗算し、それら全てを加算したものを、ある検知領域の値とする。
 次に、図12に示す二次微分フィルタを実行する。二次微分フィルタによって、複数の物体の間に存在する温度変曲点を抽出でき、温度変曲点に囲まれた部分を物体として検出できる。
 次に、物体6として検出されたものに対して、別々に、温度を算出する。測定対象の物体6が複数ある場合には、以上のようにして、物体6の温度を算出すればよい。
 次に、周辺温度Tambの算出の方法について説明する。周辺温度Tambは、周辺温度検知領域Fambの出力電圧を基に算出される。具体的には、周辺温度検知領域Fambの検知領域A1、A8、A57、A64の出力電圧のうち、最大値と最小値を除外して残った2つの検知領域の出力電圧の平均値から導き出される温度を周辺温度Tambとして算出する。
 このように周辺温度Tambを算出することによって、例えば、周辺温度検知領域Fambの一部の画素で物体6の温度を検知していても、周辺温度Tambを正確に検知できる。
 なお、画素部13の外周をすべて周辺温度の検知領域として用いてもよい。ただし、その場合は、物体温度検知領域Fobjが狭くなる。本実施の形態では、一つの赤外線センサ2を用いて、出力温度Toutと、周辺温度Tambとを求めている。しかし、二つの赤外線センサを用いて出力温度Toutと、周辺温度Tambとを別々に測定してもよい。すなわち、第1の赤外線センサ(第1の赤外線測定手段)で出力温度Toutを算出し、第2の赤外線センサ(第2の赤外線測定手段)で周辺温度Tambを算出してもよい。この場合、第2の赤外線センサは、物体6の温度を検出しない方向(例えば天井や壁など)に向けて設置すればよい。また、周辺温度Tambを測定するために、サーミスタなどを用いてもよい。
 また、本実施の形態では周辺温度Tambの算出方法として、周辺温度検知領域Fambの出力電圧のうち最大値と最小値を除外し、残りの2つの検知領域の出力電圧を平均して周辺温度Tambを算出している。しかし、これに限らず、例えば、周辺温度検知領域Fambのすべての出力電圧の平均値から周辺温度Tambを算出しても良い。
 また、本実施の形態では、画素部13が8行8列の2次元状に配置された例を示している。しかし、画素部13は、1次元状に配置されていてもよい。すなわち、画素部13は、a行b列において、a=1またはb=1でもよい。画素部13が、1次元状に配置されている場合、両端の画素部に対応する検知領域で検出される温度を周辺温度Tambとすればよい。そして、両端の画素部以外の画素部に対応する検知領域で検出される温度を出力温度Toutとすればよい。
 以上のようにして求めた出力温度Toutと物体温度Tobjとの関係を図13に示す。図13では、本実験で用いた10,000mmの物体6の大きさを中として、物体の大きさを大、中、小と変更した結果を示している。出力温度Toutは、(3)式より算出される。また、本実験では物体6は、黒体炉であるので、出力温度Toutは既知である。図13からあきらかなように、出力温度Toutは、(4)式のように物体温度Tobjの1次式として表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、図13より、物体の大きさが変わると、傾きdと切片eも変わることがわかる。傾きdは、物体6の1辺の長さA、物体6の面積A、定数d、d、dを用いて、(5)式のようにAの2次式で表せる。
Figure JPOXMLDOC01-appb-M000003
 同様に、切片eは、定数e、e、eを用いて、(6)式のように、大きさAの2次式で表せる。
Figure JPOXMLDOC01-appb-M000004
 (5)式、(6)式のように傾きdと切片eを表した場合、Toutを1次式とみなすことができているため、係数e、e、eは(7)式、(8)式、(9)式で表されるように定数e11、e12、e21、e22、e31、e32を用いて周辺温度Tambの一次式で表すことができる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 (5)式~(9)式を(4)式に代入することにより、(2)式が得られる。すなわち、出力温度Toutを物体6の面積A、物体6の1辺の長さA、周辺温度Tamb、定数d、d、d、e11、e12、e21、e22、e31、e32を用いて補正することにより、物体温度Tobjを(2)式のように表すことができる。
Figure JPOXMLDOC01-appb-M000008
 ここで、定数d、d、d、e11、e12、e21、e22、e31、e32を実験的に求めた結果の一例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、定数d、dは定数dに比べて1/100以下であり、定数e11、e12、e21、e22は定数e32に比べて1/100以下である。そのため、物体温度Tobjは、定数d、d、e11、e12、e21、e22を省略し、(1)式のように表される。すなわち、出力温度Toutを補正することにより、物体温度Tobjは(1)式で表せる。
Figure JPOXMLDOC01-appb-M000009
 このように、実験的に求められる定数d、e31、e32と周辺温度Tambを用いて出力温度Toutを補正することにより、簡易な演算で精度良く物体温度Tobjを算出できる。
 以上のように、定数d、d、e11、e12、e21、e22を省略することにより、(1)式のように簡易な補正で精度良く物体温度Tobjを算出できる。ただし、(2)式を用いて物体温度Tobjを算出しても良い。(2)式を用いると、演算が複雑になるが、物体6の1辺の長さAと面積Aを用いて物体温度Tobjを算出できる。そのため、より精度良く物体温度Tobjが測定できる。物体6の大きさを測定する方法として、例えば、温度センサ1による物体温度検知領域Fobjの各画素部の出力電圧から、物体6の大きさを算出する方法が考えられる。また、温度センサ1とは別に物体6の大きさを測定する別のセンサを設けても良い。上記のように、物体6の大きさを測定するための物体サイズ取得手段を設けてもよい。
 また、温度センサ1の使用条件から物体の大きさがある程度わかっている場合、物体サイズ取得手段として温度センサ1の使用条件における物体6の平均の大きさを予め演算部7に記録しておき、平均の大きさを用いて物体温度Tobjを演算してもよい。このようにすることで、物体の大きさを測定する手段を設けなくても、(1)式を用いて物体温度Tobjを演算したときよりも、精度良く物体温度Tobjを測定できる。
 なお、本実施の形態における(2)式による演算は、253K(-20℃)以上、373K(100℃)以下の範囲内であれば、演算値と実験値とがよく一致し、0.99以上の相関係数が得られる。
 なお、本実施の形態において、物体温度Tobjの演算を行う演算部7が温度センサ1に設けられている。しかし、これに限らず、例えば、演算部7を温度センサ1に設けず、別の構成にしてもよい。例えば、温度センサ1の測定結果に基づいて動作する電子レンジ等の装置のマイコン等に演算部7を設けても良い。
 上記構成により本開示は、低次の関数を用いて物体の温度を演算できる。そのため、効率的に、かつ、精度よく物体の温度を測定できる。
 本開示の温度センサは測定対象の物体の周辺温度と、さらには物体の大きさとを用いて補正をすることにより、精度よく物体温度を測定できる。そのため、電子レンジ等の物体の温度を測定し、物体を加熱する調理装置等において特に有用である。
 1 温度センサ
 2 赤外線センサ
 3 IC素子
 4 パッケージ
 5 装置
 6 物体
 7 演算部
 8 動作部
 10 感温部
 11 熱型赤外線検出部
 12 MOSトランジスタ
 13 画素部
 14 半導体基板
 15 空洞部
 16 第1の薄膜構造部
 17 赤外線吸収部
 18 第2の薄膜構造部
 19 スリット
 20 第1の配線
 21 第2の配線
 22 第3の配線
 23 第4の配線
 24 パッケージ本体
 25 パッケージ蓋
 26 メタルキャップ
 27 開口部
 28 赤外線透過部材
 29 ツェナダイオード
 30 基体
 32 電磁シールド層
 34 支持部
 36 検出部
 38 連結片
 40 画素切替え部
 44 層間絶縁膜
 46 パッシベーション膜
 50 赤外線吸収層
 70,A1~A64 検知領域

Claims (17)

  1. 物体から放射された赤外線を測定し、第1の電圧を出力する第1の赤外線測定手段と、
    前記物体の周辺から放射された赤外線を測定し、第2の電圧を出力する第2の赤外線測定手段と、
    前記第1の電圧により、前記物体の出力温度を算出し、前記第2の電圧により、前記物体の周辺温度を算出し、前記周辺温度により前記出力温度を補正することにより、前記物体の温度を算出する演算部と、
    を備える
    温度センサ。
  2. 前記第1の赤外線測定手段と、前記第2の赤外線測定手段は、一つの赤外線センサにより構成されている
    請求項1に記載の温度センサ。
  3. 前記赤外線センサは、2次元状に配置された複数の画素部を有しており、
    前記第2の電圧は、前記複数の画素部のうち、四隅の画素部の電圧から算出され、
    前記第1の電圧は、前記複数の画素部のうち、前記四隅の画素部を除いた他の画素部の電圧から算出される
    請求項2に記載の温度センサ。
  4. 前記赤外線センサは、1次元状に配置された複数の画素部を有しており、
    前記第2の電圧は、前記複数の画素部のうち、両端の画素部の電圧から算出され、
    前記第1の電圧は、前記複数の画素部のうち、前記両端の画素部を除いた他の画素部の電圧から算出される
    請求項2に記載の温度センサ。
  5. 前記演算部は、前記周辺温度に加えて、前記物体の大きさにより前記出力温度を補正する
    請求項1に記載の温度センサ。
  6. 前記物体の大きさを測定するための物体サイズ取得手段をさらに備える
    請求項5に記載の温度センサ。
  7. 前記演算部は、(1)式より前記物体の前記温度を算出する
    Figure JPOXMLDOC01-appb-M000010
    ここで、Tobjは、前記物体の前記温度であり、
    outは、前記物体の前記出力温度であり、
    ambは、前記物体の周辺温度であり、
    31、e32、dは係数である
    請求項1に記載の温度センサ。
  8. 前記演算部は、(2)式より前記物体の前記温度を算出する
    Figure JPOXMLDOC01-appb-M000011
    ここで、Tobjは、前記物体の前記温度であり、
    outは、前記物体の前記出力温度であり、
    ambは、前記物体の周辺温度であり、
    Aは、前記物体の1辺の長さであり、
    は、前記物体の面積であり、
    11、e12、e21、e22、e31、e32、d、d、dは係数である
    請求項1に記載の温度センサ。
  9. 物体から放射された赤外線を測定し、第1の電圧を出力する第1の赤外線測定手段と、
    前記物体の周辺から放射された赤外線を測定し、第2の電圧を出力する第2の赤外線測定手段と、
    前記第1の電圧により、前記物体の出力温度を算出し、前記第2の電圧により、前記物体の周辺温度を算出し、前記周辺温度により前記出力温度を補正することにより、前記物体の温度を算出し、補正信号として出力する演算部と、
    前記演算部からの前記補正信号に応じて動作する動作部と、
    を備える
    装置。
  10. 物体から放射された赤外線を測定し、第1の電圧を出力し、
    前記物体の周辺から放射された赤外線を測定し、第2の電圧を出力し、
    前記第1の電圧により、前記物体の出力温度を算出し、
    前記第2の電圧により、前記物体の周辺温度を算出し、
    前記周辺温度により前記出力温度を補正することにより、前記物体の温度を算出する
    温度測定方法。
  11. 前記第1の電圧と前記第2の電圧は、赤外線センサにより出力される
    請求項10に記載の温度測定方法。
  12. 前記赤外線センサは、2次元状に配置された複数の画素部を有しており、
    前記第2の電圧は、前記複数の画素部のうち、四隅の画素部の電圧から算出され、
    前記第1の電圧は、前記複数の画素部のうち、前記四隅の画素部を除いた他の画素部の電圧から算出される
    請求項11に記載の温度測定方法。
  13. 前記赤外線センサは、1次元状に配置された複数の画素部を有しており、
    前記第2の電圧は、前記複数の画素部のうち、両端の画素部の電圧から算出され、
    前記第1の電圧は、前記複数の画素部のうち、前記両端の画素部を除いた他の画素部の電圧から算出される
    請求項11に記載の温度測定方法。
  14. 前記周辺温度に加えて、前記物体の大きさにより前記出力温度を補正する
    請求項10に記載の温度測定方法。
  15. 前記物体の大きさを測定するためのステップをさらに備える
    請求項14に記載の温度測定方法。
  16. 前記物体の前記温度は(1)式より算出される
    Figure JPOXMLDOC01-appb-M000012
    ここで、Tobjは、前記物体の前記温度であり、
    outは、前記物体の前記出力温度であり、
    ambは、前記物体の周辺温度であり、
    31、e32、dは係数である
    請求項10に記載の温度測定方法。
  17. 前記物体の前記温度は、(2)式より算出される
    Figure JPOXMLDOC01-appb-M000013
    ここで、Tobjは、前記物体の前記温度であり、
    outは、前記物体の前記出力温度であり、
    ambは、前記物体の周辺温度であり、
    Aは、前記物体の1辺の長さであり、
    は、前記物体の面積であり、
    11、e12、e21、e22、e31、e32、d、d、dは係数である
    請求項10に記載の温度測定方法。
PCT/JP2015/002522 2014-05-30 2015-05-20 温度センサおよび、それを用いた装置、および温度測定方法 WO2015182066A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016523117A JP6673199B2 (ja) 2014-05-30 2015-05-20 温度センサおよび、それを用いた装置、および温度測定方法
US15/309,517 US10641660B2 (en) 2014-05-30 2015-05-20 Temperature sensor, device using same, and temperature measurement method
CN201580027008.XA CN106461467B (zh) 2014-05-30 2015-05-20 温度传感器和使用该温度传感器的装置以及温度测定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014112097 2014-05-30
JP2014-112097 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182066A1 true WO2015182066A1 (ja) 2015-12-03

Family

ID=54698421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002522 WO2015182066A1 (ja) 2014-05-30 2015-05-20 温度センサおよび、それを用いた装置、および温度測定方法

Country Status (4)

Country Link
US (1) US10641660B2 (ja)
JP (1) JP6673199B2 (ja)
CN (1) CN106461467B (ja)
WO (1) WO2015182066A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177802A (ja) * 2019-04-18 2020-10-29 三菱電機株式会社 誘導加熱調理器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109000799A (zh) * 2017-06-06 2018-12-14 佛山市顺德区美的电热电器制造有限公司 用于烹饪器具的红外测温方法、系统及烹饪器具
US10156821B1 (en) * 2017-09-21 2018-12-18 Kabushiki Kaisha Toshiba Image forming apparatus and image forming method
US11988404B2 (en) * 2018-03-28 2024-05-21 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor module, air conditioner, and air conditioner control system
CN112117112B (zh) * 2020-01-09 2021-12-07 六安科亚信息科技有限公司 一种变压器油温分级检测方法
CN113125014A (zh) * 2020-01-15 2021-07-16 广东小天才科技有限公司 一种红外测体温的方法、电子设备、可读存储介质
KR102657954B1 (ko) * 2020-12-08 2024-04-18 (주)유우일렉트로닉스 기판의 온도 보상을 이용한 대상체의 온도 측정 장치, 방법, 및 컴퓨터로 독출 가능한 기록 매체
CN113252185B (zh) * 2021-04-07 2022-10-04 广州市倍尔康医疗器械有限公司 红外测温仪温度测量方法、系统和存储介质
CN112802956B (zh) * 2021-04-09 2021-07-27 山东新港电子科技有限公司 一种mems热电堆红外探测器及其制作方法
CN113609452B (zh) * 2021-07-30 2022-04-29 成都市晶林科技有限公司 一种体温筛查系统误差实时修正方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576920A (en) * 1978-12-06 1980-06-10 Jeol Ltd Thermographic device
JPS62163937A (ja) * 1986-01-14 1987-07-20 Furuno Electric Co Ltd 赤外線センサを用いた温度測定装置
JPH03293585A (ja) * 1990-04-11 1991-12-25 Mitsubishi Electric Corp 熱線式人体検知装置
JP2007248201A (ja) * 2006-03-15 2007-09-27 Horiba Ltd 放射温度計
JP2011089983A (ja) * 2009-09-28 2011-05-06 Asahi Kasei Electronics Co Ltd 赤外線センサを用いた温度測定装置及びその補正方法
JP2013202260A (ja) * 2012-03-29 2013-10-07 Sony Corp 情報処理装置、情報処理方法およびコンピュータプログラム
JP2013251254A (ja) * 2013-01-17 2013-12-12 Mitsubishi Electric Corp 加熱調理器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432378A (ja) 1990-05-29 1992-02-04 Mitsubishi Heavy Ind Ltd 赤外線撮像装置
JP2601398B2 (ja) 1993-06-03 1997-04-16 愛知計装株式会社 低温物体の非接触高速温度測定方法及び装置
DE69633524T2 (de) * 1995-04-12 2005-03-03 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren und Gerät zur Objekterfassung
JP3149919B2 (ja) 1997-12-03 2001-03-26 日本電気株式会社 固体撮像素子及びこれを用いた読み出し回路
KR100314438B1 (ko) * 1998-10-31 2002-04-24 구자홍 써모파일센서를이용한온도측정회로
JP2001337059A (ja) 2000-05-26 2001-12-07 Toshiba Corp プリント配線板の劣化検出方法および装置
JP2004061283A (ja) * 2002-07-29 2004-02-26 Ishizuka Electronics Corp 赤外線センサ及びこれを用いた物体の大きさと表面温度の判定装置
EP2060857B1 (en) 2006-09-07 2019-01-09 Mitsubishi Electric Corporation Air conditioner
JP5127278B2 (ja) * 2007-04-05 2013-01-23 三菱電機株式会社 熱型赤外線固体撮像素子及び赤外線カメラ
JP5645240B2 (ja) * 2009-03-31 2014-12-24 パナソニックIpマネジメント株式会社 赤外線アレイセンサ
JP5842118B2 (ja) * 2010-06-24 2016-01-13 パナソニックIpマネジメント株式会社 赤外線センサ
JP5530274B2 (ja) 2010-06-30 2014-06-25 パナソニック株式会社 温度センサ
CN102012270B (zh) * 2010-09-15 2013-03-06 昆山光微电子有限公司 用于光-机械式热型红外传感器的高性能热变形梁及其应用
JP2012078160A (ja) 2010-09-30 2012-04-19 Asahi Kasei Electronics Co Ltd 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置
WO2012067282A1 (ko) * 2010-11-17 2012-05-24 (주)이지템 체온을 포함하는 휴대용 열화상 온도측정 장치 및 방법
EP2659245B1 (en) * 2010-12-30 2023-06-07 Exergen Corporation Infrared sensor and method for electrical monitoring
CN103263255B (zh) * 2013-05-25 2014-09-24 慈溪迈思特电子科技有限公司 人体红外温度传感器的数据处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576920A (en) * 1978-12-06 1980-06-10 Jeol Ltd Thermographic device
JPS62163937A (ja) * 1986-01-14 1987-07-20 Furuno Electric Co Ltd 赤外線センサを用いた温度測定装置
JPH03293585A (ja) * 1990-04-11 1991-12-25 Mitsubishi Electric Corp 熱線式人体検知装置
JP2007248201A (ja) * 2006-03-15 2007-09-27 Horiba Ltd 放射温度計
JP2011089983A (ja) * 2009-09-28 2011-05-06 Asahi Kasei Electronics Co Ltd 赤外線センサを用いた温度測定装置及びその補正方法
JP2013202260A (ja) * 2012-03-29 2013-10-07 Sony Corp 情報処理装置、情報処理方法およびコンピュータプログラム
JP2013251254A (ja) * 2013-01-17 2013-12-12 Mitsubishi Electric Corp 加熱調理器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177802A (ja) * 2019-04-18 2020-10-29 三菱電機株式会社 誘導加熱調理器
JP7316830B2 (ja) 2019-04-18 2023-07-28 三菱電機株式会社 誘導加熱調理器

Also Published As

Publication number Publication date
US10641660B2 (en) 2020-05-05
JPWO2015182066A1 (ja) 2017-04-20
CN106461467B (zh) 2020-03-24
JP6673199B2 (ja) 2020-03-25
CN106461467A (zh) 2017-02-22
US20170160141A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
WO2015182066A1 (ja) 温度センサおよび、それを用いた装置、および温度測定方法
EP4006510B1 (en) Infrared sensing device and method of sensing infrared signals using the infrared sensing device
US10969280B2 (en) Temperature measurement correction method, electronic system and method of generating correction regression coefficient table
US6630674B2 (en) Method and apparatus for correction of microbolometer output
US9255846B1 (en) Digital temperature determination using a radiometrically calibrated and a non-calibrated digital thermal imager
CN109313080B (zh) 用于无接触式确定温度的方法以及红外测量系统
US10684168B2 (en) Infrared detection system
US10094691B2 (en) Flow sensor arrangement
JP5530274B2 (ja) 温度センサ
US20120006989A1 (en) Infrared temperature measurement and stabilization thereof
US20170284869A1 (en) Temperature measurement system for furnaces
JP5702101B2 (ja) 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置
JP2006053024A (ja) 温度補正処理装置
JP5542090B2 (ja) 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置
KR20170136988A (ko) 온도 측정 장치
JP5755780B2 (ja) 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置
KR101459668B1 (ko) 적외선 열화상 카메라를 이용하여 측정된 반도체 소자 온도 분포의 보정 방법 및 이에 이용되는 시스템
Tempelhahn et al. Development of a shutterless calibration process for microbolometer-based infrared measurement systems
JP5520238B2 (ja) 温度測定装置における補正データの取得方法およびこれを行う、温度測定方法、及び、温度測定装置。
JP2012078160A (ja) 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置
KR101731287B1 (ko) 적외선 디텍터의 출력 보정 방법 및 장치
JP6562254B2 (ja) 温度検出装置及び温度検出方法
Pedreros et al. Compensating internal temperature effects in uncooled microbolometer-based infrared cameras
Firago Correction of signals in a microbolometric array raising the validity of the measuring object’s temperature. Part 1
Lee et al. Characterization of non-uniformity and bias-heating for uncooled bolometer FPA detectors using simulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523117

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15309517

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800363

Country of ref document: EP

Kind code of ref document: A1