WO2015178433A1 - 改質石炭の貯蔵方法 - Google Patents

改質石炭の貯蔵方法 Download PDF

Info

Publication number
WO2015178433A1
WO2015178433A1 PCT/JP2015/064539 JP2015064539W WO2015178433A1 WO 2015178433 A1 WO2015178433 A1 WO 2015178433A1 JP 2015064539 W JP2015064539 W JP 2015064539W WO 2015178433 A1 WO2015178433 A1 WO 2015178433A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
pile
modified coal
modified
agglomerated
Prior art date
Application number
PCT/JP2015/064539
Other languages
English (en)
French (fr)
Inventor
樋口 徹
卓夫 重久
高橋 洋一
敦志 古谷
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to RU2016147086A priority Critical patent/RU2668013C2/ru
Priority to US15/305,543 priority patent/US10287524B2/en
Priority to CN201580026062.2A priority patent/CN106458448A/zh
Priority to EP15796598.9A priority patent/EP3147238A4/en
Priority to AU2015262356A priority patent/AU2015262356B2/en
Publication of WO2015178433A1 publication Critical patent/WO2015178433A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/366Powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G3/00Storing bulk material or loose, i.e. disorderly, articles
    • B65G3/02Storing bulk material or loose, i.e. disorderly, articles in the open air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/06Particle, bubble or droplet size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/22Impregnation or immersion of a fuel component or a fuel as a whole
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/547Filtration for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/361Briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates

Definitions

  • the present invention relates to a method for storing reformed coal.
  • Coal used in thermal power plants and steelworks is usually stored as piles piled up in an outdoor yard. Coal stored in this way generates heat by reacting with oxygen in the air and may ignite spontaneously. In particular, low-grade coal has a porous state and thus has high oxidation reactivity and is likely to generate heat. Therefore, in general, a method of preventing spontaneous ignition by watering the pile or the like is taken. However, since this method requires regular watering, an efficient spontaneous ignition prevention method is required.
  • porous charcoal is pulverized and granulated, and then mixed with a mixed oil containing a heavy oil and a solvent oil to obtain a raw material slurry.
  • the raw slurry is preheated and then heated to advance the dehydration of the porous coal, and the mixed oil is impregnated into the pores of the porous coal to obtain a dehydrated slurry.
  • the modified porous charcoal and the mixed oil are separated from the dewatered slurry, and then the modified porous charcoal is dried (drained).
  • the dried modified porous coal is cooled and shaped as desired. According to this manufacturing method, with the reduction of the moisture content of the porous coal, heavy oil adheres to the pores of the porous coal, and a modified coal having a high calorific value can be obtained.
  • the modified coal obtained by the above production method is formed into briquettes from the viewpoint of workability including transportation work and from the viewpoint of suppressing dust generation.
  • this briquette is stored as a pile, it is made of briquettes of the same shape, so the pile is highly breathable, and when it is piled with coal, which has a relatively high oxidation reactivity, or when the pile height is high, it is relatively short.
  • the pile temperature rises over time. Therefore, in such modified coal, a storage technique that is particularly difficult to cause spontaneous ignition is required.
  • the present invention has been made based on the above-described circumstances, and an object of the present invention is to provide a method for storing modified coal that can suppress spontaneous ignition of piles at low cost.
  • the invention made in order to solve the above problems comprises a pile forming step of forming piles by piles of agglomerated and powdered modified coal, and the content of particles having a particle size of 2 mm or less in the modified coal
  • the modified coal storage method includes powdered coal, a pile of modified coal in which relatively small particles having a particle size of 2 mm or less occupy 35% by mass or more, and a packing density of 1.0 g / cm 3 or more. Form a pile.
  • the modified coal storage method is such that piles of modified coal having such a particle size distribution are piled up so that the packing density of the pile is not less than the above lower limit, so that small particles fill the voids and form piles with low air permeability. Is done. Therefore, according to the method for storing the modified coal, the spontaneous ignition of the pile can be suppressed at a low cost without using a special material or the like.
  • an agglomeration step for agglomerating the modified coal Prior to the pile forming step, an agglomeration step for agglomerating the modified coal, an aging step for aging the agglomerated coal, and an agglomerated reformation of the powdered modified coal generated in the aging step And a step of blending with coal.
  • the powdered modified coal inevitably generated in the aging process with the agglomerated modified coal, the particle size distribution and the packing density of the pile are adjusted, and the pile of the pile is easily and reliably added. Spontaneous ignition can be suppressed.
  • the said particle size distribution and the packing density of a pile can be adjusted by mix
  • the recovered product generated in the modified coal storage process can be used more efficiently.
  • a ventilation resistance coefficient of the pile in the pile forming step 1 ⁇ 10 7 Pa ⁇ s / m 2 or more is preferable.
  • the ventilation resistance coefficient of the pile in the pile forming step is set to be equal to or higher than the above lower limit, the amount of ventilation in the pile is limited and heat generation due to oxidation of the modified coal is suppressed. It is surely prevented.
  • the “agglomerated reformed coal” is a concept including agglomerated reformed coal and a pulverized product obtained by crushing the agglomerated reformed coal.
  • the “particle size” is a value measured in accordance with the dry screening method in the general screening test method of JIS-Z8815 (1994).
  • the “air flow resistance coefficient” is a coefficient in the relational expression between the pressure loss per unit length due to the gas and the gas flow velocity when the gas passes through the coal particle group, and the pressure loss (Pa / m) is represented by the flow velocity (Pa / m). m / s).
  • the modified coal storage method of the present invention it is possible to suppress the spontaneous ignition of the pile without causing an increase in cost. Therefore, according to the modified coal storage method of the present invention, the ease of use of the modified coal obtained from low-grade coal can be enhanced.
  • Schematic diagram showing ventilation resistance measuring device The graph which shows the particle size distribution of each coal in an Example The graph which shows the relationship between the packing density measured by the Example, and ventilation resistance
  • the modified coal storage method includes a step of forming a pile by a pile of agglomerated and powdered modified coal (pile forming step), and the modified coal is agglomerated before the pile forming step.
  • a process agglomeration process
  • aging process a process of aging the agglomerated coal
  • crushing process a process of crushing the agglomerated coal after the aging process
  • crushing process a process of crushing the agglomerated coal after the aging process
  • the modification of the powder generated in the aging process And a step of blending the quality coal with the agglomerated reformed coal (powdered coal blending step).
  • the modified coal includes a step of pulverizing porous coal (low-grade coal) (pulverizing step), a step of mixing the porous coal and oil to obtain a raw material slurry (mixing step), A preheating step (preheating step), a step of heating the raw slurry to obtain a dehydrated slurry (heating step), a step of separating the dehydrated slurry into modified porous charcoal and oil (solid-liquid separation step), and separation A step of drying the modified porous charcoal (drying step).
  • the porous coal is pulverized to obtain pulverized coal.
  • This pulverization can be performed by using a known pulverizer or the like.
  • the upper limit of the maximum particle size of the porous charcoal after pulverization is preferably 3 mm, more preferably 2 mm, and even more preferably 1 mm. Moreover, as a minimum of content of the particle
  • the maximum particle size of the porous charcoal after pulverization not more than the above upper limit, or the content of particles having a particle size of 0.5 mm or less is not less than the above lower limit, it is easy to slurry porous charcoal in the heating step described later Can be.
  • the maximum particle size of the porous coal can be measured with a sieve.
  • the porous coal is a so-called low-grade coal that contains a large amount of water and is desired to be dehydrated.
  • the water content of the porous coal is, for example, 20% by mass or more and 70% by mass or less.
  • Examples of such porous coal include lignite, lignite, and sub-bituminous coal (eg, Samarangau coal).
  • the upper limit of the maximum particle size of the porous coal before pulverization is not particularly limited, but is, for example, 50 mm from the viewpoint of ease of charging into the pulverizer.
  • the pulverized porous charcoal and oil are mixed to obtain a raw material slurry.
  • This mixing process can be performed using a well-known mixing tank etc., for example.
  • the oil is preferably a mixed oil containing a heavy oil and a solvent oil. Hereinafter, it demonstrates as an example using this mixed oil.
  • the above-mentioned heavy oil component is, for example, a heavy component that does not substantially exhibit a vapor pressure even at 400 ° C. or an oil containing a large amount thereof, and asphalt or the like can be used.
  • the solvent oil component is an oil that disperses the heavy oil component.
  • a light boiling oil component is preferred from the viewpoints of affinity with a heavy oil component, handleability as a slurry, ease of penetration into pores, and the like.
  • the solvent oil is preferably a petroleum oil (light oil, kerosene, heavy oil or the like) having a boiling point of 100 ° C. or higher and 300 ° C. or lower.
  • this mixed oil exhibits appropriate fluidity. Therefore, by using the above mixed oil, penetration of the porous coal into the pores of the heavy oil which is difficult to achieve with the heavy oil alone is promoted.
  • content of the heavy oil content in the said mixed oil it can be set as 0.25 mass% or more and 15 mass% or less, for example.
  • the mixing ratio of the mixed oil to the porous coal is not particularly limited.
  • the lower limit of the amount of heavy oil relative to the porous coal is preferably 0.5% by mass.
  • an upper limit of the quantity of the heavy oil part with respect to porous charcoal 30 mass% is preferable and 5 mass% is more preferable.
  • the amount of the heavy oil is less than the lower limit, the amount of heavy oil adsorbed in the pores becomes insufficient, and the spontaneous ignition suppression effect may be reduced.
  • the amount of the heavy oil exceeds the upper limit, the reforming cost of the porous coal may increase.
  • the raw material slurry obtained in the mixing step is preheated prior to the heating step.
  • the preheating conditions are not particularly limited, and usually the heating is performed to near the boiling point of water at the operating pressure.
  • the raw material slurry is heated to obtain a dehydrated slurry.
  • This heating can be performed using a known heat exchanger, evaporator or the like.
  • the dehydration of the porous coal proceeds and the mixed oil is impregnated into the pores of the porous coal.
  • the inner surface of the pores of the porous charcoal is successively covered with the mixed oil containing the heavy oil, and almost the entire area of the pore opening is filled with the mixed oil.
  • the heavy oil in the mixed oil is preferentially adsorbed to the active sites and is difficult to separate when attached, so that the heavy oil is preferentially attached over the solvent oil.
  • the pyrophoricity can be reduced by blocking the inner surface of the pores from the outside air.
  • a large amount of water is dehydrated and removed, and the mixed oil, particularly heavy oil, preferentially fills the pores, so that calorie increase as a whole of the porous coal is achieved.
  • Solid-liquid separation process In the solid-liquid separation step, the dehydrated slurry is separated into modified porous coal and mixed oil. This separation can be performed using a known centrifuge, filter or the like. The mixed oil separated in this step can be reused in the mixing step.
  • drying step the separated modified porous coal is dried. This drying can be performed using, for example, a known steam tube dryer.
  • the oil (solvent oil) evaporated in this drying step can be recovered and reused in the mixing step.
  • the modified coal obtained by such a manufacturing method has a high heat generation amount because the moisture content decreases in the heating step and the heavy oil adheres to the pores.
  • the reformed coal (modified porous coal) X obtained by the above production method is agglomerated.
  • the shape of the agglomerated coal agglomerated in the agglomeration part 1 and the apparatus used for the agglomeration are not particularly limited. For example, a briquette by compression molding using a double roll molding machine or the like is used. It is possible to employ pellets obtained by rolling granulation, sticks obtained by extrusion using an extruder, and the like.
  • the average mass of one agglomerated coal is not particularly limited, and can be, for example, 5 g or more and 50 g or less.
  • the average volume of one agglomerated coal is not particularly limited, and may be, for example, 1 cm 3 or more 100 cm 3 or less.
  • the shape of the agglomerated coal is not particularly limited, and may be spherical, spheroid, prismatic, cylindrical, or the like.
  • agglomerated coal is slowly reacted with oxygen and oxidized to perform aging. It does not specifically limit as a method of aging in the aging part 2, A well-known method can be used. Specifically, for example, a method can be used in which agglomerated coal is charged into a sealed container (anaerobic box), and a certain amount of air flows through the sealed container from below to above.
  • a sealed container anaerobic box
  • the crushing method in the crushing unit 3 is not particularly limited, and a crusher or the like may be used, or the agglomerated coal may be crushed simply by dropping from a high place.
  • the agglomerated coal after aging can be scooped and dropped by a wheel loader.
  • the particle size distribution of the obtained crushed material can be easily adjusted by changing the height and the number of times of dropping.
  • agglomerated coal that is not crushed may remain in the obtained crushed material. Further, only a part of the agglomerated coal that has been aged by the aging unit 2 may be provided to the crushing unit 3.
  • the pulverized modified coal Z1 inevitably generated in the aging unit 2 is blended into the crushed material (agglomerated reformed coal) crushed in the pulverizing unit 3.
  • the powdery modified coal Z1 inevitably generated in the aging unit 2 is specifically the powdered modified coal recovered under the sieving of the aging unit 2 or the loading of the conveyor after the aging process. It is a powdery modified coal that falls at the joint.
  • the powdered coal blending unit 4 has a particularly limited configuration as long as it can blend powdered modified coal (for example, modified coal having a maximum particle size of 100 ⁇ m or less) into the agglomerated modified coal.
  • powdered modified coal for example, modified coal having a maximum particle size of 100 ⁇ m or less
  • the lower limit of the content of particles having a particle size of 2 mm or less of the modified coal (mixed coal) in which the agglomerated modified coal and the powdered modified coal are blended in the powdered coal blending unit 4 is 35. It is mass% and 38 mass% is more preferable. Moreover, as an upper limit of content of particle
  • the content is less than the above lower limit, when the pile is formed, the voids are not filled with the small particles and the air permeability is increased, so that there is a possibility that the spontaneous ignition of the pile cannot be sufficiently suppressed.
  • the content exceeds the above upper limit the packing density when the pile is formed is not sufficiently increased and the air permeability is not sufficiently lowered, and the spontaneous ignition of the pile may not be sufficiently suppressed.
  • the lower limit of the content of particles having a particle diameter of 1 mm or less in the blended coal is preferably 27% by mass, and more preferably 28% by mass.
  • blending coal 15 mass% is preferable and 18 mass% is more preferable.
  • the packing density at the time of formation can be increased, the air permeability is further reduced, and the effect of preventing the spontaneous ignition of the pile can be further increased.
  • the upper limit of the content of particles having a particle diameter of 1 mm or less is preferably 40% by mass, and more preferably 35% by mass. Moreover, as an upper limit of content of particle
  • the particle size distribution of the modified coal can be adjusted by changing the blending amount of the powdered modified coal Z1 blended with the crushed material crushed by the crushing unit 3 in the powdered coal blending step. Moreover, you may adjust the particle size by adding the agglomerated coal which is not crushed in the crushing part 3, the modified coal X before agglomeration, and the like. At this time, in order to adjust the particle size of the modified coal, the modified coal X before agglomeration may be pulverized into powder and blended with the crushed material. Furthermore, in the pulverized coal blending step, the entire particle size can be adjusted using unmodified coal. However, the upper limit of the blending ratio of the unmodified coal relative to the blended coal is preferably 30% by mass, and more preferably 10% by mass. If the blending ratio of the unmodified coal exceeds the upper limit, the combustion efficiency of the coal may be reduced.
  • a pile Y is formed by stacking the blended coal in which the agglomerated modified coal and the powdered modified coal are blended in the powdered coal blending unit 4. This stacking can be performed using a known device such as a belt conveyor.
  • the filling density of the pile Y is the bulk density of the pile Y.
  • the assumed upper limit of the packing density is about 1.4 g / cm 3 in the absence of moisture, but it is considered that the packing density actually exceeds the briquette density of 1.2 g / cm 3. hard. Therefore, the upper limit of the packing density is preferably 1.15g / cm 3, 1.10g / cm 3 is more preferable.
  • the ventilation resistance coefficient of the pile Y formed at the said pile formation process 1 * 10 ⁇ 7 > Pa * s / m ⁇ 2 > is preferable and 3 * 10 ⁇ 7 > Pa * s / m ⁇ 2 > is more preferable.
  • the upper limit of the ventilation resistance coefficient is 2 ⁇ 10 9 Pa ⁇ s / m 2 , more preferably 7 ⁇ 10 8 Pa ⁇ s / m 2 . If the ventilation resistance coefficient is less than the lower limit, the ventilation in the pile Y cannot be sufficiently restricted, and the spontaneous ignition of the pile Y may not be sufficiently suppressed. Moreover, when the said ventilation resistance coefficient exceeds the said upper limit, pile formation will become difficult and there exists a possibility that a special installation may be needed.
  • piles are formed using the modified coal in which the powdered modified coal Z1 is blended with the crushed material crushed in the pulverized portion 3 in the powdered coal blending process, and thus the packing density and the airflow resistance are thus obtained.
  • the pile Y having a large coefficient is easily and reliably formed.
  • piles of reformed coal may be piled up while tapping so that the packing density and ventilation resistance coefficient of pile Y are within the above ranges, or the piles of reformed coal may be piled up with heavy machinery.
  • water or a surfactant aqueous solution may be sprayed onto the modified coal. By doing in this way, the dust generation and ignition from the pile Y formed can be reduced more.
  • the modified coal storage method includes powdered coal, a pile of modified coal in which relatively small particles having a particle size of 2 mm or less occupy 35% by mass or more, and a packing density of 1.0 g / cm 3 or more. A pile is formed. Thereby, a small particle fills a space
  • the modified coal storage method uses powdery modified coal inevitably generated in the aging process for the formation of piles, the powdered coal generated in the aging process is recycled as in the past. Therefore, it is not necessary to agglomerate again and the cost for recycling can be reduced.
  • FIG. 2 is a block diagram illustrating a modified coal storage method in which powdered modified coal inevitably generated in the agglomeration process is also used for the formation of piles. 2, the same components as those in FIG. 1 are denoted by the same reference numerals.
  • the pulverized coal blending unit 6 In the pulverized coal blending step in the modified coal storage method shown in FIG. 2, the pulverized coal blending unit 6 inevitably causes the pulverized product crushed by the crushing unit 3 to be crushed by the aging unit 2. Along with coal Z1, powdery modified coal Z2 inevitably generated in the agglomeration part 1 is also blended.
  • the powdered coal blending unit 6 blends the powdered modified coal Z1 and modified coal Z2 into the crushed material at a certain ratio, so that the particle size distribution of the blended coal can be adjusted to the above range. In this way, by stacking the blended coal blended in the powdered coal blending unit 6, the pile Y ′ having a large packing density and a high airflow resistance coefficient is easily and reliably formed in the pile forming step.
  • the modified coal storage method uses piled coal, which is inevitably generated in the agglomeration process, as piled coal.
  • the product can be used more efficiently.
  • Example 1 Powdered modified coal is blended with pulverized coal (agglomerated modified coal) obtained by agglomerating granular modified coal with a crusher at a peripheral speed of 21 m / s.
  • the test coal of Example 1 was obtained.
  • the test coal was prepared by blending so that the pulverized coal was 77.7 mass% and the powdered coal was 22.3 mass%.
  • Example 2 A mixture of agglomerated coal obtained by agglomerating granular modified coal, pulverized coal obtained by crushing agglomerated coal with a crusher at a peripheral speed of 21 m / s, and powdered modified coal. The test coal.
  • FIG. 4 and Table 1 show the measurement results (Examples 1 and 2 and Comparative Examples 1 to 3) of the particle size distributions of the test coals of Examples 1 and 2 and Comparative Examples 1 to 3 filled in the measurement container 11.
  • this particle size distribution is the value analyzed using the shaking sieve machine made from FRITSCH.
  • ⁇ Breath test> As a ventilation test, a ventilation resistance coefficient when each test coal was piled up was measured. Although it is difficult to measure the air flow rate of the gas flowing through the pile in an actual pile, the air flow rate is proportional to the air flow rate, and the air flow rate is limited by an increase in the air flow resistance. That is, since the magnitude of the air flow can be confirmed from the magnitude of the air resistance, the air resistance coefficient was measured as an index.
  • the ventilation resistance coefficient was measured using the ventilation resistance measuring device of FIG. Specifically, test coal X2 was filled in measurement container 11, and air G was supplied by air compressor 12 so that air G circulated from the bottom to the top of coal X2 filled in measurement container 11. And while measuring the flow velocity of the air G supplied from the air compressor 12 with the flow meter 13, the pressure difference (pressure loss) of the upper part and the lower part of the coal X2 was measured with the pressure gauge 14. From the pressure loss (Pa / m) obtained here and the flow velocity (m / s) of the air G, the ventilation resistance coefficient (Pa ⁇ s / m 2 ) in the packed coal X2 was determined.
  • the aeration resistance coefficient measured by the aeration resistance measurement device and the packing density (bulk density) of the coal X2 when filled in the measurement vessel 11 are shown. It is shown in 2.
  • “coarse filling” means a state in which each coal is filled into the measurement container 11 without being tapped.
  • “close packing” means a state when the measuring container 11 is filled while tapping each coal. For the test coals of Examples 1 and 2, only the close packing density was measured.
  • the graph of FIG. 5 shows the relationship between the ventilation resistance coefficient and the packing density measured for each of the test coals of Examples 1 and 2 and Comparative Examples 1 to 3.
  • the ventilation resistance coefficient when the test coals of Examples 1 and 2 are filled is several tens to several hundreds of the ventilation resistance coefficient when the test coals of Comparative Examples 1 to 3 are filled. You can see that it is twice as expensive. Thereby, it can be said that ventilation resistance can be greatly increased by mix
  • a packing density can be easily enlarged by mix
  • the filling density when filled only upgraded coal powdery using the above formulation was extent 0.5 g / cm 3 or more 0.7 g / cm 3 or less.
  • the ventilation resistance coefficient for restricting the ventilation into the pile for the purpose of suppressing spontaneous ignition is preferably 1.0 ⁇ 10 7 or more, and from FIG. 5, the pile packing density is 1.0 g / cm 3 or more. By doing so, it can be said that this condition can be satisfied.
  • the particle size distribution of the coal forming the pile preferably has a content of particles having a particle size of 2 mm or less of 35% by mass or more. Moreover, it can be said that it is preferable that the content of particles having a particle size of 1 mm or less is 27% by mass or more and the content of particles having a particle size of 0.5 mm or less is 15% by mass or more that satisfies this condition. From FIG.
  • the packing density of the pile can be increased by adding powdered coal to the pulverized coal pulverized by impact pulverization and increasing the ratio of coal having a particle size of 0.15 mm or more and 4.75 mm or less. It can be said. Thereby, the ventilation resistance of a pile becomes large, the amount of ventilation can be restricted, and the suppression effect of the spontaneous ignition of a pile can be improved.
  • the modified coal storage method of the present invention can suppress the spontaneous ignition of piles at low cost, and can be widely used in thermal power plants and steelworks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 塊成体状及び粉状の改質石炭の山積みによりパイルを形成する工程を備え、改質石炭における粒径2mm以下の粒子の含有量が35質量%以上であり、パイル形成工程におけるパイルの充填密度を1.0g/cm以上にする。

Description

改質石炭の貯蔵方法
 本発明は、改質石炭の貯蔵方法に関する。
 火力発電所や製鉄所等で使用する石炭は、通常、屋外ヤードに山積みされたパイルとして貯蔵される。このように貯蔵される石炭は、空気中の酸素と反応することで発熱し、自然発火する場合がある。特に低品位炭は、多孔質状を有するため酸化反応性が高く、発熱し易い。そこで、一般的には、パイルに対する散水等により自然発火を防止する方法がとられている。しかし、この方法では定期的に散水を行う必要があるため、効率的な自然発火防止方法が求められている。
 そのような中、石炭パイルの自然発火を防止する技術として、樹脂等によりパイル表面を被覆する方法(日本国特開平5-230480号公報及び日本国特開2000-297288号公報参照)や、ラジカル捕捉剤又は酸素捕捉化合物を含む界面活性剤を散布する方法(日本国特開2001-164254号公報参照)が提案されている。しかし、上記各方法によれば、樹脂やラジカル捕捉剤等が必要となるためコスト増が懸念される。
 一方、含水率が高くかつ発熱量が低い低品位炭(多孔質炭)から、改質石炭を得る製造方法が開発されている(日本国特開平7-233383号公報参照)。この製造方法は、まず、多孔質炭を粉砕し粒状とした後、重質油分と溶媒油分とを含む混合油と混合して原料スラリーを得る。次いで、原料スラリーを予熱後、加熱し、多孔質炭の脱水を進めると共に、多孔質炭の細孔内に混合油を含浸させて脱水スラリーを得る。その後、脱水スラリーから改質多孔質炭と混合油とを分離した後、改質多孔質炭を乾燥(脱液)させる。乾燥された改質多孔質炭は所望により冷却及び成形される。この製造方法によれば、多孔質炭の含水率の低下と共に、この多孔質炭の細孔内に重質油が付着し、発熱量が高い改質石炭を得ることができる。
 上記製造方法にて得られる改質石炭は、輸送作業を始めとした作業性の観点や発塵を抑制する観点から、ブリケットに成形される。このブリケットをパイルとして貯蔵すると、同一形状のブリケットからなるためパイルの通気性が高く、酸化反応性が比較的高い石炭をパイリングする場合や、パイルの高さが高くなる場合には、比較的短時間でパイルの温度上昇が起こる。従って、このような改質石炭においては、特に自然発火が生じにくい貯蔵技術が求められている。
日本国特開平5-230480号公報 日本国特開2000-297288号公報 日本国特開2001-164254号公報 日本国特開平7-233383号公報
 本発明は、上述のような事情に基づいてなされたものであり、低コストでパイルの自然発火を抑制することができる改質石炭の貯蔵方法を提供することを目的とする。
 上記課題を解決するためになされた発明は、塊成体状及び粉状の改質石炭の山積みによりパイルを形成するパイル形成工程を備え、上記改質石炭における粒径2mm以下の粒子の含有量が35質量%以上であり、上記パイル形成工程におけるパイルの充填密度を1.0g/cm以上とする改質石炭の貯蔵方法である。
 当該改質石炭の貯蔵方法は、粉状の石炭を含み、粒径2mm以下の比較的小さい粒子が35質量%以上を占める改質石炭を山積みし、充填密度が1.0g/cm以上のパイルを形成する。当該改質石炭の貯蔵方法は、このような粒度分布を有する改質石炭をパイルの充填密度が上記下限以上となるよう山積みすることで、小さい粒子が空隙を埋めて通気性の低いパイルが形成される。従って、当該改質石炭の貯蔵方法によれば、特別な材料等を用いることなく、低コストでパイルの自然発火を抑制することができる。
 上記パイル形成工程前に、上記改質石炭を塊成する塊成工程と、上記塊成石炭をエイジングするエイジング工程と、上記エイジング工程で発生した粉状の改質石炭を塊成体状の改質石炭に配合する工程とをさらに備えるとよい。このように、エイジング工程で不可避的に発生する粉状の改質石炭を塊成体状の改質石炭に配合することで、上記粒度分布及びパイルの充填密度を調整し、容易かつ確実にパイルの自然発火を抑制できる。また、従来のようにエイジング工程で発生する石炭をリサイクルするために再度塊成する必要がないので、再度塊成するために必要なエネルギーが削減できる。
 上記パイル形成工程前に、上記塊成工程で発生する粉状の改質石炭を塊成体状の改質石炭に配合する工程をさらに備えるとよい。このように、塊成工程で不可避的に発生する粉状の改質石炭を塊成体状の改質石炭に配合することで、上記粒度分布及びパイルの充填密度を調整できる。これにより、改質石炭の貯蔵プロセスで生じる回収品をより効率よく利用できる。
 上記パイル形成工程におけるパイルの通気抵抗係数としては、1×10Pa・s/m以上が好ましい。このように、パイル形成工程におけるパイルの通気抵抗係数を上記下限以上とすることで、パイル内の通気量が制限され上記改質石炭の酸化による発熱が抑制されるので、パイルの自然発火がより確実に防止される。
 ここで、「塊成体状の改質石炭」は、塊成した改質石炭及びこれを破砕した粉砕物を含む概念である。また、「粒径」とは、JIS-Z8815(1994)のふるい分け試験法通則における乾式ふるい分けに準拠して測定した値をいう。また、「通気抵抗係数」とは、気体が石炭粒子群を通る時の気体による単位長当りの圧力損失と気体の流速との関係式における係数であり、圧力損失(Pa/m)を流速(m/s)で除して得られる値である。
 以上説明したように、本発明の改質石炭の貯蔵方法によれば、コストの上昇を招来することなく、パイルの自然発火を抑制することができる。従って、本発明の改質石炭の貯蔵方法によれば、低品位炭から得られる改質石炭の利用の容易性を高めることができる。
本発明の一実施形態に係る改質石炭の貯蔵方法を説明するブロック図 本発明の他の実施形態に係る改質石炭の貯蔵方法を説明するブロック図 通気抵抗測定装置を示す模式図 実施例における各石炭の粒度分布を示すグラフ 実施例により測定した充填密度と通気抵抗との関係を示すグラフ
 以下、本発明に係る改質石炭の貯蔵方法の実施形態について詳説する。
 <改質石炭の貯蔵方法>
 当該改質石炭の貯蔵方法は、塊成体状及び粉状の改質石炭の山積みによりパイルを形成する工程(パイル形成工程)を備え、上記パイル形成工程前に、上記改質石炭を塊成する工程(塊成工程)と、上記塊成石炭をエイジングする工程(エイジング工程)と、上記エイジング工程後の塊成石炭を破砕する工程(破砕工程)と、上記エイジング工程で発生した粉状の改質石炭を塊成体状の改質石炭に配合する工程(粉状石炭配合工程)とをさらに備える。
 ここで、まず当該改質石炭の貯蔵方法に用いられる改質石炭の製造方法の一例について説明する。上記改質石炭は、多孔質炭(低品位炭)を粒状に粉砕する工程(粉砕工程)、上記多孔質炭と油とを混合して原料スラリーを得る工程(混合工程)、上記原料スラリーを予熱する工程(予熱工程)、上記原料スラリーを加熱し、脱水スラリーを得る工程(加熱工程)、上記脱水スラリーを改質多孔質炭と油とに分離する工程(固液分離工程)、及び分離された上記改質多孔質炭を乾燥させる工程(乾燥工程)を備える。
(粉砕工程)
 粉砕工程では、多孔質炭を粉砕し粉砕石炭を得る。この粉砕は、公知の粉砕機等を用いることによって行うことができる。
 粉砕後の上記多孔質炭の最大粒径の上限としては、3mmが好ましく、2mmがより好ましく、1mmがさらに好ましい。また多孔質炭の粉砕後における粒径が0.5mm以下の粒子の含有量の下限としては、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましい。粉砕後の多孔質炭の最大粒径を上記上限以下、又は粒径が0.5mm以下の粒子の含有量を上記下限以上とすることで、後述の加熱工程における多孔質炭のスラリー化を容易にすることができる。なお、多孔質炭の最大粒径は、篩によって計測できる。
 また、上記多孔質炭は、多量の水分を含有し、脱水することが望まれるいわゆる低品位炭である。上記多孔質炭の含水率は、例えば20質量%以上70質量%以下である。このような多孔質炭としては例えば、褐炭、亜炭、亜瀝青炭(サマランガウ炭等)などが挙げられる。また、粉砕前の多孔質炭の最大粒径の上限は特に限定されないが、粉砕機への投入容易性の観点から例えば50mmである。
(混合工程)
 混合工程では、粉砕された上記多孔質炭と油とを混合して原料スラリーを得る。この混合工程は、例えば公知の混合槽等を用いて行うことができる。また、上記油は、好ましくは重質油分と溶媒油分とを含む混合油である。以下、この混合油を用いた例として説明する。
 上記重質油分とは、例えば400℃でも実質的に蒸気圧を示すことがないような重質分からなるか、これを多く含む油であり、アスファルト等を用いることができる。上記溶媒油分とは、上記重質油分を分散させる油である。この溶媒油分としては、重質油分との親和性、スラリーとしてのハンドリング性、細孔内への侵入容易性等の観点から軽沸油分が好まれる。具体的には、上記溶媒油分としては、沸点が100℃以上300℃以下の石油系油(軽油、灯油又は重油等)が好ましい。
 このような重質油分と溶媒油分との混合油を用いると、この混合油が適切な流動性を示す。そのため、上記混合油を用いることで、重質油分単独では果たし難い重質油分の多孔質炭の細孔内への侵入が促進される。上記混合油における重質油分の含有量としては、例えば0.25質量%以上15質量%以下とすることができる。
 多孔質炭に対する混合油の混合割合としては、特に制限されない。例えば、多孔質炭に対する重質油分の量の下限としては、0.5質量%が好ましい。また、多孔質炭に対する重質油分の量の上限としては、30質量%が好ましく、5質量%がより好ましい。上記重質油分の量が上記下限未満であると、細孔内への重質油分の吸着量が不十分となって自然発火性の抑制効果が低下するおそれがある。一方、上記重質油分の量が上記上限を超えると、多孔質炭の改質コストが増加するおそれがある。
(予熱工程)
 混合工程で得られた原料スラリーを加熱工程に先立って予熱する。この予熱条件としては特に制限されず、通常は操作圧での水の沸点近傍まで加熱する。
(加熱工程)
 加熱工程では、上記原料スラリーを加熱し、脱水スラリーを得る。この加熱は、公知の熱交換器、蒸発器等を用いて行うことができる。この際、多孔質炭の脱水が進むと共に、多孔質炭の細孔内に混合油が含浸される。具体的には、多孔質炭の細孔内表面は重質油分を含有する混合油によって次々に被覆され、細孔開口部のほぼ全域が混合油によって充満される。なお、混合油中の重質油分は活性点に選択的に吸着され易く、付着すると離れ難いため、重質油分が溶媒油分よりも優先的に付着していくとされている。こうして細孔内表面が外気から遮断されることによって自然発火性を低下させることが可能となる。また、大量の水分が脱水除去されると共に、混合油、特に重質油分が優先して細孔内を充満することになるので、多孔質炭全体としてのカロリーアップが達成される。
(固液分離工程)
 固液分離工程では、上記脱水スラリーを改質多孔質炭と混合油とに分離する。この分離は、公知の遠心分離器、濾過器等を用いて行うことができる。この工程で分離された混合油は、上記混合工程にて再利用することができる。
(乾燥工程)
 乾燥工程では、分離された上記改質多孔質炭を乾燥させる。この乾燥は、例えば公知のスチームチューブドライヤ等を用いて行うことができる。この乾燥工程で蒸発した油(溶媒油分)は、回収して上記混合工程にて再利用することができる。
 このような製造方法により得られる改質石炭は、上記加熱工程において含水率が低下すると共に、この細孔内に重質油が付着するため、発熱量が高い。
 次に、当該改質石炭の貯蔵方法における各工程について、図1を用いて説明する。
(塊成工程)
 まず、塊成部1において、上記製造方法により得た改質石炭(改質多孔質炭)Xを塊成する。塊成部1で塊成した塊成石炭の形状及びその塊成に用いる装置としては、特に限定されず、例えばダブルロール成形機等を用いた圧縮成形によるブリケット、パン型造粒機等を用いた転動造粒によるペレット、押出成形機を用いた押出成形によるスティック等を採用することができる。
 上記塊成石炭1個の平均質量は特に限定されず、例えば5g以上50g以下とすることができる。また、塊成石炭1個の平均体積は特に限定されず、例えば1cm以上100cm以下とすることができる。また、この塊成石炭の形状としても、特に限定されるものではなく、球状、回転楕円体状、角柱状、円柱状等とすることができる。
(エイジング工程)
 次に、エイジング部2において、上記塊成石炭を緩慢に酸素と反応させて酸化することでエイジングを行う。エイジング部2におけるエイジングの方法としては特に限定されず、周知の方法を用いることができる。具体的には、例えば塊成石炭を密封容器(嫌気箱)内に投入し、この密封容器の内部に下方から上方へ空気を一定量流通させる方法を用いることができる。
(破砕工程)
 次に、破砕部3において、エイジング後の塊成石炭を破砕し、粒径の小さい改質石炭(破砕物)を得る。このように、一度塊成した塊成石炭を破砕して粒径の小さい改質石炭とすることで、特別な装置等を導入することなく、容易に所望する粒度分布を有する改質石炭を得ることができる。
 破砕部3における破砕方法としては、特に制限されず、破砕機等を用いてもよいし、単に高所からの落下により塊成石炭を破砕してもよい。例えば、ホイールローダでエイジング後の塊成石炭をすくい上げ、落下させること等によって破砕することができる。この際、例えば落下させる高さや回数等を変化させることで、得られる破砕物の粒度分布を容易に調整することができる。
 なお、上記破砕工程では、得られた破砕物中に破砕されない塊成石炭が残っていてもよい。また、上記エイジング部2がエイジングを行った塊成石炭の一部のみを上記破砕部3に供してもよい。
(粉状石炭配合工程)
 次に、粉状石炭配合部4において、破砕部3で破砕された破砕物(塊成体状の改質石炭)に、エイジング部2で不可避的に生ずる粉状の改質石炭Z1を配合する。ここで、エイジング部2で不可避的に生ずる粉状の改質石炭Z1とは、具体的にはエイジング部2の篩下で回収された粉状の改質石炭や、エイジング工程後のコンベアの乗継部などで落下する粉状の改質石炭である。上記破砕物に改質石炭Z1を一定の割合で配合することで、配合後の改質石炭の粒度分布を調整できると共に、改質石炭を山積みしたときの充填密度を高めることができる。なお、上記塊成体状の改質石炭には、破砕部3で破砕されていない塊成石炭が含まれていてもよい。
 上記粉状石炭配合部4は、塊成体状の改質石炭に粉状の改質石炭(例えば、最大粒径が100μm以下の改質石炭)を配合できるものであれば、その構成は特に限定されず、例えば破砕部3で破砕された破砕物を搬送するコンベア上に、エイジング部2の篩下で回収された粉状の改質石炭Z1を運搬するコンベアから改質石炭Z1を落下させる構成とすることができる。
 上記粉状石炭配合部4で塊成体状の改質石炭と粉状の改質石炭とが配合された改質石炭(配合石炭)の粒径2mm以下の粒子の含有量の下限としては、35質量%であり、38質量%がより好ましい。また、粒径2mm以下の粒子の含有量の上限としては、90質量%が好ましく、80質量%がより好ましい。上記含有量が上記下限未満であると、パイルを形成した際に空隙が小さい粒子によって埋められず通気性が高くなるため、パイルの自然発火を十分に抑制できないおそれがある。一方、上記含有量が上記上限を超えると、パイルを形成した際の充填密度が十分に大きくならず通気性の低下が不十分となり、パイルの自然発火を十分に抑制できないおそれがある。
 さらに、上記配合石炭の粒径1mm以下の粒子の含有量の下限としては、27質量%が好ましく、28質量%がより好ましい。また、上記配合石炭の粒径0.5mm以下の粒子の含有量の下限としては、15質量%が好ましく、18質量%がより好ましい。配合石炭の粒径2mm以下の粒子の含有量を上記範囲内とした上で、配合石炭の粒径1mm以下及び粒径0.5mm以下の粒子の含有量を上記下限以上とすることで、パイル形成時の充填密度を高めることができ、通気性がより低減され、パイルの自然発火の防止効果をさらに大きくできる。
 一方、粒径1mm以下の粒子の含有量の上限としては40質量%が好ましく、35質量%がさらに好ましい。また、粒径0.5mm以下の粒子の含有量の上限としては30質量%が好ましく、25質量%がさらに好ましい。これらの微細な粒子の含有量を上記上限以下とすることで、発塵の抑制や、その他作業性を高めることができる。
 上記改質石炭の粒度分布は、粉状石炭配合工程において、破砕部3で破砕された破砕物に配合する粉状の改質石炭Z1の配合量を変化させることにより調整できる。また、破砕部3で破砕していない塊成石炭、塊成前の上記改質石炭Xなどを加えて粒度を調整してもよい。このとき上記改質石炭の粒度を調整するために、塊成前の改質石炭Xを粉砕して粉状にし、上記破砕物に配合してもよい。さらに、粉状石炭配合工程において、未改質の石炭を用いて全体の粒度を調整することもできる。ただし、上記配合石炭に対する上記未改質石炭の配合割合の上限としては、30質量%が好ましく、10質量%がさらに好ましい。上記未改質石炭の配合割合が上記上限を超えると、石炭の燃焼効率が低下するおそれがある。
(パイル形成工程)
 次に、パイル形成部5において、上記粉状石炭配合部4で塊成体状の改質石炭と粉状の改質石炭とが配合された配合石炭を山積みし、パイルYを形成する。この山積みは、ベルトコンベア等、公知の機器等を用いて行うことができる。
 上記パイル形成部5で形成するパイルYの充填密度の下限としては、1.0g/cmであり、1.03g/cmがより好ましく、1.05g/cmがさらに好ましい。上記充填密度が上記下限未満であると、通気性が高くなり、パイルYの自然発火を十分に抑制できないおそれがある。なお、上記パイルYの充填密度とはパイルYの嵩密度である。
 一方、上記充填密度の想定上の上限は、水分が無い状態で1.4g/cm程度であるが、現実的には上記充填密度がブリケットの密度1.2g/cmを超えることは考え難い。そのため、上記充填密度の上限としては、1.15g/cmが好ましく、1.10g/cmがより好ましい。
 また、上記パイル形成工程で形成するパイルYの通気抵抗係数の下限としては、1×10Pa・s/mが好ましく、3×10Pa・s/mがより好ましい。一方、上記通気抵抗係数の上限としては、2×10Pa・s/mであり、7×10Pa・s/mがより好ましい。上記通気抵抗係数が上記下限未満であると、パイルY内の通気を十分に制限できず、パイルYの自然発火を十分に抑制できないおそれがある。また、上記通気抵抗係数が上記上限を超えると、パイル形成が難しくなり、特別な設備が必要となるおそれがある。
 パイル形成工程では、上記粉状石炭配合工程において破砕部3で破砕された破砕物に粉状の改質石炭Z1を配合した改質石炭を用いて山積みするので、このように充填密度及び通気抵抗係数が大きいパイルYが容易かつ確実に形成される。
 なお、パイルYの充填密度及び通気抵抗係数が上記範囲内となるように、タッピングを施しながら改質石炭を山積みしたり、改質石炭を山積みした後に重機で踏み固めたりしてもよい。
 また、改質石炭の山積みの際、改質石炭に水や界面活性剤水溶液を噴霧させてもよい。このようにすることで、形成されるパイルYからの発塵や発火をより低減させることができる。
 <利点>
 当該改質石炭の貯蔵方法は、粉状の石炭を含み、粒径2mm以下の比較的小さい粒子が35質量%以上を占める改質石炭を山積みし、充填密度が1.0g/cm以上のパイルを形成する。これにより、小さい粒子が空隙を埋めて通気性の低いパイルが形成され、自然発火性が抑制される。このように、当該改質石炭の貯蔵方法は、特別な材料等を用いることなく、低コストでパイルの自然発火を抑制することができる。
 また、当該改質石炭の貯蔵方法は、エイジング工程で不可避的に発生する粉状の改質石炭をパイルの形成に利用するので、従来のようにエイジング工程で発生する粉状の石炭をリサイクルするために再度塊成する必要がなくリサイクルのためのコストが低減できる。
[その他の実施形態]
 上記実施形態では、エイジング工程で不可避的に発生する粉状の改質石炭をパイルの形成に利用することとしたが、さらに塊成工程で不可避的に発生する粉状の改質石炭もパイルの形成に利用してもよい。図2は、塊成工程で不可避的に発生する粉状の改質石炭もパイルの形成に利用する改質石炭の貯蔵方法を説明するブロック図である。図2では、図1と同じ構成部分に同じ符号を付している。
 図2に示す改質石炭の貯蔵方法における粉状石炭配合工程では、粉状石炭配合部6が、破砕部3で破砕された破砕物に、エイジング部2で不可避的に生ずる粉状の改質石炭Z1と共に塊成部1で不可避的に生ずる粉状の改質石炭Z2(塊成不良品)も配合する。粉状石炭配合部6が、粉状の上記改質石炭Z1及び改質石炭Z2を上記破砕物に一定の割合で配合することで、配合石炭の粒度分布を上述の範囲に調整できる。このように、粉状石炭配合部6で配合された上記配合石炭を山積みすることにより、パイル形成工程において充填密度及び通気抵抗係数が大きいパイルY´が容易かつ確実に形成される。
 <利点>
 当該改質石炭の貯蔵方法は、山積みする石炭として、塊成工程で不可避的に発生する粉状の改質石炭もパイルの形成に利用するので、改質石炭の貯蔵プロセスで不可避的に生じる回収品をより効率よく利用できる。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
 粒状の改質石炭を塊成して得た塊成石炭を周速21m/sで破砕機により粉砕した粉砕炭(塊成体状の改質石炭)に、粉状の改質石炭を配合して実施例1の試験用石炭とした。実施例1では、粉砕炭が77.7質量%、粉状石炭が22.3質量%となるよう配合して試験用石炭を作成した。
[実施例2] 
 粒状の改質石炭を塊成して得た塊成石炭と、塊成石炭を周速21m/sで破砕機により粉砕した粉砕炭と、粉状の改質石炭とを配合して実施例2の試験用石炭とした。 
[比較例1~3] 
 粒状の改質石炭を塊成して得た塊成石炭を破砕機により粉砕した粉砕炭を比較例の試験用石炭とした。具体的には、粉砕時の破砕機の周速を3種類(15m/s、18m/s、21m/s)に変化させて得た粉砕炭を比較例1~3の試験用石炭とした。 
<粒度分布測定> 
 測定容器11に充填した実施例1、2、比較例1~3の各試験用石炭の粒度分布の測定結果(実施例1、2、比較例1~3)を図4及び表1に示す。なお、この粒度分布は、FRITSCH社製の振とう篩い機を用いて分析した値である。 
Figure JPOXMLDOC01-appb-T000001
 <通気試験>
 次に通気試験として、各試験用石炭を山積みしたときの通気抵抗係数を測定した。実際のパイルでパイル内を流通する気体の通気量を測定するのは困難であるが、通気量は通気速度に比例し、通気抵抗が高くなることによりその通気速度は制限される。つまり、通気抵抗の大小から通気量の大小が確認できるので、その指標として通気抵抗係数の測定を行った。
 通気抵抗係数は、図3の通気抵抗測定装置を用いて測定した。具体的には、測定容器11内に試験用の石炭X2を充填し、測定容器11内に充填した石炭X2の下方から上方へ空気Gが流通するようにエアーコンプレッサ12により空気Gを供給した。そして、流量計13により、エアーコンプレッサ12から供給する空気Gの流速を測定すると共に、圧力計14により石炭X2の上部と下部との圧力差(圧力損失)を測定した。ここで得られた圧力損失(Pa/m)及び空気Gの流速(m/s)から、充填された石炭X2内の通気抵抗係数(Pa・s/m)を求めた。
 実施例1、2、及び比較例1~3の各試験用石炭について、上記通気抵抗測定装置で測定した通気抵抗係数及び測定容器11に充填したときの石炭X2の充填密度(嵩密度)を表2に示す。表2において「粗充填」とは、各石炭をタッピングを施さずに測定容器11に充填したときの状態を意味する。また「密充填」とは、各石炭にタッピングを施しながら測定容器11に充填したときの状態を意味する。なお、実施例1及び2の試験用石炭については、密充填の充填密度のみ測定した。また、実施例1、2、及び比較例1~3の各試験用石炭について測定した通気抵抗係数と充填密度との関係を図5のグラフに示す。
Figure JPOXMLDOC01-appb-T000002
 これらの結果より、実施例1及び2の試験用石炭を充填したときの通気抵抗係数は、比較例1~3の試験用石炭を充填したときの通気抵抗係数に対して数十倍から数百倍高いことがわかる。これにより、粉砕炭に粉状の石炭を配合することで、通気抵抗を飛躍的に大きくできるといえる。
 また、粉砕炭に粉状の石炭を配合することで、充填密度を容易に大きくできることがわかる。なお、上記配合に用いた粉状の改質石炭のみを充填した場合の充填密度は、0.5g/cm以上0.7g/cm以下程度であった。粉砕炭に粉状の石炭を配合することにより、粉砕炭のみ及び粉状の石炭のみのいずれの充填密度よりも大きい充填密度にすることができる。
 また、図5より、充填密度が大きくなるほど通気抵抗が大きくなることがわかる。自然発火を抑制することを目的としてパイル内への通気を制限する通気抵抗係数としては、1.0×10以上が好ましく、図5より、パイルの充填密度を1.0g/cm以上とすることで、この条件を満たすことができるといえる。
 また、上記粒度分布の測定結果及び通気試験の結果より、パイルを形成する石炭の粒度分布は、粒径2mm以下の粒子の含有量が35質量%以上であることが好ましいといえる。また、この条件を満たし、さらに粒径1mm以下の粒子の含有量が27質量%以上で、粒径0.5mm以下の粒子の含有量が15質量%以上であることが好ましいといえる。また図4より、衝撃型粉砕により粉砕した粉砕炭に対して粉状の石炭を配合し、0.15mm以上4.75mm以下の粒径の石炭の比率を高めることでパイルの充填密度を大きくできるといえる。これにより、パイルの通気抵抗が大きくなって通気量を制限でき、パイルの自然発火の抑制効果を向上させることができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年5月23日出願の日本特許出願(特願2014-107552)に基づくものであり、その内容はここに参照として取り込まれる。
 以上説明したように、本発明の改質石炭の貯蔵方法は、低コストでパイルの自然発火を抑制することができ、火力発電所や製鉄所等で広く用いることができる。
1 塊成部
2 エイジング部
3 破砕部
4 粉状石炭配合部
5 パイル形成部
6 粉状石炭配合部 
11 測定容器 
12 エアーコンプレッサ 
13 流量計 
14 圧力計 
X 改質石炭 
X2 石炭 
Y、Y´ パイル 
Z1、Z2 粉状改質石炭 
G 空気

Claims (4)

  1.  塊成体状及び粉状の改質石炭の山積みによりパイルを形成するパイル形成工程を備え、
     上記改質石炭における粒径2mm以下の粒子の含有量が35質量%以上であり、 
     上記パイル形成工程におけるパイルの充填密度を1.0g/cm以上とする改質石炭の貯蔵方法。
  2.  上記パイル形成工程前に、 
     上記改質石炭を塊成する塊成工程と、 
     上記塊成石炭をエイジングするエイジング工程と、 
     上記エイジング工程で発生した粉状の改質石炭を塊成体状の改質石炭に配合する工程とをさらに備える請求項1に記載の改質石炭の貯蔵方法。
  3.  上記パイル形成工程前に、上記塊成工程で発生する粉状の改質石炭を塊成体状の改質石炭に配合する工程をさらに備える請求項2に記載の改質石炭の貯蔵方法。
  4.  上記パイル形成工程におけるパイルの通気抵抗係数を1×10Pa・s/m以上とする請求項1、請求項2又は請求項3に記載の改質石炭の貯蔵方法。
     
     
PCT/JP2015/064539 2014-05-23 2015-05-20 改質石炭の貯蔵方法 WO2015178433A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2016147086A RU2668013C2 (ru) 2014-05-23 2015-05-20 Способ хранения модифицированного угля
US15/305,543 US10287524B2 (en) 2014-05-23 2015-05-20 Modified coal storage method
CN201580026062.2A CN106458448A (zh) 2014-05-23 2015-05-20 改质煤的贮存方法
EP15796598.9A EP3147238A4 (en) 2014-05-23 2015-05-20 Modified coal storage method
AU2015262356A AU2015262356B2 (en) 2014-05-23 2015-05-20 Modified coal storage method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-107552 2014-05-23
JP2014107552A JP6174521B2 (ja) 2014-05-23 2014-05-23 改質石炭の貯蔵方法

Publications (1)

Publication Number Publication Date
WO2015178433A1 true WO2015178433A1 (ja) 2015-11-26

Family

ID=54554097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064539 WO2015178433A1 (ja) 2014-05-23 2015-05-20 改質石炭の貯蔵方法

Country Status (7)

Country Link
US (1) US10287524B2 (ja)
EP (1) EP3147238A4 (ja)
JP (1) JP6174521B2 (ja)
CN (1) CN106458448A (ja)
AU (1) AU2015262356B2 (ja)
RU (1) RU2668013C2 (ja)
WO (1) WO2015178433A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109264421A (zh) * 2018-09-20 2019-01-25 李秀利 一种建筑用运输方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820201B1 (ja) * 1969-11-15 1973-06-19
US4941888A (en) * 1989-01-17 1990-07-17 Fritz Kramer Commodity storage pile protection with a rainwater holding sponge
WO2014083918A1 (ja) * 2012-11-27 2014-06-05 株式会社神戸製鋼所 改質石炭の貯蔵方法及び粒度調整石炭

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557863A (en) * 1978-07-05 1980-01-21 Nippon Steel Chem Co Ltd Production of good coke
JPS5943709A (ja) * 1982-09-02 1984-03-10 Nippon Steel Corp 野積堆積物の被覆方法
JPS6040305A (ja) * 1983-08-12 1985-03-02 Sumitomo Metal Ind Ltd 屋外貯蔵ヤ−ドの堆積物山積方法
SU1793066A1 (ru) * 1990-07-17 1993-02-07 Karagandin Otdel Vos Nii Bezop Способ предупреждения эндогенных пожаров в угольных штабелях
JPH05230480A (ja) 1992-02-21 1993-09-07 Japan Organo Co Ltd 石炭パイルの自然発火・発塵防止剤、石炭パイルの自然発火・発塵防止方法、および石炭パイルの構造
JPH07117823A (ja) * 1993-10-21 1995-05-09 Nippon Oil & Fats Co Ltd 粉塵防止方法
JP2776278B2 (ja) * 1993-12-27 1998-07-16 株式会社神戸製鋼所 多孔質炭を原料とする固形燃料及びその製造方法
AU668328B2 (en) 1993-12-27 1996-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Solid fuel made from porous coal and production process and production apparatus therefore
US5919277A (en) 1996-07-08 1999-07-06 Hazen Research, Inc. Method to reduce oxidative deterioration of bulk materials
JP3929544B2 (ja) * 1997-03-19 2007-06-13 新日本製鐵株式会社 野積み石炭の表面被覆方法
JP2000297288A (ja) 1999-04-15 2000-10-24 Jgc Corp 石炭の自然発火防止方法、及び自然発火防止石炭
JP4226173B2 (ja) 1999-12-02 2009-02-18 ライオン株式会社 炭素質粉体の昇温・自然発火抑制剤
AU779148B2 (en) 1999-12-02 2005-01-06 Lion Specialty Chemicals Co., Ltd. Inhibitor for inhibiting carbonaceous powder from heating up/spontaneously igniting and method of inhibiting carbonaceous powder from heating up/spontaneously igniting
JP2001303066A (ja) 2000-04-25 2001-10-31 Nippon Steel Corp コークス炉装入用石炭の粒度調整方法
JP2006077155A (ja) * 2004-09-10 2006-03-23 Chubu Electric Power Co Inc 石炭の自然発火防止方法および自然発火を防止した石炭混合燃料
RU2288155C2 (ru) * 2004-11-09 2006-11-27 Институт горного дела Севера им. Н.В. Черского Сибирского отделения Российской академии наук Способ транспортирования угля и формирования из него штабеля
JP4284314B2 (ja) * 2005-12-15 2009-06-24 株式会社神戸製鋼所 改質石炭の製造方法
JP4603620B2 (ja) * 2008-10-14 2010-12-22 株式会社神戸製鋼所 多孔質炭を原料とする成型固形燃料の製造方法
CN101972528B (zh) * 2010-09-28 2011-12-21 中国神华能源股份有限公司 一种采用隔氧材料覆盖煤堆防止煤炭堆储自燃的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820201B1 (ja) * 1969-11-15 1973-06-19
US4941888A (en) * 1989-01-17 1990-07-17 Fritz Kramer Commodity storage pile protection with a rainwater holding sponge
WO2014083918A1 (ja) * 2012-11-27 2014-06-05 株式会社神戸製鋼所 改質石炭の貯蔵方法及び粒度調整石炭

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3147238A4 *

Also Published As

Publication number Publication date
RU2668013C2 (ru) 2018-09-25
AU2015262356A1 (en) 2016-11-10
EP3147238A4 (en) 2017-11-15
JP2015221719A (ja) 2015-12-10
EP3147238A1 (en) 2017-03-29
US10287524B2 (en) 2019-05-14
RU2016147086A (ru) 2018-06-25
JP6174521B2 (ja) 2017-08-02
US20170044453A1 (en) 2017-02-16
RU2016147086A3 (ja) 2018-06-25
CN106458448A (zh) 2017-02-22
AU2015262356B2 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP2015193930A (ja) 焼結鉱の製造方法
JP5868832B2 (ja) 改質石炭の貯蔵方法
JP6174521B2 (ja) 改質石炭の貯蔵方法
KR20150021543A (ko) 코크스 및 그 제조 방법
JP2007002052A (ja) 高強度コークスの製造方法
US20230257849A1 (en) Method for supplying raw material to a sinter plant
JP6623629B2 (ja) 高炉用コークスの製造方法
JP2014019746A (ja) 副生炭成形物の製造方法
JP4819197B2 (ja) 高強度コークスの製造方法
JP7403945B2 (ja) コークス炉装入炭の製造方法
JP6262074B2 (ja) 改質石炭の製造方法
JP5976616B2 (ja) 改質石炭の製造方法
JP5768726B2 (ja) コークスの製造方法
JP5635962B2 (ja) 残渣炭成形物の製造方法
KR20120025221A (ko) 저발열 무연탄을 포함하는 성형탄의 제조 방법 및 이로부터 제조된 성형탄
JP2002327181A (ja) 高炉用コークスの製造方法
JP2018203901A (ja) コークスの製造方法
JPS61101598A (ja) 籾殻固形燃料の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796598

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15305543

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015796598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015796598

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015262356

Country of ref document: AU

Date of ref document: 20150520

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201607825

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016147086

Country of ref document: RU

Kind code of ref document: A