WO2014083918A1 - 改質石炭の貯蔵方法及び粒度調整石炭 - Google Patents
改質石炭の貯蔵方法及び粒度調整石炭 Download PDFInfo
- Publication number
- WO2014083918A1 WO2014083918A1 PCT/JP2013/075201 JP2013075201W WO2014083918A1 WO 2014083918 A1 WO2014083918 A1 WO 2014083918A1 JP 2013075201 W JP2013075201 W JP 2013075201W WO 2014083918 A1 WO2014083918 A1 WO 2014083918A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coal
- particle size
- mass
- less
- pile
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/02—Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
- C10L5/04—Raw material of mineral origin to be used; Pretreatment thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/02—Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
- C10L5/06—Methods of shaping, e.g. pelletizing or briquetting
- C10L5/08—Methods of shaping, e.g. pelletizing or briquetting without the aid of extraneous binders
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/02—Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
- C10L5/34—Other details of the shaped fuels, e.g. briquettes
- C10L5/36—Shape
- C10L5/361—Briquettes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/02—Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
- C10L5/34—Other details of the shaped fuels, e.g. briquettes
- C10L5/36—Shape
- C10L5/366—Powders
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L9/00—Treating solid fuels to improve their combustion
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2250/00—Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
- C10L2250/06—Particle, bubble or droplet size
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/28—Cutting, disintegrating, shredding or grinding
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/32—Molding or moulds
Definitions
- the present invention relates to a method for storing reformed coal and particle size-adjusted coal.
- Coal used in thermal power plants and steelworks is usually stored as piles piled up in an outdoor yard. Coal stored in this way generates heat by reacting with oxygen in the air and may ignite spontaneously. In particular, low-grade coal has a porous state and thus has high oxidation reactivity and is likely to generate heat. Therefore, in general, a method of preventing spontaneous ignition by watering the pile or the like is taken. However, this method requires regular watering, and an efficient method for preventing spontaneous ignition is required.
- porous charcoal is pulverized and granulated, and then mixed with a mixed oil containing a heavy oil and a solvent oil to obtain a raw material slurry.
- the raw slurry is preheated and then heated to advance the dehydration of the porous coal, and the mixed oil is impregnated into the pores of the porous coal to obtain a dehydrated slurry.
- the modified porous charcoal and the mixed oil are separated from the dewatered slurry, and then the modified porous charcoal is dried (drained).
- the dried modified porous coal is cooled and shaped as desired. According to this manufacturing method, with the reduction of the moisture content of the porous coal, heavy oil adheres to the pores of the porous coal, and a modified coal having a high calorific value can be obtained.
- the modified coal obtained by the above production method is molded into briquettes from the viewpoint of workability including transportation work and from the viewpoint of suppressing dust generation.
- this briquette is stored as a pile, it is made of briquettes of the same shape, so the pile is highly breathable, and when it is piled with coal, which has a relatively high oxidation reactivity, or when the pile height is high, it is relatively short.
- the pile temperature rises over time. Therefore, in such modified coal, a storage technique that is particularly difficult to cause spontaneous ignition is required.
- the present invention has been made on the basis of the above-described circumstances, and a storage method for modified coal that can suppress the spontaneous ignition of the pile at low cost, and the spontaneous ignition at the time of storage is reduced.
- the object is to provide particle size-adjusted coal.
- the invention made to solve the above problems is Having a process of stacking granular coal including modified coal,
- This is a modified coal storage method in which the content of particles having a particle size of 10 mm or less in the coal is 50% by mass or more.
- the storage method for the modified coal uses a granular material in which relatively small particles having a particle size of 10 mm or less occupy 50% by mass or more as piled coal.
- a granular material in which relatively small particles having a particle size of 10 mm or less occupy 50% by mass or more as piled coal.
- small particles fill the voids and a pile with low air permeability is formed. Therefore, according to the method for storing the modified coal, the spontaneous ignition of the pile can be suppressed at a low cost without using a special material or the like.
- the content of particles having a particle size of 1 mm or less in the coal is 25% by mass or more and the content of particles having a particle size of 0.15 mm or less is 7% by mass or more.
- the content of particles having a particle size of 1 mm or less in the coal is 25% by mass or more and the content of particles having a particle size of 0.15 mm or less is 7% by mass or more.
- the content of particles having a particle size of 10 mm or less in the coal is preferably 90% by mass or less.
- operativity etc. can be improved by using coal whose particle size is 10 mm or less and 90 mass% or less.
- the modified coal storage method is as follows: A step of molding the modified coal briquette, and a step of pulverizing the briquette, It is preferable to use a pulverized product obtained by the pulverization step as at least a part of the granular coal. In this way, the briquette once molded is pulverized into a modified coal having a small particle size (pulverized product), so that coal having a desired particle size distribution can be easily obtained without introducing a special new device or the like. Obtainable.
- the particle size-adjusted coal of the present invention contains modified coal, and the content of particles having a particle size of 10 mm or less is 50% by mass or more and 90% by mass or less. Since the said particle size adjustment coal is a granular material which has such a broad particle size distribution, it can form the pile by which a spontaneous combustion is suppressed, ensuring workability
- particle size means a value measured in accordance with the dry screening in JIS Z 8815 (1994) General Screening Test Law.
- the modified coal storage method of the present invention it is possible to suppress the spontaneous ignition of the pile without causing an increase in cost. Moreover, the particle size-adjusted coal of the present invention can form a pile with reduced spontaneous ignition. Therefore, according to the particle size-adjusted coal and modified coal storage method of the present invention, the ease of use of modified coal obtained from low-grade coal can be enhanced.
- the modified coal storage method of the present invention comprises: (C) a step of stacking granular coal containing modified coal, and preferably, before this step (C), (A) a step of forming briquettes of the modified coal, and (B) this briquette And crushing.
- the modified coal is A step of crushing porous charcoal (low-grade coal) into particles (crushing step), A step of mixing the porous charcoal and oil to obtain a raw slurry (mixing step), A step of preheating the raw slurry (preheating step), Heating the raw material slurry to obtain a dehydrated slurry (heating step); A step of separating the dehydrated slurry into modified porous coal and oil (solid-liquid separation step), and a step of drying the separated modified porous coal (drying step)
- the porous charcoal is pulverized into a granular material having a preferable particle size.
- This pulverization can be performed by using a known pulverizer or the like.
- the particle diameter of the granular porous charcoal thus pulverized and used for the mixing step is not particularly limited, and is, for example, 0.05 mm to 2.0 mm, preferably 0.1 mm to 0.5 mm. can do.
- the porous coal is a so-called low-grade coal that contains a large amount of water and is desired to be dehydrated.
- the water content of the porous coal is, for example, 20 to 70% by mass.
- Examples of such porous coal include lignite, lignite, and sub-bituminous coal (eg, Samarangau coal).
- the mixing step granular porous charcoal and oil are mixed to obtain a raw material slurry.
- This mixing process can be performed using a well-known mixing tank etc., for example.
- the oil is preferably a mixed oil containing a heavy oil and a solvent oil.
- it demonstrates as an example using this mixed oil.
- the above-mentioned heavy oil component is, for example, a heavy component that does not substantially exhibit a vapor pressure even at 400 ° C. or an oil containing a large amount thereof, and asphalt or the like can be used.
- the solvent oil component is an oil that disperses the heavy oil component.
- a light boiling oil component is preferred from the viewpoints of affinity with a heavy oil component, handleability as a slurry, ease of penetration into pores, and the like.
- petroleum-based oils light oil, kerosene, heavy oil, etc. having a boiling point of 100 ° C. or higher, preferably 300 ° C. or lower are preferable.
- this mixed oil exhibits appropriate fluidity. Therefore, by using the above mixed oil, penetration of the porous coal into the pores of the heavy oil which is difficult to achieve with the heavy oil alone is promoted.
- content of the heavy oil content in the said mixed oil it can be set as 0.25 mass% or more and 15 mass% or less, for example.
- the mixing ratio of the mixed oil to the porous coal is not particularly limited.
- the amount of heavy oil relative to the porous coal is 0.5% by mass or more and 30% by mass or less, preferably 0.5% by mass or more and 5% by mass or less.
- the raw material slurry obtained in the mixing step is usually preheated prior to the heating step.
- the preheating conditions are not particularly limited, and usually the heating is performed to near the boiling point of water at the operating pressure.
- Heating process In the heating step, the raw material slurry is heated to obtain a dehydrated slurry. This heating can be performed using a known heat exchanger, evaporator or the like. At this time, the dehydration of the porous coal proceeds and the mixed oil is impregnated into the pores of the porous coal. Specifically, the inner surface of the pores of the porous charcoal is successively covered with the mixed oil containing the heavy oil, and almost the entire area of the pore opening is filled with the mixed oil. In addition, it is said that the heavy oil in the mixed oil is easily adsorbed selectively at the active site and is difficult to separate when attached, so that the heavy oil is preferentially attached over the solvent oil.
- the pyrophoricity can be reduced by blocking the inner surface of the pores from the outside air.
- a large amount of water is dehydrated and removed, and the mixed oil, particularly heavy oil, preferentially fills the pores, so that calorie increase as a whole of the porous coal is achieved.
- Solid-liquid separation process In the solid-liquid separation step, the dehydrated slurry is separated into modified porous coal and mixed oil. This separation can be performed using a known centrifuge, filter or the like. The mixed oil separated in this step can be reused in the mixing step.
- drying step the separated modified porous coal is dried. This drying can be performed using, for example, a known steam tube dryer.
- the oil (solvent oil) evaporated in this drying step can be recovered and reused in the mixing step.
- the modified coal obtained by such a manufacturing method has a high heat generation amount because the moisture content decreases in the heating step and the heavy oil adheres to the pores.
- step (A) Molding step
- the granular modified coal modified porous coal
- briquettes briquettes
- This molding can be performed using a known granulator such as a double roll type molding machine.
- the molding can be performed by humidifying the granular modified coal or adding a binder such as starch. By doing in this way, moldability can be improved.
- the size of the briquette is not particularly limited, and can be, for example, 1 cm 3 or more and 100 cm 3 or less.
- the shape of the briquette is not particularly limited, and may be spherical, spheroidal, prismatic, cylindrical, or the like.
- step (B) Grinding step In this step (B), the briquettes obtained in step (A) are crushed to obtain modified coal (pulverized product) having a small particle size.
- modified coal pulverized product
- the modified coal having a desired particle size distribution can be easily obtained without introducing a special new device or the like by pulverizing the once-formed briquette to obtain a modified coal having a small particle size. Can do.
- the pulverization method is not particularly limited, and a pulverizer or the like may be used, or pulverization may be performed simply by dropping from a high place.
- the briquette can be scooped and dropped by a wheel loader.
- the particle size distribution of the obtained pulverized product can be easily adjusted by changing the height and the number of times of dropping.
- the height at the time of dropping can be set to 1 m or more and 5 m or less. By dropping from such a height, the briquette can be efficiently and pulverized into particles having an appropriate particle size distribution.
- the number of drops is preferably 10 times or more and 50 times or less. By setting the number of drops, the briquette can be efficiently and pulverized into particles having an appropriate particle size distribution.
- briquettes that are not pulverized may remain in the obtained pulverized product. Moreover, you may use only a part of briquette shape
- the briquette-derived granular material pulverized in the step (B) can be used as the modified coal having an appropriate particle size distribution.
- the pulverized product may be adjusted to a particle size by adding uncrushed briquettes, unmolded granular or powdered modified coal, defective molding products generated in the molding process, etc. The particle size can be adjusted using only the modified coal.
- the overall particle size can be adjusted using other unmodified coal.
- the proportion of the unmodified coal relative to the piled granular coal is preferably 30% by mass or less, and more preferably 10% by mass or less, based on mass.
- the lower limit of the content of particles having a particle size of 10 mm or less is 50% by mass.
- the small particles can fill the voids and form a pile with low air permeability. Therefore, according to the method for storing the modified coal, the spontaneous ignition of the pile can be suppressed at a low cost without using a special material or the like.
- the upper limit of the content of particles having a particle size of 10 mm or less is preferably 90% by mass, more preferably 70% by mass, and even more preferably 65% by mass.
- the upper limit of the content of particles having a particle diameter of 10 mm or less is preferably 90% by mass, more preferably 70% by mass, and even more preferably 65% by mass.
- the lower limit of the content of particles having a particle size of 1 mm or less is preferably 25% by mass. Moreover, as a minimum of content of particle
- the upper limit of the content of particles having a particle diameter of 1 mm or less is preferably 40% by mass, and more preferably 35% by mass. Further, the upper limit of the content of particles having a particle size of 0.15 mm or less is preferably 20% by mass, and more preferably 15% by mass. By setting the upper limit of the content of these fine particles in the above range, dust generation can be suppressed and other workability can be improved.
- the modified coal storage method it is possible to suppress the spontaneous ignition of the pile at a low cost without using special equipment or materials, only by controlling the particle size distribution of the coal used. it can.
- the particle size-adjusted coal of the present invention contains modified coal, and the content of particles having a particle size of 10 mm or less is 50% by mass or more and 90% by mass or less.
- the particle size-adjusted coal is as described above as the granular coal used in the modified coal storage method. Since the manufacturing method of the said particle size adjustment coal, a preferable particle size, etc. are the same as that of the granular coal mentioned above, description is abbreviate
- the particle size-adjusted coal is a granular material having such a broad particle size distribution, it is possible to form a pile in which spontaneous ignition is suppressed while ensuring workability.
- Example 1 to 3 and Comparative Examples 1 to 5 Powdered modified coal (UBC-P) obtained through a process in which sub-bituminous coal (raw coal) was used as a raw material and mixed with a mixed oil of heavy oil and solvent oil and heated was prepared. This powdery modified coal was molded to obtain briquetted modified coal (UBC-B, size: 47 mm ⁇ 47 mm ⁇ 28 mm). The UBC-B was dropped from a height of 3 m using a wheel loader and pulverized to obtain UBC-B (pulverized). The number of drops is as described later.
- UBC-P Powdered modified coal obtained through a process in which sub-bituminous coal (raw coal) was used as a raw material and mixed with a mixed oil of heavy oil and solvent oil and heated was prepared. This powdery modified coal was molded to obtain briquetted modified coal (UBC-B, size: 47 mm ⁇ 47 mm ⁇ 28 mm). The UBC-B was dropped from a height of 3
- the suffocated pile had an oxygen concentration of almost 0 in a range deeper than 50 cm (the oxygen concentration was high near the surface layer).
- Example 4 UBC-P and other coal were mixed and adjusted to the particle size distribution shown in FIG. Using this, a pile was formed in the same manner as in Example 1 and gas analysis was performed. As a result, suffocation was confirmed.
- the modified coal storage method of the present invention can suppress the spontaneous ignition of piles at low cost, and can be widely used in thermal power plants and steelworks.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
Abstract
Description
改質石炭を含む粒状の石炭を山積みする工程を有し、
上記石炭における粒径10mm以下の粒子の含有量が50質量%以上である改質石炭の貯蔵方法である。
上記改質石炭のブリケットを成型する工程、及び
このブリケットを粉砕する工程
をさらに有し、
上記粒状の石炭の少なくとも一部として、上記粉砕工程により得られる粉砕物を用いることが好ましい。
このように、一度成型したブリケットを粉砕して粒径の小さい改質石炭(粉砕物)とすることで、特別な新たな装置等を導入することなく、容易に所望する粒度分布を有する石炭を得ることができる。
本発明の改質石炭の貯蔵方法は、
(C)改質石炭を含む粒状の石炭を山積みする工程
を有し、好ましくは、この(C)工程の前に
(A)上記改質石炭のブリケットを成型する工程、及び
(B)このブリケットを粉砕する工程
をさらに有する。
多孔質炭(低品位炭)を粒状に粉砕する工程(粉砕工程)、
上記多孔質炭と油とを混合して原料スラリーを得る工程(混合工程)、
上記原料スラリーを予熱する工程(予熱工程)、
上記原料スラリーを加熱し、脱水スラリーを得る工程(加熱工程)、
上記脱水スラリーを改質多孔質炭と油とに分離する工程(固液分離工程)、及び
分離された上記改質多孔質炭を乾燥させる工程(乾燥工程)
を有する。
粉砕工程では、多孔質炭を好ましい粒径の粒状物に粉砕する。この粉砕は、公知の粉砕機等を用いることによって行うことができる。このように粉砕されて混合工程に供される粒状の多孔質炭の粒子径としては、特に制限されるものではなく、例えば0.05mm以上2.0mm以下、好ましくは0.1mm0.5mm以下とすることができる。
混合工程では、粒状の多孔質炭と油とを混合して原料スラリーを得る。この混合工程は、例えば公知の混合槽等を用いて行うことができる。また、上記油は、好ましくは重質油分と溶媒油分とを含む混合油である。以下、この混合油を用いた例として説明する。
混合工程で得られた原料スラリーを、加熱工程に先立って通常予熱する。この予熱条件としては特に制限されず、通常は操作圧での水の沸点近傍まで加熱する。
加熱工程では、上記原料スラリーを加熱し、脱水スラリーを得る。この加熱は、公知の熱交換器、蒸発器等を用いて行うことができる。この際、多孔質炭の脱水が進むと共に、多孔質炭の細孔内に混合油が含浸される。具体的には、多孔質炭の細孔内表面は重質油分を含有する混合油によって次々に被覆され、細孔開口部のほぼ全域が混合油によって充満される。なお、混合油中の重質油分は活性点に選択的に吸着され易すく、付着すると離れ難いため、重質油分が溶媒油分よりも優先的に付着していくとされている。こうして細孔内表面が外気から遮断されることによって自然発火性を低下させることが可能となる。また、大量の水分が脱水除去されると共に、混合油、特に重質油分が優先して細孔内を充満することになるので、多孔質炭全体としてのカロリーアップが達成される。
固液分離工程では、上記脱水スラリーを改質多孔質炭と混合油とに分離する。この分離は、公知の遠心分離器、濾過器等を用いて行うことができる。この工程で分離された混合油は、上記混合工程にて再利用することができる。
乾燥工程では、分離された上記改質多孔質炭を乾燥させる。この乾燥は、例えば公知のスチームチューブドライヤ等を用いて行うことができる。この乾燥工程で蒸発した油(溶媒油分)は、回収して上記混合工程にて再利用することができる。
この(A)工程においては、粒状の上記改質石炭(改質多孔質炭)を加圧成型し、ブリケット(塊炭)とする。この成型は、ダブルロール型成形機等の公知の造粒装置を用いて行うことができる。なお、成型の際には、上記粒状の改質石炭を加湿したり、澱粉等のバインダーを添加したりして行うこともできる。このようにすることで、成型性を高めることなどができる。
この(B)工程においては、(A)工程にて得られたブリケットを粉砕し、粒径の小さい改質石炭(粉砕物)を得る。このように、一度成型したブリケットを粉砕して粒径の小さい改質石炭とすることで、特別な新たな装置等を導入することなく、容易に所望する粒度分布を有する改質石炭を得ることができる。
この(C)工程においては、上記改質石炭を含み特定の粒度分布からなる粒状の石炭を山積みし、パイルを形成する。この山積みは、ベルトコンベア等、公知の機器等を用いて行うことができる。
本発明の粒度調整石炭は、改質石炭を含み、粒径10mm以下の粒子の含有量が50質量%以上90質量%以下である。
亜瀝青炭(生炭)を原料とし、重質油分と溶媒油分との混合油と混合して加熱する工程を経て得られた粉末状の改質石炭(UBC-P)を用意した。この粉末状の改質石炭を成型してブリケット状の改質石炭(UBC-B、サイズ:47mm×47mm×28mm)を得た。ホイールローダを用いて上記UBC-Bを3mの高さから落下させて粉砕し、UBC-B(粉砕)を得た。落下回数等は後述するとおりである。
実施例1については、UBC-Pのみを用いた。
比較例5については、以下の手順で粉砕を行ったものを用いた。
(UBC-Bの落下10回)→(上記UBC-BをUBC-Pと混合)→(混合物の落下10回)
実施例2については、比較例5の混合物にさらに生炭を混合したものを用いた。
実施例3については、落下回数を30回として行った。
図1に示すように、パイル1の下から約129cmの位置Pから、パイル斜面に垂直な方向の深さ25cm、50cm及び75cmの各測定ポイントe1~e3におけるガス分析(O2、CO及びCO2濃度)と温度測定とを実施した。結果を図2-1~6に示す。
UBC―Pと他の石炭とを混合して、図3及び表2の実施例4で示す粒度分布に調整した。これを用い実施例1等と同様にパイルを形成しガス分析を行ったところ、窒息が確認できた。
e1、e2、e3 測定ポイント
Claims (5)
- 改質石炭を含む粒状の石炭を山積みする工程を有し、
上記石炭における粒径10mm以下の粒子の含有量が50質量%以上である改質石炭の貯蔵方法。 - 上記石炭における粒径1mm以下の粒子の含有量が25質量%以上、粒径0.15mm以下の粒子の含有量が7質量%以上である請求項1に記載の改質石炭の貯蔵方法。
- 上記石炭における粒径10mm以下の粒子の含有量が90質量%以下である請求項1に記載の改質石炭の貯蔵方法。
- 上記改質石炭のブリケットを成型する工程、及び
このブリケットを粉砕する工程
をさらに有し、
上記粒状の石炭の少なくとも一部として、上記粉砕工程により得られる粉砕物を用いる請求項1、請求項2又は請求項3に記載の改質石炭の貯蔵方法。 - 改質石炭を含み、粒径10mm以下の粒子の含有量が50質量%以上90質量%以下である粒度調整石炭。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2013350491A AU2013350491B2 (en) | 2012-11-27 | 2013-09-18 | Method for storing upgraded coal, and grain-size-controlled coal |
EP13858836.3A EP2927161B1 (en) | 2012-11-27 | 2013-09-18 | Method for storing upgraded coal |
PL13858836T PL2927161T3 (pl) | 2012-11-27 | 2013-09-18 | Sposób przechowywania węgla wzbogaconego |
RU2015125578A RU2624445C2 (ru) | 2012-11-27 | 2013-09-18 | Способ хранения угля повышенного качества и уголь с регулируемым размером частиц |
US14/431,367 US9856428B2 (en) | 2012-11-27 | 2013-09-18 | Method for storing upgraded coal, and grain-size-controlled coal |
CN201380060147.3A CN104797509B (zh) | 2012-11-27 | 2013-09-18 | 改质煤的储藏方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-259123 | 2012-11-27 | ||
JP2012259123A JP5868832B2 (ja) | 2012-11-27 | 2012-11-27 | 改質石炭の貯蔵方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014083918A1 true WO2014083918A1 (ja) | 2014-06-05 |
Family
ID=50827567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/075201 WO2014083918A1 (ja) | 2012-11-27 | 2013-09-18 | 改質石炭の貯蔵方法及び粒度調整石炭 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9856428B2 (ja) |
EP (1) | EP2927161B1 (ja) |
JP (1) | JP5868832B2 (ja) |
CN (1) | CN104797509B (ja) |
AU (1) | AU2013350491B2 (ja) |
PL (1) | PL2927161T3 (ja) |
RU (1) | RU2624445C2 (ja) |
WO (1) | WO2014083918A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015178433A1 (ja) * | 2014-05-23 | 2015-11-26 | 株式会社神戸製鋼所 | 改質石炭の貯蔵方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108137234A (zh) * | 2015-08-28 | 2018-06-08 | 宇部兴产株式会社 | 贮煤系统和贮存煤的方法 |
JP2018165290A (ja) * | 2017-03-28 | 2018-10-25 | 宇部興産株式会社 | 改質炭集合体およびその製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05230480A (ja) | 1992-02-21 | 1993-09-07 | Japan Organo Co Ltd | 石炭パイルの自然発火・発塵防止剤、石炭パイルの自然発火・発塵防止方法、および石炭パイルの構造 |
JPH07233383A (ja) | 1993-12-27 | 1995-09-05 | Kobe Steel Ltd | 多孔質炭を原料とする固形燃料、その製造方法及び製造装置 |
JPH10259390A (ja) * | 1997-03-19 | 1998-09-29 | Nippon Steel Corp | 野積み石炭の表面被覆方法 |
JP2000297288A (ja) | 1999-04-15 | 2000-10-24 | Jgc Corp | 石炭の自然発火防止方法、及び自然発火防止石炭 |
JP2001164254A (ja) | 1999-12-02 | 2001-06-19 | Lion Corp | 炭素質粉体の昇温・自然発火抑制剤 |
JP2006077155A (ja) * | 2004-09-10 | 2006-03-23 | Chubu Electric Power Co Inc | 石炭の自然発火防止方法および自然発火を防止した石炭混合燃料 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU684251A1 (ru) * | 1972-01-03 | 1979-09-05 | Научно-Исследовательский Институт Сланцев | Способ приготовлени топливных смесей |
JPS557863A (en) * | 1978-07-05 | 1980-01-21 | Nippon Steel Chem Co Ltd | Production of good coke |
JPS59182105A (ja) | 1983-04-01 | 1984-10-16 | Mitsubishi Heavy Ind Ltd | 粉塵の飛散を防止する石炭等の堆積方法 |
JPS6018585A (ja) | 1983-07-11 | 1985-01-30 | Hitachi Ltd | 石炭スラリ−の製造法 |
AU668328B2 (en) | 1993-12-27 | 1996-04-26 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) | Solid fuel made from porous coal and production process and production apparatus therefore |
JPH09279153A (ja) | 1996-04-16 | 1997-10-28 | Nkk Corp | コークスの製造方法 |
US6231627B1 (en) | 1996-07-08 | 2001-05-15 | Hazen Research, Inc. | Method to reduce oxidative deterioration of bulk materials |
US20030069149A1 (en) | 1999-12-02 | 2003-04-10 | Yukihiro Adachi | Inhibitor for inhibiting carbonaceous powder from heating up/spontaneously igniting and method of inhibiting carbonaceous powder from heating up/spontaneously igniting |
JP2001303066A (ja) | 2000-04-25 | 2001-10-31 | Nippon Steel Corp | コークス炉装入用石炭の粒度調整方法 |
JP4153448B2 (ja) | 2004-02-26 | 2008-09-24 | 株式会社神戸製鋼所 | 低品位炭を燃料とする発電方法 |
JP4805802B2 (ja) * | 2006-12-13 | 2011-11-02 | 株式会社神戸製鋼所 | 固形燃料の製造方法および製造装置 |
JP4365442B1 (ja) * | 2008-05-29 | 2009-11-18 | 株式会社神戸製鋼所 | 石炭の改質方法 |
JP4580011B2 (ja) * | 2008-10-09 | 2010-11-10 | 株式会社神戸製鋼所 | 固形燃料の製造方法及び該製造方法により作製された固形燃料 |
CN101972528B (zh) | 2010-09-28 | 2011-12-21 | 中国神华能源股份有限公司 | 一种采用隔氧材料覆盖煤堆防止煤炭堆储自燃的方法 |
-
2012
- 2012-11-27 JP JP2012259123A patent/JP5868832B2/ja active Active
-
2013
- 2013-09-18 AU AU2013350491A patent/AU2013350491B2/en active Active
- 2013-09-18 RU RU2015125578A patent/RU2624445C2/ru active
- 2013-09-18 US US14/431,367 patent/US9856428B2/en active Active
- 2013-09-18 CN CN201380060147.3A patent/CN104797509B/zh active Active
- 2013-09-18 PL PL13858836T patent/PL2927161T3/pl unknown
- 2013-09-18 EP EP13858836.3A patent/EP2927161B1/en not_active Not-in-force
- 2013-09-18 WO PCT/JP2013/075201 patent/WO2014083918A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05230480A (ja) | 1992-02-21 | 1993-09-07 | Japan Organo Co Ltd | 石炭パイルの自然発火・発塵防止剤、石炭パイルの自然発火・発塵防止方法、および石炭パイルの構造 |
JPH07233383A (ja) | 1993-12-27 | 1995-09-05 | Kobe Steel Ltd | 多孔質炭を原料とする固形燃料、その製造方法及び製造装置 |
JPH10259390A (ja) * | 1997-03-19 | 1998-09-29 | Nippon Steel Corp | 野積み石炭の表面被覆方法 |
JP2000297288A (ja) | 1999-04-15 | 2000-10-24 | Jgc Corp | 石炭の自然発火防止方法、及び自然発火防止石炭 |
JP2001164254A (ja) | 1999-12-02 | 2001-06-19 | Lion Corp | 炭素質粉体の昇温・自然発火抑制剤 |
JP2006077155A (ja) * | 2004-09-10 | 2006-03-23 | Chubu Electric Power Co Inc | 石炭の自然発火防止方法および自然発火を防止した石炭混合燃料 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015178433A1 (ja) * | 2014-05-23 | 2015-11-26 | 株式会社神戸製鋼所 | 改質石炭の貯蔵方法 |
JP2015221719A (ja) * | 2014-05-23 | 2015-12-10 | 株式会社神戸製鋼所 | 改質石炭の貯蔵方法 |
US10287524B2 (en) | 2014-05-23 | 2019-05-14 | Kobe Steel, Ltd. | Modified coal storage method |
Also Published As
Publication number | Publication date |
---|---|
CN104797509B (zh) | 2017-09-22 |
EP2927161A4 (en) | 2016-05-04 |
US9856428B2 (en) | 2018-01-02 |
US20150240178A1 (en) | 2015-08-27 |
CN104797509A (zh) | 2015-07-22 |
AU2013350491B2 (en) | 2015-10-22 |
PL2927161T3 (pl) | 2018-03-30 |
RU2015125578A (ru) | 2017-01-10 |
RU2624445C2 (ru) | 2017-07-04 |
EP2927161B1 (en) | 2017-11-08 |
JP2014105065A (ja) | 2014-06-09 |
EP2927161A1 (en) | 2015-10-07 |
JP5868832B2 (ja) | 2016-02-24 |
AU2013350491A1 (en) | 2015-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130326938A1 (en) | Methods of drying biomass and carbonaceous materials | |
JP5868832B2 (ja) | 改質石炭の貯蔵方法 | |
JP6161242B2 (ja) | 混合燃料の製造方法 | |
JP6174521B2 (ja) | 改質石炭の貯蔵方法 | |
JP6243982B2 (ja) | 混合燃料用の成型物の製造方法 | |
JP5976616B2 (ja) | 改質石炭の製造方法 | |
JP6283727B2 (ja) | 混合燃料の製造方法 | |
JP6133182B2 (ja) | 改質石炭の製造方法 | |
JP6283724B2 (ja) | 混合燃料の製造方法 | |
JP6151143B2 (ja) | 改質石炭の製造方法 | |
JP6262074B2 (ja) | 改質石炭の製造方法 | |
JP6026367B2 (ja) | 改質石炭の製造方法 | |
JP6283726B2 (ja) | 混合燃料の製造方法 | |
JP6283723B2 (ja) | 混合燃料の製造方法 | |
JP6283721B2 (ja) | 混合燃料の製造方法 | |
JP6283722B2 (ja) | 混合燃料の製造方法 | |
JPS60168792A (ja) | 脱水高密度低品位炭の製造方法 | |
JP5913064B2 (ja) | 石炭の発塵抑制方法 | |
JP2018203901A (ja) | コークスの製造方法 | |
JPS61101597A (ja) | パルプスラツジ固形燃料の製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13858836 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013858836 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013858836 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14431367 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201502627 Country of ref document: ID |
|
ENP | Entry into the national phase |
Ref document number: 2013350491 Country of ref document: AU Date of ref document: 20130918 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015125578 Country of ref document: RU Kind code of ref document: A |