WO2015166583A1 - 非硬化型耐火性パテ組成物 - Google Patents

非硬化型耐火性パテ組成物 Download PDF

Info

Publication number
WO2015166583A1
WO2015166583A1 PCT/JP2014/062175 JP2014062175W WO2015166583A1 WO 2015166583 A1 WO2015166583 A1 WO 2015166583A1 JP 2014062175 W JP2014062175 W JP 2014062175W WO 2015166583 A1 WO2015166583 A1 WO 2015166583A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
filler
coated
volume
inorganic powder
Prior art date
Application number
PCT/JP2014/062175
Other languages
English (en)
French (fr)
Inventor
将太 光宗
栄治 三木
啓彦 大庭
和田 拓也
英順 用瀬
鈴木 裕
Original Assignee
株式会社古河テクノマテリアル
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社古河テクノマテリアル, 古河電気工業株式会社 filed Critical 株式会社古河テクノマテリアル
Priority to PCT/JP2014/062175 priority Critical patent/WO2015166583A1/ja
Priority to KR1020167031752A priority patent/KR101893282B1/ko
Publication of WO2015166583A1 publication Critical patent/WO2015166583A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/34Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present invention relates to a non-curing fire-resistant putty composition used mainly for filling openings of electric wires, cables and pipes provided on fire walls and floors in buildings (buildings, ships, etc.). is there.
  • the putty is used to close the gap by filling the opening or combining it with a non-combustible board such as a calcium silicate board.
  • the putty used here includes a curable putty that cures over time after construction, and a non-cured putty that does not dry and cure even after construction.
  • Cured putty has the advantage that it can hold the penetrating part firmly after construction, but it has the disadvantage that it cannot cope with the renovation of buildings or the replacement of wiring accompanying the expansion of equipment.
  • those using water glass in the composition have a problem in water resistance and have a problem that they are weak when exposed to outdoor wind and dew condensation.
  • non-curing putty examples include a pasty filler containing an inorganic filler in an organic binder.
  • Non-hardening putty is easy to take out and re-install even after construction, but in order to maintain sufficient fire resistance, a flame retardant with high specific gravity such as aluminum hydroxide is used, and the specific gravity of the putty itself is low. Many expensive ones are popular. When used for penetrating parts such as high-rise buildings, the material may have to be moved to higher floors, and heavy putty reduces the amount that can be carried at one time, requiring a great deal of labor.
  • JP 2011-46821 A Japanese Patent Laid-Open No. 2000-212481
  • Patent Documents 1 and 2 is a repair putty having curability and is not a non-hardening type fire-resistant composition that can be used for fire prevention measures.
  • the specific gravity of itself is 0.6 to 1.0
  • aluminum hydroxide or hydroxide used as a refractory filler is used.
  • Magnesium, talc, etc. all have a specific gravity of 2.5 or more, so in order to have sufficient fire resistance, it becomes a putty with a specific gravity of 1.0 or more, making it difficult to achieve both sufficient weight reduction and fire resistance. is there.
  • the hollow inorganic filler is easily broken by shearing force or pressure in the kneading process at the time of manufacturing the composition, when using only the hollow inorganic filler as a weight reducing material, the actual specific gravity is expected compared to the planned specific gravity. It is easy to lead to the problem that the specific gravity after manufacture increases.
  • the present invention has been made in view of the above-mentioned problems, and the object thereof is to provide a non-curing fire-resistant putty composition that is lightweight, excellent in workability, and excellent in fire resistance. is there.
  • the present inventors have intensively studied in view of the above problems. As a result, it has been found that by using two kinds of resin-made microballoons and hollow inorganic fillers as lightening materials, a non-curing fire-resistant putty having a specific gravity of less than 1 and fire resistance can be provided.
  • a non-curable fire-resistant putty composition comprising a filler, a binder resin, a hollow inorganic filler, and a resin-made microballoon, wherein the filler is aluminum hydroxide, magnesium hydroxide, talc, fly ash 1 type or 2 or more types selected from the group consisting of the above, wherein the binder resin is one or more types selected from the group consisting of polybutene oil, liquid polybutadiene, liquid styrene butadiene rubber, liquid chloroprene rubber and liquid isoprene rubber
  • the resin microballoon is coated with an inorganic powder at least a part of the surface, and the resin constituting the outer shell of the resin microballoon is made of acrylonitrile resin, phenol resin, vinylidene chloride Includes one or more types selected from Therefore, the weight ratio of each of the filler, the binder resin, the hollow inorganic filler, and
  • the volume ratio (V C / V I ) of the volume V C of the resin microballoon coated with the inorganic powder to the volume V I of the hollow inorganic filler is 0.3 to 6.0 times
  • the total amount of the resin-made microballoons coated with the hollow inorganic filler and the inorganic powder is the sum of the filler, the binder resin, the hollow inorganic filler, and the resin-made microballoons coated with the inorganic powder.
  • the non-curable refractory putty composition according to (1) or (2) wherein the non-curable refractory putty composition according to (1) or (2) is contained in an amount of 45 to 72% by volume based on the total volume when the volume is 100% by volume.
  • the weight ratio of each of the filler, the binder resin, the hollow inorganic filler, and the resin-made microballoon coated with the inorganic powder The filler is 50 to 65% by weight, the resin binder is 20 to 30% by weight, the hollow inorganic filler is 8 to 15% by weight, and the resin microballoon coated with the inorganic powder is 4 to 7% by weight.
  • the filler includes at least the filler, the binder resin, the hollow inorganic filler, and the resin-made microballoon coated with the inorganic powder so that the total amount becomes 100% by weight.
  • the volume V C of the resin microballoons coated with the inorganic powder to the volume V I of the hollow inorganic filler Volume ratio (V C / V I) is in the range of 2.0 to 5.0 times, the total amount of the hollow inorganic filler and the coated with inorganic powder were resin microballoons, the said filler
  • the total volume is 45 to 60% by volume (3).
  • the non-curable fire-resistant putty composition described in the above (5) In the non-curable fire-resistant putty composition, instead of the resin microballoon coated with the inorganic powder, the resin microballoon whose surface is not coated with the inorganic powder is used.
  • the use not coated with the inorganic powder at a blending ratio of the resin microballoons from 0.3 to 3% by weight, the not coated with the inorganic powder to the volume V I of the hollow inorganic filler resin micro the volume ratio of the volume V P of the balloon (V P / V I) satisfies the range of 2.0 to 5.0 times, more of the hollow inorganic filler and the uncoated inorganic powder resin microballoons
  • the total amount is a resin micro that is not coated with the filler, the binder resin, the hollow inorganic filler, and the inorganic powder.
  • the non-curable refractory putty composition according to any one of (1) to (6), wherein 3 to 10 parts by mass of one kind or a mixture of two or more kinds is added as a flame retardant.
  • Benzoic acid ester plasticizer, epoxy plasticizer, phosphoric ester plasticizer, chlorinated paraffin plasticizer, adipic acid plasticizer with respect to 100 parts by mass of the non-curable fireproof putty composition (1) to (7), wherein one to two or more kinds selected from the group consisting of phthalate ester plasticizers are added as plasticizers in an amount of 3 to 9 parts by mass.
  • a curable fire-resistant putty composition is benzoic acid ester plasticizer, epoxy plasticizer, phosphoric ester plasticizer, chlorinated paraffin plasticizer, adipic acid plasticizer with respect to 100 parts by mass of the non-curable fireproof putty composition (1) to (7), wherein one to two or more kinds selected from the group consisting of phthalate ester plasticizers are added
  • the non-curable fire-resistant putty composition according to an embodiment of the present invention includes a filler, a binder resin, a hollow inorganic filler, and a resin microballoon coated with an inorganic powder.
  • a hollow inorganic filler and a resin microballoon coated with inorganic powder are included for weight reduction.
  • the non-hardening type fire-resistant putty composition according to the embodiment of the present invention is mainly used in applications that require fire-resistant performance at the time of fire, such as measures for penetrating a fire compartment.
  • covered with the filler, binder resin, the hollow inorganic filler, and inorganic powder may be called the ratio with respect to a main composition.
  • a non-curable fire-resistant putty composition includes a filler, a binder resin, a hollow inorganic filler, and a resin-made microballoon coated with an inorganic powder.
  • the weight ratio of each of the filler, binder resin, hollow inorganic filler and resin-made microballoon coated with inorganic powder is 25 to 65% by weight of the filler, and the binder.
  • the mold refractory putty composition includes a filler, a binder resin, a hollow inorganic filler, and a resin-made microballoon coated with an inorganic powder so that the total amount is 100% by weight of the main composition composed of these, This means that the non-curable refractory putty composition of the present invention is allowed to contain other materials such as impurities and additives as long as the effects of the present invention are not impaired.
  • the volume ratio (V C / V I ) of the volume V I of the hollow inorganic filler to the volume V C of the resin microballoon coated with the inorganic powder is 0.3 to 6.0 times,
  • the total amount of the hollow inorganic filler and the resin-made microballoon coated with the inorganic powder is coated with the hollow inorganic filler and the inorganic powder in the putty composition when viewed in volume as a non-curing refractory putty composition.
  • the resin microballoon is a non-curing refractory putty composition which is 45 to 72% by volume of the main composition.
  • the non-curing refractory putty composition was coated with 50 to 65 wt% of the filler, 20 to 30 wt% of the resin binder, 8 to 15 wt% of the hollow inorganic filler, and the inorganic powder.
  • Resin microballoons are contained in the range of 4 to 7% by weight, and the volume ratio of the resin microballoons to the hollow inorganic fillers satisfies the range of 2.0 to 5.0 times.
  • the total amount of the resin-made microballoons coated with the inorganic powder is viewed as a volume as a non-curing refractory putty composition, the resin-made microballoon coated with the hollow inorganic filler and the inorganic powder in the putty composition.
  • the balloons are preferably included in the main composition in an amount of 45 to 60% by volume.
  • the non-curable refractory putty composition preferably has a specific gravity of less than 1.0.
  • the volume ratio of the resin-made microballoons coated with the inorganic powder with respect to the hollow inorganic filler is preferably larger in the sense that the volume ratio is lighter, but is coated with the inorganic powder at the time of manufacture.
  • the volume ratio is preferably 2.0 to 5.0 times. More preferably, the range of 5 to 4.5 times is satisfied.
  • weight reduction it is preferable that the amount of resin microballoon added is large, and that in terms of scattering properties, the amount of resin microballoon added is small.
  • the filler preferably contains one or more selected from the group consisting of aluminum hydroxide, magnesium hydroxide, talc and fly ash, and the binder resin is polybutene oil, liquid polybutadiene, or liquid styrene butadiene rubber. It is preferable to include one or two or more selected from the group consisting of liquid chloroprene rubber and liquid isoprene rubber.
  • the hollow inorganic filler includes one or more of fly ash balloon, pearlite, and shirasu balloon, and the resin constituting the shell of the resin microballoon is made of acrylonitrile resin, phenol resin, and vinylidene chloride. It is preferable to include one kind or two or more kinds selected from more.
  • non-curing refractory putty composition selected from the group consisting of red phosphorus, ammonium polyphosphate, phosphate ester, borax, boric acid, sodium polyborate, phosphazene, and zinc stannate with respect to 100 parts by mass of the non-curing refractory putty composition. It is also possible to add 3 to 10 parts by mass of one kind or a mixture of two or more kinds as a flame retardant. By doing in this way, the flame retardancy of the non-curing fire-resistant putty composition can be improved.
  • benzoate plasticizer For 100 parts by mass of the non-curing fire-resistant putty composition, benzoate plasticizer, epoxy plasticizer, phosphate plasticizer, chlorinated paraffin plasticizer, adipic acid plasticizer, phthalic acid
  • benzoate plasticizer For 100 parts by mass of the non-curing fire-resistant putty composition, benzoate plasticizer, epoxy plasticizer, phosphate plasticizer, chlorinated paraffin plasticizer, adipic acid plasticizer, phthalic acid
  • ester plasticizers One to two or more kinds selected from the group consisting of ester plasticizers can be added in an amount of 3 to 9 parts by mass as a plasticizer.
  • the non-curable fire-resistant putty composition of the present invention is based on 100 parts by mass of the non-curable fire-resistant putty composition comprising a resin microballoon coated with a filler, a binder resin, a hollow inorganic filler, and an inorganic powder.
  • Other materials such as flame retardants and plasticizers and impurities may be included in a total amount of 25 parts by mass within the range not impairing the properties of the non-curing fire-resistant putty composition. It is preferable to include within the range of parts. If it is this range, even if it contains other materials, there is no problem in the characteristic as a non-hardening-type fire-resistant putty composition.
  • filler As a filler used in the putty composition according to this embodiment, one or more of aluminum hydroxide, magnesium hydroxide, talc, and fly ash are included.
  • the filler preferably accounts for 25 to 65% by weight of the main composition, more preferably 50 to 65% by weight.
  • fly ash having a specific gravity of 2 or more. When there is too much quantity of a filler, the specific gravity of the obtained putty composition is too heavy. Moreover, when there is too little quantity of a filler, it is difficult for the obtained putty composition to maintain a shape at the time of a fire.
  • the binder used in the putty composition according to the present embodiment includes one or more of polybutene oil, liquid polybutadiene, liquid styrene butadiene rubber, liquid chloroprene rubber, and liquid isoprene rubber, but the final composition
  • the resin binder is not particularly limited to these.
  • the resin binder preferably accounts for 20 to 40% by weight in the main composition, and more preferably 20 to 30% by weight. When there is too much quantity of the resin binder, the obtained putty composition will not harden but will become liquid. On the other hand, if the amount of the resin binder is too small, the proportion of the powder is large, so that the putty composition cannot be obtained without being put together as a putty.
  • the hollow inorganic filler used in the putty composition according to this embodiment is a hollow, lightweight product having an inorganic outer shell.
  • examples of such products include fly ash balloons, which are hollow coal ash selected by floating coal ash (fly ash) obtained from thermal power plants, etc. in water, and glass shirasu, which is made of fine glassy volcanic debris.
  • fly ash balloons which are hollow coal ash selected by floating coal ash (fly ash) obtained from thermal power plants, etc. in water
  • glass shirasu which is made of fine glassy volcanic debris.
  • These hollow inorganic fillers are both effective in improving the fire resistance which remains when the composition burns because the main components are SiO 2 and Al 2 O 3 and have a heat resistance of around 1000 ° C. .
  • Typical proportions of the components are fly ash balloons with SiO 2 of 60 to 65%, Al 2 O 3 of 27 to 33%, shirasu balloons of SiO 2 with 65 to 73%, and Al 2 O 3 with 12 to 18%.
  • SiO 2 is about 73% and Al 2 O 3 is about 17%.
  • the particle size can be selected depending on the grade of each product, for example, fly ash balloon is 5 to 300 ⁇ m, shirasu balloon is 5 to 200 ⁇ m, pearlite is 30 to 700 ⁇ m, or an appropriate range can be selected by sieving. You can also choose.
  • the true specific gravity is in the range of 0.6 to 1.0.
  • spherical products and high pressure resistant grades are preferable because they can reduce the damage caused by pressure and mechanical stress during production, but in any case, fillers, hollow inorganic fillers, hollow inorganics during kneading during putty production. Part of it breaks due to shear stress at the time of contact between fillers.
  • These hollow inorganic fillers can be used alone, but a plurality of different types of hollow inorganic fillers may be mixed and used.
  • the hollow inorganic filler preferably accounts for 5 to 40% by weight and more preferably 8 to 15% by weight in the main composition.
  • the hollow inorganic filler is also called a low specific gravity hollow inorganic filler or an inorganic balloon.
  • the resin-made microballoon used for the putty composition according to the present embodiment is a hollow, lightweight product having a spherical resin outer shell. In general, it is produced in a state of enclosing a liquid gas, and is expanded to a product particle size by several tens of times by heat treatment to form hollow spherical particles.
  • the outer shell resin include acrylonitrile resin, phenol resin, vinylidene chloride, and modified resins thereof.
  • the particle size is 10 to 150 ⁇ m and the true specific gravity is about 0.02 to 0.07, which is suitable for reducing the weight of the putty composition.
  • Resin microballoons are low density and soft, so products that have a specific gravity of about 0.1 to 0.3 by coating inorganic powder on the outside of the outer shell made of resin for easy handling are generally used.
  • the inorganic powder used for the coating only needs to be coated on at least a part of the surface of the resin-made microballoon. From the viewpoint of lightness, it is more preferable than coating the entire surface of the resin-made microballoon. It is preferable to coat a part of the surface as described above.
  • the resin microballoon is slightly reduced in the process of kneading the putty, but the productivity is slightly reduced. It can also be used as it is without coating its surface.
  • Inorganic powders used here are generally calcium carbonate, talc, and aluminum hydroxide, but are not particularly limited thereto.
  • the true specific gravity of calcium carbonate used for coating is large when manufactured at 77.5, the true specific gravity of the resulting resin microballoon coated with calcium carbonate is about 0.13, volume ratio
  • resin microballoon: calcium carbonate 96.2: 3.8.
  • the resin-made microballoons coated with the inorganic powder are powders that differ from the resin-made microballoons not coated with the inorganic powder several times in weight, but differ by only a few percent in volume.
  • the resin-made microballoons preferably occupy 1 to 13% by weight, more preferably 4 to 7% by weight in the main composition in a state where this inorganic powder is coated.
  • the fire resistance of the obtained putty composition will deteriorate.
  • the amount of the resin microballoon coated with the inorganic powder is too small, it is difficult to reduce the weight of the obtained putty composition.
  • the resin-made microballoon coated with the inorganic powder has a characteristic that it has high elasticity due to its outer shell material and structure, and is less likely to be broken by pressure or mechanical stress.
  • the putty composition according to this embodiment It is suitable when manufacturing a product. When the resin-made microballoon coated with the inorganic powder and the hollow inorganic filler are used in combination, the breakage of the hollow inorganic filler during the production of the putty composition can be reduced.
  • the non-curing refractory putty composition according to the present embodiment contains 5-40% by weight of a hollow inorganic filler in the main composition, and the volume (V of resin microballoons) regardless of whether the inorganic powder is coated or not. ) And the volume ratio (V / V I ) of the volume V I of the hollow inorganic filler is 0.3 to 6.0 times, preferably 2.0 to 5.0.
  • the amount of the resin microballoon used is 1 to 13% by weight in the main composition when the inorganic powder is coated, and 0.3 to 3% by weight in the main composition when the inorganic powder is not coated. is there.
  • the putty composition When viewed in volume, the putty composition contains 45 to 72% by volume of the hollow inorganic filler and the resin-made microballoon together. Of the remaining amount of the composition, the binder resin is contained in an amount of 20 to 40% by weight in the main composition, and the filler is contained in an amount of 25 to 65% by weight in the main composition.
  • a flame retardant In order to enhance not only the fire resistance of the putty composition but also the flame retardancy of the putty composition itself, a flame retardant can be used.
  • a general flame retardant red phosphorus, ammonium polyphosphate, phosphate ester, borax, boric acid, sodium polyborate, phosphazene, zinc stannate and the like are suitable. It is preferable to add 3 to 10 parts by mass of a flame retardant with respect to 100 parts by mass of the putty composition.
  • the flame retardancy here means that the putty composition itself has a characteristic that it is difficult to burn, and does not ignite even if exposed to fire, or even if the putty composition ignites, it is included in the composition.
  • the fire resistance refers to the property that the putty composition maintains its shape even when exposed to fire for a long time and does not allow fire to pass through the other side of the putty composition.
  • Plasticizers can be used to improve the softness, adhesiveness, texture, etc. of the composition.
  • Suitable plasticizers include benzoate plasticizers, epoxy plasticizers, phosphate ester plasticizers, chlorinated paraffin plasticizers, adipic acid plasticizers, and phthalate ester plasticizers. It is preferable to add 3 to 9 parts by mass of a plasticizer with respect to 100 parts by mass of the putty composition.
  • an organic fiber such as PET fiber, rayon, or cellulose may be added to the putty composition.
  • a processing aid such as a surfactant and a lubricant may be added.
  • the putty composition according to the present embodiment can be obtained by kneading each raw material using a known kneader mixer, Banbury mixer or the like.
  • non-hardening type fire-resistant putty As an example of the construction of the non-hardening type fire-resistant putty according to the present embodiment, as shown in FIG. 2, when the cable 1 or the pipe is passed through the through hole of the concrete 9 such as a wall or a floor separating the section A and the section B.
  • the non-hardening type fire-resistant putty composition 7 is filled or placed in the through-holes and closed to prevent fire spread during a fire.
  • the sections A and B are, for example, a first floor and a second floor of a building, a room and a room adjacent thereto.
  • the support fitting 3 and the backup material 5 can be used to fill only the putty composition 7 in the opening or to improve the workability.
  • the putty composition 7 can be received and the construction becomes easy, and the putty composition 7 can be prevented from falling to the opposite side and the amount of putty used can be reduced.
  • the backup material 5 mineral fibers such as rock wool, glass wool, alkaline earth silicate wool can be used. They can also be used by wrapping them in a non-woven fabric and making them into blocks. The backup material 5 is held in the opening by using the support fitting 3 as shown in FIG.
  • the non-curing fire-resistant putty according to the present embodiment is a non-hardening type and has excellent re-workability after construction by using two types of resin-made microballoons and hollow inorganic fillers as lightening materials. It is a non-hardening type fire-resistant putty that is excellent in portability because it has a specific gravity of less than 1 and is lighter than a conventional non-hardening type putty, and is hardened during combustion and has excellent fire resistance.
  • resin microballoons are abbreviated as “resin balloons”.
  • Comparative Examples 1 and 2 are compositions in which only a resin microballoon or a hollow inorganic filler is added without adding a filler to the binder resin.
  • Comparative Examples 3 to 11 are compositions in which a filler is added to the binder resin and a resin microballoon is further added as a weight reducing material so that the specific gravity is less than 1.0.
  • Comparative Examples 12-15> Comparative Examples 12 to 15 are compositions in which a filler is added to the binder resin and a hollow inorganic filler is further added as a weight reducing material so that the specific gravity is less than 1.0.
  • Examples 1 to 14 are compositions in which a filler is added to a binder resin, a resin microballoon is added as a weight reducing material, and a fly ash balloon is added as a hollow inorganic filler so that the specific gravity is less than 1.0. It is.
  • Examples 15 to 20 are compositions using a hollow inorganic filler other than a fly ash balloon or using a plurality of hollow inorganic fillers.
  • ⁇ Example 21> In Example 21, a fly ash balloon was used as the hollow inorganic filler, and a resin microballoon that was not coated with an inorganic powder was used as the resin microballoon.
  • the putty compositions according to each of the examples and comparative examples can be obtained by kneading the raw materials with a kneader mixer at the ratios shown in Tables 1 to 8.
  • Polybutadiene Liquid polybutadiene rubber
  • Polybutene oil A Polybutene oil (number average molecular weight 2400, kinematic viscosity at 40 ° C. 206000 mm 2 / s, kinematic viscosity at 100 ° C. 4700 mm 2 / s)
  • Polybutene oil B Polybutene oil (number average molecular weight 2900, kinematic viscosity at 40 ° C. 160000 mm 2 / s, kinematic viscosity at 100 ° C.
  • Polybutene oil C Polybutene oil (number average molecular weight 430, kinematic viscosity at 40 ° C. 110 mm 2 / s, kinematic viscosity at 100 ° C. 9.5 mm 2 / s)
  • Plasticizer Adipic acid plasticizer
  • Resin balloon A Resin microballoon having an outer shell of acrylonitrile resin and coated with calcium carbonate inorganic powder. Average particle size is 50-70 ⁇ m, true specific gravity is 0.12 ⁇ 0.02 (including coating)
  • Resin balloon B Resin microballoon having an acrylonitrile resin outer shell and not coated with inorganic powder.
  • Aluminum hydroxide Aluminum hydroxide powder having an average particle size of 25 ⁇ m
  • Hollow inorganic filler A Fly ash balloon (particle size 5 to 300 ⁇ m, true specific gravity: 0.65 to 0.85 g / cm 3 , Bulk specific gravity 0.3-0.5 g / cm 3 )
  • Hollow inorganic filler B pearlite (particle size 30 to 700 ⁇ m, true specific gravity: 0.80 to 1.00 g / cm 3 , bulk specific gravity 0.3 to 0.4 g / cm 3 )
  • Hollow inorganic filler C Shirasu balloon (particle diameter 5 to 200 ⁇ m, true specific gravity: 0.80 to 1.00 g / cm 3 , bulk specific gravity 0.12 to 0.18 g / cm 3 )
  • Organic fiber B PET fiber (fiber made of polyethylene terephthalate resin)
  • -Flame retardant A Red phosphorus-
  • the fire resistance was evaluated by an electric furnace test.
  • the evaluation method is as follows. (1) The obtained composition is measured so as to be about 3 cubic centimeters, and a cube having a side of about 1.5 cm is prepared. (2) Place the cube on a plate made of non-combustible material in an electric furnace preheated to 600 ° C. and leave it for 10 minutes. (3) After 10 minutes, the whole plate made of noncombustible material is taken out and observed.
  • the shape of the ash when the cube sample was taken out from the electric furnace after burning, and the ease of ash collapse when touched were visually determined.
  • the state of collapse after the combustion test can be easily determined visually.
  • Comparative Example 1 As shown in Comparative Example 1, when the composition is composed of only the light weight hollow inorganic filler and the resin binder, the hollow inorganic filler remains unburned at the time of combustion, but it becomes a smooth sand and collapses. As mentioned above, fire resistance cannot be obtained, and other fillers are essential to maintain the shape after combustion.
  • Comparative Example 2 when the composition is made of only the resin-made microballoon and the resin binder as the weight reducing material, the composition burns out by 75% by weight or more at the time of combustion, and hardly remains, so there is no fire resistance.
  • Comparative Examples 3 to 11 when only the resin microballoon was added as a weight reducing material to the filler and the binder resin, it was easy to collapse after combustion and sufficient fire resistance was obtained. Absent.
  • the resin binder is about 36.8% by weight in the main composition as a composition having a specific gravity of less than 1, the talc is about 58.3% by weight in the main composition as a filler, and the resin microballoon is about in the main composition.
  • a composition like Comparative Example 9 consisting of 4.9% by weight (by volume, about 38.1% by volume in the main composition) can be considered, but this composition tends to collapse after combustion and sufficient fire resistance could not be obtained. .
  • Comparative Examples 12 to 15 when the composition was obtained by adding only a hollow inorganic filler as a weight reducing material to a filler and a binder resin, sufficient fire resistance could not be obtained.
  • a composition having a specific gravity of less than 1 there is a composition such as Comparative Example 12 comprising 30% by weight of a resin binder, 38% by weight of talc as a filler, and 32% by weight of a hollow inorganic filler. Fire resistance is not obtained.
  • the putty compositions according to Comparative Examples 14 and 15 were not good in touch and hardness to be used as putty, and were easily broken when a force was applied after the electric furnace test.
  • Examples 1 to 21 have compositions with a specific gravity of 0.6 to 1.0, all having excellent fire resistance, and no problem is found in the combustion test under construction conditions.
  • the smaller the specific gravity of the composition the greater the amount of resin microballoon blended, and the lower the fire resistance.
  • replacing the resin-made microballoons and fillers with the same specific gravity with the hollow inorganic filler increases the amount of the hollow inorganic filler added at the time of production. The destruction of the hollow inorganic filler increases, and stable production becomes difficult.
  • hollow inorganic filler A is contained in the main composition as the non-curable refractory putty composition in an amount of 8.4 to 12.8% by weight, respectively.
  • resin microballoons are included.
  • the putty composition contains 50.4 to 56.2% by volume of the hollow inorganic filler A and the resin microballoon in the main composition.
  • the resin binder is contained in the main composition at 20.5 to 29.7% by weight
  • the filler is contained in the main composition at 53.4 to 63.2% by weight.
  • Examples 15 to 20 show compositions when the hollow inorganic filler is changed from the hollow inorganic filler A to the hollow inorganic filler B and the hollow inorganic filler C, and when a plurality of these are used.
  • Examples 15 to 19 are compositions corresponding to Example 13, and the weight% is equal to Example 13, and the volume% varies depending on the true specific gravity of each hollow inorganic filler.
  • Example 20 is a composition when three types of hollow inorganic fillers A, B, C, are used.
  • the hollow inorganic filler C has a feature that the surface area is increased as compared with the hollow inorganic filler A and the hollow inorganic filler B due to the difference in particle size, and the packing density is increased, so that it becomes somewhat hard when putty.
  • the hollow inorganic filler can be handled almost in the same row as the hollow inorganic filler A and the hollow inorganic filler B, and the fireproof performance is as in Examples 17 to 19 using the hollow inorganic filler C (shirasu balloon). It is enough.
  • Example 17 is a composition corresponding to Example 13, and is a composition containing the hollow inorganic filler A and the hollow inorganic filler C in a ratio of 1: 1 by weight, and is good as a comprehensive evaluation (overall evaluation ⁇ ).
  • Example 18 has a composition of a single hollow inorganic filler C corresponding to Example 13, so that the putty is hard and poorly connected, and the overall evaluation is equivalent to Examples 1 to 6 (overall evaluation ⁇ ).
  • Example 19 has a composition corresponding to Example 13 and contains hollow inorganic filler B and hollow inorganic filler C in a ratio of 1: 1 by weight. The overall evaluation is equivalent to that of Examples 1 to 6 (overall evaluation ⁇ ).
  • Example 20 was a composition containing hollow inorganic fillers A, B, and C at a predetermined ratio, and the overall evaluation was ⁇ , and there was no problem.
  • the composition of evaluation substantially the same as Examples 10 and 11 was obtained by adjusting each composition.
  • Example 21 has a composition corresponding to Example 13, and the volume corresponding to the resin balloon part of the resin balloon A coated with inorganic powder is replaced with an uncoated resin balloon B, and the inorganic powder coating part The volume corresponding to is replaced with the hollow inorganic filler A.
  • the reason why the portion corresponding to the inorganic powder coating is replaced with the hollow inorganic filler A is to reduce the weight. Since the replacement is carried out by weight so as to replace the volume as described above, the resin balloon A in Example 13 is changed from 6.4% by weight to 1.4% by weight in Resin balloon B in Example 21. As a result, the specific gravity of the putty composition is lighter than that of Example 13, but its physical properties are almost the same as those of Example 13.
  • the back-up material is a plate of rock wool cut to match the shape of the opening, and a block in which a biosoluble alkaline earth silicate wool blanket is wrapped with a non-woven fabric is filled in the opening at a thickness of 25 mm, respectively.
  • the developed product was filled with a thickness of 10 to 35 mm.
  • the putty of Example 1 to Example 6 and Example 8 to Example 21 were subjected to the same fire resistance test. As a result, all the materials had good fire resistance and the specific gravity was less than 1. Therefore, it was confirmed that it was excellent in both fire resistance and lightness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 軽量で作業性に優れ、かつ耐火性にも優れた非硬化型耐火性パテ組成物を提供する。 充填剤とバインダー樹脂と中空無機フィラーと、樹脂製マイクロバルーンとを含む非硬化型耐火性パテ組成物であって、前記充填剤が、水酸化アルミニウム、水酸化マグネシウム、タルク、フライアッシュからなる群より選ばれ、前記バインダー樹脂が、ポリブテンオイル、液状ポリブタジエン、液状スチレンブタジエンゴム、液状クロロプレンゴム、液状イソプレンゴムからなる群より選ばれ、前記樹脂製マイクロバルーンは、無機粉体で少なくとも表面の一部をコーティングされており、前記樹脂製マイクロバルーンの外殻を構成する樹脂が、アクリロニトリル樹脂、フェノール樹脂、塩化ビニリデンからなる群より選ばれることを特徴とする非硬化型耐火性パテ組成物を用いる。

Description

非硬化型耐火性パテ組成物
 本発明は、主に建築物(建物や船舶等)における防火壁や床等に設けられた電線やケーブル・配管の開口部に充填するために用いられる非硬化型耐火性パテ組成物に関するものである。
 建物や船舶などの建造物では、各設備・各部屋を画分する壁や床などの防火区画体に貫通孔を穿設し、その貫通孔に空調設備の配管や各種電線ケーブルなどが挿通される。しかしながら、ある空間で火災が発生するとその熱や炎で前記樹脂パイプ,空調装置の配管の発泡断熱材,電線ケーブルの被覆などが燃焼したり溶融したりして消失してしまうため、前記貫通孔が炎道になってここから隣の設備・部屋へと延焼が進んでしまう。
 これらの貫通部の防火措置としては、耐火性もしくは不燃性を持つパテが使用されている。パテは開口内に充填、もしくはケイ酸カルシウム板等の不燃性のボード等と組み合わせて、その隙間を閉塞するために使用される。ここで使用されるパテには、施工後の時間経過とともに硬化する硬化型パテと、施工後も乾燥・硬化しない非硬化型のパテが挙げられる。
 硬化型のパテは、施工後の貫通部を強固に保持できる利点があるが、建物のリフォームや設備の増設に伴う配線類の引き換え等には対応できない欠点があった。また、組成に水ガラスを使用したものは、耐水性に問題があり、屋外での雨風や結露に晒された場合に弱いという問題があった。
 非硬化型のパテとしては、例えば、有機系バインダーに無機系フィラーを含むペースト状充填剤が挙げられる。非硬化型のパテは、施工後もパテの取出し、再施工が容易であるが、十分な耐火性を維持するために水酸化アルミニウム等の比重の高い難燃剤が使用され、パテ自体の比重が高いものが多く普及している。高層建築物等の貫通部に使用する場合、材料を高層階へ持って移動せねばならない場合があり、重いパテでは一度に持ち運べる量が少なくなり、多大な労力を必要とする。
 パテ、粘土のような製品を軽量化させる技術としては各種軽量化材を使用する方法が検討され、例えば、軽量化材として中空ビーズや有機質マイクロバルーンを用いた例がある(特許文献1、2)。
特開2011-46821号公報 特開2000-212481号公報
 しかしながら、特許文献1、2に記載のパテは、硬化性を有する補修パテであり、防火措置に使用できる非硬化型の耐火性を持つ組成物ではない。
 比重1未満の耐火性パテを成り立たせるために、軽量化材として樹脂製マイクロバルーンのみを用いると、樹脂製マイクロバルーンがパテ全体に対する体積割合のほとんどを占めてしまうため、火災時に燃焼した際に樹脂製マイクロバルーンの部分が燃えて隙間が生じ、十分な耐火性能を有するパテを提供できない。
 また、フライアッシュバルーンのような中空無機フィラーのみを軽量化材として使用した場合には、それ自体の比重が0.6~1.0であり、耐火充填材として用いられる水酸化アルミニウム、水酸化マグネシウム、タルクなどがいずれも比重2.5以上であるため、十分な耐火性能を有するためには、比重1.0以上のパテとなってしまい、十分な軽量化と耐火性の両立が困難である。また、中空無機フィラーは、組成製造時の混練工程においてせん断の力や圧力によって破壊されやすいため、中空無機フィラーのみを軽量化材として使用する場合には、予定されていた比重に比べて実際の製造後の比重が増大するという問題にもつながりやすい。
 本発明は、前述した問題点に鑑みてなされたもので、その目的とすることは、軽量で作業性に優れ、かつ耐火性にも優れた非硬化型耐火性パテ組成物を提供することである。
 本発明者らは、上記課題に鑑み鋭意検討を行った。その結果、軽量化材として、樹脂製マイクロバルーンと中空無機フィラーの二種類を使用することで比重1未満かつ耐火性能を有する非硬化型耐火性パテを提供できることを見出した。
 前述した目的を達成するために、以下の発明を提供する。
(1)充填剤とバインダー樹脂と中空無機フィラーと、樹脂製マイクロバルーンとを含む非硬化型耐火性パテ組成物であって、前記充填剤が、水酸化アルミニウム、水酸化マグネシウム、タルク、フライアッシュからなる群より選ばれる1種類もしくは2種類以上を含み、前記バインダー樹脂が、ポリブテンオイル、液状ポリブタジエン、液状スチレンブタジエンゴム、液状クロロプレンゴム、液状イソプレンゴムからなる群より選ばれる1種類もしくは2種類以上を含み、前記樹脂製マイクロバルーンは、無機粉体で少なくとも表面の一部がコーティングされており、前記樹脂製マイクロバルーンの外殻を構成する樹脂が、アクリロニトリル樹脂、フェノール樹脂、塩化ビニリデンからなる群より選ばれる1種類もしくは2種類以上を含むもので、前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計重量に対してそれぞれが占める重量割合は、前記充填剤が25~65重量%、前記バインダー樹脂が20~40重量%、前記中空無機フィラーが5~40重量%、前記無機粉体でコーティングされた樹脂製マイクロバルーンが1~13重量%の範囲にあり、少なくとも前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計が100重量%になるようにこれらを含むものであることを特徴とする非硬化型耐火性パテ組成物。
(2)前記中空無機フィラーが、フライアッシュバルーンとシラスバルーンとパーライトのうちの少なくとも一種類を含むことを特徴とする(1)に記載の非硬化型耐火性パテ組成物。
(3)前記中空無機フィラーの体積Vに対する前記無機粉体でコーティングされた樹脂製マイクロバルーンの体積Vの体積比(V/V)が、0.3~6.0倍であり、前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計量が、前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計体積を100体積%とすると、前記合計体積に対して、45~72体積%含まれることを特徴とする(1)または(2)に記載の非硬化型耐火性パテ組成物。
(4)前記非硬化型耐火性パテ組成物において、前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計重量に対してそれぞれが占める重量割合は、前記充填剤が50~65重量%、前記樹脂バインダーが20~30重量%、前記中空無機フィラーが8~15重量%、前記無機粉体でコーティングされた樹脂製マイクロバルーンが4~7重量%の範囲にあり、少なくとも前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計が100重量%になるようにこれらを含むもので、さらに前記中空無機フィラーの体積Vに対する前記無機粉体でコーティングされた樹脂製マイクロバルーンの体積Vの体積比(V/V)が2.0~5.0倍の範囲であり、前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計量が、前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計体積を100体積%とすると、前記合計体積に対して45~60体積%含まれることを特徴とする(3)に記載の非硬化型耐火性パテ組成物。
(5)前記非硬化型耐火性パテ組成物には、前記無機粉体でコーティングされた樹脂製マイクロバルーンの代わりに、樹脂製マイクロバルーンの表面が無機粉体でコーティングされていない樹脂製マイクロバルーンを用い、前記無機粉体でコーティングされていない樹脂製マイクロバルーンの配合割合が0.3~3重量%で、前記中空無機フィラーの体積Vに対する前記無機粉体でコーティングされていない樹脂製マイクロバルーンの体積Vの体積比(V/V)が2.0~5.0倍の範囲を満足し、さらに前記中空無機フィラーと前記無機粉体でコーティングされていない樹脂製マイクロバルーンの合計量が、前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされていない樹脂製マイクロバルーンの合計体積を100体積%とすると、前記合計体積に対して45~60体積%含まれることを特徴とする(1)に記載の非硬化型耐火性パテ組成物。
(6)前記非硬化型耐火性パテ組成物の比重が1.0未満であることを特徴とする(1)~(5)のいずれかに記載の非硬化型耐火性パテ組成物。
(7)前記非硬化型耐火性パテ組成物の100質量部に対して、赤燐、ポリリン酸アンモニウム、リン酸エステル、硼砂、ホウ酸、ポリホウ酸ナトリウム、ホスファゼン、スズ酸亜鉛からなる群より選ばれる1種類もしくは2種類以上の混合物を、難燃材として3~10質量部添加したことを特徴とする(1)~(6)のいずれかに記載の非硬化型耐火性パテ組成物。
(8)前記非硬化型耐火性パテ組成物の100質量部に対して、安息香酸エステル系可塑剤、エポキシ系可塑剤、リン酸エステル系可塑剤、塩素化パラフィン可塑剤、アジピン酸系可塑剤、フタル酸エステル系可塑剤からなる群より選ばれる1種類もしくは2種類以上を、可塑剤として3~9質量部数添加したことを特徴とする(1)~(7)のいずれかに記載の非硬化型耐火性パテ組成物。
 本発明により、軽量で作業性に優れ、かつ耐火性にも優れた非硬化型耐火性パテ組成物を提供することができる。
電気炉試験前のサンプルと試験後のサンプル(比較例5と実施例9)の外観写真。Aは試験前のサンプル(約1.5cm角)、Bは比較例5(600℃×10分後、崩れている。)、Cは実施例9(600℃×10分後、形状保持。) 非硬化型耐火性パテ組成物を、ケーブルを通した貫通孔を閉塞するために使用する場合の施工例を示す断面図。Aは区画A、Bは区画Bを示す。 ISO 834に準拠した標準加熱曲線
<非硬化型耐火性パテ組成物>
 本発明の実施形態に係る非硬化型耐火性パテ組成物は、充填剤とバインダー樹脂と中空無機フィラーと無機粉体でコーティングされた樹脂製マイクロバルーンとを含む。中空無機フィラーと、無機粉体でコーティングされた樹脂製マイクロバルーンは、軽量化のために含む。本発明の実施形態にかかる非硬化型耐火性パテ組成物は、主に防火区画貫通部措置など火災時の耐火性能が要求される用途で使用される。なお、充填剤とバインダー樹脂と中空無機フィラーと無機粉体でコーティングされた樹脂製マイクロバルーンの合計に対する割合を、主組成物に対する割合と呼ぶこともある。
 本発明の実施形態に係る非硬化型耐火性パテ組成物は、充填剤とバインダー樹脂と中空無機フィラーと、無機粉体でコーティングされた樹脂製マイクロバルーンとを含む非硬化型耐火性パテ組成物であって、充填剤とバインダー樹脂と中空無機フィラーと無機粉体でコーティングされた樹脂製マイクロバルーンの合計重量に対してそれぞれが占める重量割合は、前記充填剤を25~65重量%、前記バインダー樹脂を20~40重量%、前記中空無機フィラーを5~40重量%、前記無機粉体でコーティングされた樹脂製マイクロバルーンを1~13重量%の範囲で含有し、少なくとも前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計が100重量%となるようにこれらを含む非硬化型耐火性パテ組成物である。ここで、少なくとも前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計が100重量%となるようにこれらを含むとは、本発明の非硬化型耐火性パテ組成物は、充填剤とバインダー樹脂と中空無機フィラーと無機粉体でコーティングされた樹脂製マイクロバルーンの合計が、これらからなる主組成物の100重量%となるように含む他、本発明の効果を損なわない範囲で、本発明の非硬化型耐火性パテ組成物に、不純物や添加物などのその他の材料を含むことを許容することを意味する。
 前記中空無機フィラーの体積Vの、前記無機粉体でコーティングされた樹脂製マイクロバルーンの体積Vに対する体積比(V/V)が、0.3~6.0倍であり、前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計量が、非硬化型耐火性パテ組成物として体積で見るとパテ組成物中にこれら中空無機フィラーと無機粉体でコーティングされた樹脂製マイクロバルーンは合わせて主組成物中、45~72体積%含まれる非硬化型耐火性パテ組成物である。
 前記非硬化型耐火性パテ組成物は、前記充填剤を50~65重量%、前記樹脂バインダーを20~30重量%、前記中空無機フィラーを8~15重量%、前記無機粉体でコーティングされた樹脂製マイクロバルーンを4~7重量%の範囲で含有し、前記中空無機フィラーに対する前記樹脂製マイクロバルーンの体積比が2.0~5.0倍の範囲を満足し、さらに前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計量が、非硬化型耐火性パテ組成物として体積で見るとパテ組成物中にこれら中空無機フィラーと無機粉体でコーティングされた樹脂製マイクロバルーンは合わせて主組成物中45~60体積%含まれることが好ましい。前記非硬化型耐火性パテ組成物は、比重が1.0未満であることが望ましい。前記中空無機フィラーに対する前記無機粉体でコーティングされた樹脂製マイクロバルーンの体積比は、前記体積比は軽量化という意味では、比率が大きい方が望ましいが、製造時の無機粉体でコーティングされた樹脂製マイクロバルーンの飛散性や、製品の耐火性を考慮すると、体積比に上限値を設けることが望ましく、この場合、前記体積比としては、2.0~5.0倍が好ましく、2.5~4.5倍の範囲を満足することがさらに好ましい。軽量化の面では、樹脂製マイクロバルーンの添加量が多く、飛散性の面では、樹脂製マイクロバルーンの添加量が少ない方が良い。
 前記充填剤は、水酸化アルミニウム、水酸化マグネシウム、タルク、フライアッシュからなる群より選ばれる1種類もしくは2種類以上を含むことが好ましく、前記バインダー樹脂は、ポリブテンオイル、液状ポリブタジエン、液状スチレンブタジエンゴム、液状クロロプレンゴム、液状イソプレンゴムからなる群より選ばれる1種類もしくは2種類以上を含むことが好ましい。前記中空無機フィラーが、フライアッシュバルーンとパーライトとシラスバルーンのいずれか1種類もしくは2種類以上を含み、前記樹脂製マイクロバルーンの殻を構成する樹脂が、アクリロニトリル樹脂、フェノール樹脂、塩化ビニリデンからなる群より選ばれる1種類もしくは2種類以上を含むことが好ましい。
 さらに、前記非硬化型耐火性パテ組成物の100質量部に対して、赤燐、ポリリン酸アンモニウム、リン酸エステル、硼砂、ホウ酸、ポリホウ酸ナトリウム、ホスファゼン、スズ酸亜鉛からなる群より選ばれる1種類もしくは2種類以上の混合物を、難燃剤として3~10質量部添加することもできる。このように、することにより、前記非硬化型耐火性パテ組成物の難燃性を向上させることができる。前記非硬化型耐火性パテ組成物の100質量部に対して、安息香酸エステル系可塑剤、エポキシ系可塑剤、リン酸エステル系可塑剤、塩素化パラフィン可塑剤、アジピン酸系可塑剤、フタル酸エステル系可塑剤からなる群より選ばれる1種類もしくは2種類以上を、可塑剤として3~9質量部添加することもできる。このようにすることにより、パテの混練性、パテの施工性を向上させることができる。本発明の非硬化型耐火性パテ組成物は充填剤とバインダー樹脂と中空無機フィラーと無機粉体でコーティングされた樹脂製マイクロバルーンからなる非硬化型耐火性パテ組成物の100質量部に対して、前記非硬化型耐火性パテ組成物としての特性を害さない範囲で、難燃剤や可塑剤などの添加剤や不純物などその他の材料を合計で25質量部の範囲で含んでも良いが、20質量部の範囲で含むことが好ましい。この範囲であれば、他材料を含んでいても非硬化型耐火性パテ組成物としての特性上問題ない。
[充填剤]
 本実施形態に係るパテ組成物に用いる充填剤として水酸化アルミニウム、水酸化マグネシウム、タルク、フライアッシュのいずれかを1種類もしくは2種類以上を含む。充填剤は主組成物中25~65重量%を占めることが好ましく、50~65重量%を占めることがより好ましい。なお、フライアッシュとしては、比重2以上のものを用いることが好ましい。充填剤の量が多すぎると、得られたパテ組成物の比重が重すぎる。また、充填剤の量が少なすぎると、得られたパテ組成物が火災時に形状を保持することが困難である。
[樹脂バインダー]
 本実施形態に係るパテ組成物に用いるバインダーとしてはポリブテンオイル、液状ポリブタジエン、液状スチレンブタジエンゴム、液状クロロプレンゴム、液状イソプレンゴムのいずれかを1種類もしくは2種類以上を含むが、最終的な組成物がパテ状にまとまれば良く、樹脂バインダーは、特にこれらに限定されない。樹脂バインダーは主組成物中20~40重量%を占めることが好ましく、20~30重量%を占めることがより好ましい。樹脂バインダーの量が多すぎると、得られたパテ組成物が固まらず、液状となってしまう。また、樹脂バインダーの量が少なすぎると、粉体の割合が多いためパテとしてまとまらず、パテ組成物を得ることができなくなる。
[中空無機フィラー]
 本実施形態に係るパテ組成物に用いる中空無機フィラーは、無機物外殻をもち中空、軽量の製品である。このような製品としては火力発電所などから得られる石炭灰(フライアッシュ)を水に浮遊させて選別した中空石炭灰であるフライアッシュバルーンや、ガラス質の微細な火山砕屑物を発泡させたシラスバルーン、同様にガラス質である火山岩を発泡させたパーライトなどがある。これらの中空無機フィラーは、いずれも主な成分がSiOとAlであり1000℃前後の耐熱性があることから組成物が燃焼した際に残存し耐火性を高めるのに有効である。代表的な成分の割合としてはフライアッシュバルーンでSiOが60~65%、Alが27~33%、シラスバルーンでSiOが65~73%、Alが12~18%、パーライトでSiOが約73%、Alが約17%である。上記成分の割合については産地、製法などによって異なる場合がある。粒径は、例えばそれぞれフライアッシュバルーンが5~300μm、シラスバルーンが5~200μm、パーライトが30~700μmなど、各製品のグレードにより異なった範囲を選択することができ、またはふるい分けによって適切な範囲を選ぶこともできる。真比重は0.6~1.0の範囲にある。中でも、球状製品や耐圧性の高いグレードは製造時に圧力や機械的ストレスによる破壊を減らすことができ好適であるが、いずれにしてもパテ製造時の混練時に、充填剤と中空無機フィラー、中空無機フィラー同士の接触時のせん断応力などにより、その一部が破壊する。これらの中空無機フィラーは単体で用いることができるが、異なる種類の中空無機フィラーを複数混合して使用してもよい。中空無機フィラーは主組成物中5~40重量%を占めることが好ましく、8~15重量%を占めることがより好ましい。中空無機フィラーの量が多すぎると、得られるパテ組成物の軽量化が難しくなってしまう。また、中空無機フィラーの量が少なすぎると、パテ組成物を軽量化するには、樹脂製マイクロバルーンの量を増やさなくてはいけないため、得られたパテ組成物は、軽量化は可能であるが、逆に耐火性は劣るものとなる。なお、中空無機フィラーは、低比重中空無機フィラーや無機バルーンなどとも呼ばれる。
[樹脂製マイクロバルーン]
 本実施形態に係るパテ組成物に用いる樹脂製マイクロバルーンは、球状の樹脂外殻をもつ中空、軽量の製品である。一般的に液状ガスを内包した状態で製造され、加熱処理によって製品粒径まで体積で数十倍膨張させられて中空球状粒子となる。外殻の樹脂としてはアクリロニトリル樹脂、フェノール樹脂、塩化ビニリデン及びそれらの変性樹脂などがある。粒径は10~150μmでその真比重は0.02~0.07程度であり、パテ組成物の軽量化に好適である。樹脂製マイクロバルーンは、低密度で柔らかいことから、取り扱いやすいように樹脂でできた外殻の外側に無機粉体をコーティングして真比重0.1~0.3程度とした製品が一般に使用される。ここで、コーティングに使用する無機粉体は、樹脂製マイクロバルーンの表面の少なくも一部にコーティングされていれば良く、軽量性の観点からは、樹脂製マイクロバルーンの表面全体にコーティングするよりは、上記のように表面の一部にコーティングする方が望ましい。さらに樹脂製マイクロバルーンの軽量性を生かすために表面をコーティングしない樹脂製マイクロバルーンを使用すると、パテを練る工程において樹脂製マイクロバルーンの若干の飛散は伴い製造性は少し低下するものの樹脂製マイクロバルーンの表面をコーティングせずにそのままの状態で使用することもできる。
 ここで使用される無機粉体としては炭酸カルシウム、タルク、水酸化アルミニウムが一般的であるが、特にこれらに限定されない。具体的な例としては真比重約0.03の前記樹脂製マイクロバルーンが真比重約2.6の炭酸カルシウムでコーティングされ、コーティングの工程において重量比で樹脂製マイクロバルーン:炭酸カルシウム=22.5:77.5で製造された場合、コーティングに使用した炭酸カルシウムの真比重が大きいことから、その結果得られる炭酸カルシウムでコーティングされた樹脂製マイクロバルーンの真比重は、約0.13、体積比では樹脂製マイクロバルーン:炭酸カルシウム=96.2:3.8となる。このように、無機粉体でコーティングされた樹脂製マイクロバルーンは無機粉体でコーティングされていない樹脂製マイクロバルーンに対して重量では数倍異なるが、体積では数%しか変わらない粉体である。
 樹脂製マイクロバルーンはこの無機粉体がコーティングされた状態で主組成物中1~13重量%を占めることが好ましく、4~7重量%を占めることがより好ましい。前記無機粉体でコーティングされた樹脂製マイクロバルーンの量が多すぎると、得られたパテ組成物の耐火性が悪化する。また、前記無機粉体でコーティングされた樹脂製マイクロバルーンの量が少なすぎると、得られたパテ組成物の軽量化が困難である。前記無機粉体でコーティングされた樹脂製マイクロバルーンは、その外殻素材と構造により高い弾性を持ち、圧力や機械的ストレスによって破壊されることが少ないという特徴があり、本実施形態に係るパテ組成物を製造する際に好適である。前記無機粉体でコーティングされた樹脂製マイクロバルーンと中空無機フィラーを併用した場合、パテ組成物を製造する際の中空無機フィラーの破壊を減らすことができる。
[中空無機フィラーと樹脂製マイクロバルーンの配合比率]
 本実施形態に係る非硬化型耐火性パテ組成物は、中空無機フィラーを主組成物中5~40重量%含み、無機粉体がコーティングされたかどうかにかかわらず、樹脂製マイクロバルーンの体積(V)と、その中空無機フィラーの体積Vの体積比(V/V)は0.3~6.0倍であり、好ましくは2.0~5.0である。樹脂製マイクロバルーンの使用量としては無機粉体がコーティングされた状態で主組成物中1~13重量%、無機粉体がコーティングされていない状態では主組成物中0.3~3重量%である。体積で見るとパテ組成物中にこれら中空無機フィラーと樹脂製マイクロバルーンは合わせて主組成物中45~72体積%含まれる。組成残量のうちバインダー樹脂は主組成物中20~40重量%含まれ、充填剤が主組成物中の25~65重量%含まれる。
[難燃剤]
 パテ組成物の耐火性のみならず、パテ組成物そのものの難燃性を高めるために難燃剤を使用することができる。一般的な難燃剤として赤燐、ポリリン酸アンモニウム、リン酸エステル、硼砂、ホウ酸、ポリホウ酸ナトリウム、ホスファゼン、スズ酸亜鉛などが好適である。パテ組成物の100質量部に対して、難燃剤を3~10質量部添加することが好ましい。
 なお、ここでの難燃性とは、パテ組成物自体が燃焼しにくい特性を持つことを言い、火にさらされても着火しないか、仮にパテ組成物が着火しても、組成物に含まれる難燃剤の影響により自消する性質などをいう。一方、耐火性については、火に長時間さらされてもパテ組成物が形状を維持し、パテ組成物の反対側に火を通さない性質をいう。
[可塑剤]
 組成物の柔らかさ、接着性、手触りなどを改善するために可塑剤を使用することができる。また使用した場合、パテの接触する対象が可塑剤入りのPVCシースなどの場合、相互における可塑剤の移行を防ぎ、可塑剤の移行による影響を抑えることができる。可塑剤としては安息香酸エステル系可塑剤、エポキシ系可塑剤、リン酸エステル系可塑剤、塩素化パラフィン可塑剤、アジピン酸系可塑剤、フタル酸エステル系可塑剤などが好適である。パテ組成物の100質量部に対して、可塑剤を3~9質量部添加することが好ましい。
[繊維]
 パテ組成物の型崩れ性を改善するために、パテ組成物にPETファイバー、レーヨン、セルロースなどの有機繊維を添加してもよい。
[加工補助剤]
 パテ組成物の製造を容易に行うために、界面活性剤、滑材などの加工助材を添加してもよい。
[パテ組成物の製造方法]
 本実施の形態に係るパテ組成物は、各原料を公知のニーダーミキサー、バンバリーミキサーなどを用いて混練することにより得られる。
[非硬化型耐火性パテの利用方法]
 本実施の形態に係る非硬化型耐火性パテの施工の一例として、図2に示すように、区画Aと区画Bを隔てる壁や床などのコンクリート9の貫通孔にケーブル1や配管を通す際に、非硬化型耐火性パテ組成物7を貫通孔に充填または盛り付けを行って閉塞することで、火災時の延焼防止措置を行うことができる。区画A、Bは、例えば、建築物の1階と2階、ある部屋とその隣接する部屋などである。施工においては、開口内にパテ組成物7のみ充填、もしくは施工性を向上させるために、支持金具3とバックアップ材5を使用することができる。バックアップ材5を使用することで、パテ組成物7の受けができて施工が容易になると共に、反対側へのパテ組成物7の落下防止やパテの使用量削減を図ることができる。バックアップ材5には、ロックウール、グラスウール、アルカリアースシリケートウール等の鉱物繊維を使用することができる。また、それらを不織布で包み、ブロック状にして使用することもできる。バックアップ材5は図2のような支持金具3を用いることで開口内に保持する。
[本発明の特徴]
 本実施の形態に係る非硬化型耐火性パテは、軽量化材として樹脂製マイクロバルーンと中空無機フィラーの2種類を使用することで、非硬化型で施工後の再施工性に優れながらも、比重が1未満と従来の非硬化型パテよりも軽量であることから可搬性に優れ、かつ燃焼時は硬化して耐火性にも優れる非硬化型耐火性パテである。
 以下、本発明を実施例と比較例に基づきさらに詳細に説明する。ただし本発明はこれらの実施例に限定されるものではない。なお、表中では樹脂製マイクロバルーンを「樹脂バルーン」と省略表記している。
<比較例1~2>
 比較例1~2は、バインダー樹脂に充填剤を添加せず、樹脂製マイクロバルーン、もしくは中空無機フィラーのみを添加した場合の組成である。
<比較例3~11>
 比較例3~11は、バインダー樹脂に充填剤を添加し、さらに軽量化材として樹脂製マイクロバルーンを添加し、比重を1.0未満となるようにした組成である。
<比較例12~15>
 比較例12~15は、バインダー樹脂に充填剤を添加し、さらに軽量化材として中空無機フィラーを添加し、比重を1.0未満となるようにした組成である。
<実施例1~14>
 実施例1~14は、バインダー樹脂に充填剤を添加し、さらに軽量化材として樹脂製マイクロバルーン、および中空無機フィラーとしてフライアッシュバルーンを添加し、比重が1.0未満となるようにした組成である。
<実施例15~20>
 実施例15~20は、フライアッシュバルーン以外の中空無機フィラーを使用、もしくは複数の中空無機フィラーを使用した組成である。
<実施例21>
 実施例21は、中空無機フィラーとしてフライアッシュバルーンを使用し、樹脂製マイクロバルーンとしては無機粉体でコーティングされていない樹脂製マイクロバルーンを使用した組成である。
 各実施例・比較例に係るパテ組成物は、表1~8に記載の割合で原料をニーダーミキサーにて混練することにより得られる。
 使用されている原料を以下に説明する。
 ・ポリブタジエン:液状ポリブタジエンゴム
 ・ポリブテンオイルA:ポリブテンオイル(数平均分子量2400、40℃での動粘度206000mm/s、100℃での動粘度4700mm/s)
 ・ポリブテンオイルB:ポリブテンオイル(数平均分子量2900、40℃での動粘度160000mm/s、100℃での動粘度3710mm/s)
 ・ポリブテンオイルC:ポリブテンオイル(数平均分子量430、40℃での動粘度110mm/s、100℃での動粘度9.5mm/s)
 ・可塑剤:アジピン酸系可塑剤
 ・樹脂バルーンA:アクリロニトリル樹脂の外殻を持ち、炭酸カルシウムの無機粉体でコーティングされている樹脂製マイクロバルーン。平均粒子径は50~70μm、真比重は0.12±0.02(コーティング込み)
 ・樹脂バルーンB:アクリロニトリル樹脂の外殻を持ち、無機粉体でコーティングはされていない樹脂製マイクロバルーン。平均粒子径は40~60μm、真比重は0.030±0.005
 ・タルク:タルクの粉末
 ・水酸化アルミニウム:平均粒径25μmの水酸化アルミニウムの粉末
 ・中空無機フィラーA:フライアッシュバルーン(粒子径5~300μm、真比重:0.65~0.85g/cm、嵩比重0.3~0.5g/cm
 ・中空無機フィラーB:パーライト(粒子径30~700μm、真比重:0.80~1.00g/cm、嵩比重0.3~0.4g/cm
 ・中空無機フィラーC:シラスバルーン(粒子径5~200μm、真比重:0.80~1.00g/cm、嵩比重0.12~0.18g/cm
 ・有機繊維A:レーヨン繊維
 ・有機繊維B:PETファイバー(ポリエチレンテレフタレート樹脂製の繊維)
 ・難燃剤A:赤リン
 ・難燃剤B:ポリリン酸アンモニウム
[物性]
 各実施例・比較例で得られたパテ組成物の比重を測定した。また、混合する原料組成から計算される比重と比較した。また、得られたパテ組成物の性状を観察した。
[電気炉試験による耐火性の評価]
 電気炉試験により耐火性の評価を行った。評価方法は下記のとおりである。
(1)得られた組成を約3立方cmになるように計り取り、一辺約1.5cmの立方体を作成する。
(2)あらかじめ600℃に熱しておいた電気炉中に、上記立方体を不燃材料でできた板に載せて投入し、10分放置する。
(3)10分後、不燃材料でできた板ごと取り出して観察する。
 評価は立方体サンプルを燃焼後に電気炉から取り出した時の灰の形状、および、触った時の灰の崩れやすさを目視で判定した。
 ここで、図1の電気炉による燃焼試験後の比較例5と実施例9の材料の外観写真から分かるように、燃焼試験後の崩れの状態は容易に目視で判断できる。
 この評価で、電気炉から取り出した時点で灰が崩れているサンプルや触ると簡単に崩れてしまう組成は施工状態で燃焼試験を行った場合も耐火性に乏しい。一方でこの試験で灰が崩れずに形状を保ち、収縮などが起きていない場合は施工状態の燃焼試験においても耐火性が高くなる傾向を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
[実施例・比較例の考察]
 比較例1に示されるように、軽量化材の中空無機フィラーと樹脂バインダーのみの組成とした場合、燃焼時に中空無機フィラーは燃えずに残るが、さらさらの砂状となり崩れてしまうため、構造物として耐火性が得られず、燃焼後の形状を保持するために他の充填剤が必須である。
 比較例2に示されるように、軽量化材の樹脂製マイクロバルーンと樹脂バインダーのみの組成とした場合、燃焼時には組成が75重量%以上燃え尽きてしまい、ほとんど残らないため耐火性はない。
 比較例3~11に示されるように、充填剤とバインダー樹脂に軽量化材として樹脂製マイクロバルーンのみを加えた組成とした場合は、いずれの場合も燃焼後に崩れやすく十分な耐火性が得られない。例えば、比重1を下回るような組成として樹脂バインダーを主組成物中約36.8重量%、充填剤としてタルクを主組成物中約58.3重量%、樹脂製マイクロバルーンを主組成物中約4.9重量%(体積では主組成物中約38.1体積%)からなる比較例9のような組成が考えられるが、この組成は燃焼後に崩れやすく、十分な耐火性が得られなかった。
 比較例12~15に示されるように、充填剤とバインダー樹脂に軽量化材として中空無機フィラーのみを加えた組成とした場合、十分な耐火性が得られなかった。例えば、比重1を下回るような組成として、樹脂バインダーを30重量%、充填剤としてタルクを38重量%とし、中空無機フィラーを32重量%からなる比較例12のような組成があるが、やはり十分な耐火性が得られない。また、比較例14、15にかかるパテ組成物は、パテとして使用するには、手触りや硬さが良くない上、電気炉試験後に力が加わった場合に崩れやすかった。
 実施例1~21は比重0.6から1.0の組成であり、いずれも耐火性能に優れ、施工状態での燃焼試験においても問題はみられない。しかし組成の比重が小さいものほど樹脂製マイクロバルーンの配合量が多く耐火性が下がりやすい。また、比重を維持しつつ樹脂製マイクロバルーンを減らすために、同比重に相当する樹脂製マイクロバルーンと充填剤を、中空無機フィラーに置き換えると、中空無機フィラーの配合量が多くなって製造時の中空無機フィラーの破壊が増え、安定した製造が難しくなる。
 このため実施例7~14にあるように、非硬化型耐火性パテ組成物として中空無機フィラーAを主組成物中それぞれ8.4~12.8重量%含み、その中空無機フィラーAに対し体積比で2.0~5.0倍の範囲を満足するように、5.0~6.5重量%の樹脂製マイクロバルーンを含んでいる。体積で見るとパテ組成物中にこれら中空無機フィラーAと樹脂製マイクロバルーンは合わせて主組成物中50.4~56.2体積%含まれる。組成残量のうち樹脂バインダーは主組成物中20.5~29.7重量%含まれ、充填剤が主組成物中53.4~63.2重量%含まれる。
 実施例15~20には、中空無機フィラーを中空無機フィラーAから中空無機フィラーB、中空無機フィラーCに変更した場合、およびこれらを複数種類使用した場合の組成を示す。実施例15~19は実施例13に対応する組成で重量%は実施例13と等しく、体積%は各中空無機フィラーの真比重に応じて変動する。実施例20は中空無機フィラーA、B、C、三種を使用した場合の組成である。
 実施例15~16に示されるように中空無機フィラーAと中空無機フィラーBは相互に置き換えること、および混合することに問題はない。
 中空無機フィラーCはその粒径の細かさの違いから中空無機フィラーAや中空無機フィラーBと比較して表面積が増加し、充填密度が高くなることからパテにしたときに多少硬くなるという特徴を有するが、中空無機フィラーとしては中空無機フィラーAや中空無機フィラーBとほぼ同列に取り扱うことが可能であり、中空無機フィラーC(シラスバルーン)を用いた実施例17~19のように耐火性能は十分である。実施例17は実施例13に対応した組成であり、かつ中空無機フィラーAと中空無機フィラーCを重量で1:1の比率で含む組成で、総合評価としては良好(総合評価◎)である。上記の理由により、実施例18は実施例13に対応した中空無機フィラーC単体の組成であるため、パテとしては固めでつなぎが悪く、総合評価としては実施例1~6と同等(総合評価△)である。同様に上記の理由により、実施例19は実施例13に対応した組成であり、かつ中空無機フィラーBと中空無機フィラーCを重量で1:1の比率で含む組成だが、パテとしては少し固めであり総合評価としては実施例1~6と同等(総合評価○)である。実施例20は、中空無機フィラーA、B,Cをともに所定割合で含む組成であり、総合評価は◎で問題はなかった。
 なお、中空無機フィラーCのみを中空無機フィラーとして用いる場合でも、各組成を調整することで、実施例10、11とほぼ同様の評価(総合評価◎)の組成も得られた。
 実施例21は実施例13に対応した組成で、無機粉体でコーティングされた樹脂製バルーンAの樹脂製バルーン部分に対応する体積をコーティングされていない樹脂製バルーンBに置き換え、無機粉体コーティング部分に対応する体積を中空無機フィラーAに置き換えた組成である。ここで無機粉体コーティングに相当する部分を中空無機フィラーAに置き換えたのは軽量化のためである。置き換えは上記のように体積を置き換えるように重量配合しているため、実施例13における樹脂バルーンAの6.4重量%から実施例21における樹脂バルーンBでは1.4重量%となる。これによりパテ組成物の比重は実施例13に比べると軽くなるが、その物性は実施例13とほぼ変わらない。
[耐火性試験]
 実際に使用される状況を想定し、厚さ75mmの軽量気泡コンクリ―トパネルに直径160mmの開口を設け、図2のように、ケーブルと配管を貫通させた試験体に耐火性パテを施工して60分の耐火試験を実施した。加熱は図3のISO834に準じた標準加熱曲線に従って行い、60分間で最大945℃まで加熱した。耐火性パテとしては、実施例7に係る非硬化型耐火性パテを用いた。
 バックアップ材には板状ロックウールを開口の形状に合わせて切断したものと、生体溶解性のアルカリアースシリケートウールブランケットを不織布で包んだブロックをそれぞれ厚さ25mmで開口内に充填し、その上に本開発品を10~35mmの厚さで充填した。
 試験の結果、表9のように全ての条件で合格し、実施例7に係る非硬化型耐火性パテが十分な耐火性能を有することが確認できた。同様に、実施例1から実施例6及び実施例8~実施例21のパテについても、同様の耐火性試験を行った結果、いずれも材料も耐火性は良好で、且つ比重が1未満となるため、耐火性と軽量性の両者に優れることが確認された。
Figure JPOXMLDOC01-appb-T000009
 以上、添付図面を参照しながら、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到しえることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 1………ケーブル
 3………支持金具
 5………バックアップ材
 7………非硬化型耐火性パテ組成物
 9………コンクリート
 11………区画A
 13………区画B
 
 

Claims (8)

  1.  充填剤とバインダー樹脂と中空無機フィラーと、樹脂製マイクロバルーンとを含む非硬化型耐火性パテ組成物であって、
     前記充填剤が、水酸化アルミニウム、水酸化マグネシウム、タルク、フライアッシュからなる群より選ばれる1種類もしくは2種類以上を含み、
     前記バインダー樹脂が、ポリブテンオイル、液状ポリブタジエン、液状スチレンブタジエンゴム、液状クロロプレンゴム、液状イソプレンゴムからなる群より選ばれる1種類もしくは2種類以上を含み、
     前記樹脂製マイクロバルーンは、無機粉体で少なくとも表面の一部がコーティングされており、前記樹脂製マイクロバルーンの外殻を構成する樹脂が、アクリロニトリル樹脂、フェノール樹脂、塩化ビニリデンからなる群より選ばれる1種類もしくは2種類以上を含むもので、
     前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計重量に対してそれぞれが占める重量割合は、前記充填剤が25~65重量%、前記バインダー樹脂が20~40重量%、前記中空無機フィラーが5~40重量%、前記無機粉体でコーティングされた樹脂製マイクロバルーンが1~13重量%の範囲にあり、少なくとも前記充填剤と前記バインダー樹脂と前記中空無機フィラーと、前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計が100重量%になるようにこれらを含むものであることを特徴とする非硬化型耐火性パテ組成物。
  2.  前記中空無機フィラーが、フライアッシュバルーンとシラスバルーンとパーライトのうちの少なくとも一種類を含むことを特徴とする請求項1に記載の非硬化型耐火性パテ組成物。
  3.  前記中空無機フィラーの体積Vに対する前記無機粉体でコーティングされた樹脂製マイクロバルーンの体積Vの体積比(V/V)が、0.3~6.0倍であり、
     前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計量が、前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計体積を100体積%とすると、前記合計体積に対して45~72体積%含まれることを特徴とする請求項1または請求項2に記載の非硬化型耐火性パテ組成物。
  4.  前記非硬化型耐火性パテ組成物において、前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計重量に対してそれぞれが占める重量割合は、前記充填剤が50~65重量%、前記樹脂バインダーが20~30重量%、前記中空無機フィラーが8~15重量%、前記無機粉体でコーティングされた樹脂製マイクロバルーンが4~7重量%の範囲にあり、
     少なくとも前記充填剤と前記バインダー樹脂と前記中空無機フィラーと、前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計が100重量%になるようにこれらを含むもので、
     さらに前記中空無機フィラーの体積Vに対する前記無機粉体でコーティングされた樹脂製マイクロバルーンの体積Vの体積比(V/V)が2.0~5.0倍の範囲であり、
     前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計量が、前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされた樹脂製マイクロバルーンの合計体積を100体積%とすると、前記合計体積に対して45~60体積%含まれることを特徴とする請求項3に記載の非硬化型耐火性パテ組成物。
  5.  前記非硬化型耐火性パテ組成物には、前記無機粉体でコーティングされた樹脂製マイクロバルーンの代わりに、樹脂製マイクロバルーンの表面が無機粉体でコーティングされていない樹脂製マイクロバルーンを用い、
     前記無機粉体でコーティングされていない樹脂製マイクロバルーンの配合割合が0.3~3重量%で、
     前記中空無機フィラーの体積Vに対する前記無機粉体でコーティングされていない樹脂製マイクロバルーンの体積Vの体積比(V/V)が2.0~5.0倍の範囲を満足し、
     さらに前記中空無機フィラーと前記無機粉体でコーティングされていない樹脂製マイクロバルーンの合計量が、前記充填剤と前記バインダー樹脂と前記中空無機フィラーと前記無機粉体でコーティングされていない樹脂製マイクロバルーンの合計体積を100体積%とすると、前記合計体積に対して45~60体積%含まれることを特徴とする請求項1に記載の非硬化型耐火性パテ組成物。
  6.  前記非硬化型耐火性パテ組成物の比重が1.0未満であることを特徴とする請求項1~5のいずれか1項に記載の非硬化型耐火性パテ組成物。
  7.  前記非硬化型耐火性パテ組成物の100質量部に対して、赤燐、ポリリン酸アンモニウム、リン酸エステル、硼砂、ホウ酸、ポリホウ酸ナトリウム、ホスファゼン、スズ酸亜鉛からなる群より選ばれる1種類もしくは2種類以上の混合物を、難燃材として3~10質量部添加したことを特徴とする請求項1~6のいずれか1項に記載の非硬化型耐火性パテ組成物。
  8.  前記非硬化型耐火性パテ組成物の100質量部に対して、安息香酸エステル系可塑剤、エポキシ系可塑剤、リン酸エステル系可塑剤、塩素化パラフィン可塑剤、アジピン酸系可塑剤、フタル酸エステル系可塑剤からなる群より選ばれる1種類もしくは2種類以上を、可塑剤として3~9質量部数添加したことを特徴とする請求項1~7のいずれか1項に記載の非硬化型耐火性パテ組成物。
     
     
PCT/JP2014/062175 2014-05-02 2014-05-02 非硬化型耐火性パテ組成物 WO2015166583A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/062175 WO2015166583A1 (ja) 2014-05-02 2014-05-02 非硬化型耐火性パテ組成物
KR1020167031752A KR101893282B1 (ko) 2014-05-02 2014-05-02 비경화형 내화성 퍼티 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062175 WO2015166583A1 (ja) 2014-05-02 2014-05-02 非硬化型耐火性パテ組成物

Publications (1)

Publication Number Publication Date
WO2015166583A1 true WO2015166583A1 (ja) 2015-11-05

Family

ID=54358334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062175 WO2015166583A1 (ja) 2014-05-02 2014-05-02 非硬化型耐火性パテ組成物

Country Status (2)

Country Link
KR (1) KR101893282B1 (ja)
WO (1) WO2015166583A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004315A (ja) * 2019-06-26 2021-01-14 デンカ株式会社 熱膨張性パテ組成物及び目地材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101864676B1 (ko) * 2017-11-24 2018-06-07 오태홍 크랙 보수 및 재발생 방지 테이프 및 시공방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212481A (ja) * 1999-01-21 2000-08-02 Kansai Putty Kako Kk 軽量パテ組成物
JP2001064481A (ja) * 1999-08-24 2001-03-13 Kansai Putty Kako Kk 可撓性エポキシパテ組成物
JP2010522261A (ja) * 2007-03-19 2010-07-01 スリーエム イノベイティブ プロパティズ カンパニー 中空要素が充填された硬化性本体修復化合物
JP2011046821A (ja) * 2009-08-27 2011-03-10 Toshihiro Ishimura 軽量粘土パテ
JP2011173978A (ja) * 2010-02-24 2011-09-08 Konishi Co Ltd 軽量充填補修材
JP2014095068A (ja) * 2012-10-12 2014-05-22 Furukawa Techno Material Co Ltd 非硬化型耐火性パテ組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126389A (ja) 2008-11-27 2010-06-10 Nichias Corp 無機中空体組成物およびその製造方法
JP5269573B2 (ja) 2008-12-18 2013-08-21 株式会社竹中工務店 断熱材製造用のプレミックス組成物及び断熱材
JP5888909B2 (ja) 2011-09-14 2016-03-22 株式会社古河テクノマテリアル 硬化型耐火性パテ組成物、そのジオポリマー反応の遅延方法、その長期保管性向上方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212481A (ja) * 1999-01-21 2000-08-02 Kansai Putty Kako Kk 軽量パテ組成物
JP2001064481A (ja) * 1999-08-24 2001-03-13 Kansai Putty Kako Kk 可撓性エポキシパテ組成物
JP2010522261A (ja) * 2007-03-19 2010-07-01 スリーエム イノベイティブ プロパティズ カンパニー 中空要素が充填された硬化性本体修復化合物
JP2011046821A (ja) * 2009-08-27 2011-03-10 Toshihiro Ishimura 軽量粘土パテ
JP2011173978A (ja) * 2010-02-24 2011-09-08 Konishi Co Ltd 軽量充填補修材
JP2014095068A (ja) * 2012-10-12 2014-05-22 Furukawa Techno Material Co Ltd 非硬化型耐火性パテ組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004315A (ja) * 2019-06-26 2021-01-14 デンカ株式会社 熱膨張性パテ組成物及び目地材

Also Published As

Publication number Publication date
KR101893282B1 (ko) 2018-08-29
KR20160146824A (ko) 2016-12-21

Similar Documents

Publication Publication Date Title
US9933091B2 (en) Penetration structure for fireproof compartment containing epoxy-resin-containing thermally expandable resin composition sheet and method for constructing the penetration structure
JP3363156B2 (ja) 耐火性シート状成形体、鉄骨被覆用耐火積層体、壁用耐火構造体、並びに、耐火鉄骨及び耐火壁の施工方法
JP5280987B2 (ja) 防火区画貫通部構造
JPH0335088A (ja) 耐燃性要素
JP2009540156A (ja) 耐火充填構造の防火区画処理用の充填材及びその製造方法
WO2013008465A1 (ja) 耐火補強構造、耐火補強建築部材および建築部材の耐火補強方法
GB2058038A (en) Gypsum cement composition for cable fire barriers
JP2007254563A (ja) 熱膨張性パテ組成物
JP5598880B2 (ja) 非硬化型耐火性パテ組成物
JP2008127725A (ja) 耐火断熱シート
WO2015166583A1 (ja) 非硬化型耐火性パテ組成物
JP2022505838A (ja) 建築部材間の通路開口部および接合部をシールするための複合材料および防火要素
JP2007332715A (ja) 耐火被覆構造体
JP2007198029A (ja) 貫通孔を備えた鉄骨梁の耐火構造の施工方法
CN110317421A (zh) 一种新型防火密封材料及其制备方法
CN1199080A (zh) 一种防火包及其制造方法
JP6200643B2 (ja) 中空壁の防火区画貫通部構造
JP3329191B2 (ja) 延焼防止用耐火封止材
CN106752527A (zh) 一种防火涂料及其制备方法
JP6117320B2 (ja) 非硬化型熱膨張性パテ組成物
JP2002173994A (ja) 耐火性防音床
JP4123370B2 (ja) 断熱構造及びその施工方法
KR102635423B1 (ko) 내화충전 팽창 매트릭스 조성물 및 펠릿, 이를 이용한 응용제품
JP5438173B2 (ja) 防火性樹脂サッシ
JP3594006B2 (ja) 電線・ケーブルの貫通部

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167031752

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14890580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP