JP2012078160A - 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置 - Google Patents

赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置 Download PDF

Info

Publication number
JP2012078160A
JP2012078160A JP2010222256A JP2010222256A JP2012078160A JP 2012078160 A JP2012078160 A JP 2012078160A JP 2010222256 A JP2010222256 A JP 2010222256A JP 2010222256 A JP2010222256 A JP 2010222256A JP 2012078160 A JP2012078160 A JP 2012078160A
Authority
JP
Japan
Prior art keywords
temperature
infrared sensor
correction
sensor signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010222256A
Other languages
English (en)
Inventor
Keisuke Yamaoka
慶祐 山岡
Shuichi Nagano
修一 長野
Tetsuya Saito
徹也 齋藤
Takako Kawasaki
誉子 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2010222256A priority Critical patent/JP2012078160A/ja
Publication of JP2012078160A publication Critical patent/JP2012078160A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】赤外線センサ信号の環境温度に対する変化を補正して、高精度に測定温度を定量することが可能な赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置を提供すること。
【解決手段】赤外線センサ装置から得られる赤外線センサ信号に、環境温度TAMBに基づいたオフセット補正量を加算又は減算する第1補正工程を有し、オフセット補正量がTAMBの3次及び/又は2次の項を含む関数で表される。また、第1補正工程の後に、環境温度TAMBに基づいた補正係数Bを乗算する第2補正工程を有する。
【選択図】図1

Description

本発明は、赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置に関し、より詳細には、主としてフォトダイオードやサーモパイルなどの赤外線センサから得られる赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置に関する。
近年、省エネルギー化や環境センサの観点から、赤外線センサが注目されている。人体が発する赤外線を検知する人感センサは、照明やエアコンなどに搭載され、省エネルギー化に貢献している。また、赤外線センサは、測定対象物から入射する赤外線のエネルギー量を定量し、温度を検出する、非接触式温度計としても期待されている。
赤外線センサは、その動作原理から熱型センサと量子型センサに分けられる。熱型センサは、赤外線エネルギーを吸収面で熱エネルギーに変換して、その温度上昇を電気信号として検出する。したがって、対象物温度をTOBJ[K]、センサの置かれた環境温度をTAMB[K]とすると、ステファン−ボルツマンの4乗則に基づいて、出力信号は(TOBJ 4−TAMB 4)に比例することが知られている。
また、赤外線センサ装置を用いて赤外線エネルギー量から測定温度を定量する場合、赤外線センサ装置から得られる信号を測定時の赤外線センサ装置周囲の環境温度に応じて補正する種々の温度補正を含む温度算出方法が知られている。
例えば、特許文献1には、赤外線センサとして熱型センサの一つであるサーモパイルを用いた温度測定装置(特許文献1においては「非接触型温度検出器」と称される)の温度算出方法が開示されている。この温度算出方法では、まず、サーモパイルの冷接点部材に設けたサーミスタ出力電圧VNTC[V]から環境温度TAMB[K]を算出する。次いで、環境温度TAMBに基づいて補正係数αを算出する。そして、環境温度TAMBと補正係数αとサーモパイル出力電圧VOUT[V]とから、下記式(1)に基づき、対象物温度TOBJ[K]を算出する。
Figure 2012078160
ここで、VREFは、赤外線温度検出器回路の基準電圧である。また、補正係数αは下記式(2)のように表される。
Figure 2012078160
また、特許文献2には、サーモパイルの出力が環境温度変化に対して一定になるように、出力ゲインの設定と、環境温度変化による出力オフセットに対して逆特性を出力する補正出力手段とを有する温度測定装置(特許文献2においては「非接触温度検知装置」と称される)が開示されている。この温度検知装置は、アナログ回路で構成されており、サーモパイル出力に対して式(1)のTAMB 4を相殺させるアナログ信号を加えて、環境温度変化にかかわらず対象物の温度に対して一定の出力が得られるような工夫がなされている。
以上のように、赤外線センサとして赤外線エネルギーを熱エネルギーに変換して検出する熱型センサを利用した温度測定装置においては、環境温度変化による出力オフセットが環境温度TAMBの4乗に比例することを利用した温度補正を行うことで、対象物温度が求められる。
特開2002−228523号公報 特開2003−042849号公報
しかしながら、フォトダイオードなどの量子型センサを温度検出に用いる場合、その感度が波長毎に異なり、出力信号が(TOBJ 4−TAMB 4)に比例しないため、熱型センサと同様のTAMBの4乗に比例した出力オフセット補正を適用すると、正確な温度補正ができず、赤外線エネルギー量から測定温度を高精度で定量することが困難であるという問題があった。
また、上述した特許文献1,2に記載されている熱型センサの補正方法であっても、測定対象物の温度と環境温度との差が大きい場合は、測定対象物の温度と出力温度との差が無視できない程度に大きなものになるという問題もあった。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、赤外線センサ装置からの赤外線センサ信号の環境温度に対する変化を補正して、この赤外線センサ信号から高精度に測定温度を定量することが可能な赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置を提供することにある。
本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、赤外線センサ装置からの赤外線センサ信号の環境温度に対する変化を補正して測定温度を定量するようにした赤外線センサ信号の補正方法において、前記赤外線センサ装置から得られる赤外線センサ信号に、該赤外線センサ装置の環境温度に基づいたオフセット補正量を加算又は減算する第1補正工程を有し、前記オフセット補正量が、前記環境温度の3次及び/又は2次の項を含む関数で表されることを特徴とする。
また、請求項2に記載の発明は、請求項1に記載の発明において、前記第1補正工程の前又は後に、前記環境温度に基づいた補正係数を乗算する第2補正工程を更に有することを特徴とする。
また、請求項3に記載の発明は、赤外線センサ装置からの赤外線センサ信号の環境温度に対する変化を補正して測定温度を定量するようにした温度測定方法において、前記赤外線センサ装置から赤外線センサ信号を得る工程と、請求項1又は2に記載の赤外線センサ信号の補正方法による温度補正工程と、該温度補正工程を経た後の信号から測定温度を導出する温度換算工程とを有することを特徴とする。
また、請求項4に記載の発明は、赤外線センサ装置からの赤外線センサ信号の環境温度に対する変化を補正して測定温度を定量するようにした温度測定装置において、前記赤外線センサ装置の温度と、該赤外線センサ装置の環境温度を測定する温度測定手段と、前記環境温度に基づくオフセット補正量を算出し、前記赤外線センサ装置から得られる赤外線センサ信号に加算又は減算するオフセット補正手段とを備え、前記オフセット補正量が、前記環境温度の3次及び/又は2次の項を含む関数で表されることを特徴とする。
また、請求項5に記載の発明は、請求項4に記載の発明において、前記環境温度に基づく補正係数を算出し、該補正係数を前記赤外線センサ装置から得られる赤外線センサ信号に乗算するゲイン補正手段を更に備えていることを特徴とする。
本発明によれば、環境温度に基づいたオフセット補正量を加算又は減算する補正工程を有するので、赤外線センサ装置の出力の環境温度による変化を補正し、赤外線センサ信号から高精度に測定温度を定量することが可能な赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置を提供することが可能となる。
本発明の実施形態1に係る赤外線センサ信号の補正方法及び温度測定方法を説明するための工程図である。 本発明の実施形態2に係る赤外線センサ信号の補正方法及び温度測定方法を説明するための工程図である。 本発明の実施形態3に係る赤外線センサ信号の補正方法及び温度測定方法を説明するための工程図である。 本発明の実施形態4に係る赤外線センサ信号の補正方法及び温度測定方法を説明するための工程図である。 本発明の実施形態5に係る温度測定装置を説明するための構成図である。 実施例1における赤外線センサ信号を示す図である。 実施例1における第1補正信号を示す図である。 実施例2における第2補正信号を示す図である。 比較例1における測定対象物温度TOBJ 4を示す図である。 実施例1における赤外線センサ信号を示す図である。 実施例1における第2補正信号を示す図である。 比較例2におけるTOBJ 4を示す図である。
以下、図面を参照して本発明の各実施形態について説明する。
図1は、本発明の実施形態1に係る赤外線センサ信号の補正方法及び温度測定方法を説明するための工程図である。図中符号1は赤外線センサ装置、2は赤外線センサ部、3は温度センサ、4は視野角制限体、5はプリント基板、10は測定対象物を示している。
図1に示すように、赤外線センサ装置1は、プリント基板5上に実装された赤外線センサ部2と温度センサ3と視野角制限体4とを備えている。本実施形態1において、赤外線センサ部2は、多層の半導体膜を有するフォトダイオードであり、測定対象物10から放射される赤外線を吸収し、赤外線センサ信号SIRを出力する。
赤外線センサ部2は、赤外線を吸収して電気信号に変換するセンサであれば特に制限されず、例えば、フォトダイオードやフォトコンダクタなど、光電変換によって信号を出力する「量子型センサ」や、サーモパイルや焦電型センサなど、赤外線吸収による温度変化を電気信号に変換する「熱型センサ」を用いることができる。
また、温度センサ3は、赤外線センサ部2の環境温度TAMBを測定することが可能なものであれば特に制限されず、例えば、温度に応じて抵抗値が変化する白金抵抗体,サーミスタ,バンドギャップ回路を有する温度センサなどを用いることができる。また、視野角制限体4は、赤外線センサ装置1の視野角を制限し、視野角θを決める部材である。
つまり、本発明の赤外線センサ信号の補正方法は、赤外線センサ装置から出力される赤外線センサ信号SIRから測定温度を高精度に定量するようにした赤外線センサ信号の補正方法である。赤外線センサ装置1から得られる赤外線センサ信号に、環境温度TAMBに基づいたオフセット補正量Aを加算又は減算する第1補正工程を有している。このオフセット補正量Aは、TAMBの3次及び/又は2次の項を含む関数で表される。また、第1補正工程の後に、環境温度TAMBに基づいた補正係数Bを乗算する第2補正工程を有している。
以下、上述した各工程について更に詳細に説明する。
赤外線センサ装置1は、温度TOBJの測定対象物10から放射される赤外線が、赤外線センサ部2に到達すると、その赤外線エネルギー量に対応した赤外線センサ信号SIRを電流値として出力するものである。
まず、第1補正工程において、この赤外線センサ信号SIRに対して環境温度TAMBより求まるオフセット補正量Aを加算又は減算する第1補正工程を適用すると、第1補正信号S1が得られる。
このオフセット補正量Aとは、赤外線センサ装置の赤外線センサ部の種類と環境温度TAMBの関数により定まる補正量であり、赤外線センサ信号SIRに対して加算又は減算される。
オフセット補正量Aは、環境温度TAMBの3次及び/又は2次の項を含む関数である。例えば、下記式(3)に示すような、環境温度TAMBのn次の関数で表され、3次の項の係数が0で無い(a3≠0)及び/又は2次の項の係数が0で無い(a2≠0)ことを特徴とする。
Figure 2012078160
この補正方法をプログラミングしてマイコンなどで計算処理する場合、高次の関数を用いると計算処理には時間がかかってしまい、効率的に動作させることが難しいという観点から、なるべく低次の関数であることが好ましい。例えば、243K≦TAMB≦333Kであれば、3次関数を用いることが、温度補正の精度を高める観点からより好ましい。
オフセット補正量Aは、例えば、一定温度の測定対象物を複数の異なる環境温度で測定したときの赤外線センサ信号を得て、横軸に環境温度TAMB、縦軸に赤外線センサ信号をプロッティングし、環境温度TAMBの関数でフィッティングすることで得られる関数によって、各環境温度におけるオフセット補正量Aを定めることが可能である。一定温度の測定対象物としては、特に制限されないが、正確な温度制御が可能な黒体炉が好適に用いられる。
次に、第1補正信号S1に対して、環境温度TAMBより求まる補正係数Bを乗算する第2補正工程を適用すると、環境温度TAMBに対して略一定の第2補正信号S2が得られる。また、補正係数Bは、単位を持たない係数であり、第1補正信号S1に対してオフセット補正量Aが加算又は減算された後の信号に対して乗算される。
また、補正係数Bは、測定対象物温度と第2補正信号S2の関係における環境温度に対する誤差が小さくなるようなものを赤外線センサ装置の様態に応じて適宜定めればよく、例えば、第1の一定温度TOBJ1の測定対象物を複数の異なる環境温度で測定したときの赤外線センサ信号SIRC1と、第2の一定温度TOBJ2の測定対象物を複数の異なる環境温度で測定したときの赤外線センサ信号SIRC2と、を求めた後に、下記式(4)によって求まる、赤外線センサ信号と測定対象物温度との傾きβを各環境温度に対して算出して、この傾きβを所定の値にするための係数を、補正係数Bとして採用することが出来るが、本実施形態はこれに制限されない。
Figure 2012078160
以上が、本発明の赤外線センサ信号の補正方法についての説明である。なお、赤外線センサ装置における赤外線センサとしては、量子型センサ又は熱型センサを用いるのが好ましい。赤外線センサが量子型センサの場合には、記第1補正工程を有し、赤外線センサが熱型センサの場合には、記第1補正工程と第2補正工程を有することが高精度に測定温度を定量する観点から好ましい。
次に、本発明の温度測定方法について説明する。この温度測定方法は、上述した第1補正工程及び第2補正工程を経た後に温度換算工程を有するものである。この温度換算工程では、第2補正信号S2に対して出力温度TOUTが得られる。
このように、本発明者らは、上述した従来の課題を解決するために鋭意検討した結果、赤外線センサ装置から得られる赤外線センサ信号SIRに、環境温度TAMBに基づいたオフセット補正量Aを加算又は減算する第1補正工程を含み、オフセット補正量Aが環境温度TAMBの3次及び/又は2次の項を含む関数で表される、赤外線センサ信号の補正方法及び温度測定方法を確立した。
図2は、本発明の実施形態2に係る赤外線センサ信号の補正方法及び温度測定方法を説明するための工程図である。図中符号6は窓材を示している。なお、図1と同じ機能を有する構成要素には同一の符号を付してある。
図2に示すように、赤外線センサ装置は、視野角制限体4の開口部を覆う窓材6を備えた構造であっても良い。この窓材6は、少なくとも赤外線センサ部2が受光したときに赤外線センサ信号を出力する波長の赤外線を透過するものであれば特に制限されず、例えば、Si板,Ge板,サファイア板,ポリエチレン板,カルコゲナイドガラス板などの板材,又はSi,Ge,サファイアなどの基板上に薄膜を積層した光学フィルタなどが挙げられる。また、赤外線を集光する光学レンズも用いることが可能である。なお、第1補正工程、第2補正工程及び温度換算工程については、図1に示した実施形態1と同様である。
図3は、本発明の実施形態3に係る赤外線センサ信号の補正方法及び温度測定方法を説明するための工程図である。図中符号11は赤外線センサ部を示している。なお、図1と同じ機能を有する構成要素には同一の符号を付してある。また、第1補正工程、第2補正工程及び温度換算工程については、図1に示した実施形態1と同様である。
図3に示す赤外線センサ装置は、赤外線センサ部11が環境温度TAMBを測定する温度センサとしても機能するもので、赤外線センサ部11から赤外線センサ信号SIRと環境温度TAMBが得られる構成になっている。
つまり、実施形態3の赤外線センサ装置は、赤外線センサ信号SIRと環境温度TAMBとが得られる構成であれば制限されず、視野角制限体及び/又は窓材を更に有する構成であってもよい。なお、第1補正工程、第2補正工程及び温度換算工程については、図1に示した実施形態1と同様である。
図4は、本発明の実施形態4に係る赤外線センサ信号の補正方法及び温度測定方法を説明するための工程図である。図4に示すように、第2補正工程を行った後で、第1補正工程を行うことも可能であり、第1補正工程と第2補正工程を行う順序は、特に制限されない。
図5は、本発明の実施形態5に係る温度測定装置を説明するための構成図である。図中符号12は温度測定装置、13はオフセット補正部、14はゲイン補正部、15は温度換算部を示している。なお、図1と同じ機能を有する構成要素には同一の符号を付してある。
図5に示すように、赤外線センサ装置1は、プリント基板5上に実装された赤外線センサ部2と、環境温度TAMBを測定する温度センサ3と、視野角制限体4と、窓材6とからなっている。また、温度測定装置12は、赤外線センサ装置1と、オフセット補正部13と、ゲイン補正部14と、温度換算部15とを備えている。
オフセット補正部13は、環境温度を測定する温度センサ3による環境温度TAMBに基づいて求まるオフセット補正量Aを算出し、加算又は減算するものである。また、ゲイン補正部14は、環境温度を測定する温度センサ3による環境温度TAMBに基づいて求まる補正係数Bを算出し、乗算するものである。また、温度換算部16は、補正後の信号を出力温度TOUTに換算するものである。
つまり、本発明の温度測定装置12は、赤外線センサ装置から出力される赤外線センサ信号SIRから測定温度を高精度に定量するようにした温度測定装置であり、環境温度TAMBを測定する温度センサ3と、環境温度TAMBに基づくオフセット補正量Aを算出し、赤外線センサ装置から得られる信号に加算又は減算するオフセット補正部13を備えている。このように、オフセット補正部13を有する温度測定装置によれば、測定時の環境温度の影響が低減された第1補正信号を得ることが可能になる。
また、環境温度TAMBに基づく補正係数Bを算出し、赤外線センサ装置から得られる信号に乗算するゲイン補正部14を備えている。このように、ゲイン補正部14を更に有する温度測定装置によれば、測定時の環境温度の影響がより低減された第2補正信号を得ることが可能になる。
以下、具体的な各実施例と比較例を挙げて本発明について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
本実施例1は、上述した第1補正工程のみを適用した場合を示している。図1に示した赤外線センサ装置1より赤外線センサ信号SIRを得て、この赤外線センサ信号SIRに第1補正工程としてオフセット補正量Aを減算して得られる第1補正信号S1を得た。この第1補正信号S1に基づいて、温度換算工程をすることによって測定対象物の温度を定量した(すなわち、図1における第2補正工程は省略した)。ここで、赤外線センサ部2には量子型センサであるフォトダイオードを用いた。
<測定条件>
赤外線センサ装置1として、赤外線センサ部に、砒化ガリウム(GaAs)基板上に、n型インジウムアンチモン(InSb)層と、p型InSb層と、前記n型InSb層と前記p型InSb層との間に光吸収層であるi型InSb層と、前記p型InSb層と前記i型InSb層との間に生成したキャリアのリークを防ぐためのバリア層であるp型アルミニウムインジウムアンチモン(AlInSb)層と、を積層したPIN構造を有する、フォトダイオードを用いて、視野角θが120°となるような視野角制限体を有する、赤外線センサ装置を用意した。
<赤外線センサ信号SIR
図6は、実施例1における赤外線センサ信号を示す図である。赤外線センサ装置1を用いて、273〜373Kに設定された黒体炉(放射率:0.97)を対象物として(TOBJ=273〜373K)、この黒体炉と赤外線センサ装置との距離を2.5cmとして、黒体炉から放射される赤外線を、環境温度253,293,333Kにおいて検知した際の赤外線センサ信号SIRとして、光電流を示している。なお、黒体炉表面は10cm角の正方形であり、黒体炉表面が赤外線センサ装置1の視野全体に広がった状態で測定を実施した。
図6に示すように、赤外線センサ信号SIRは、環境温度TAMBに対して一定ではなく、環境温度TAMBが高いほど同じ測定対象物温度であっても赤外線センサ信号SIRが小さくなっている。
<第1補正工程>
図7は、実施例1における第1補正信号を示す図で、赤外線センサ信号SIRに、第1補正工程を適用した場合の第1補正信号S1を示している。ここで、第1補正工程として、オフセット補正量Aの減算を行った。なお、オフセット補正量Aとしては、赤外線センサ装置1を用いて、303Kに設定された黒体炉(放射率:0.97)を対象物として(TOBJ=303K)、黒体炉から放射される赤外線を、243〜333Kの環境温度TAMBで測定したときに得られる赤外線センサ信号SIRAを用いて、赤外線センサ信号SIRAの環境温度TAMB依存性のプロットに対して3次関数でのフィッティングを行うことで、下記式(5)で表される関数を導出し、オフセット補正量Aとして用いた。
Figure 2012078160
<温度換算工程>
表1は、図7に示した赤外線センサ装置より得られた第1補正信号S1に基づいて温度換算工程を行うことにより得られた出力温度TOUTを示している。
温度換算工程においてTOUTを算出するのには、S1≦5(nA)においては下記式(6)で、S1>5(nA)においては下記式(7)で表される関係式を用いた。
Figure 2012078160
Figure 2012078160
表1に示すように、本発明の第1補正工程を適用することによって、赤外線センサ装置が受光した赤外線エネルギー量から定量される出力温度TOUTと実際の測定対象物の温度との差が小さくなり、測定対象物温度293〜353Kにおいて、最大7K未満の差異に収めることが可能となっている。
本実施例2は、第1及び第2補正工程を適用した例を示している。上述した実施例1においては、第1補正信号S1に第2補正工程を適用して第2補正信号S2を得た後に、第2補正信号S2に基づいて温度換算工程を行うことにより出力温度TOUTを得た以外は実施例1と同様の条件とした。
<第2補正工程>
図8は、実施例2における第2補正信号を示す図で、第1補正信号S1に第2補正工程を適用した場合の第2補正信号S2を示している。ここで、第2補正工程として補正係数Bの乗算を行った。図8に示すように、第1補正工程と第2補正工程を適用することで、環境温度に対して略一定の信号S2が得られたことが理解される。
なお、補正係数Bとしては、赤外線センサ装置1を用いて、303Kに設定された黒体炉(放射率:0.97)を対象物として(TOBJ=303K)、黒体炉から放射される赤外線を、243〜333Kの環境温度TAMBで測定したときに得られる赤外線センサ信号SIRB1と、323Kに設定された黒体炉を対象物として(TOBJ=323K)、黒体炉から放射される赤外線を、243〜333Kの環境温度TAMBで測定したときに得られる赤外線センサ信号SIRB2と、を用いて、赤外線センサ信号SIRB1と赤外線センサ信号SIRB2との差を黒体炉温度の差で割った、赤外線センサ信号と測定対象物温度との傾きβ=(SIRB2−SIRB1)/(323−303)を、0.2351にするための係数γを用いて、この係数γの環境温度TAMB依存性のプロットに対して二次関数でフィッティングを行うことで、下記式(8)で表される関数を導出し、補正係数Bとして用いた。
Figure 2012078160
<温度換算工程>
表2は、図8に示した赤外線センサ装置より得られた第2補正信号S2に基づいて温度換算工程を行うことにより得られた出力温度TOUTを示している。
温度換算工程において出力温度TOUTを算出するのには、S2≦5(nA)においては、下記式(9)で、S2>5(nA)においては下記式(10)で表される関係式を用いた。
Figure 2012078160
Figure 2012078160
表2に示すように、本発明の第1補正工程及び第2補正工程を適用することによって、赤外線センサ装置が受光した赤外線エネルギー量から定量される出力温度TOUTと実際の測定対象物の温度との差が小さくなり、測定対象物温度293〜353Kにおいて、最大1K未満の差異に収めることが可能となっている。
[比較例1]
比較例1は、従来の補正方法を適用した例を示している。上述した実施例1の赤外線センサ信号SIRに対して、式(1)、VOUT=α・(TOBJ 4−TAMB 4)+VREF、に基づいて下記手順に沿って対象物温度を求めた。
<温度補正工程>
式(1)を変形すると下記式(11)が得られる。
Figure 2012078160
図9は、比較例1における測定対象物温度TOBJ 4を示す図で、式(11)に基づいて得た、測定対象物温度TOBJ 4を示している。
図9に示すように、測定対象物温度TOBJ 4は環境温度TAMBに対して変化していることが理解される。ここで、VREF=0として、赤外線センサ信号SIR(光電流)をVOUTに代入した。また、補正係数αは、各環境温度283,293,303Kにおける、対象物温度283,293,303,313,323KでのVOUT(赤外線センサ信号SIR)から、それぞれαの値を求め、その平均値αAVEを採用し、αAVEの環境温度に対するプロットを2次関数でフィッティングすることにより得られる、下記式(12)を用いて算出した。
Figure 2012078160
<温度換算工程>
表3は、図9に示したTOBJ 4に基づいて温度換算工程を行うことにより得られた出力温度TOUT’を示している。温度換算工程において出力温度TOUT’は、測定対象物温度TOBJ 4の4乗根を取ることで求めた。
Figure 2012078160
表3に示すように、背景技術の式(1)に基づく温度補正工程と温度換算工程を用いた場合、赤外線センサ装置が受光した赤外線エネルギー量から定量される出力温度TOUT’と実際の測定対象物の温度との差が表1に示した実施例1,2と比較して大きくなってしまい、測定対象物温度293〜353Kにおいて、最大23.7Kの差異が生じてしまっていることが理解される。
本実施例3は、熱型センサに本発明の補正方法を適用した例を示している。図1において赤外線センサ部2に熱型センサのサーモパイルを用いた、赤外線センサ装置1より赤外線センサ信号SIRを得て、この赤外線センサ信号SIRに第1補正工程としてオフセット補正量Aを減算して得られる第1補正信号S1を得た。さらに、第1補正信号S1に対して第2補正工程として補正係数Bを乗算して得て、この第2補正信号S2に基づいて、温度換算工程をすることによって測定対象物の温度を定量した。
<測定条件>
赤外線センサ装置1として、赤外線センサ部に、5μmよりも短波長の赤外線をカットするフィルタと、視野角制限体と同等の効果を有し、視野角θが100°で感度が50%になるように設けられたカンパッケージと、を備えたサーモパイルを用いて、赤外線センサ装置を用意した。
<赤外線センサ信号SIR
図10は、実施例1における赤外線センサ信号を示す図である。赤外線センサ装置1を用いて、273〜373Kに設定された黒体炉(放射率:0.97)を対象物として(TOBJ=273〜373K)、この黒体炉と赤外線センサ装置との距離を2.5cmとして、黒体炉から放射される赤外線を、環境温度243〜333Kにおいて検知した際の赤外線センサ信号SIRとして、出力電圧を示している。なお、黒体炉表面は10cm角の正方形であり、黒体炉表面が前記赤外線センサ装置1の視野全体に広がった状態で測定を実施した。
<温度補正工程>
図11は、実施例1における第2補正信号を示す図で、赤外線センサ信号SIRに、第1補正工程を適用した後に、さらに、第2補正工程を適用した場合の第2補正信号S2を示している。図11に示すように、第1補正工程と第2補正工程を適用することで、環境温度に対して略一定の信号S2が得られたことが理解される。
ここで、第1補正工程として、オフセット補正量Aの減算を行った。なお、オフセット補正量Aとしては、赤外線センサ装置1を用いて、303Kに設定された黒体炉(放射率:0.97)を対象物として(TOBJ=303K)、黒体炉から放射される赤外線を、243〜333Kの環境温度TAMBで測定したときに得られる赤外線センサ信号SIRAを用いて、赤外線センサ信号SIRAの環境温度TAMB依存性のプロットに対して3次関数でのフィッティングを行うことで、下記式(13)で表される関数を導出し、オフセット補正量Aとして用いた。
Figure 2012078160
また、補正係数Bとしては、赤外線センサ装置1を用いて、303Kに設定された黒体炉(放射率:0.97)を対象物として(TOBJ=303K)、黒体炉から放射される赤外線を、243〜333Kの環境温度TAMBで測定したときに得られる赤外線センサ信号SIRB1と、323Kに設定された黒体炉を対象物として(TOBJ=323K)、黒体炉から放射される赤外線を、243〜333Kの環境温度TAMBで測定したときに得られる赤外線センサ信号SIRB2と、を用いて、赤外線センサ信号SIRB1と赤外線センサ信号SIRB2との差を黒体炉温度の差で割った、赤外線センサ信号と測定対象物温度との傾きβ=(SIRB2−SIRB1)/(323−303)を、0.00008656にするための係数γを用いて、この係数γの環境温度TAMB依存性のプロットに対して三次関数でフィッティングを行うことで、下記式(14)で表される関数を導出し、補正係数Bとして用いた。
Figure 2012078160
<温度換算工程>
表4は、図11に示した赤外線センサ装置より得られた第2補正信号S2に基づいて温度換算工程を行うことにより得られた出力温度TOUTを示している。
温度換算工程において出力温度TOUTを算出するのには、下記式(15)で表される関係式を用いた。
Figure 2012078160
Figure 2012078160
表4に示すように、本発明の第1補正工程および第2補正工程を適用することによって、サーモパイルを用いた赤外線センサ装置においても、出力温度TOUTと実際の測定対象物の温度との差が小さく、測定対象物温度293〜353Kにおいて、最大1K未満の差異に収めることが可能となっている。
[比較例2]
比較例2は、熱型センサに従来の補正方法を適用した例を示している。上述した実施例2の赤外線センサ信号SIRに対して、式(1)、VOUT=α・(TOBJ 4−TAMB 4)+VREF、に基づいて下記手順に沿って対象物温度を求めた。
<温度補正工程>
式(1)を変形すると下記式(16)が得られる。
Figure 2012078160
図12は、比較例2におけるTOBJ 4を示す図で、式(16)に基づいて得た測定対象物温度TOBJ 4を示している。
図12に示すように、測定対象物温度TOBJ 4は、環境温度TAMBに対して変化していることが理解される。ここで、VREF=0として、センサ出力をVOUTに代入した。また、補正係数αは、各環境温度283,293,303Kにおける、対象物温度283,293,303,313,323KでのVOUTから、それぞれαの値を求め、その平均値αAVEを採用し、αAVEの環境温度に対するプロットを2次関数でフィッティングすることにより得られる、下記式(17)を用いて算出した。
Figure 2012078160
<温度換算工程>
表5は、図12に示した測定対象物温度TOBJ 4に基づいて温度換算工程を行うことにより得られた出力温度TOUT’を示している。温度換算工程において、TOUT’は、TOBJ 4の4乗根を取ることで求めた。
Figure 2012078160
表5に示すように、式(1)に基づく温度補正工程と温度換算工程を用いた場合、赤外線センサ装置が受光した赤外線エネルギー量から定量される出力温度TOUT’と実際の測定対象物の温度との差が表1に示した実施例1と比較して大きくなってしまい、測定対象物温度293〜353Kにおいて、最大3.1Kの差異が生じてしまっていることが理解される。
上述した実施例1,2と比較例1に示すように、赤外線センサとして量子型センサであるフォトダイオードを用いた場合、従来の補正方法では測定対象物温度293〜353Kにおいて測定誤差が最大で23.7Kと極めて大きくなるのに対し、本発明の補正方法を適用した場合は、測定対象物温度293〜353Kにおいて測定誤差が極めて少なく、赤外線センサ信号から高精度に測定温度を定量することが可能であることが理解される。
また、第1補正工程のみを適用した実施例1よりも、第1補正工程の後に第2補正工程を適用した実施例2の方がより高精度に測定温度を定量することが可能であることが理解される。
また、実施例3と比較例2に示すように、赤外線センサとして熱型センサを用いた場合、従来の補正方法を適用した場合よりも、本発明の補正方法を適用した場合の方が、より高精度に測定温度を定領することが可能であることが理解される。従来より、熱型センサにおいては、ステファン−ボルツマンの4乗則に基づいて前記式(1)(2)に基づいた補正を行うことが最適であると考えられていたが、本発明の補正方法の方がより高精度に測定温度を得ることが可能であったことは驚くべきことであった。
本発明は、主としてフォトダイオードやサーモパイルなどの赤外線センサから得られる赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置に関し、赤外線センサ装置からの赤外線センサ信号の環境温度に対する変化を補正して、この赤外線センサ信号から高精度に測定温度を定量することが可能な赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置を提供することができる。
1 赤外線センサ装置
2 赤外線センサ部
3 温度センサ
4 視野角制限体
5 プリント基板
6 窓材
10 測定対象物
11 環境温度の測定機構を有する赤外線センサ部
12 温度測定装置
13 オフセット補正部
14 ゲイン補正部
15 温度換算部

Claims (5)

  1. 赤外線センサ装置からの赤外線センサ信号の環境温度に対する変化を補正して測定温度を定量するようにした赤外線センサ信号の補正方法において、
    前記赤外線センサ装置から得られる赤外線センサ信号に、該赤外線センサ装置の環境温度に基づいたオフセット補正量を加算又は減算する第1補正工程を有し、
    前記オフセット補正量が、前記環境温度の3次及び/又は2次の項を含む関数で表されることを特徴とする赤外線センサ信号の補正方法。
  2. 前記第1補正工程の前又は後に、前記環境温度に基づいた補正係数を乗算する第2補正工程を更に有することを特徴とする請求項1に記載の赤外線センサ信号の補正方法。
  3. 赤外線センサ装置からの赤外線センサ信号の環境温度に対する変化を補正して測定温度を定量するようにした温度測定方法において、
    前記赤外線センサ装置から赤外線センサ信号を得る工程と、
    請求項1又は2に記載の赤外線センサ信号の補正方法による温度補正工程と、
    該温度補正工程を経た後の信号から測定温度を導出する温度換算工程と
    を有することを特徴とする温度測定方法。
  4. 赤外線センサ装置からの赤外線センサ信号の環境温度に対する変化を補正して測定温度を定量するようにした温度測定装置において、
    前記赤外線センサ装置の温度と、該赤外線センサ装置の環境温度を測定する温度測定手段と、
    前記環境温度に基づくオフセット補正量を算出し、前記赤外線センサ装置から得られる赤外線センサ信号に加算又は減算するオフセット補正手段とを備え、
    前記オフセット補正量が、前記環境温度の3次及び/又は2次の項を含む関数で表されることを特徴とする温度測定装置。
  5. 前記環境温度に基づく補正係数を算出し、該補正係数を前記赤外線センサ装置から得られる赤外線センサ信号に乗算するゲイン補正手段を更に備えていることを特徴とする請求項4に記載の温度測定装置。
JP2010222256A 2010-09-30 2010-09-30 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置 Pending JP2012078160A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010222256A JP2012078160A (ja) 2010-09-30 2010-09-30 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222256A JP2012078160A (ja) 2010-09-30 2010-09-30 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置

Publications (1)

Publication Number Publication Date
JP2012078160A true JP2012078160A (ja) 2012-04-19

Family

ID=46238584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222256A Pending JP2012078160A (ja) 2010-09-30 2010-09-30 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置

Country Status (1)

Country Link
JP (1) JP2012078160A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535083A (ja) * 2012-11-19 2015-12-07 カズ ヨーロッパ エスエー 距離検知および補償を用いる非接触医療用温度計
JP2016188816A (ja) * 2015-03-30 2016-11-04 旭化成エレクトロニクス株式会社 光デバイス及び光デバイスの測定方法
US10641660B2 (en) 2014-05-30 2020-05-05 Panasonic Corporation Temperature sensor, device using same, and temperature measurement method
WO2021215171A1 (ja) * 2020-04-20 2021-10-28 ナブテスコ株式会社 自動ドア装置、自動ドア装置用赤外線センサの状態監視方法、自動ドア装置用赤外線センサシステム及び自動ドア装置用赤外線センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502099A (ja) * 1990-12-12 1994-03-10 シャーウッド・アイエムエス・インコーポレイテッド キャリブレーションマッピングを利用した赤外線体温計
JP2002228523A (ja) * 2001-02-05 2002-08-14 Nippon Ceramic Co Ltd 非接触型温度検出器の温度算出方法
JP2002538425A (ja) * 1999-02-23 2002-11-12 パ−キンエルマー オプトエレクトロニクス ゲーエムベーハー 信号処理を一体化したセンサモジュール
JP2012078159A (ja) * 2010-09-30 2012-04-19 Asahi Kasei Electronics Co Ltd 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502099A (ja) * 1990-12-12 1994-03-10 シャーウッド・アイエムエス・インコーポレイテッド キャリブレーションマッピングを利用した赤外線体温計
JP2002538425A (ja) * 1999-02-23 2002-11-12 パ−キンエルマー オプトエレクトロニクス ゲーエムベーハー 信号処理を一体化したセンサモジュール
JP2002228523A (ja) * 2001-02-05 2002-08-14 Nippon Ceramic Co Ltd 非接触型温度検出器の温度算出方法
JP2012078159A (ja) * 2010-09-30 2012-04-19 Asahi Kasei Electronics Co Ltd 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535083A (ja) * 2012-11-19 2015-12-07 カズ ヨーロッパ エスエー 距離検知および補償を用いる非接触医療用温度計
KR20160016739A (ko) * 2012-11-19 2016-02-15 카즈 유럽 에스에이 거리 감지 및 보상을 갖는 비-접촉식 의료용 체온계
US10048134B2 (en) 2012-11-19 2018-08-14 Helen Of Troy Limited Non-contact medical thermometer with distance sensing and compensation
KR102113121B1 (ko) * 2012-11-19 2020-06-03 카즈 유럽 에스에이 거리 감지 및 보상을 갖는 비-접촉식 의료용 체온계
US10641660B2 (en) 2014-05-30 2020-05-05 Panasonic Corporation Temperature sensor, device using same, and temperature measurement method
JP2016188816A (ja) * 2015-03-30 2016-11-04 旭化成エレクトロニクス株式会社 光デバイス及び光デバイスの測定方法
WO2021215171A1 (ja) * 2020-04-20 2021-10-28 ナブテスコ株式会社 自動ドア装置、自動ドア装置用赤外線センサの状態監視方法、自動ドア装置用赤外線センサシステム及び自動ドア装置用赤外線センサ
JPWO2021215171A1 (ja) * 2020-04-20 2021-10-28

Similar Documents

Publication Publication Date Title
JP5702101B2 (ja) 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置
JP5542090B2 (ja) 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置
JP6393285B2 (ja) 放電を計測および検出するための装置、方法およびシステム
US10684168B2 (en) Infrared detection system
EP3137877B1 (en) Temperature compensation of gas sensors
WO2015182066A1 (ja) 温度センサおよび、それを用いた装置、および温度測定方法
US9846083B2 (en) Ambient temperature measurement sensor
CN106679817A (zh) 一种用于标定红外热像仪的方法
JP2012078160A (ja) 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置
Ulmer et al. Calibration corrections of solar tower flux density measurements
JP5755780B2 (ja) 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置
JP2017015568A (ja) ガスセンサ
KR20140122124A (ko) 적외선 열화상 카메라를 이용하여 측정된 반도체 소자 온도 분포의 보정 방법 및 이에 이용되는 시스템
JP5800336B2 (ja) 放射線測定方法及び放射線測定装置
JP5520238B2 (ja) 温度測定装置における補正データの取得方法およびこれを行う、温度測定方法、及び、温度測定装置。
JP2017108586A (ja) 太陽電池モジュール特性試験装置
US10677720B2 (en) Detector, correction method and calibration method of detector, detection apparatus and detection system
CN117288246B (zh) 一种基于热电子效应的多象限探测器校正检测方法及系统
WO2016148007A1 (ja) 物質検出装置
Lee et al. Characterization of non-uniformity and bias-heating for uncooled bolometer FPA detectors using simulator
KR100821307B1 (ko) 디텍터 암전류에 의한 보정오차 산출 방법 및 이를 이용한보정오차 최소화 방법
TW201346235A (zh) 溫度校正方法
JP2018179932A (ja) 赤外線撮影装置、赤外線撮影システム及び赤外線撮影方法
Romm et al. Empirical compensation of reciprocity failure and integration time nonlinearity in a mid-wave infrared camera
GB2478708A (en) Measuring the temperature of an object with an image sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105