JP2013251254A - 加熱調理器 - Google Patents

加熱調理器 Download PDF

Info

Publication number
JP2013251254A
JP2013251254A JP2013006399A JP2013006399A JP2013251254A JP 2013251254 A JP2013251254 A JP 2013251254A JP 2013006399 A JP2013006399 A JP 2013006399A JP 2013006399 A JP2013006399 A JP 2013006399A JP 2013251254 A JP2013251254 A JP 2013251254A
Authority
JP
Japan
Prior art keywords
temperature
top plate
infrared
pan
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013006399A
Other languages
English (en)
Inventor
Akira Morii
彰 森井
Kenichiro Nishi
健一郎 西
Kazuhiro Kameoka
和裕 亀岡
Masashige Ito
匡薫 伊藤
Masaki Tamamura
勝紀 玉村
Kentaro Yanagisawa
健太郎 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2013006399A priority Critical patent/JP2013251254A/ja
Publication of JP2013251254A publication Critical patent/JP2013251254A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

【課題】トッププレートの上に載置される被加熱物の温度をより正確に検出することのできる加熱調理器を得る。
【解決手段】集光部にシリコンフィルターを備えた第二の赤外線センサが検知した赤外線に基づいてトッププレート2の温度を検知するトッププレート温度検知手段を備え、演算部22は、トッププレート2の表面と被加熱物の底面との間の隙間距離を推定する隙間量判定処理を行うステップと、推定した隙間距離に応じて第一の補正係数及び第二の補正係数の少なくとも一方を導出するステップと、赤外線温度検知部24の出力値に第一の補正係数を掛けて赤外線温度補正値を得るステップと、トッププレート温度検知部25の出力値に第二の補正係数を掛けてトッププレート温度補正値を得るステップと、赤外線温度補正値からトッププレート温度補正値を差し引いた値を被加熱物温度とするステップとを含む被加熱物温度検知処理を実行する。
【選択図】図15

Description

本発明は、トッププレート上に載置された被加熱物の温度を検出することが可能な加熱調理器に関する。
加熱調理器のトッププレート上に載置された被加熱物である鍋の温度を検出する方法として、接触式の温度センサであるサーミスタをトッププレートに接触させてトッププレートを介して鍋から伝達される温度を検出するサーミスタ方式と、鍋から放射される赤外線放射エネルギーをトッププレートを介して検出する赤外線センサ方式がある。
サーミスタ方式は、サーミスタをトッププレートの下面に密着させ、鍋の温度を、トッププレートを介してサーミスタで検出する。このため、鍋の温度がサーミスタに直接的に伝わらず、鍋の温度変化に対するサーミスタの温度検出の追従性が悪いという問題がある。
また、赤外線センサ方式は、加熱コイルの中央空間部や内側コイルと外側コイルとの空間部の下方に赤外線センサを配置し、トッププレート上に載置された鍋から放射される赤外線放射エネルギーを空間部を通して検出し、そのエネルギー量で鍋の温度を検出するものである。
この赤外線センサ方式は、サーミスタ方式のように鍋の温度と赤外線センサの検出値との間に追従性の問題は生じないが、鍋底の色の違いにより検出精度に影響が生じる。すなわち、鍋底の色によって赤外線の放射面からの放射率が異なるため、鍋の温度が同じであっても鍋から放射される赤外線放射エネルギーの量が異なることがある。このため、実際には鍋の温度が同じであっても、異なる温度として測定される問題がある。
また、加熱された鍋からの熱伝導によりトッププレート自身も加熱される。このため、赤外線センサは、トッププレートから放射される赤外線も検出してしまう。したがって、トッププレートが加熱されるほど、取得したい鍋の温度を正確に検出することは困難となる。
そこで、これらの課題を背景として、特許文献1に示すように、赤外線センサの受光面に所定帯域の波長の光を透過させるバンドパスフィルターを設けて、測定誤差となるトッププレート自身から放射される赤外線や外乱光をカットする構成とした加熱調理器がある。この加熱調理器では、鍋の反射率を測定して該反射率から放射率を算出し、赤外線センサがバンドパスフィルターを介して検出した鍋からの赤外線放射エネルギーを測定し、これら放射率と赤外線放射エネルギーの値から鍋の温度を算出している。
また、特許文献2に示すように、トッププレートの赤外線センサの上部にシリコンを埋め込むことで当該部分を広い波長帯域で赤外線が透過する構成とし、鍋から放射される赤外線量を赤外線センサがシリコンを介して受光するようにした加熱調理器がある。この加熱調理器では、サーミスタにより検出されたトッププレートの温度上昇速度割合から鍋の放射率を推定し、赤外線センサの出力値からシリコン放射分の赤外線量を差し引いた値に推定した放射率を掛け、鍋の温度としている。
また、特許文献3に示すように、予めトッププレートの温度とトッププレートから放射される赤外線放射エネルギーとの対応関係を求めておき、赤外線センサで検出した赤外線放射エネルギーから、接触式の温度センサにより検出されたトッププレートの温度に対応する赤外線放射エネルギーを取り除くことで、鍋から放射されている赤外線放射エネルギーを求め、この赤外線放射エネルギーを温度に変換して鍋の温度と推定する加熱調理器がある。
特許第4123036号公報(第4頁〜第6頁) 特許第4745012号公報(第5頁〜第8頁) 特開2011−34743号公報(第7頁、第8頁)
特許文献1に示されている発明は、赤外線放射エネルギーを測定する際にトッププレート自身から放射される赤外線をバンドパスフィルターで取り除くものである。そのバンドパスフィルターは0.76μm〜3μmの透過波長域のもので、この波長域はトッププレートから放射される赤外線の透過割合が小さい範囲を示している。
しかし、バンドパスフィルターの透過波長0.76〜3μmは、トッププレートから放射される赤外線の透過割合が小さい反面、鍋から放射される赤外線エネルギーも高温度にならなければバンドパスフィルターを透過しない。したがって、例えば180℃などの温度域では赤外線センサの出力の増幅率を上げて使用する必要があり、電磁ノイズや放射率の影響により検出値が安定しないという問題がある。
また、バンドパスフィルターによって赤外線センサに受光されるトッププレートからの放射線の割合が小さくなっているとはいっても、鍋を加熱していくとトッププレートの温度も上昇し、赤外線センサはトッププレート自身が放射する赤外線放射エネルギーも受光する。したがって、鍋からの赤外線のみを抽出するためには、赤外線センサの出力からトッププレートからの赤外線放射エネルギー分を除かなくてはならない。
このため、特許文献2、特許文献3では、赤外線センサと天板サーミスタの同時時間での温度上昇割合や鍋の反射率に基づいて鍋の放射率を推定し、赤外線センサから出力される赤外線放射エネルギー量から、トッププレートから放射される赤外線放射エネルギー量を差し引いて、その差し引いた値に放射率を掛け合わせている。
しかしながら、鍋が反っていて鍋底の一部が浮いているような場合は、トッププレートと鍋底との間に空気層が存在し、鍋底から放射された赤外線はトッププレートに到達するまでに減衰する。したがって、鍋底がトッププレートから浮いている場合と浮いていない場合とでは、トッププレートの温度上昇率も異なってくることとなる。このため、特許文献2や特許文献3の構成では、赤外線センサが検出する赤外線放射エネルギー量からトッププレートの影響分を差し引くことは困難である。また、トッププレートの温度上昇割合と赤外線センサの温度上昇割合は、鍋の浮きや反りの量により異なるため、放射率を誤って設定してしまう可能性がある。このように、検出される鍋の温度の正確性について課題があった。
また、エネルギー計算は、ステファン・ボルツマンの式で示される通り出力温度に対して4乗の計算式となり、計算負荷が増大することとなる。
本発明は、上記のような課題を背景としてなされたものであり、トッププレートの上に載置される被加熱物の温度をより正確に検出することのできる加熱調理器を提供するものである。
本発明は、被加熱物が載置されるトッププレートと、前記トッププレートの下に配置された加熱手段と、前記トッププレートの下に設けられ、上方から放射される赤外線を検知する赤外線センサと、前記赤外線センサの出力値を温度換算する赤外線温度検知手段と、集光部にシリコンフィルターを備えた第二の赤外線センサが検知した赤外線に基づいて前記トッププレートの温度を検知するトッププレート温度検知手段と、前記赤外線温度検知手段と前記トッププレート温度検知手段の検知結果に基づいて、被加熱物の温度の推定値である被加熱物温度を算出する演算部とを備え、前記演算部は、前記トッププレートの表面と前記被加熱物の底面との間の隙間距離を推定する隙間量判定処理を行うステップと、推定した前記隙間距離に応じて第一補正係数及び第二補正係数の少なくとも一方を導出するステップと、前記赤外線温度検知手段の出力値に前記第一補正係数を掛けて赤外線温度補正値を得るステップと、前記トッププレート温度検知手段の出力値に前記第二補正係数を掛けてトッププレート温度補正値を得るステップと、前記赤外線温度補正値から前記トッププレート温度補正値を差し引いた値を前記被加熱物温度とするステップとを含む被加熱物温度推定処理を実行するものである。
本発明の加熱調理器によれば、トッププレートの上面に載置されている被加熱物の底面とトッププレートとの隙間距離を検知し、隙間距離に応じた補正係数を用いて、赤外線温度検知手段の出力値及びトッププレート温度検知手段の出力値を補正するようにした。そして、赤外線温度の補正値から、トッププレートの温度の補正値を差し引くことで、被加熱物の温度を検出するようにした。このため、トッププレートから放射される赤外線放射エネルギーによる被加熱物の温度検知への影響を低減させ、より正確に被加熱物の温度を検出することができる。トッププレート温度検知手段は、集光部にシリコンフィルターを備えた第二の赤外線センサが検知した赤外線に基づいてトッププレートの温度を検知するので、トッププレートの温度検知の時間遅れを抑制することができる。
実施の形態1に係る誘導加熱調理器の上面図である。 実施の形態1に係る誘導加熱調理器の主要部の構成と機能を説明するブロック図である。 実施の形態1に係る誘導加熱調理器に搭載可能なサーモパイルセンサの構成例を説明する図である。 実施の形態1に係る誘導加熱調理器のトッププレートの透過特性を示すグラフである。 実施の形態1に係る誘導加熱調理器のトッププレートの透過特性と各温度での分光放射輝度曲線との関係を示すグラフである。 実施の形態1に係る誘導加熱調理器の左側の加熱コイルに対応して設けられた操作部及び火力表示部を説明する図である。 実施の形態1に係る誘導加熱調理器のトッププレートの放射特性を示すグラフである。 実施の形態1に係る誘導加熱調理器のバンドパスフィルターの透過特性の一例を示すグラフである。 大気の透過特性グラフである。 実施の形態1に係る誘導加熱調理器の隙間距離判定処理を中心に説明するフローチャートである。 実施の形態1に係る誘導加熱調理器の放射率判定処理を中心に説明するフローチャートである。 実施の形態1に係る誘導加熱調理器の予熱温度制御を説明するフローチャートである。 実施の形態1に係る誘導加熱調理器の隙間距離レベル設定テーブルである。 実施の形態1に係る誘導加熱調理器の放射率設定テーブルである。 実施の形態1に係る誘導加熱調理器の隙間距離及び放射率に基づく補正係数設定テーブルである。 実施の形態1に係る誘導加熱調理器の高温スタートのための隙間距離レベル設定テーブルである。 実施の形態2に係る誘導加熱調理器の、鍋とトッププレートとの間に浮きが有る場合と無い場合の対象物温度とトッププレート温度検知部の出力値との相関グラフである。 実施の形態2に係る誘導加熱調理器の、鍋の放射率が異なる場合における、対象物温度と赤外線温度検知部の出力値との相関グラフである。 実施の形態2に係る誘導加熱調理器の、トッププレート温度検知部の出力値と赤外線温度検知部の出力値との相関関係の一例を示すグラフである。
以下、本発明に係る加熱調理器を、誘導加熱による加熱口を左右手前に二口と中央奥側に一口設けた、ビルトイン型(組込み型)IHクッキングヒータに適用した場合を例に説明する。なお、以下に示す図面の形態によって本発明が限定されるものではない。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これは説明のためのものであって、これらの用語は本願発明を限定するものではない。
実施の形態1.
[加熱調理器の構成]
図1は、実施の形態1に係る誘導加熱調理器の上面図である。
誘導加熱調理器100は、本体1と、本体1の上面に配置されるトッププレート2とを有し、トッププレート2の上に載置される鍋やフライパン等の被加熱物を、本体1の内部に設けられた誘導加熱手段により加熱する。本実施の形態1では、トッププレート2の左側手前、右側手前、及び中央側奥に、それぞれ加熱口6が設けられている。なお、以降の説明では、被加熱物のことを「鍋」と称する場合がある。
本体1の上面には、加熱条件や加熱指示の入力操作を受け付ける操作部3が、各加熱口6に対応して配置されている。使用者がトッププレート2上に被加熱物である鍋やフライパンを載置し、各加熱口6に対応した操作部3に設けられた操作キーに操作入力を行うと、操作入力にしたがって誘導加熱手段により被加熱物が加熱される。加熱の進行状況や調理モードなどの設定に関する情報は、トッププレート2の上面に各加熱口6に対応して配置された液晶等を有する表示部4に表示され、加熱の火力は火力表示部5に表示される。
本体1の後方には、本体1内を冷却するための風を取り込む吸気口9a、9b(以下、吸気口9と総称する場合がある)と、本体1内の空気を排気する排気口8が設けている。本体1内に設けられた図示しない送風手段が動作すると、外部の空気が冷却風として吸気口9から本体1内に流入し、当該冷却風が本体内部の図示しない基板、素子、誘導加熱手段である加熱コイル14、トッププレート2の下面等を冷却する。本体1の内部を冷却した後の冷却風は、排気口8から外部へと排出される。
トッププレート2の加熱口6に対応する部分には、鍋を載置する箇所を示す例えば円形の表示が印刷等によって設けられており、使用者は鍋を載置すべき場所が分かるようになっている。
本体1内において加熱口6の下側には、加熱手段である加熱コイル14が設けられている。なお、図1では、加熱コイル14の大まかな配置を破線にて図示している。加熱コイル14に高周波電流を流すことでトッププレート2上に載置された鍋に渦電流が発生し、この発生する渦電流と鍋自身の抵抗により鍋底自身が発熱するので、鍋底を直接加熱する加熱効率の良い調理を実現できる。なお、誘導加熱調理器100の加熱口6の加熱手段として電気ヒータ等の他の加熱手段を設けてもよい。
また、トッププレート2において加熱口6の内側には、平面視略円形の透過窓部7が設けられている。透過窓部7は、赤外線が透過しやすいような処理が施された領域である。例えば、トッププレート2には内部構造を外から見えにくくするための塗装13が施されているが(図2参照)、透過窓部7には、塗料の塗布量を減らす、あるいは塗料を塗布しない等の処理が施されている。このようにすることで、本体1内に設けられた後述する赤外線センサ12(図2参照)に、透過窓部7を介して赤外線が受光されやすくなる。
図2は、実施の形態1に係る誘導加熱調理器の主要部の構成と機能を説明するブロック図である。図2では、一つの加熱口6に対応する構成のみ図示しており、また、被加熱物としての鍋200も併せて図示している。
トッププレート2に設けられた加熱口6の下部には、加熱コイル14が配置されている。本実施の形態1では、加熱コイル14は、略環状の内側加熱コイル14aと、その外側に設けられた略環状の外側加熱コイル14bとを備えた二重環形状である。内側加熱コイル14aと外側加熱コイル14bとの間には略環状の隙間が設けられており、この隙間を、隙間15と称する。加熱コイル14は、加熱コイル14を収容する加熱コイル支持部16により、トッププレート2の下面との間に所定距離をおいて保持されている。
内側加熱コイル14aと外側加熱コイル14bとの隙間15内であって、加熱コイル14の上面よりも下方には、赤外線を検出すると検出した赤外線量に応じた出力を行う赤外線センサ12が設けられている。赤外線センサ12からの出力は、本体1に具備された赤外線温度検知部24に入力される。赤外線温度検知部24は、赤外線センサ12からの出力に基づいて、温度を算出する。より具体的には、記憶部21には、赤外線センサ12の出力量と、その出力量及び所定の放射率に基づいて算出された温度データとが対応付けられた温度換算表が、予め記憶されており、赤外線温度検知部24は、赤外線センサ12からの出力を受けるとこの温度換算表を参照して、温度を算出する。なお、温度換算表に用いる放射率εの一例として、ε=1.0と設定する。
赤外線センサ12は、例えばサーモパイルセンサのような赤外線領域に対して広い波長に感度を有するものを用いる。
ここで、赤外線センサ12として用いられるサーモパイルセンサの構成例を説明する。
図3は、実施の形態1に係る誘導加熱調理器に搭載可能なサーモパイルセンサの構成例を説明する図である。
図3(a)は、集光レンズ型のサーモパイルセンサ(赤外線センサ12)を示している。図3(a)に示す赤外線センサ12は、上面に設けられた凸形状の集光レンズ121と、内部に設けられたサーモパイルチップ122及び自己温度検出サーミスタ123とがパッケージ化されたものである。集光レンズ121を凸形状とすることで、赤外線センサ12の視野範囲を絞り、外乱光の影響を抑制している。
図3(b)は、内蔵ミラー集光型のサーモパイルセンサ(赤外線センサ12)である。図3(b)に示す赤外線センサ12は、上面に設けられた平板124と、平板124の下側に設けられたリフレクター125と、サーモパイルチップ122及び自己温度検出サーミスタ123とがパッケージ化されたものである。リフレクター125は、赤外線を集光するためのものであり、平板124に近づくほど広い開口となるように形成された内周面に、鏡面加工が施されている。平板124とリフレクター125との組み合わせによって赤外線センサ12の視野範囲を絞り、外乱光の影響を抑制している。
集光レンズ121及び平板124の基材としては、シリコンを用いることができる。シリコンは、赤外線領域において透過率が約50〜60%と波長依存性が小さく、また、赤外線領域での透過以外は吸収せず反射が大きく熱吸収が小さいため、温度上昇しにくい。また、シリコンは熱拡散率の高い材料であるため、基材自体が熱を吸収することによって集光レンズ121や平板124自体からの放射赤外線が赤外線量の検知に影響を与える、といったことも生じにくい。また、シリコンは熱拡散性が高いことから、集光レンズ121や平板124が赤外線を吸収し温度上昇したとしても、熱拡散することで、赤外線量の検知に影響を与えにくい。このように、集光レンズ121や平板124の基材としてシリコン基材を用いることで、トッププレート2の近傍に設けられるような使用環境においても、赤外線センサ12の集光レンズ121や平板124の温度が上昇することによる赤外線量の検知への影響が生じにくい。なお、集光レンズ121及び平板124の基材は、シリコンに限定されず、同様の透過特性や熱拡散性を有する材料であればそれを採用することができる。また、赤外線センサ12の具体的構成は図3に例示したものに限定されない。
赤外線センサ12の集光部の視野126(図2参照)は、トッププレート2に設けられている透過窓部7の開口径に対して狭い範囲である。図3(a)に示した集光レンズ121であれば検出強度が80%以上となるように凸形状の曲率を設定する。
次に、トッププレート2の透過特性と、赤外線センサ12の集光面に設けるフィルターについて説明する。
図4は、実施の形態1に係る誘導加熱調理器のトッププレートの透過特性を示すグラフである。図4のグラフは、厚さ約4mmの耐熱性の高い結晶化ガラスで構成されたトッププレート2の透過率τを一例として示している。また、図5は、実施の形態1に係る誘導加熱調理器のトッププレートの透過特性と各温度での分光放射輝度曲線との関係を示すグラフである。図5では、鍋の温度が150℃、200℃、250℃である場合の分光放射輝度曲線とトッププレート2の透過率τとを示している。
赤外線センサ12の集光面(例えば図3(a)に示したサーモパイルセンサであれば集光レンズ121)には、トッププレート2における透過率の高い波長帯域である0.6μm〜2.8μm、3.0μm〜4.5μmに透過特性を有するフィルターを用いることが、トッププレート2を透過した赤外線を効率よく検出するのに望ましいことが分かっている。特に、3.0μm〜4.5μmの波長帯域は、トッププレート2の透過率のピーク値で60%程の透過率であるが、図5に示すように鍋の温度が150℃、200℃、250℃の分光放射輝度曲線を併せて比較すると、鍋から検出できる赤外線エネルギー量の絶対値は大きいことが分かる。このため、3.0μm〜4.5μmの範囲の透過率を特に高くするために、集光レンズ121の上面と下面の少なくとも一方には、SiOやZnS、Ge、サファイヤなどの赤外領域において透過・吸収・反射、並びに異なる屈折率を有している材料で薄膜を蒸着形成し、3.0μm〜4.5μmの範囲においてピーク値で50%以上の透過特性を有し、3.0μm〜4.5μm以外の領域では0.6μm〜2.8μmの領域を除いて3.0μm〜4.5μmのピーク値の半値に及ばない透過特性を有するバンドパスフィルター構造を設ける。このようにすることで、鍋の放射エネルギーがトッププレート2を透過するエネルギーの高い波長帯域において、ノイズ耐性の高い検出が可能となる。
なお、図3(b)に示したシリコンの平板124とリフレクター125を設けたサーモパイルであれば、平板124に上述のような薄膜蒸着したバンドパスフィルターを形成することで、同様の効果が得られる。また、平板124を用いた場合、シリコン基材に薄膜蒸着によるバンドパスフィルターを形成した後に赤外線センサ12の形状に合うよう切削することで、円形にカットする以外にも六角柱や八角柱といった形状とすることも可能となり、歩留まりが改善され製造コストも抑えられる利点がある。
以下、図2の説明を続ける。
赤外線センサ12は、加熱コイル14の近傍を流れる冷却風が直接当たらないように、周囲をセンサケース18で覆われている。赤外線センサ12の周囲の雰囲気温度が一様となるように、赤外線センサ12はセンサケース18に空間距離を保ちながら保持されている。センサケース18は、加熱コイル支持部16にタッピングネジなどで止められる、あるいは加熱コイル支持部16と一部が一体で形成されるなどしており、トッププレート2と赤外線センサ12との間の距離が一定に保たれている。
本実施の形態1では、トッププレート2を透過する鍋の赤外線を検出するため、赤外線センサ12の上面部の透過窓部7には塗装13がないことが望ましい。しかしながら、透過窓部7に塗装を施さないと、トッププレート2の上面から内部の加熱コイル14や配線などが見えてしまう場合があり、意匠上望ましくない。このため、透過窓部7に塗装13を施さない場合には、加熱コイル14を保持する加熱コイル支持部16やセンサケース18に、トッププレート2の方向に向かって筒や板を設けるようにすればよく、このようにすることで加熱コイル14や配線などを外部から見えにくくすることができる。また、透過窓部7の全面を塗装13で覆うのではなく、透過窓部7に対して塗装13をドット状やストライプ状に施して塗装されていない開口部の割合を管理するようにしてもよく、このようにすることで意匠性と機能性とを担保することが可能となる。
また、内側加熱コイル14aと外側加熱コイル14bとの環状の隙間15には、サーミスタ等の接触式の温度検知手段である接触式温度センサ17が2つ設けられている(図2には一つの接触式温度センサ17のみ図示している)。2つの接触式温度センサ17は、加熱コイル14の中心部を基準に180度ずらした位置にそれぞれ設けられている。接触式温度センサ17は、トッププレート2の下面に密着するように設けられており、トッププレート2の下面の温度に応じた信号を出力する。接触式温度センサ17の出力信号は、本体1に具備されたトッププレート温度検知部25に入力される。トッププレート温度検知部25は、接触式温度センサ17からの信号に基づいて、トッププレート2の温度を検知する。本実施の形態1では、接触式温度センサ17とトッププレート温度検知部25とにより、本発明のトッププレート温度検知手段を構成している。なお、トッププレート2の温度をより正確に時間の遅れが少なく検出可能な手段であれば、サーミスタ等の接触式温度センサ17に限らず任意のものをトッププレート温度検知手段として採用することができる。
なお、本実施の形態1では、接触式温度センサ17を内側加熱コイル14aと外側加熱コイル14bとの隙間15に設ける構成としたが、接触式温度センサ17の配置はこれに限定されない。例えば、接触式温度センサ17を、外側加熱コイル14bの外周近傍に配置してもよいし、加熱コイル14の中心に配置してもよい。また、接触式温度センサ17の数は2個に限定されることはなく、1個又は2個以上であってもよい。
接触式温度センサ17の出力は、後述するように赤外線センサ12により検出された赤外線量に基づいて鍋の温度を算出する際に用いられる。このため、より精度よく鍋の温度を検出するために、接触式温度センサ17は、赤外線センサ12の近傍に設置されるのが望ましい。
なお、トッププレート2のどのような位置に被加熱物である鍋が載置されるかは不定であり、また鍋の形状も不定であるため、より広い範囲の温度を検出し、かつ低コストで実現することを優先させて、赤外線温度検知部24とトッププレート温度検知部25とを離して配置しても構わない。
接触式温度センサ17は、設置数が少ないと、トッププレート2に載置される被加熱物の位置や形状の違いによって、取得温度にばらつきが生じうる。このため、複数設けられた接触式温度センサ17の検出値の平均値や、複数の接触式温度センサ17のうち最も高い温度を出力したものの検出値を、後述する鍋の温度検出に用いるようにしてもよい。このようにすることで、接触式温度センサ17の設置数が少ない場合でも、ばらつきに強い温度検出が可能となる。
本体1に設けられている記憶部21には、操作部3にて設定した情報や、赤外線温度検知部24、トッププレート温度検知部25からの出力が入力されて記憶される。
演算部22は、例えばマイコン等で構成され、鍋の温度を算出する各種演算処理を行う。
制御部23は、操作部3の設定内容と、赤外線センサ12及び接触式温度センサ17が検出した物理的情報に基づいて検出した鍋の温度情報とに基づいて、高周波インバータ26を制御し、加熱コイル14に流れる高周波電流を制御する。このようにすることで、被加熱物の加熱制御を行う。
図6は、実施の形態1に係る誘導加熱調理器の左側の加熱コイルに対応して設けられた操作部及び火力表示部を説明する図である。誘導加熱調理器100の左側、右側、及び中央に設けられた加熱コイル14にそれぞれ対応する操作部3及び火力表示部5は、すべて同様の構成であるので、ここでは、左側の加熱コイル14に対応して設けられた操作部3及び火力表示部5を例に説明する。
操作部3は、被加熱物を加熱する火力を設定するための火力設定キー31と、調理メニューを設定するためのメニューキー32とを備える。
火力設定キー31は、「弱火」キー、「中火」キー、「強火」キー、及び「3kW」キーで構成されており、使用者は、これらのキーを用いて4段階の火力のいずれかを設定することができるようになっている。火力に応じて個別にキーを設けることで、使用者は、必要な火力の設定を一回の操作で入力できるようになっている。
メニューキー32は、「揚げ物」キー、「予熱」キー、「煮込み」キー、及び「タイマー」キーを備える。これらのキーが押下されると、各メニューに対して予め設定され記憶部21に記憶された制御シーケンスにしたがって、制御部23が加熱制御を行う。
火力表示部5は、火力設定キー31で入力された火力や、メニューキー32で設定されたメニューに基づいて火力を複数段階に表示するものであり、火力に応じて表示態様が切り替わる。火力表示部5の表示により、動作中であることを使用者に示すことが可能である。火力表示部5は、例えば複数のLEDを有し、これらLEDの点灯状態(点灯、消灯、点滅等)を切り替える、あるいは点灯色を切り替えることにより、火力を表現する。このようにすることで、使用者が直感的に分かりやすい報知を行うことができる。
なお、図6には図示しないが、液晶画面等で構成された表示部4(図1参照)には、例えば「予熱中」や「適温到達」等の火力や経過状況、設定されているメニューの内容等に関する情報が表示される。
このような構成の誘導加熱調理器100において、例えば揚げ物調理を行う場合には、使用者は鍋内に揚げ物を行うための油を入れ、鍋をトッププレート2の加熱口6に載置する。使用者が、操作部3にて加熱開始のための操作入力を行うと、制御部23は、操作部3からの信号と鍋の推定温度とに基づいて加熱コイル14に流れる高周波電流を流し、これによって鍋が加熱される。
[鍋の温度の推定処理]
(構成)
次に、鍋の温度の推定に関連する構成について、さらに説明する。
赤外線センサ12は、上述の通り、鍋底から放射される赤外線エネルギーと、トッププレート2が熱伝導により加熱されることによってトッププレート2の下面から放射される赤外線エネルギーとを検出することとなる。
本実施の形態1では、前述の通り赤外線センサ12の視野126の範囲内であるトッププレート2の透過窓部7においては、塗装13をドットやストライプ状に施して他の部分に対して塗料を減少させることでトッププレート2の上方から加熱コイル14のコイル線が見えるなどの意匠上の不具合を防ぎ、かつ、透過窓部7内に赤外線検出値のピーク値に対して10%以上の出力が入るよう赤外線センサ12の視野を絞っている。
また、赤外線センサ12の集光面(図3に例示した集光レンズ121、平板124)の上面と下面の少なくとも一方には、ZnS、SiO、Ge等の薄膜が蒸着され、薄膜の膜厚や量により3.0μm〜4.5μmの波長帯域にピーク値で50%以上の透過率を有するバンドパスフィルターを有している。
ここで、バンドパスフィルターについて説明する。
まず、トッププレート2の放射特性は、キルヒホッフの法則[吸収率(α)+透過率(τ)+反射率(ρ)=1]により示される。トッププレート2の透過率τの透過特性は図4にて示されており、また、トッププレート2は、3.0μm〜4.5μmの領域では反射よりも吸収が大部分を占めている。
このため、上述のキルヒホッフの法則より、吸収率(α)=放射率(ε)で表され、トッププレート2の放射特性は、図7のように表される。
図4に示したようにトッププレート2は、3.0μm〜4.5μmにおける透過率の最も高いところで約60%となっており、また、赤外線センサ12は、40%程度はトッププレート2からの放射エネルギーを検出することとなる。
ただし、3.0μm〜4.5μm以外の波長領域、特にトッププレート2の放射特性の影響の大きい波長領域(4.5μm〜10μm)は、前述のバンドパスフィルターにて遮られて赤外線センサ12にほとんど受光されない。
図4の3.0μm〜4.5μmの範囲の透過特性を見て分かる通り、3.6μmを中心にその前後の波長領域では透過特性が変化している。
バンドパスフィルターの透過特性は、このようなトッププレート2の放射特性及び透過特性を考慮して決定される。
図8は、実施の形態1に係る誘導加熱調理器のバンドパスフィルターの透過特性の一例を示すグラフである。図8では、バンドパスフィルターの透過特性とトッププレート2の透過特性とを並べて表示している。バンドパスフィルターは、3.4μm〜4.2μmの範囲に最大90%程度の透過率を有するフィルターとなっている。なお、図8で例示するバンドパスフィルターは、2.8μmよりも波長の短い領域にも透過特性を有しているが、トッププレート2の放射特性、透過特性を勘案するとこの波長領域はトッププレート2からの放射の影響を受ける領域ではないため、バンドパスフィルターにより当該領域を遮蔽する必要はない。
バンドパスフィルターを用いると、鍋の温度が80℃程度になった頃より、鍋から放射されトッププレート2を透過する赤外線エネルギーは赤外線センサ12に検出される。赤外線センサ12の検出値は、鍋の温度が高くなるにつれて指数的に増加する。ただし、前述した通り、トッププレート2の透過率が100%でない領域に対してバンドパスを掛けているため、赤外線センサ12はトッププレート2からの赤外線放射エネルギーも検出しており、トッププレート2の透過特性が波長ごとに異なる透過率を有することから、鍋からの赤外線放射エネルギー量とトッププレート2からの赤外線放射エネルギー量の比率は鍋底の温度とトッププレート2との温度条件により変化するのである。
なお、バンドパスフィルターを設けないとした場合、赤外線センサ12の集光部にシリコン基材を用いると、シリコンは8μmよりも短い赤外線波長領域において赤外線が約50%〜60%透過するという透過特性を有するため、トッププレート2からの赤外線エネルギーの割合が、鍋から放射されトッププレート2を透過して検出される赤外線エネルギーの割合に比較して非常に大きくなりうる。そうすると、検出精度について課題が生じるので、本実施の形態1の構成ではバンドパスフィルターを設けるのが好ましい。
また、バンドパスフィルターとしてトッププレート2と同一材料を用いることで、トッププレート2を透過した鍋からの赤外線エネルギーの検出が可能となる。しかし、上述の通り、トッププレート2の材質の特性上、赤外領域での吸収率が高いため、フィルター自身がトッププレート2や内部の加熱コイル14が放射する赤外線により加熱されてしまい、フィルター自身から放射される赤外線が赤外線センサ12の赤外線検知に影響してしまう結果となる。このため、フィルターに温度検知手段を設けるなどしてフィルター自身からの放射分を相殺するなどの対策が必要となり、フィルターに設ける温度検知手段等の追加によってコストが増大してしまう。このため、本実施の形態1では、上述のようなバンドパスフィルターを設けるのが好ましい。
鍋の温度とトッププレート2の温度条件とにより赤外線センサ12が検知する赤外線エネルギー量の比率が変化してくることは上述の通りであるが、鍋底の放射率も赤外線センサ12が検知する赤外線量の変動要因となっている。特に本実施の形態1のような誘導加熱調理器には、様々な放射率の鍋が載置されるため、放射率εは例えば0.1〜0.9まで様々な条件を想定しなくてはならない。この放射率εの推定方法の説明は後述するが、トッププレート2上に載置されている鍋の温度を精度よく推定するためには、トッププレート2の上に載置されている鍋の温度とトッププレート2の温度との温度差の推定を行うことと、トッププレート2上に載置されている鍋の底面放射率を推定することが望まれる。
そこで、本実施の形態1の鍋の温度の推定処理においては、赤外線温度検知部24の検出温度からトッププレート2の影響分を差し引いて鍋の温度を推定するにあたり、鍋の底面とトッププレート2の表面との間の隙間距離を推定する隙間量判定処理、及び鍋の底面の放射率の推定する放射率推定処理を行う。以下、それぞれの処理の概要を順に説明する。
(隙間量判定処理)
隙間量判定処理とは、鍋の底面とトッププレート2の表面との間の隙間距離を推定する処理である。ここで、隙間距離とは、鍋の底面とトッププレート2の表面との間の隙間の高さ距離をいい、鍋の底面がトッププレート2の表面から浮いている高さをいう。鍋の底面が反っている場合や、トッププレート2と鍋との間に物が挟まっているような場合等には、鍋底面とトッププレートとの間に隙間(空気層)ができるので、その隙間の高さ距離を検出する。
隙間距離は、トッププレート2の下面に接触配置された接触式温度センサ17の加熱初期からの出力値に基づいて判定する。熱伝導率は、例えばステンレスの鍋であれば16W/(m・K)、トッププレート2は1.5W/(m・K)であるのに対して、空気の熱伝導率は0.024W/(m・K)と非常に小さい値である。このため、鍋底とトッププレート2との隙間距離が0.5mmでも生じると、接触式温度センサ17により検知されるトッププレート2の温度上昇量は小さくなる。また、図9の大気の透過特性グラフに示されているように、大気にも透過率があり、鍋底とトッププレート2との間に空隙が生じることで、鍋から放射される赤外線量に減衰が生じる。したがって、鍋底とトッププレート2との間の隙間距離が大きければ大きいほど、トッププレート2へ到達する赤外線エネルギーが減り、接触式温度センサ17により検知される温度上昇値が小さくなる。
このため、鍋底とトッププレート2の表面との隙間距離を、接触式温度センサ17により検知される温度上昇量によって判定することができる。
隙間距離を判定する隙間量判定処理においては、詳細な判定方法については後述するが、加熱初期に一定の火力を投入し、所定時間後の接触式温度センサ17の温度上昇値の大きさに基づいて隙間距離を判定する。隙間距離の判定に用いる接触式温度センサ17の出力は、複数の接触式温度センサ17の出力値の平均値としてもよいし、複数の接触式温度センサ17の出力値のうち最も高い温度を示す値を用いてもよいし、複数の接触式温度センサ17の出力値のうち高温を検出する上位2つの出力値を平均した値を用いてもよい。このように複数の接触式温度センサ17の出力値を用いることで、温度検出のばらつきを抑制することが可能となる。
また、隙間距離の判定を加熱初期に行うこととしたのは、揚げ物調理で用いられる鍋内の油の特性を考慮したものである。すなわち、揚げ物調理で油を用いる場合、油の粘性は高く、火力投入後もほぼ対流することなくほぼ一定に温度上昇する。油温が上がるにつれて粘性は小さくなり対流し始めるとともに熱が拡散していくが、所定時間、例えば50秒程度の加熱であれば、油量の大小にかかわらず鍋底部分はほぼ一定の上がり方となる。
このように、鍋底とトッププレート2との空隙の高さである隙間距離を、加熱初期から所定時間一定火力で加熱した際の接触式温度センサ17の温度上昇値を用いて推定することができる。
(放射率推定処理)
本実施の形態1では、鍋底の放射率は、加熱開始から所定時間経過後の赤外線温度検知部24により検知される温度上昇値により判断される。赤外線温度検知部24の所定時間での温度上昇値を比較すると、放射率が高い鍋底においては温度上昇値が大きくなり、放射率が低い鍋底は温度上昇値が小さくなるため、このことを利用して鍋底の放射率を判定する。
本実施の形態1では、放射率の推定処理を、加熱初期ではなく加熱開始から所定の第一時間経過後(例えば50秒後)に開始し、その後所定の第二時間経過後(例えば30秒後)に赤外線温度検知部24により検出される温度上昇値に基づいて行う。所定の第一時間経過後に開始するのは、本実施の形態1にて使用している赤外線センサ12には、3.0μm〜4.5μm帯域のバンドパスフィルターを用いているので、鍋温度が80℃程度とならないと赤外線センサ12の出力値が増加してこないからである。したがって、赤外線センサ12の受光する波長を考慮して、第一時間の具体的数値を決定するとよい。
また本実施の形態1では、上述の隙間量判定処理が終了した後に、赤外線温度検知部24により検出される温度上昇値に基づいて、鍋の放射率を推定する。隙間量判定が終了した後から赤外線温度検知部24を用いた鍋の放射率の判定を開始することで、既知となった隙間距離を利用して、赤外線温度検知部24により検知される情報を補正して、温度上昇値の検出精度を向上させることができる。すなわち、トッププレート2からの放射割合は、隙間距離が無い(小さい)場合には大きく、隙間距離が大きい場合には小さいということを利用し、これらの情報を、赤外線温度検知部24の検知結果に反映させる。なお、隙間量判定処理が終了する前から赤外線温度検知部24による測定を開始し、その測定結果に、鍋の隙間量判定の結果をフィードバックしてもよい。
なお、図9にて示した大気の透過率の影響であるが、本実施の形態1にて使用しているバンドパスフィルターの波長帯域(図4参照)では、大気による赤外線の減衰影響はほとんどなく、鍋底が浮いて鍋底と赤外線センサ12との距離が離れたとしても、問題なくばらつきのない検出が可能となる。
[誘導加熱調理器の動作]
次に、本実施の形態1の誘導加熱調理器100における実際の加熱制御と被加熱物の温度を検知する被加熱物温度推定処理について、揚げ物調理を例に図10〜図12のフローチャートを参照して説明する。図10は、実施の形態1に係る誘導加熱調理器の隙間距離判定処理を中心に説明するフローチャートである。
トッププレート2の加熱口6には、油を入れられた被加熱物である鍋が載置されているものとする。
図10において、電源がONされ(S101)、操作部3のメニューキー32にて揚げ物モードが選択されると(S102)、制御部23は、設定温度を決定する(S103)。揚げ物の温度は、料理メニュー(例えば、「てんぷら」、「とんかつ」、「から揚げ」等)によって異なるため、このような料理メニューが設定された場合にはその料理メニューに対応した温度に設定する。
そして、鍋が加熱口6上に載置されていることを確認した使用者により加熱開始の指示が操作部3に入力されると、制御部23は、高周波インバータ26を駆動制御して加熱コイル14に高周波電流を供給し、加熱を開始する(S104)。
制御部23は、加熱を開始した際のトッププレート温度検知部25の出力値TH_t0を、Tth0として記憶部21に記憶させ、タイマーカウンタをスタートする(S105)。また、図10には図示しないが、制御部23は、高周波インバータ26を制御して所定量、所定周波数の高周波電流を投入し、そのときに検出される電流値により鍋のインピーダンスを測定することで、トッププレート2上に載置されている鍋が使用可能な鍋であるか否かを判定する。制御部23は、このような鍋の材質判定処理を実行した後、使用可能な鍋であれば、火力1.5kWを投入する(S106)。なお、図示しないが、鍋の材質判定処理により使用不可能な鍋がトッププレート2に載置されていると制御部23が判定した場合には、加熱を行わず、使用不可能な鍋であることを表示部4を用いて報知する。
制御部23は、タイマーカウンタが所定の第一時間(本実施の形態1では50秒)が経過するまで加熱コイル14に1.5kWを投入し、所定の第一時間(50秒)が経過すると(S107;Yes)、そのときのトッププレート温度検知部25の出力値TH_t50を、Tth50として記憶部21に記憶させる(S108)。
演算部22は、加熱を開始した際のトッププレート温度検知部25の出力値であるTth0と、50秒後のトッププレート温度検知部25の出力値であるTth50との差ΔTthを算出する(S109)。
次に、演算部22は、ステップS109で算出したΔTthを、図13に例示する隙間距離レベルテーブルと対比して鍋の浮き量を判定する隙間量判定処理を行う(S110)。図13に示す隙間距離レベルテーブルは、加熱開始時と加熱開始から所定時間後の温度差ΔTthと、隙間距離(mm)と、隙間距離のレベルとを対応付けたテーブルである。隙間距離レベルテーブルは、実験等によって得た値のテーブルであり、予め記憶部21に記憶されているものである。本実施の形態1では、鍋の浮き量(隙間距離)を、レベルG0〜G6までの7段階に分けている。隙間量判定処理が終了すると、制御部23は、隙間距離レベルに応じて処理を分岐する(S111、S112、・・・S117)。
ここでは、ステップS110にて判定した隙間距離がレベルG0である場合について、図11を参照して説明する。図11は、実施の形態1に係る誘導加熱調理器の放射率判定処理を中心に説明するフローチャートである。なお、隙間距離がレベルG1〜G7である場合については、本実施の形態1では詳細な説明を行わないが、以下に示す隙間距離がレベルG0である場合と同様の処理を実行する。
図11に示すように、制御部23は、火力を1.0kWに変更する(S201)。すなわち、加熱を開始(図10のステップS106)してから所定の第一時間(実施の形態1では50秒)が経過すると、火力を低下させる。
次に、制御部23は、このときの赤外線温度検知部24の出力IR_t50を、Tir50として記憶部21に記憶させ、タイマーカウンタをスタートさせる(S202)。
所定の第二時間(実施の形態1では30秒)が経過すると(S203;Yes)、制御部23は、このときの赤外線温度検知部24の出力IR_t80を、Tir80として記憶部21に記憶させる(S204)。
演算部22は、Tir80とTir50との差分値である差ΔT_IRを算出する(S205)。
次に、演算部22は、ステップS205で算出したTir80とTir50との差分値ΔT_IR(すなわち、加熱開始50秒後から80秒後の間の上昇値)と、図14に例示する差分値の閾値(ΔIRの閾値)とを対比して鍋の放射率を推定する放射率推定処理を行う(S206)。鍋の隙間距離に応じてトッププレート2からの赤外線の影響が異なるため、放射率を推定する際の閾値は、図14に示すように、鍋の隙間距離レベルに応じて異なる値を用いている。例えば、隙間距離がレベルG0である場合には、ステップS205で算出したΔT_IRと、レベルG0に対応するΔIRの閾値(40℃)とを対比することにより、鍋の放射率を推定する。なお、図14に示すテーブルは、実験等によって得た値のテーブルであり、予め記憶部21に記憶されているものである。
次に、演算部22は、ステップS109で判定した隙間距離と、ステップS206で判定した鍋底の放射率とに基づいて、図15の補正係数テーブルを参照して、補正係数α、βを決定する(S207)。図15に示す補正係数テーブルは、隙間距離(mm)と放射率との組み合わせと、補正係数α(第一補正係数)と補正係数β(第二補正係数)とを組み合わせたテーブルであり、予め記憶部21に記憶されている。
次に、演算部22は、ステップS207で決定した補正係数α、βを用いて、トッププレート2の上に載置されている鍋の温度を、次の式(1)を用いて推定する(S208)。
鍋の温度推定値Tn=α×IR−β×TH ・・・(1)
ただし、式(1)の符号は以下の通りである。
IR:赤外線温度検知部24の出力値
TH:トッププレート温度検知部25の出力値
α:第一補正係数
β:第二補正係数
式(1)に示すように、本実施の形態1では、赤外線温度検知部24の出力値に補正係数α(第一補正係数)を掛け合わせてこれを赤外線温度補正値とし、また、トッププレート温度検知部25の出力値に補正係数β(第二補正係数)を掛け合わせてこれをトッププレート温度補正値としている。そして、赤外線温度補正値からトッププレート温度補正値を差し引くことで、鍋の温度推定値Tnを得ている。
従来、赤外線センサ12が検出する鍋から放射されトッププレート2を透過する赤外線エネルギーと、トッププレート2から放射される赤外線エネルギーからトッププレート温度検知部25により得られたトッププレート2から放射される赤外線エネルギーを差し引く場合のエネルギー計算は、ステファン・ボルツマンの式に導かれるように出力温度に対して4乗の計算と放射率の掛け合わせが必要であった。
しかしながら、マイコンなどの演算部22による4乗の計算は負荷が大きくなるため、本実施の形態1では、実験結果から求めた上記簡略的な式(1)を採用している。
図15に示すように、同じ放射率の場合、隙間距離が大きい場合には小さい場合よりも補正係数β(第二補正係数)が小さい値となっている。これは、鍋底とトッププレート2との空隙が大きいほど、温度が安定した際の鍋底とトッププレート2との温度差が大きく、トッププレート2から放射される赤外線の割合が小さいことを示している。したがって、隙間距離が大きいほど、トッププレート温度検知部25の出力値に掛ける補正係数βを小さくすることで、鍋の温度推定値Tnを算出するにあたってトッププレート2の影響分を差し引く量を減らしている。なお、補正係数βを小さくすることに代えて、補正係数αを大きくしても同様の効果を得ることができる。
また、図15に示すように、同じ隙間距離レベルであるときには、放射率が低い場合には高い場合よりも補正係数α(第一補正係数)は大きい値となっている。これは、放射率が低いほど鍋底から放射される赤外線エネルギーが小さくなり、トッププレート2を透過する赤外線量が小さく、増幅補正する必要があるためである。また、同様の理由により、同じ隙間距離レベルであるときには、放射率が低い場合には高い場合よりも補正係数β(第二補正係数)は小さい値となっている。このようにすることで、鍋の温度推定値Tnを算出するにあたってトッププレート2の影響分を差し引く量を減らしている。
以上のように、判定して隙間距離と放射率とに基づいて決定した補正係数αを赤外線温度検知部24の出力値に掛け合わせるとともに、補正係数βをトッププレート温度検知部25の出力値に掛け合わせる演算をすることで、鍋底の温度を推定することができる。
次に、制御部23は、ステップS208で算出した鍋底の温度推定値Tnが、設定温度(例えば180℃)に到達したか否かを判定する(S209)。そして、制御部23は、鍋底の温度推定値Tnが設定温度に到達した場合は(S209;Yes)、本体1に具備している表示部4やブザーやスピーカ等の音声報知部(図示なし)を用いて、予熱が終了したことを報知する(S210)。
一方、鍋底の温度推定値Tnが設定温度に到達していない場合は(S209;No)、図12に示す処理を実行する。
図12は、実施の形態1に係る誘導加熱調理器の予熱温度制御を説明するフローチャートである。図12では、鍋の温度推定値Tnに基づいて鍋を設定温度に到達させる際に、設定温度よりも高い温度に上昇してしまうこと、いわゆるオーバーシュートを防ぐ制御を説明する。
鍋の温度推定値Tnを参照して設定温度に達していない場合において、制御部23は、投入火力を再度上昇させる(S301)。本実施の形態1では、ステップS201にて1.0kWに低下させた火力を、1.5kWに上昇させている。
図示しないが、演算部22は、図11のステップS207で決定した補正係数α、βと前述の式(1)を用いて鍋の温度推定値Tnを算出する処理を、所定周期で繰り返し行っている。そして、制御部23は、鍋の温度推定値Tnが、設定温度(180℃)よりも50℃低い130℃に到達しているか判定して(S302)、到達した段階で火力を1.25kWに低下させる(S303)。次に、制御部23は、鍋の温度推定値Tnが、設定温度(180℃)よりも30℃低い150℃に到達しているか判定して(S304)、到達した段階で火力を1.0kWに低下させる(S305)。次に、制御部23は、鍋の温度推定値Tnが、設定温度(180℃)よりも10℃低い値で170℃に到達しているか判定して(S306)、到達した段階で火力を0.8kWに低下させる(S307)。制御部23は、鍋の温度推定値Tnが設定温度に到達すると(S308;Yes)、表示部4やブザー、スピーカ等の音声報知部(図示なし)を用いて、予熱が終了したことを報知する(S309)。図12で例示した具体的な数値は一例であるが、このように所定周期で温度推定値Tnが設定温度に近づくにつれて火力を徐々に低下させる(S302〜S307)ことで、いわゆるオーバーシュートの発生を抑制することができる。
以上のように本実施の形態1では、トッププレート2の上に被加熱物が載置された状態において、鍋底とトッププレート2との隙間がどのくらいあるかを判定し、鍋底とトッププレート2との隙間の高さが既知となった段階でトッププレート2の影響を加味して鍋の放射率を推定するようにした。そして、鍋底とトッププレート2との間の隙間距離と鍋の放射率とに基づいて補正係数α、βを選択し、その補正係数α、βで赤外線温度検知部24の出力値とトッププレート温度検知部25の出力値とを補正し、補正後の赤外線温度検知部24の温度から補正後のトッププレート温度検知部25の温度を差し引くことで、鍋底の温度を検知する。このため、トッププレート2の上に載置されている鍋が浮いたり反ったりしている場合でも、精度よく鍋底の温度を検知することができる。このように検知された精度のよい温度情報に基づいて加熱コイル14への高周波電力の通電を制御することができるので、無駄な加熱や加熱不足を抑制することのできる加熱調理器を得ることができる。
なお、トッププレート2の温度が既に高い状態で加熱を開始する高温スタート等の場合は、同じ加熱量でも、所定時間が経過したときに接触式温度センサ17により検知される温度の傾き量が小さくなる。このため、高温スタートのための隙間距離レベルテーブルを別途設けてもよい。図16は、実施の形態1に係る誘導加熱調理器の高温スタートのための隙間距離レベル設定テーブルである。図16の隙間距離レベルテーブルは、図13で例示した隙間距離レベルテーブルと比較して、ΔTthの値や隙間距離レベルに対応したΔTthの範囲が小さくなっている。加熱初期におけるトッププレート温度検知部25の出力値が高温(例えばTH_t0≧50℃)の場合には、図16の隙間距離レベルテーブルを用いて隙間距離を判定することができる。このようにすることで、精度のよい隙間距離の判定を行うことができる。
実施の形態2.
本実施の形態2で示す誘導加熱調理器は、基本的な構成は実施の形態1と同様である。本実施の形態2の誘導加熱調理器は、鍋底とトッププレート2との間の隙間距離、及び鍋底の反射率を判定する方法が実施の形態1と異なるものであり、本実施の形態2では、実施の形態1との相違点を中心に説明する。
前述の実施の形態1で示した通り、鍋がトッププレート2から浮いている場合は、鍋がトッププレート2に接している場合と比較して、トッププレート2の温度が上昇しにくくトッププレート温度検知部25の出力値は低くなる。図17は、実施の形態2に係る誘導加熱調理器の、鍋とトッププレートとの間に浮きが有る場合と無い場合の対象物温度とトッププレート温度検知部の出力値との相関グラフである。図17では、横軸に加熱対象物である鍋の温度を示し、縦軸にトッププレート温度検知部25の出力値を示している。図17に示すように、鍋底とトッププレート2とが接している場合(浮き無し)には、トッププレート温度検知部25の検出温度は、トッププレート2を構成するガラスの影響で時間遅れがあるものの、対象物とほぼ同等の温度を検出している。しかし、鍋底がトッププレート2から離れている場合(浮き有り)には、対象物の温度とトッププレート温度検知部25の検出温度との間には温度差が生じており、両者の温度差は対象物の温度が高くなるほど顕著になる。
また、放射率が高い鍋と低い鍋とを比較すると、放射するエネルギーが異なることは物理的現象であり、トッププレート2を構成するガラスを介して得られるエネルギー量も異なる。図18は、実施の形態2に係る誘導加熱調理器の、鍋の放射率が異なる場合における、対象物温度と赤外線温度検知部の出力値との相関グラフである。図18では、横軸に加熱対象物である鍋の温度を示し、縦軸に赤外線温度検知部24の出力値を示しており、トッププレート2を構成するガラスの影響が無い状態(ガラスを取り除いた状態)にて測定している。図18に示すように、鍋の放射率が小さい場合(放射率0.1)には、放射率が大きい場合(放射率0.9)よりも、対象物の温度と赤外線温度検知部24の出力値との間の乖離が大きくなっている。
これらのことから、トッププレート温度検知部25の出力値と赤外線温度検知部24の出力値との相関を示す関係式を立てることができる。本実施の形態2では、例えば、(赤外線温度検知部24の出力値−トッププレート温度検知部25の出力値)という関係式をたてることとする。図19は、実施の形態2に係る誘導加熱調理器の、トッププレート温度検知部の出力値と赤外線温度検知部の出力値との相関関係の一例を示すグラフであり、鍋の浮きの有無(浮き有り/浮き無し)、及び放射率の高低(放射率0.9/放射率0.1)の条件の組み合わせにおける、(赤外線温度検知部24の出力値−トッププレート温度検知部25の出力値)の加熱初期からの変化を示している。図19は、図17、図18で示した浮き有り/無し、放射率高(0.9)/低(0.1)の出力値を用いて算出したものである。
図19に示すように、一定の火力であれば、時間が経つにつれて、隙間距離と鍋の放射率に応じて、関係式の演算結果に乖離が生じてくる。
したがって、加熱開始から所定時間後までにおける、(赤外線温度検知部24の出力値−トッププレート温度検知部25の出力値)の関係式の傾きと変化量とに基づいて、載置されている鍋の隙間距離(浮き有り/無し)、及び放射率(放射率高/低)を判定することができる。なお、図17〜図19では、隙間距離については浮き有り/無しの2種類に区別し、放射率については放射率高/低の2種類に区別しているが、隙間距離及び放射率の区分数についてはこれらに限定されず、検知精度を考慮して任意の区分数を採用することができる。
隙間距離及び放射率を判定した後に行う鍋の温度推定処理は、実施の形態1と同様である。すなわち、演算部22は、判定した鍋の隙間距離と放射率とに基づいて、図15に示す隙間距離と放射率とに応じた補正係数α、βが規定されている補正係数テーブルを参照して、補正係数α、βを決定する。次に、演算部22は、決定した補正係数α、β及び実施の形態1で示した式(1)を用いて、トッププレート2の上に載置されている鍋の温度を推定する。
なお、図19に示す例では、浮き無し/放射率高(0.9)と、浮き無し/放射率低(0.1)の関係式の値が互いに近い温度帯があり、両者の区別が付きにくい。このような場合には、実施の形態1で示したように、トッププレート温度検知部25の出力値により隙間距離の判定を行い、その判定結果と、図19に示す(赤外線温度検知部24出力−トッププレート温度検知部25出力)の関係式との両方に基づいて、隙間距離及び放射率を判定してもよい。また、例えば、トッププレート温度検知部25の出力値を2倍として差し引くなど、関係式において寄与の多い項を増幅させて計算することで、ばらつきに強い判定が可能となる。
このように本実施の形態2では、トッププレート2の上に被加熱物が載置された状態において、加熱開始から所定時間後までの間における、トッププレート温度検知部25の検知温度と赤外線温度検知部24の検知温度との関係式に応じて、鍋の隙間距離と放射率とを推定するようにした。そして、鍋の隙間距離と、放射率とに基づいて、補正係数を選択し、その補正係数で赤外線温度検知部24の温度とトッププレート温度検知部25の温度とを補正し、補正後の赤外線温度検知部24の温度から補正後のトッププレート温度検知部25の温度を差し引くことで、鍋底の温度を検知する。このため、トッププレート2に載置されている鍋が浮いたり反ったりしている場合でも、精度よく鍋底の温度を検知することができる。このように検知された精度のよい温度情報に基づいて加熱コイル14への高周波電力の通電を制御することができるので、無駄な加熱や加熱不足を抑制することのできる加熱調理器を得ることができる。
なお、加熱開始初期からのトッププレート温度検知部25の出力値の傾きより、鍋の浮きが無いと判断した場合は、トッププレート2の温度と鍋底の温度とはほぼ同値であるといえる。このため、鍋の浮きが無いと判断した場合には、前述のように式(1)に基づいて推定した鍋の温度を用いて加熱制御を行うのではなく、トッププレート温度検知部25の出力値を鍋の温度としてその値を用いて加熱制御を行うように切り替えてもよい。このようにすることで、演算部22における鍋の温度の推定処理負担を軽減することができる。また、鍋の浮きが無いと判断した場合には、赤外線温度検知部24の出力値とトッププレート温度検知部25の出力値のうち高い方の値を用いて加熱制御を行うように切り替えてもよい。このようにすることで、演算部22における鍋の温度の推定処理負担を軽減することができるとともに、より鍋の過度な高温化を抑制する制御が行える。
また、上記説明では、記憶部21に予め記憶された隙間距離レベル設定テーブル、放射率設定テーブル、及び補正係数設定テーブルに基づいて、隙間距離、放射率、及び補正係数を導出するようにした。しかし、隙間距離、放射率、及び補正係数を、記憶部21に記憶されたテーブルから抽出するのではなく、所定の計算処理によって各値を導出しても良い。たとえば隙間距離であれば、基準となる温度差ΔTthとそれに対応する隙間距離の基準値のみを設定しておき、検出された温度差ΔTthと基準の温度差ΔTthとの差に基づいて隙間距離の基準値を増減することによって隙間距離を導出してもよい。このことは、放射率及び補正係数についても同様である。また、上記説明で例示した隙間距離や放射率、温度、時間等の具体的数値は一例であり、本発明を限定するものではない。
また、上記説明では、揚げ物調理を行う場合を例に説明したが、揚げ物以外の被加熱物の温度を設定温度に保つ加熱制御を行う調理メニューを実行する場合にも、同様の処理を実行することができる。また、調理メニューを設定せず火力のみを設定して加熱を行う場合にも、上述の隙間量判定処理、放射率判定処理、及び被加熱物温度推定処理を行うことができる。
1 本体、2 トッププレート、3 操作部、4 表示部、5 火力表示部、6 加熱口、7 透過窓部、8 排気口、9 吸気口、12 赤外線センサ、13 塗装、14 加熱コイル、14a 内側加熱コイル、14b 外側加熱コイル、15 隙間、16 加熱コイル支持部、17 接触式温度センサ、18 センサケース、21 記憶部、22 演算部、23 制御部、24 赤外線温度検知部、25 トッププレート温度検知部、26 高周波インバータ、31 火力設定キー、32 メニューキー、100 誘導加熱調理器、121 集光レンズ、122 サーモパイルチップ、123 自己温度検出サーミスタ、124 平板、125 リフレクター、126 視野、200 鍋。

Claims (3)

  1. 被加熱物が載置されるトッププレートと、
    前記トッププレートの下に配置された加熱手段と、
    前記トッププレートの下に設けられ、上方から放射される赤外線を検知する赤外線センサと、
    前記赤外線センサの出力値を温度換算する赤外線温度検知手段と、
    集光部にシリコンフィルターを備えた第二の赤外線センサが検知した赤外線に基づいて前記トッププレートの温度を検知するトッププレート温度検知手段と、
    前記赤外線温度検知手段と前記トッププレート温度検知手段の検知結果に基づいて、被加熱物の温度の推定値である被加熱物温度を算出する演算部とを備え、
    前記演算部は、
    前記トッププレートの表面と前記被加熱物の底面との間の隙間距離を推定する隙間量判定処理を行うステップと、
    推定した前記隙間距離に応じて第一補正係数及び第二補正係数の少なくとも一方を導出するステップと、
    前記赤外線温度検知手段の出力値に前記第一補正係数を掛けて赤外線温度補正値を得るステップと、
    前記トッププレート温度検知手段の出力値に前記第二補正係数を掛けてトッププレート温度補正値を得るステップと、
    前記赤外線温度補正値から前記トッププレート温度補正値を差し引いた値を前記被加熱物温度とするステップとを含む被加熱物温度推定処理を実行する
    ことを特徴とする加熱調理器。
  2. 前記演算部は、
    前記加熱手段による加熱を開始してからの前記トッププレート温度検知手段の出力値の上昇量に基づいて、前記隙間量判定処理を行う
    ことを特徴とする請求項1記載の加熱調理器。
  3. 前記演算部は、
    前記加熱手段による加熱を開始してからの前記トッププレート温度検知手段の検知結果及び前記赤外線温度検知手段の検知結果の関係式の変化量に基づいて、前記隙間量判定処理を行うとともに、前記被加熱物の底面の放射率を推定する放射率推定処理を実行し、
    前記第一補正係数と前記第二補正係数の少なくとも一方を、推定した前記隙間距離及び前記放射率に基づいて導出する
    ことを特徴とする請求項1記載の加熱調理器。
JP2013006399A 2013-01-17 2013-01-17 加熱調理器 Pending JP2013251254A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013006399A JP2013251254A (ja) 2013-01-17 2013-01-17 加熱調理器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013006399A JP2013251254A (ja) 2013-01-17 2013-01-17 加熱調理器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012125196A Division JP5185454B1 (ja) 2012-05-31 2012-05-31 加熱調理器

Publications (1)

Publication Number Publication Date
JP2013251254A true JP2013251254A (ja) 2013-12-12

Family

ID=49849708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013006399A Pending JP2013251254A (ja) 2013-01-17 2013-01-17 加熱調理器

Country Status (1)

Country Link
JP (1) JP2013251254A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015084306A (ja) * 2013-10-25 2015-04-30 三菱電機株式会社 加熱調理器
JP2015190714A (ja) * 2014-03-28 2015-11-02 三菱電機株式会社 加熱調理器
WO2015182066A1 (ja) * 2014-05-30 2015-12-03 パナソニック株式会社 温度センサおよび、それを用いた装置、および温度測定方法
JP2016189245A (ja) * 2015-03-30 2016-11-04 パナソニックIpマネジメント株式会社 誘導加熱調理器
JP2016201211A (ja) * 2015-04-08 2016-12-01 三菱電機株式会社 温度検知装置および加熱調理器
JP2018040670A (ja) * 2016-09-07 2018-03-15 浜松ホトニクス株式会社 赤外線検出装置
JP2020177802A (ja) * 2019-04-18 2020-10-29 三菱電機株式会社 誘導加熱調理器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015084306A (ja) * 2013-10-25 2015-04-30 三菱電機株式会社 加熱調理器
JP2015190714A (ja) * 2014-03-28 2015-11-02 三菱電機株式会社 加熱調理器
WO2015182066A1 (ja) * 2014-05-30 2015-12-03 パナソニック株式会社 温度センサおよび、それを用いた装置、および温度測定方法
CN106461467A (zh) * 2014-05-30 2017-02-22 松下电器产业株式会社 温度传感器和使用该温度传感器的装置以及温度测定方法
US20170160141A1 (en) * 2014-05-30 2017-06-08 Panasonic Corporation Temperature sensor, device using same, and temperature measurement method
CN106461467B (zh) * 2014-05-30 2020-03-24 松下电器产业株式会社 温度传感器和使用该温度传感器的装置以及温度测定方法
US10641660B2 (en) 2014-05-30 2020-05-05 Panasonic Corporation Temperature sensor, device using same, and temperature measurement method
JP2016189245A (ja) * 2015-03-30 2016-11-04 パナソニックIpマネジメント株式会社 誘導加熱調理器
JP2016201211A (ja) * 2015-04-08 2016-12-01 三菱電機株式会社 温度検知装置および加熱調理器
JP2018040670A (ja) * 2016-09-07 2018-03-15 浜松ホトニクス株式会社 赤外線検出装置
JP2020177802A (ja) * 2019-04-18 2020-10-29 三菱電機株式会社 誘導加熱調理器
JP7316830B2 (ja) 2019-04-18 2023-07-28 三菱電機株式会社 誘導加熱調理器

Similar Documents

Publication Publication Date Title
JP2013251254A (ja) 加熱調理器
JP5247914B1 (ja) 加熱調理器
JP6117720B2 (ja) 誘導加熱調理器
US8581159B2 (en) Control method for a cooktop and cooktop for carrying out said method
EP1711037A1 (en) Induction cooking heater
JP5185454B1 (ja) 加熱調理器
JP5286144B2 (ja) 誘導加熱調理器
JP5315089B2 (ja) 誘導加熱調理器
JP2009295457A (ja) 誘導加熱調理器
JP5619229B2 (ja) 加熱調理器
JP5653546B1 (ja) センサケース構造、及びそのセンサケース構造を備えた加熱調理器
JP5791682B2 (ja) 加熱調理器
JP5523606B2 (ja) 加熱調理器
JP2009004141A (ja) 多口加熱調理器
JP6037854B2 (ja) コンロ、コンロの運転方法、コンロで使用する加熱用容器の材料の推定方法及び加熱用容器の材料の推定方法
JP5209399B2 (ja) 誘導加熱調理器
JP5241575B2 (ja) 誘導加熱調理器
JP4443947B2 (ja) 誘導加熱調理器
JP5209383B2 (ja) 誘導加熱調理器
JP4811099B2 (ja) 加熱調理器
JP2016091868A (ja) 誘導加熱調理器
JP5328968B1 (ja) 加熱調理器
JP5859085B2 (ja) センサケース構造、及びそのセンサケース構造を備えた加熱調理器
JP5492690B2 (ja) 誘導加熱調理器
JP6640648B2 (ja) 誘導加熱調理器

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520