WO2016148007A1 - 物質検出装置 - Google Patents

物質検出装置 Download PDF

Info

Publication number
WO2016148007A1
WO2016148007A1 PCT/JP2016/057548 JP2016057548W WO2016148007A1 WO 2016148007 A1 WO2016148007 A1 WO 2016148007A1 JP 2016057548 W JP2016057548 W JP 2016057548W WO 2016148007 A1 WO2016148007 A1 WO 2016148007A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
output
gas
conversion unit
temperature
Prior art date
Application number
PCT/JP2016/057548
Other languages
English (en)
French (fr)
Inventor
隆史 森本
小川 洋一
誠 神
康司 飯島
剛志 岩本
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016148007A1 publication Critical patent/WO2016148007A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the present invention relates to a substance detection device for detecting a substance present in a predetermined area.
  • the gas detection devices described in Patent Documents 1 and 2 include an infrared sensor and a plurality of optical filters.
  • One of the plurality of optical filters transmits the infrared region of the wavelength band including the gas absorption wavelength, and one transmits the infrared region of the wavelength band that does not include the gas absorption wavelength, that is, the landscape that the gas background emits.
  • sensors having the same or the same detection band are used. By obtaining the difference between the two detection signals when imaging is performed using two types of optical filters, the gas can be detected.
  • the conventional technology uses the same or the same detection band as the infrared sensor, the infrared ray emitted from the gas as the subject and the infrared ray emitted from the landscape as the background are each characterized. There was a problem that it was difficult to detect under the corresponding suitable conditions. This makes it difficult to improve the accuracy of gas distribution information.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a substance detection device that can obtain distribution information of a substance (analyte) such as a gas existing in a predetermined region with high accuracy.
  • the substance detection apparatus of the present invention has sensitivity to electromagnetic waves in the first wavelength band and emits electromagnetic waves emitted from the background of the region where the subject exists and electromagnetic waves emitted from the subject. Only the electromagnetic wave which has the sensitivity to the electromagnetic wave of the 2nd wavelength band different from the 1st wavelength band and the background radiates while having no sensitivity to the 1st detection part and the electromagnetic wave of the 1st wavelength band.
  • a second detection unit for detecting the first detection unit a first processing unit for data processing of the detection signal output by the first detection unit, a second processing unit for data processing of the detection signal output by the second detection unit,
  • a distribution information deriving unit for deriving distribution information of the subject in the region using the output signal of the one processing unit and the output signal of the second processing unit.
  • the subject and the background can be detected under suitable conditions corresponding to the respective characteristics. This makes it possible to obtain the distribution information of the subject in a predetermined region with high accuracy.
  • 1 is a schematic configuration diagram of a substance detection device according to a first embodiment of the present invention. It is a block diagram of the 1st imaging part of the substance detection apparatus which concerns on 1st Embodiment of this invention. It is a graph which shows the relationship between the infrared wavelength which concerns on the sensitivity characteristic of the 1st and 2nd imaging sensor of the substance detection apparatus which concerns on 1st Embodiment of this invention, and the infrared absorption factor of gas. It is a graph which shows the relationship between the infrared wavelength which concerns on the sensitivity characteristic of the 1st and 2nd imaging sensor of the substance detection apparatus which concerns on 1st Embodiment of this invention, and the infrared luminance of a landscape.
  • FIG. 1 is a schematic configuration diagram of a substance detection apparatus.
  • FIG. 2 is a configuration diagram of the first imaging unit of the substance detection device.
  • the substance detection device 1 is a gas detection device that is installed in a factory, for example, and detects a gas leak from a pipe in the factory.
  • the substance detection apparatus 1 includes a first imaging unit 10, a second imaging unit 20, a first output characteristic conversion unit 2, a second output characteristic conversion unit 3, a distribution information deriving unit 4, and a display unit 5. Prepare.
  • the first imaging unit 10 includes a lens 11, a first imaging sensor 12, a control unit 13, and an interface unit 14 as shown in FIG. Since the second imaging unit 20 has the same basic structure as the first imaging unit 10, the second imaging unit 20 includes a lens 21, a second imaging sensor 22, a control unit 23, and an interface unit 24 as in the first imaging unit 10. .
  • the first imaging unit 10 and the second imaging unit 20 are infrared cameras each having an infrared sensor as the first imaging sensor 12 and the second imaging sensor 22, and detect the presence of a gas as a subject from an image.
  • Gas detection uses the infrared absorption wavelength of the target gas.
  • infrared detection is performed in the infrared absorption wavelength band of gas, the amount of infrared radiation radiated by the landscape that is the background of the space (region) where the gas exists changes depending on the presence or absence of the gas. And if it detects infrared of the wavelength band which a landscape radiates, and obtains a difference, it will become possible to detect gas.
  • the control units 13 and 23 allow the lenses 11 and 21, the first image sensor 12, and the second image sensor so that gas and infrared rays radiated from the landscape can be appropriately incident on the first image sensor 12 or the second image sensor 22 and detected. 22 operations and the like are controlled.
  • the interface units 14 and 24 transmit detection signals output from the first imaging sensor 12 and the second imaging sensor 22 to the first output characteristic conversion unit 2 or the second output characteristic conversion unit 3.
  • the first output characteristic conversion unit 2 (first processing unit) is connected to the first imaging unit 10, performs data processing on the detection signal output from the first imaging unit 10, and transmits the data to the distribution information deriving unit 4.
  • the second output characteristic conversion unit 3 (second processing unit) is connected to the second imaging unit 20, performs data processing on the detection signal output from the second imaging unit 20, and transmits the data to the distribution information deriving unit 4.
  • the distribution information deriving unit 4 is connected to the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3 and receives the output signal of the first output characteristic conversion unit 2 and the output signal of the second output characteristic conversion unit 3. . And the distribution information of the gas in the imaging space which is a predetermined area
  • the display unit 5 has a display screen 5a (see FIG. 9), and displays the gas distribution information output by the distribution information deriving unit 4 on the display screen 5a.
  • Examples of the gas distribution information include visual information and numerical information.
  • FIGS. 3 to 5 are graphs related to the sensitivity characteristics of the first image sensor 12 and the second image sensor 22, which show the relationship between the infrared wavelength and the infrared absorption rate of the gas, and the infrared wavelength and the infrared brightness of the landscape. This shows the relationship.
  • FIG. 5 is a graph showing the relationship between the temperature of the landscape and the spectral characteristics of infrared luminance of the landscape.
  • the first imaging sensor 12 (first detection unit) is composed of a sensor having sensitivity to infrared rays (electromagnetic waves) in the absorption wavelength band of the gas as the subject.
  • the gas absorption wavelength band is about 1 to 5 ⁇ m
  • the composition is adjusted so that InGaAs (indium gallium arsenide), InSb (indium antimony), InAs (indium arsenic), and the band gap correspond to the wavelength.
  • a quantum sensor using a photoelectric conversion material such as adjusted MCT (Mercury Cadmium Telluride) is employed.
  • quantum sensors such as MCT and PbSe (lead selenide) whose composition is adjusted so that the band gap corresponds to the wavelength are adopted.
  • the infrared absorption rate of the gas is relatively high in the wavelength band of 3.2 to 3.4 ⁇ m.
  • the wavelength band of 3.2 to 3.4 ⁇ m was set to the first wavelength band w1.
  • the first image sensor 12 is sensitive to infrared rays (electromagnetic waves) in the first wavelength band w1. Then, the first image sensor 12 detects infrared rays emitted from the background (landscape) of the space where the gas exists and infrared rays emitted from the gas.
  • the second image sensor 22 (second detection unit) is composed of a sensor having sensitivity to infrared rays radiated strongly by the background (landscape).
  • a sensor having sensitivity to infrared rays radiated strongly by the background (landscape) For example, an MCT quantum type sensor whose composition is adjusted so as to correspond to a band gap longer than 7 ⁇ m, or a thermal sensor such as a microbolometer type, pyroelectric type, diode type, or thermopile type is adopted.
  • the infrared brightness of the landscape is relatively high in the wavelength band of 8 to 14 ⁇ m.
  • the infrared brightness of the landscape is relatively high at wavelengths around 10 ⁇ m.
  • the wavelength band of 8 to 14 ⁇ m was set as the second wavelength band w2.
  • the second image sensor 22 does not have sensitivity to infrared rays in the first wavelength band w1 (see FIG. 3) and has sensitivity to infrared rays in the second wavelength band w2. Then, the second imaging sensor 22 detects only infrared rays emitted from the background (landscape) of the space where the gas exists.
  • FIG. 6 is a graph showing the relationship between the output signals of the first image sensor 12 and the second image sensor 22 and the respective subject temperatures.
  • 7 and 8 are explanatory diagrams showing the processing of the first output characteristic converting unit 2 and the distribution information deriving unit 4.
  • FIG. 9 is an explanatory diagram showing gas distribution information on the display unit 5.
  • FIG. 6 shows the change of the output signal (output signal amount ratio) when the temperature of the subject imaged by each of the first image sensor 12 and the second image sensor 22 changes from the initial temperature 350K.
  • the output signal of the first imaging sensor 12 that images the first wavelength band w1 and the output signal of the second imaging sensor 22 that images the second wavelength band w2 are mutually changed along with the temperature change of each subject. It can be seen that the signal characteristics of are greatly separated. Therefore, it is understood that the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3 do not have to execute the same gain correction and the same offset correction.
  • the first output characteristic conversion unit 2 receives the detection signal output from the first imaging unit 10 as shown in FIG. 7, and performs gain correction and offset correction to correct variations in characteristics unique to the sensor.
  • the first output characteristic conversion unit 2 includes a signal-subject temperature conversion table 2a.
  • the signal-subject temperature conversion table 2a is a table in advance showing the subject temperature to which the signal is converted using the imaging wavelength band and the sensitivity characteristics of the imaging sensor as parameters. If the information recorded in the signal-subject temperature conversion table 2a is discrete, it is used after being appropriately interpolated.
  • the first output characteristic conversion unit 2 performs gain correction and offset correction, and then converts the obtained signal using the signal-subject temperature conversion table 2a to obtain subject temperature information.
  • the temperature information of the subject is transmitted to the distribution information deriving unit 4.
  • the second output characteristic conversion unit 3 has the same configuration as the first output characteristic conversion unit 2 (see FIG. 7) and executes the same processing, and thus the description thereof is omitted here.
  • the output signal of the first image sensor 12 and the output signal of the second image sensor 22 are greatly different from each other. Therefore, gain correction and offset correction corresponding to each characteristic are performed. And a signal-temperature conversion is performed.
  • the distribution information deriving unit 4 receives the temperature information of the subject output from each of the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3, and calculates a temperature difference from each temperature information. .
  • the distribution information deriving unit 4 includes the temperature information of the subject output by the second output characteristic conversion unit 3, the temperature difference between the temperature information of the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3, and
  • the concentration-thickness product is derived by using three pieces of information of the determined gas temperature.
  • the gas temperature is the same as the air temperature, and temperature information is obtained by measuring the air temperature. If the temperature of the target gas is known, the temperature information may be obtained using the temperature. Real-time calculation is performed for deriving the concentration-thickness product, and no interpolation processing is performed. Therefore, the concentration-thickness product can be derived with high accuracy.
  • the concentration-thickness product means the product of the concentration of the target gas and the thickness (depth) of the space in which the target gas exists in the imaging direction by the first imaging unit 10 and the second imaging unit 20, and the unit is [% ⁇ m] or [ppm ⁇ m].
  • the concentration thickness product information derived by the distribution information deriving unit 4 is transmitted to the display unit 5.
  • the display unit 5 receives the concentration / thickness product information output from the distribution information deriving unit 4 and converts the concentration / thickness product information into an image of two-dimensional gas G distribution information as shown in FIG. To display.
  • the distribution information of the gas concentration / thickness product derived by the substance detection device 1 is displayed superimposed on the landscape image, and is expressed by a color change or light / dark change corresponding to the concentration / thickness product.
  • next process further using the distribution information of the gas concentration thickness product.
  • monitoring of gas leakage is conceivable.
  • numerical data is passed to the next processing.
  • FIG. 10 is an explanatory diagram showing processing of the distribution information deriving unit of the substance detection apparatus. Since the basic configuration of this embodiment is the same as that of the first embodiment described above, the same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted. And
  • the distribution information deriving unit 4 includes a subject temperature, temperature difference, and concentration / thickness product correspondence table 4a as shown in FIG.
  • the object temperature, temperature difference, and density / thickness product conversion table 4a includes the temperature information of the object output from the second output characteristic conversion unit 3, and the temperature information of each of the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3.
  • the table shows in advance what kind of concentration-thickness product corresponds from the three information of the difference and the predetermined gas temperature. If the information recorded in the subject temperature, temperature difference, density / thickness product correspondence table 4a is discrete, it is used by appropriately interpolating.
  • the processing can be executed at high speed.
  • FIGS. 11 and 12 are explanatory diagrams showing processing of the first output characteristic conversion unit and the second output characteristic conversion unit.
  • FIG. 13 is an explanatory diagram showing processing of the distribution information deriving unit. Since the basic configuration of this embodiment is the same as that of the first embodiment described above, the same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted. And
  • the first output characteristic conversion unit 2 receives the detection signal output from the first imaging unit 10 and executes gain correction and offset correction. Correct variations in specific characteristics. Thereafter, the signal amount after the correction processing is transmitted to the distribution information deriving unit 4.
  • the second output characteristic conversion unit 3 receives the detection signal output from the second imaging unit 20 as shown in FIG. 12, and performs gain correction and offset correction to correct variations in characteristics unique to the sensor. Thereafter, the second output characteristic conversion unit 3 converts the signals after the correction processing into subject temperature.
  • the second output characteristic conversion unit 3 includes a subject temperature-signal amount conversion table 3a.
  • the subject temperature-signal amount conversion table 3a is a table in advance showing what signal amount the subject temperature is converted to using the imaging wavelength band and the sensitivity characteristics of the imaging sensor as parameters.
  • the subject temperature-signal amount conversion table 3a uses the sensitivity information of the first imaging sensor 12 to convert the subject temperature into a signal amount for the information output from the second imaging unit 20 and converted into the subject temperature. .
  • the subject temperature is converted into the signal amount of the image captured in the first wavelength band w1. Further, when the information recorded in the subject temperature-signal amount conversion table 3a is discrete, it is used after being appropriately interpolated.
  • the second output characteristic conversion unit 3 After executing the gain correction and the offset correction, the second output characteristic conversion unit 3 once converts the obtained signal into the subject temperature, and further converts the subject temperature using the subject temperature-signal amount conversion table 3a. A signal quantity corresponding to the temperature is obtained. The signal amount is transmitted to the distribution information deriving unit 4.
  • the distribution information deriving unit 4 receives a signal amount corresponding to the subject temperature output by each of the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3, and calculates the signal amount from each signal amount. Calculate the difference. Subsequently, the distribution information deriving unit 4 determines the signal amount corresponding to the subject temperature output by the second output characteristic conversion unit 3 and the subject temperature output by each of the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3.
  • the concentration-thickness product is derived using three pieces of information: a signal amount difference that is a difference between corresponding signal amounts and a predetermined gas temperature.
  • FIG. 14 is an explanatory diagram showing processing of the distribution information deriving unit of the substance detection device. Since the basic configuration of this embodiment is the same as that of the first and third embodiments described above, the same components as those of the embodiment are denoted by the same reference numerals and the description thereof is omitted. It shall be.
  • the distribution information deriving unit 4 includes a signal amount, signal amount difference, concentration / thickness product correspondence table 4b as shown in FIG.
  • the signal amount, signal amount difference, density / thickness product correspondence table 4b includes a signal amount output by the second output characteristic conversion unit 3, a signal amount difference between each of the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3, and
  • the table shows in advance what kind of concentration-thickness product corresponds to the predetermined gas temperature from three pieces of information.
  • the processing can be executed at high speed.
  • the substance detection device 1 is sensitive to infrared rays in the first wavelength band w1 and emits infrared rays emitted from a space in which gas exists and infrared rays emitted from the gas.
  • the first imaging sensor 12 for detecting the light and the first wavelength band w1 is not sensitive to infrared rays, and is sensitive to infrared rays in the second wavelength band w2 different from the first wavelength band w1, and the landscape is
  • the second image sensor 22 that detects only the radiated infrared rays, the first output characteristic converter 2 that performs data processing of the detection signal output from the first image sensor 12, and the data of the detection signal output from the second image sensor 22.
  • the distribution information of the gas in the space where the gas exists is derived using the output signal of the second output characteristic conversion unit 3 that performs processing, the output signal of the first output characteristic conversion unit 2 and the output signal of the second output characteristic conversion unit 3.
  • Distribution information deriving unit 4 Comprising a.
  • the first image sensor 12 has a structure specialized for gas detection
  • the second image sensor 22 has a structure specialized for landscape detection. Therefore, gas and scenery can be detected under suitable conditions corresponding to the respective characteristics. Therefore, it is possible to obtain the distribution information of a substance (subject) such as a gas in the imaging space that is a predetermined region with high accuracy.
  • the second wavelength band w2 includes at least a part of the wavelength band of 8 to 14 ⁇ m.
  • the infrared brightness of the landscape is relatively high in the 8-14 ⁇ m wavelength band. Therefore, when the wavelength band of 8 to 14 ⁇ m is set to the second wavelength band w2, the second imaging sensor 22 can suitably detect infrared rays emitted from the background (landscape) of the space where the gas exists.
  • the subject is a gas (gas).
  • gas and landscape can be detected under suitable conditions corresponding to each characteristic. This makes it possible to obtain gas distribution information in the space with high accuracy.
  • the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3 perform data processing including temperature information in the output signal.
  • the temperature information of the subject output by the second output characteristic conversion unit 3 and the temperature difference between the temperature information of the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3 can be obtained. . Therefore, the distribution information deriving unit 4 determines the temperature information of the subject output by the second output characteristic conversion unit 3 and the temperature difference between the temperature information of the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3 in advance. It is possible to derive the concentration-thickness product by using three pieces of information of the determined gas temperature.
  • the first output characteristic conversion unit 2 performs data processing including the signal amount in the output signal
  • the second output characteristic conversion unit 3 outputs the subject output from the second imaging sensor 22.
  • Data processing including the signal amount in the output signal is performed on the detection signal converted into temperature using the sensitivity characteristic of the first image sensor 12.
  • the distribution information deriving unit 4 determines the signal amount output from the second output characteristic conversion unit 3, the signal amount difference between the first output characteristic conversion unit 2 and the second output characteristic conversion unit 3, and a predetermined gas. It is possible to derive the concentration-thickness product using the three information of temperature.
  • gas has been described as an example of a substance that is an object of the substance detection apparatus, but the substance is not limited to only gas.
  • the substance detection device can be applied to, for example, a system for monitoring leakage of oil and fuel to the sea, a monitoring system for clean water and sewage, and the like.
  • the present invention can be used in a substance detection apparatus for detecting a substance present in a predetermined region.
  • Substance Detection Device 1 Substance Detection Device 2 First Output Characteristic Conversion Unit (First Processing Unit) 3 Second output characteristic conversion unit (second processing unit) 4 Distribution Information Deriving Unit 5 Display Unit 10 First Imaging Unit 12 First Imaging Sensor (First Detection Unit) 20 Second imaging unit 22 Second imaging sensor (second detection unit) w1 first wavelength band w2 second wavelength band

Abstract

 物質検出装置1は第一波長帯w1の赤外線に対して感度を有するとともにガスが存在する空間の風景及びガスが放射する赤外線を検出する第一撮像センサ12と、第一波長帯w1の赤外線に対して感度を有さず、第一波長帯w1とは異なる第二波長帯w2の赤外線に対して感度を有するとともに風景が放射する赤外線のみを検出する第二撮像センサ22と、第一撮像センサ12が出力する検出信号のデータ処理を行う第一出力特性変換部2と、第二撮像センサ22が出力する検出信号のデータ処理を行う第二出力特性変換部3と、第一出力特性変換部2の出力信号と第二出力特性変換部3の出力信号とを用いて前記空間におけるガスの分布情報を導出する分布情報導出部4と、を備える。

Description

物質検出装置
 本発明は、所定の領域に存在する物質を検出するための物質検出装置に関する。
 化学プラント等の設備の老朽化、例えば配管の腐食によるガスの漏えい事故の発生が懸念されている。そこで、漏洩するガスを検出するためにガスが持つ固有の光学吸収特性を利用したガス検出装置が提案され、その一例が特許文献1及び2に開示されている。
 特許文献1及び2に記載されたガス検出装置は赤外線センサ及び複数の光学フィルタを備える。複数の光学フィルタのうちひとつはガス吸収波長を含む波長帯の赤外域を透過し、ひとつはガス吸収波長を含まない、すなわちガスの背景となる風景が放射する波長帯の赤外域を透過する。赤外線センサとしては同一、または同一検出帯域を持つセンサを利用する。2種類の光学フィルタを利用して撮像した場合の2つの検出信号の差分を求めることで、ガスを検出することが可能になる。
特表2010-522317号公報 特許第5333552号公報
 しかしながら、従来技術では赤外線センサとしては同一、または同一検出帯域を持つセンサを利用しているので、被検体であるガスが放射する赤外線と、背景である風景が放射する赤外線とを各々の特性に対応した好適な条件で検出することが困難であるといった課題があった。これにより、ガスの分布情報の精度を高めることが困難であった。
 本発明は、上記の点に鑑みなされたものであり、所定の領域に存在するガスなどの物質(被検体)の分布情報を高精度に得ることが可能な物質検出装置を提供することを目的とする。
 上記の課題を解決するため、本発明の物質検出装置は、第一波長帯の電磁波に対して感度を有するとともに被検体が存在する領域の背景が放射する電磁波と被検体が放射する電磁波とを検出する第一検出部と、第一波長帯の電磁波に対して感度を有さず、第一波長帯とは異なる第二波長帯の電磁波に対して感度を有するとともに前記背景が放射する電磁波のみを検出する第二検出部と、第一検出部が出力する検出信号のデータ処理を行う第一処理部と、第二検出部が出力する検出信号のデータ処理を行う第二処理部と、第一処理部の出力信号と第二処理部の出力信号とを用いて前記領域における被検体の分布情報を導出する分布情報導出部と、を備えることを特徴としている。
 本発明によると、被検体と背景とを各々の特性に対応した好適な条件で検出することができる。これにより、所定の領域における被検体の分布情報を高精度に得ることが可能になる。
本発明の第1実施形態に係る物質検出装置の概略構成図である。 本発明の第1実施形態に係る物質検出装置の第一撮像部の構成図である。 本発明の第1実施形態に係る物質検出装置の第一及び第二撮像センサの感度特性に係る赤外線波長とガスの赤外線吸収率との関係を示すグラフである。 本発明の第1実施形態に係る物質検出装置の第一及び第二撮像センサの感度特性に係る赤外線波長と風景の赤外線輝度との関係を示すグラフである。 風景の温度と風景の赤外線輝度の分光特性との関係を示すグラフである。 本発明の第1実施形態に係る物質検出装置の第一及び第二撮像センサの出力信号と各々の被写体温度との関係を示すグラフである。 本発明の第1実施形態に係る物質検出装置の第一出力特性変換部の処理を示す説明図である。 本発明の第1実施形態に係る物質検出装置の分布情報導出部の処理を示す説明図である。 本発明の第1実施形態に係る物質検出装置の表示部におけるガスの分布情報を示す説明図である。 本発明の第2実施形態に係る物質検出装置の分布情報導出部の処理を示す説明図である。 本発明の第3実施形態に係る物質検出装置の第一出力特性変換部の処理を示す説明図である。 本発明の第3実施形態に係る物質検出装置の第二出力特性変換部の処理を示す説明図である。 本発明の第3実施形態に係る物質検出装置の分布情報導出部の処理を示す説明図である。 本発明の第4実施形態に係る物質検出装置の分布情報導出部の処理を示す説明図である。
 以下、本発明の実施形態を図面に基づき説明する。なおここでは、被検体である物質としてガスを一例に掲げて説明する。
<第1実施形態>
 最初に、本発明の第1実施形態に係る物質検出装置の構成の概略について、図1及び図2を用いて説明する。図1は物質検出装置の概略構成図である。図2は物質検出装置の第一撮像部の構成図である。
 物質検出装置1は例えば工場に設置され、工場内の配管からのガス漏れを検出するガス検出装置である。物質検出装置1は、図1に示すように第一撮像部10、第二撮像部20、第一出力特性変換部2、第二出力特性変換部3、分布情報導出部4及び表示部5を備える。
 第一撮像部10は、図2に示すようにレンズ11、第一撮像センサ12、制御部13及びインタフェース部14を備える。なお、第二撮像部20も基本的な構造は第一撮像部10と同じであるので、第一撮像部10と同様にレンズ21、第二撮像センサ22、制御部23及びインタフェース部24を備える。第一撮像部10及び第二撮像部20は互いに第一撮像センサ12、第二撮像センサ22として赤外線センサを備える赤外線カメラであり、被検体であるガスの存在を映像から検出する。
 ガス及びその背景が放射する赤外線はレンズ11を介して第一撮像センサ12に入射し、またレンズ21を介して第一撮像センサ22に入射する。ガスの検出は対象となるガスの赤外線吸収波長を利用する。ガスの赤外線吸収波長帯で赤外線の検出を行うと、ガスが存在する空間(領域)の背景である風景が放射する赤外線量がガスの有無によって変化する。そして、風景が放射する波長帯の赤外線を検出して差分を求めると、ガスを検出することが可能になる。
 制御部13、23はガス及び風景が放射する赤外線が好適に第一撮像センサ12或いは第二撮像センサ22に入射して検出できるようにレンズ11、21や第一撮像センサ12、第二撮像センサ22の動作等を制御する。インタフェース部14、24は第一撮像センサ12、第二撮像センサ22が出力する検出信号を第一出力特性変換部2または第二出力特性変換部3に送信する。
 第一出力特性変換部2(第一処理部)は第一撮像部10に接続され、第一撮像部10が出力する検出信号のデータ処理を行って分布情報導出部4に送信する。第二出力特性変換部3(第二処理部)は第二撮像部20に接続され、第二撮像部20が出力する検出信号のデータ処理を行って分布情報導出部4に送信する。
 分布情報導出部4は第一出力特性変換部2及び第二出力特性変換部3に接続され、第一出力特性変換部2の出力信号と第二出力特性変換部3の出力信号とを受信する。そして、それら出力信号を用いて所定の領域である撮像空間におけるガスの分布情報を導出する。
 表示部5は表示画面5aを有し(図9参照)、分布情報導出部4が出力するガスの分布情報を表示画面5aに表示する。ガスの分布情報としては、例えば視覚的情報や数値情報などが挙げられる。
 続いて、第一撮像センサ12及び第二撮像センサ22の詳細な構造について、図2に加えて図3~図5を用いて説明する。図3及び図4は第一撮像センサ12及び第二撮像センサ22の感度特性に係るグラフであって、赤外線波長とガスの赤外線吸収率との関係を示すもの及び赤外線波長と風景の赤外線輝度との関係を示すものである。図5は風景の温度と風景の赤外線輝度の分光特性との関係を示すグラフである。
 第一撮像センサ12(第一検出部)は被検体であるガスの吸収波長帯の赤外線(電磁波)に対して感度を有するセンサで構成される。例えば、ガスの吸収波長帯が1~5μm程度の波長帯である場合、InGaAs(インジウムガリウムヒ素)、InSb(インジウムアンチモン)、InAs(インジウムヒ素)やバンドギャップを当該波長に対応させるように組成を調整したMCT(Mercury Cadmium Telluride:テルル化カドミウム水銀)等の光電変換材料を用いた量子型センサが採用される。ガスの吸収波長帯が5μmよりも長い遠赤外線領域の波長帯である場合、バンドギャップを当該波長に対応させるように組成を調整したMCTやPbSe(セレン化鉛)等の量子型センサが採用される。
 図3に示したガスの赤外線吸収特性によると、3.2~3.4μmの波長帯においてガスの赤外線吸収率が比較的高くなる。これにより、3.2~3.4μmの波長帯を第一波長帯w1に設定した。第一撮像センサ12は第一波長帯w1の赤外線(電磁波)に対して感度を有する。そして、第一撮像センサ12はガスが存在する空間の背景(風景)が放射する赤外線とガスが放射する赤外線とを検出する。
 第二撮像センサ22(第二検出部)は背景(風景)が強く放射する赤外線に対して感度を有するセンサで構成される。例えば、7μmよりも長い波長帯にバンドギャップを対応させるように組成を調整したMCT量子型センサや、マイクロボロメータ型、焦電型、ダイオード型、サーモパイル型等の熱型センサが採用される。
 図4に示した風景の赤外線輝度特性によると、8~14μmの波長帯において風景の赤外線輝度が比較的高くなる。また、図5に示した風景の温度と風景の赤外線輝度の分光特性との関係によると、風景の温度範囲の例として掲げた約-40℃(=230K)から約+80℃(=350K)までの範囲では、10μm近辺の波長において風景の赤外線輝度が比較的高くなる。これらより、8~14μmの波長帯を第二波長帯w2に設定した。第二撮像センサ22は第一波長帯w1の赤外線に対して感度を有さず(図3参照)、第二波長帯w2の赤外線に対して感度を有する。そして、第二撮像センサ22はガスが存在する空間の背景(風景)が放射する赤外線のみを検出する。
 続いて、第一出力特性変換部2、第二出力特性変換部3及び分布情報導出部4の詳細な構成について、図6~図9を用いて説明する。図6は第一撮像センサ12及び第二撮像センサ22の出力信号と各々の被写体温度との関係を示すグラフである。図7及び図8は第一出力特性変換部2及び分布情報導出部4の処理を示す説明図である。図9は表示部5におけるガスの分布情報を示す説明図である。
 ここで、図6は第一撮像センサ12及び第二撮像センサ22各々が撮像する被写体の温度が当初温度350Kから変化した場合の、出力信号の変化(出力信号量比)を示したものである。図6によると、第一波長帯w1を撮像する第一撮像センサ12の出力信号と、第二波長帯w2を撮像する第二撮像センサ22の出力信号と、は各々の被写体の温度変化とともに互いの信号特性が大きく離隔していくことが分かる。したがって、第一出力特性変換部2及び第二出力特性変換部3は互いに同じゲイン補正、同じオフセット補正を実行すれば良いわけではないことが分かる。
 第一出力特性変換部2は、図7に示すように第一撮像部10が出力する検出信号を受信し、ゲイン補正及びオフセット補正を実行してセンサ固有の特性のばらつきを補正する。
 また、第一出力特性変換部2は信号-被写体温度変換テーブル2aを備える。信号-被写体温度変換テーブル2aは信号が撮像波長帯、撮像センサの感度特性をパラメータとしてどのような被写体温度に変換されるかを予めテーブル化したものである。なお、信号-被写体温度変換テーブル2aに記録されている情報が離散的である場合、適宜補間して使用する。
 第一出力特性変換部2はゲイン補正及びオフセット補正を実行した後、得られた信号を信号-被写体温度変換テーブル2aを利用して変換し、被写体の温度情報を得る。被写体の温度情報は分布情報導出部4に送信される。
 第二出力特性変換部3は、第一出力特性変換部2(図7参照)と同様の構成を有し、同様の処理を実行するので、ここでは説明を省略する。なお、図6を用いて説明したように第一撮像センサ12の出力信号と、第二撮像センサ22の出力信号と、は互いに特性が大きく異なるので、各々の特性に対応したゲイン補正、オフセット補正及び信号-温度変換が実行される。
 分布情報導出部4は、図8に示すように第一出力特性変換部2及び第二出力特性変換部3各々が出力する被写体の温度情報を受信し、各々の温度情報から温度差を算出する。
 続いて、分布情報導出部4は第二出力特性変換部3が出力する被写体の温度情報と、第一出力特性変換部2及び第二出力特性変換部3各々の温度情報の温度差と、予め定められたガス温度と、の三つの情報を利用して濃度厚み積を導出する。なお、ガス温度は気温と同じとみなして気温測定によって温度情報を得るほか、対象ガスの温度が既知であるならその温度を利用して温度情報を得ても構わない。濃度厚み積の導出にはリアルタイム演算が実行され、補間処理が行われないので、高精度な濃度厚み積の導出が可能になる。
 濃度厚み積とは、対象ガスの濃度と、第一撮像部10及び第二撮像部20による撮像方向に関する対象ガスの存在空間の厚さ(奥行)との積を意味し、単位が[%・m]或いは[ppm・m]で表される。
 分布情報導出部4が導出した濃度厚み積情報は表示部5に送信される。
 表示部5は分布情報導出部4が出力した濃度厚み積情報を受信し、例えば図9に示すように濃度厚み積情報を二次元的なガスGの分布情報の画像に変換して表示画面5aに表示する。物質検出装置1が導出したガスの濃度厚み積の分布情報は風景画像に重ねて表示され、濃度厚み積に対応した色彩変化或いは濃淡変化で表現される。
 なお、ガスの濃度厚み積の分布情報を用いて、さらに続けて次の処理を実行することも可能である。例えばガス漏れの監視などが考えられ、この場合は人が目視で確認できる画像に変換することに加えて、数値データが次の処理に渡される。
<第2実施形態>
 次に、本発明の第2実施形態に係る物質検出装置について、図10を用いて説明する。図10は物質検出装置の分布情報導出部の処理を示す説明図である。なお、この実施形態の基本的な構成は先に説明した第1実施形態と同じであるので、第1実施形態と共通する構成要素には前と同じ符号を付してその説明を省略するものとする。
 第2実施形態の物質検出装置1は、図10に示すように分布情報導出部4が被写体温度、温度差、濃度厚み積対応テーブル4aを備える。被写体温度、温度差、濃度厚み積変換テーブル4aは第二出力特性変換部3が出力する被写体の温度情報と、第一出力特性変換部2及び第二出力特性変換部3各々の温度情報の温度差と、予め定められたガス温度と、の三つの情報からどのような濃度厚み積が対応するかを予めテーブル化したものである。なお、被写体温度、温度差、濃度厚み積対応テーブル4aに記録されている情報が離散的である場合、適宜補間して使用する。
 濃度厚み積の導出に被写体温度、温度差、濃度厚み積対応テーブル4aを利用すると、高速に処理を実行することが可能である。
<第3実施形態>
 次に、本発明の第3実施形態に係る物質検出装置について、図11~図13を用いて説明する。図11及び図12は第一出力特性変換部及び第二出力特性変換部の処理を示す説明図である。図13は分布情報導出部の処理を示す説明図である。なお、この実施形態の基本的な構成は先に説明した第1実施形態と同じであるので、第1実施形態と共通する構成要素には前と同じ符号を付してその説明を省略するものとする。
 第3実施形態の物質検出装置1は、図11に示すように第一出力特性変換部2が、第一撮像部10が出力する検出信号を受信し、ゲイン補正及びオフセット補正を実行してセンサ固有の特性のばらつきを補正する。その後、それら補正処理後の信号量が分布情報導出部4に送信される。
 第二出力特性変換部3は、図12に示すように第二撮像部20が出力する検出信号を受信し、ゲイン補正及びオフセット補正を実行してセンサ固有の特性のばらつきを補正する。その後、第二出力特性変換部3はそれら補正処理後の信号を被写体温度に変換する。
 また、第二出力特性変換部3は被写体温度-信号量変換テーブル3aを備える。被写体温度-信号量変換テーブル3aは被写体温度が撮像波長帯、撮像センサの感度特性をパラメータとしてどのような信号量に変換されるかを予めテーブル化したものである。なお、被写体温度-信号量変換テーブル3aは第二撮像部20が出力して被写体温度に変換された情報に対して第一撮像センサ12の感度情報を利用して被写体温度を信号量に変換する。これにより、被写体温度が第一波長帯w1で撮像した場合の画像の信号量に変換される。また、被写体温度-信号量変換テーブル3aに記録されている情報が離散的である場合、適宜補間して使用する。
 第二出力特性変換部3はゲイン補正及びオフセット補正を実行した後、得られた信号を被写体温度に一旦変換し、さらに被写体温度を被写体温度-信号量変換テーブル3aを利用して変換し、被写体温度に対応する信号量を得る。信号量は分布情報導出部4に送信される。
 分布情報導出部4は、図13に示すように第一出力特性変換部2及び第二出力特性変換部3各々が出力する被写体温度に対応する信号量を受信し、各々の信号量から信号量差を算出する。続いて、分布情報導出部4は第二出力特性変換部3が出力する被写体温度に対応する信号量と、第一出力特性変換部2及び第二出力特性変換部3各々が出力する被写体温度に対応する信号量の差である信号量差と、予め定められたガス温度と、の三つの情報を利用して濃度厚み積を導出する。
 濃度厚み積の導出にはリアルタイム演算が実行され、補間処理が行われないので、高精度な濃度厚み積の導出が可能になる。
<第4実施形態>
 次に、本発明の第4実施形態に係る物質検出装置について、図14を用いて説明する。図14は物質検出装置の分布情報導出部の処理を示す説明図である。なお、この実施形態の基本的な構成は先に説明した第1及び第3実施形態と同じであるので、それら実施形態と共通する構成要素には前と同じ符号を付してその説明を省略するものとする。
 第4実施形態の物質検出装置1は、図14に示すように分布情報導出部4が信号量、信号量差、濃度厚み積対応テーブル4bを備える。信号量、信号量差、濃度厚み積対応テーブル4bは第二出力特性変換部3が出力する信号量と、第一出力特性変換部2及び第二出力特性変換部3各々の信号量差と、予め定められたガス温度と、の三つの情報からどのような濃度厚み積が対応するかを予めテーブル化したものである。なお、信号量、信号量差、濃度厚み積対応テーブル4bに記録されている情報が離散的である場合、適宜補間して使用する。
 濃度厚み積の導出に信号量、信号量差、濃度厚み積対応テーブル4bを利用すると、高速に処理を実行することが可能である。
 上記第1~第4の実施形態のように、物質検出装置1は第一波長帯w1の赤外線に対して感度を有するとともにガスが存在する空間の風景が放射する赤外線とガスが放射する赤外線とを検出する第一撮像センサ12と、第一波長帯w1の赤外線に対して感度を有さず、第一波長帯w1とは異なる第二波長帯w2の赤外線に対して感度を有するとともに風景が放射する赤外線のみを検出する第二撮像センサ22と、第一撮像センサ12が出力する検出信号のデータ処理を行う第一出力特性変換部2と、第二撮像センサ22が出力する検出信号のデータ処理を行う第二出力特性変換部3と、第一出力特性変換部2の出力信号と第二出力特性変換部3の出力信号とを用いてガスが存在する空間におけるガスの分布情報を導出する分布情報導出部4と、を備える。
 この構成によると、第一撮像センサ12がガスの検出に特化した構造を有し、第二撮像センサ22が風景の検出に特化した構造を有する。これにより、ガスと風景とを各々の特性に対応した好適な条件で検出することができる。したがって、所定の領域である撮像空間におけるガスなどの物質(被検体)の分布情報を高精度に得ることが可能になる。
 また、上記実施形態では、第二波長帯w2が8~14μmの波長帯の少なくとも一部を含んでいる。
 風景の赤外線輝度特性によると、8~14μmの波長帯において風景の赤外線輝度が比較的高くなる。したがって、8~14μmの波長帯を第二波長帯w2に設定すると、第二撮像センサ22が、ガスが存在する空間の背景(風景)が放射する赤外線を好適に検出することが可能になる。
 また、上記実施形態では、被検体がガス(気体)である。
 この構成によると、ガスと風景とを各々の特性に対応した好適な条件で検出することができる。これにより、空間におけるガスの分布情報を高精度に得ることが可能になる。
 また、上記第1及び第2実施形態では、第一出力特性変換部2及び第二出力特性変換部3は出力信号に温度情報を含むデータ処理を行う。
 この構成によると、第二出力特性変換部3が出力する被写体の温度情報と、第一出力特性変換部2及び第二出力特性変換部3各々の温度情報の温度差と、を得ることができる。したがって、分布情報導出部4が、第二出力特性変換部3が出力する被写体の温度情報と、第一出力特性変換部2及び第二出力特性変換部3各々の温度情報の温度差と、予め定められたガス温度と、の三つの情報を利用して濃度厚み積を導出することが可能になる。
 また、上記第3及び第4実施形態では、第一出力特性変換部2は出力信号に信号量を含むデータ処理を行い、第二出力特性変換部3は第二撮像センサ22が出力して被写体温度に変換した検出信号に対して第一撮像センサ12の感度特性を利用して出力信号に信号量を含むデータ処理を行う。
 この構成によると、第二出力特性変換部3が出力する被写体温度に対応する信号量と、第一出力特性変換部2及び第二出力特性変換部3各々が出力する被写体温度に対応する信号量の差である信号量差と、を得ることができる。したがって、分布情報導出部4が、第二出力特性変換部3が出力する信号量と、第一出力特性変換部2及び第二出力特性変換部3各々の信号量差と、予め定められたガス温度と、の三つの情報を利用して濃度厚み積を導出することが可能になる。
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。
 例えば、上記実施形態では物質検出装置の被検体である物質としてガスを一例に掲げて説明したが、物質がガスのみに限定されるわけではない。物質検出装置は、例えば海上への油や燃料の漏れを監視するシステムや、上水、下水の監視システムなどにも適用することが可能である。
 本発明は、所定の領域に存在する物質を検出するための物質検出装置において利用可能である。
   1  物質検出装置
   2  第一出力特性変換部(第一処理部)
   3  第二出力特性変換部(第二処理部)
   4  分布情報導出部
   5  表示部
   10  第一撮像部
   12  第一撮像センサ(第一検出部)
   20  第二撮像部
   22  第二撮像センサ(第二検出部)
   w1  第一波長帯
   w2  第二波長帯

Claims (5)

  1.  第一波長帯の電磁波に対して感度を有するとともに被検体が存在する領域の背景が放射する電磁波と被検体が放射する電磁波とを検出する第一検出部と、
     第一波長帯の電磁波に対して感度を有さず、第一波長帯とは異なる第二波長帯の電磁波に対して感度を有するとともに前記背景が放射する電磁波のみを検出する第二検出部と、
     第一検出部が出力する検出信号のデータ処理を行う第一処理部と、
     第二検出部が出力する検出信号のデータ処理を行う第二処理部と、
     第一処理部の出力信号と第二処理部の出力信号とを用いて前記領域における被検体の分布情報を導出する分布情報導出部と、
    を備えることを特徴とする物質検出装置。
  2.  第二波長帯が8~14μmの波長帯の少なくとも一部を含むことを特徴とする請求項1に記載の物質検出装置。
  3.  被検体が気体であることを特徴とする請求項1または請求項2に記載の物質検出装置。
  4.  第一処理部及び第二処理部は出力信号に温度情報を含むデータ処理を行うことを特徴とする請求項1~請求項3のいずれかに記載の物質検出装置。
  5.  第一処理部は出力信号に信号量を含むデータ処理を行い、第二処理部は第二検出部が出力する検出信号に対して第一検出部の感度特性を利用して出力信号に信号量を含むデータ処理を行うことを特徴とする請求項1~請求項3のいずれかに記載の物質検出装置。
PCT/JP2016/057548 2015-03-19 2016-03-10 物質検出装置 WO2016148007A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-055952 2015-03-19
JP2015055952 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016148007A1 true WO2016148007A1 (ja) 2016-09-22

Family

ID=56918977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057548 WO2016148007A1 (ja) 2015-03-19 2016-03-10 物質検出装置

Country Status (1)

Country Link
WO (1) WO2016148007A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282330A (zh) * 2018-11-09 2019-01-29 杭州老板电器股份有限公司 红外测温电磁灶

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089875A (ja) * 2002-08-30 2004-03-25 Sanyo Electric Co Ltd 生ごみ処理装置
US20050156111A1 (en) * 2003-08-29 2005-07-21 Roberto Racca Imaging of fugitive gas leaks
WO2008081757A1 (ja) * 2006-12-28 2008-07-10 Kabushiki Kaisha Toyota Chuo Kenkyusho ガス検出方法及びガス検出装置
US20100301214A1 (en) * 2009-06-02 2010-12-02 Flir Systems Ab Infrared camera for gas detection
JP2013070997A (ja) * 2011-09-27 2013-04-22 Xerox Corp 呼気中の二酸化炭素(co2)濃度に関する、画像ベースの低侵襲性の決定
US20140002667A1 (en) * 2011-03-25 2014-01-02 Joseph M. Cheben Differential Infrared Imager for Gas Plume Detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089875A (ja) * 2002-08-30 2004-03-25 Sanyo Electric Co Ltd 生ごみ処理装置
US20050156111A1 (en) * 2003-08-29 2005-07-21 Roberto Racca Imaging of fugitive gas leaks
WO2008081757A1 (ja) * 2006-12-28 2008-07-10 Kabushiki Kaisha Toyota Chuo Kenkyusho ガス検出方法及びガス検出装置
US20100301214A1 (en) * 2009-06-02 2010-12-02 Flir Systems Ab Infrared camera for gas detection
US20140002667A1 (en) * 2011-03-25 2014-01-02 Joseph M. Cheben Differential Infrared Imager for Gas Plume Detection
JP2013070997A (ja) * 2011-09-27 2013-04-22 Xerox Corp 呼気中の二酸化炭素(co2)濃度に関する、画像ベースの低侵襲性の決定

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282330A (zh) * 2018-11-09 2019-01-29 杭州老板电器股份有限公司 红外测温电磁灶

Similar Documents

Publication Publication Date Title
CN101943604B (zh) 测温成像系统及其测量方法
US10706514B2 (en) Systems and methods for enhanced dynamic range infrared imaging
US20160320296A1 (en) Gas detector
US11029201B2 (en) Abnormality detector
CN102538983A (zh) Ccd测温装置
JP2019039672A (ja) 赤外線カメラの温度補正方法
CN105043552A (zh) 比色测温系统显示与标定方法
Chenault et al. Infrared polarimetric sensing of oil on water
US10788372B2 (en) Infrared imaging detector
WO2016148007A1 (ja) 物質検出装置
JP2015212772A5 (ja)
JP5573340B2 (ja) ガス検知装置およびガス検知方法
Xie et al. Development of three-wavelength CCD image pyrometer used for the temperature field measurements of continuous casting billets
JP2012078160A (ja) 赤外線センサ信号の補正方法及び温度測定方法並びに温度測定装置
SI24410A (sl) Sistem in metoda za brezkontaktno merjenje temperature s kamero, delujočo v vidnem delu svetlobnega spektra
JP6750672B2 (ja) ガス観測方法
KR102322871B1 (ko) 필터 어레이, 이를 포함하는 이미지 센서 및 적외선 카메라
WO2015072006A1 (ja) 赤外線検知装置
JP6565932B2 (ja) 光学式検知装置
GB2478708A (en) Measuring the temperature of an object with an image sensor
Kienitz Thermal imaging as a modern form of pyrometry
JP6969542B2 (ja) 温度計測システム及び温度計測方法
KR101022529B1 (ko) 열상 검출기의 다이나믹 레인지 조절 장치 및 방법
Cheng et al. Application of a Temperature Measurement System Based on CCD Sensor in Blast Furnace Tuyere Raceway
Liu et al. Research on the nonuniformity correction of linear TDI CCD remote camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP