WO2015163229A1 - 永久磁石埋込型電動機、圧縮機、冷凍空調装置 - Google Patents

永久磁石埋込型電動機、圧縮機、冷凍空調装置 Download PDF

Info

Publication number
WO2015163229A1
WO2015163229A1 PCT/JP2015/061707 JP2015061707W WO2015163229A1 WO 2015163229 A1 WO2015163229 A1 WO 2015163229A1 JP 2015061707 W JP2015061707 W JP 2015061707W WO 2015163229 A1 WO2015163229 A1 WO 2015163229A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
permanent magnet
rotor
magnet
insertion hole
Prior art date
Application number
PCT/JP2015/061707
Other languages
English (en)
French (fr)
Inventor
昌弘 仁吾
馬場 和彦
和慶 土田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016514887A priority Critical patent/JP6184591B2/ja
Priority to CN201580016849.0A priority patent/CN106134046B/zh
Priority to US15/122,446 priority patent/US10090743B2/en
Priority to EP15782513.4A priority patent/EP3136560B1/en
Publication of WO2015163229A1 publication Critical patent/WO2015163229A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a permanent magnet embedded electric motor, a compressor, and a refrigeration air conditioner.
  • the permanent magnets incorporated in the rotor are formed so that the cross section has an arc shape, and these permanent magnets are arranged on the rotor iron core so that the convex side faces radially inward.
  • the area of the magnet surface can be designed widely, the magnetic flux by the permanent magnet can be increased, and the driving torque of the motor can be increased, thereby reducing the size or improving the driving efficiency.
  • the present invention has been made in view of the above, and the magnetic flux on the outer circumferential surface of the rotor due to the magnetic flux distribution caused by the rotational direction when the motor is driven while having a slit to reduce the unbalance of the rotor magnetic attraction force.
  • An object of the present invention is to provide an embedded permanent magnet electric motor that can suppress density imbalance and reduce vibration.
  • the present invention provides a permanent magnet embedded motor including a rotor having a permanent magnet and a stator, wherein the rotor includes a rotor iron core, and the rotor iron core includes a magnet insertion hole,
  • the permanent magnet is inserted into the magnet insertion hole, the magnet insertion hole is curved in an arc shape, and the arc-shaped convex portion side is disposed on the center side of the rotor
  • the slit is disposed in a radially outer portion of the rotor core in the radial direction of the magnet insertion hole, and the magnet insertion hole includes a first line, a second line, and a pair of third lines.
  • the first line is located radially outside of the second line, and the third line connects the first line and the second line, respectively.
  • the first line is a circle And parts, it includes a pair of recesses, each said recess is located at the end portion of the arcuate portion of the first line.
  • the compressor of the present invention for achieving the same object is a compressor provided with an electric motor and a compression element in an airtight container, and the electric motor is the above-described permanent magnet embedded type of the present invention. It is an electric motor.
  • the refrigerating and air-conditioning apparatus of the present invention for achieving the same object includes the above-described compressor of the present invention as a component of the refrigeration circuit.
  • the imbalance of the magnetic flux density on the outer surface of the rotor can be suppressed and the vibration can be reduced without substantially changing the effect of reducing the magnetic attractive force generated by the stator magnetic flux.
  • FIG. 1 it is a figure which expands and shows a rotor.
  • FIG. 2 it is a figure which expands and shows a magnet insertion hole and a some slit.
  • FIG. 3 it is a figure which shows the state by which the permanent magnet is not inserted in the magnet insertion hole. It is a figure of the same aspect as FIG. 3, and is a figure explaining the dimension of each part of a magnet insertion hole. It is a figure corresponding to FIG. 2 of related technology which does not have a recessed part in a magnet insertion hole. It is a figure corresponding to FIG.
  • FIG. 3 It is a figure of the same aspect as FIG. 3 regarding Embodiment 2 of this invention. It is a longitudinal cross-sectional view of the rotary compressor of Embodiment 3 of this invention. It is a figure which shows the refrigerating air conditioning apparatus of Embodiment 4 of this invention.
  • FIG. 1 is a diagram showing a cross section orthogonal to the rotation center line of the permanent magnet embedded electric motor according to the first embodiment.
  • FIG. 2 is an enlarged view of the rotor in FIG.
  • FIG. 3 is an enlarged view of the magnet insertion hole and the plurality of slits in FIG.
  • FIG. 4 is a diagram showing a state where no permanent magnet is inserted into the magnet insertion hole in FIG. 3.
  • the embedded permanent magnet electric motor 1 includes a stator 3 and a rotor 5 that is rotatably provided to face the stator 3.
  • the stator 3 has a plurality of tooth portions 7. Each of the plurality of tooth portions 7 is adjacent to another tooth portion 7 via a corresponding slot portion 9.
  • the plurality of teeth portions 7 and the plurality of slot portions 9 are arranged so as to be alternately arranged at equal intervals in the circumferential direction.
  • a known stator winding (not shown) is wound around each of the plurality of tooth portions 7 in a known manner.
  • the rotor 5 has a rotor iron core 11 and a shaft 13.
  • the shaft 13 is connected to the axial center portion of the rotor core 11 by shrink fitting, press fitting, or the like, and transmits rotational energy to the rotor core 11.
  • An air gap 15 is secured between the outer peripheral surface of the rotor and the inner peripheral surface of the stator.
  • the rotor 5 is held inside the stator 3 via the air gap 15 so as to be rotatable about a rotation center line (rotation center of the rotor) CL. Specifically, a current of a frequency synchronized with the command rotational speed is supplied to the stator 3 to generate a rotating magnetic field and rotate the rotor 5.
  • the air gap 15 between the stator 3 and the rotor 5 is a gap of 0.3 to 1 mm.
  • the stator 3 has a stator iron core 17.
  • the stator iron core 17 is formed by punching electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm per sheet into a predetermined shape and laminating a predetermined number of electromagnetic steel sheets while being fastened with caulking.
  • an electromagnetic steel sheet having a thickness of 0.35 mm is used.
  • the stator iron core 17 is formed with nine tooth portions 7 arranged at substantially equal intervals in the circumferential direction on the radially inner side.
  • the teeth part 7 is formed radially.
  • a corresponding slot portion 9 is formed in a region between adjacent tooth portions 7 in the stator core 17.
  • Each tooth portion 7 extends in the radial direction and projects toward the rotation center line CL. Further, most of the tooth portion 7 has a substantially equal circumferential width from the radially outer side to the radially inner side, but the tooth tip portion is located at the tip end that is the radially inner side of the tooth portion 7. 7a is formed. Each of the tooth tip portions 7a is formed in an umbrella shape in which both side portions extend in the circumferential direction.
  • a stator winding (not shown) that constitutes a coil (not shown) that generates a rotating magnetic field is wound around the teeth portion 7.
  • the coil is formed by winding a magnet wire directly around a tooth portion via an insulator. This winding method is called concentrated winding.
  • the coil is connected to a three-phase Y connection.
  • the number of turns and the wire diameter of the coil are determined according to the required characteristics (rotation speed, torque, etc.), voltage specifications, and the cross-sectional area of the slot.
  • the divided teeth are developed in a strip shape to facilitate winding, and a magnet wire having a wire diameter of about 1.0 mm is wound around the teeth of each magnetic pole for about 80 turns. After winding, the divided teeth are rounded and welded.
  • the stator is configured.
  • the rotor 5 is fitted to the shaft 13.
  • the rotor 5 has a rotor iron core 11, and the rotor iron core 11 is also punched out from a magnetic steel sheet having a thickness of about 0.1 to 0.7 mm into a predetermined shape, like the stator iron core 17, and a predetermined number of electromagnetic cores. It is constructed by laminating steel plates with caulking. Here, an electromagnetic steel sheet having a thickness of 0.35 mm is used.
  • the rotor 5 is a magnet-embedded type, and a plurality (six in this example) of permanent magnets 19 magnetized so that N poles and S poles are alternately arranged inside the rotor core 11. Is provided.
  • Each of the permanent magnets 19 is curved in an arc shape when viewed in a cross section having the rotation center line CL of the rotor 5 as a perpendicular line, and the convex portion side of the arc shape is disposed on the center side of the rotor 5. Further, each of the permanent magnets 19 is curved so as to be line symmetric with respect to the corresponding magnetic pole center line MC.
  • a number of magnet insertion holes 21 corresponding to the plurality of permanent magnets 19 are formed in the rotor core 11, and the corresponding permanent magnets 19 are inserted into the plurality of magnet insertion holes 21, respectively. Yes.
  • One permanent magnet 19 is inserted into one magnet insertion hole 21.
  • the recess 61 and the magnet insertion hole 21 are curved so as to be line symmetric with respect to the corresponding magnetic pole center line MC.
  • the number of magnetic poles of the rotor 5 may be any number as long as it is 2 or more, but in this example, the case of 6 poles is illustrated.
  • a ferrite magnet is used for the permanent magnet 19
  • the inner and outer peripheral surfaces of the ferrite magnet are formed in a constant concentric arc shape, and the thickness of the ferrite magnet in the curved radial direction is uniformly maintained at about 6 mm. I am doing so.
  • the permanent magnet 19 a magnet to which an orientation magnetic field is applied from the center of a concentric arc as shown by an arrow MD in FIG. 3 (that is, a magnet having a magnetization direction MD) is used, and a shape along the magnet is used. A magnet is inserted into the magnet insertion hole.
  • the magnet type may be, for example, a rare earth magnet mainly composed of neodymium, iron, or boron, and the shape of the magnet is not limited to an arc shape, but may be a flat plate or a flat plate. It is also possible to form a magnetic pole by arranging a plurality of the above.
  • a plurality of slits 31 a are provided in the radially outer portion of each magnet insertion hole 21 in the rotor core 11.
  • Each of the plurality of slits 31a is a gap portion extending from the vicinity of the hole defining portion (the hole outer line 55 to be described later) on the radially outer side of the corresponding magnet insertion hole 21 to the vicinity of the rotor outer peripheral surface 5a.
  • the rotor iron core 11 is provided with two slits 31a for one magnetic pole.
  • Each of the slits 31a extends so that the major axis direction thereof is substantially parallel to the corresponding magnetic pole center line MC, and the two slits 31a are formed symmetrically with respect to the magnetic pole center line MC. ing. Further, the two slits 31a are provided at positions closer to the hole side line 57 described later than the magnetic pole center line ML.
  • the caulking 33 is provided on the magnetic pole center line MC, thereby fixing the lamination of the iron core portion on the radially outer side of the magnet insertion hole 21 in the rotor 5 and suppressing deformation during manufacture.
  • a plurality of air holes 35 and a plurality of rivet holes 37 arranged alternately at equal intervals in the circumferential direction are provided on the radially inner side of the magnet insertion hole 21, and the caulking 33 corresponds to the corresponding rivet hole 37. It is also provided between the pair of magnet insertion holes 21.
  • the embedded permanent magnet motor 1 Since the embedded permanent magnet motor 1 has an iron core portion on the radially outer side of the permanent magnet 19 of the rotor 5, the d-axis direction in the magnetic pole center line direction in which the stator magnetic flux is difficult to interlink as indicated by reference numeral Md, As indicated by the symbol Mq, there is a q-axis direction perpendicular to the magnetic pole center line where the stator magnetic flux easily links.
  • the reluctance torque can be used due to the salient pole difference of the magnetic resistance, and field-weakening operation can be performed by passing a d-axis phase current.
  • this example uses a 6-pole rotor, and there are 6 iron core portions on the radially outer side of the permanent magnet.
  • the rotor magnetic attraction force unbalance when the q-axis phase stator magnetic flux is linked to the iron core portion on the radially outer side of the permanent magnet is generated six times during one rotation of the rotor. Double order vibrations are generated.
  • a permanent magnet embedded type electric motor using four magnets when the rotation center of the rotor is deviated from the rotation center of the stator or when an imbalance occurs in the rotating magnetic field, Vibration of the order component that is four times the rotational speed occurs.
  • a slit (gap) extending from the radially outer side of the magnet insertion hole toward the outer peripheral surface of the rotor in the radially outer core portion of the permanent magnet of the rotor.
  • the q-axis phase stator magnetic flux hardly interlinks with the core portion on the radially outer side of the permanent magnet, thereby reducing the unbalance of the rotor magnetic attraction force and reducing the vibration.
  • a slit shape in which the q-axis phase stator magnetic flux hardly interlinks is preferable.
  • the slit is formed from the outside in the radial direction of the magnet insertion hole.
  • an iron core thin portion 39 is provided between the slit 31a and the magnet insertion hole 21, and an iron core thin portion 39 is also provided between the slit 31a and the rotor outer peripheral surface 5a.
  • each of the iron core thin portions 39 be as narrow as possible.
  • the minimum width of the iron core thin portion (the minimum interval between the slit and the magnet insertion hole, or the slit And the outer peripheral surface of the rotor) is set to a thickness of about 0.35 mm of the electromagnetic steel sheet which is the minimum width that can be pressed.
  • the slit 31 a extends long from the vicinity of the rotor outer peripheral surface 5 a to the vicinity of the magnet insertion hole 21.
  • the width of the widest portion is about 0.5 to 3 mm. That is, regarding the width and arrangement of the slits, the rotor magnetic attraction force imbalance (sixth-order component vibration) due to the stator magnetic flux is reduced.
  • the slit has a role of regulating the direction of the magnetic flux of the permanent magnet, and the magnetic flux density distribution on the rotor outer peripheral surface is preferably a sinusoidal distribution that is convex at the magnetic pole center line of the rotor. Therefore, in the conventional slit, the orientation of the slit in the major axis direction is substantially parallel to the magnetic pole center line, or the direction in which the tip of the slit outer peripheral side faces the magnetic pole center line side. In general, it is formed in a line-symmetric form. That is, the width of the iron core portion between adjacent slits is constant from the magnet insertion hole side toward the rotor outer peripheral surface, or is formed so as to become narrower from the magnet insertion hole side toward the rotor outer peripheral surface.
  • the magnetic flux density of the iron core in the vicinity of the rotor outer peripheral surface is configured to be higher in the vicinity of the magnetic pole center line, and the slit causes the magnetic flux density distribution on the rotor outer peripheral surface to be convex at the magnetic pole center line of the rotor.
  • the distribution also has the effect of reducing vibrations.
  • the permanent magnet 19 and the magnet insertion hole 21 are formed symmetrically with respect to the corresponding magnetic pole center line ML when viewed in a cross section with the rotation center line CL of the rotor 5 as a perpendicular line.
  • the permanent magnets 19 each have an inner outer surface 43, an outer outer surface 45, and a pair of side outer surfaces 47 as viewed in a cross section having the rotation center line CL of the rotor 5 as a perpendicular line. It should be noted that the outer side and the inner side of the inner outer surface and the outer outer surface indicate whether they are the inner side or the outer side in the radial direction in a relative comparison when viewed from a plane having the rotation center line CL as a perpendicular line.
  • each of the magnet insertion holes 21 has a hole outer line 55 as a first line and a hole inner line 53 as a second line as outlines of the holes as viewed in a cross section having the rotation center line CL of the rotor 5 as a perpendicular line. And a pair of hole side lines 57 as a pair of third lines. It should be noted that the outer side and the inner side of the hole inner line and the hole outer line also indicate whether they are the radially inner side or the outer side in a relative comparison with respect to the plane having the rotation center line CL as a perpendicular line. To do.
  • the outer outer surface 45 is mostly constituted by a first arc surface having a first arc radius
  • the hole outer line 55 is also mostly constituted by a first arc surface 55a having a first arc radius.
  • the inner outer surface 43 includes a second arc surface 43a having a second arc radius larger than the first arc radius, and a straight surface 49.
  • the hole inner line 53 has a second arc radius.
  • a second arc surface 53a and a straight surface 59 are included.
  • the permanent magnet 19 Since the permanent magnet 19 is inserted into the magnet insertion hole 21, the first arc radius and the second arc radius related to the magnet insertion hole 21, and the first arc radius and the second arc radius related to the permanent magnet 19, Are not the same when viewed strictly, but the permanent magnet 19 is closely fitted into the magnet insertion hole 21 and, for convenience of explanation, is common to the permanent magnet side and the magnet insertion hole side. Wording shall be used.
  • the first arc radius and the second arc radius have a common radius center, and the common radius center is on the outer side in the radial direction than the permanent magnet 19 and the magnet insertion hole 21 and corresponds. It exists on the magnetic pole center line ML.
  • the inner outer surface 43 (hole inner line 53) and the outer outer surface 45 (hole outer line 55) are concentrically formed, and the center of the first arc surface and the center of the second arc surface are made of permanent magnets. It coincides with the alignment center (alignment focal point).
  • symbol MD in FIG. 3 has shown the direction of orientation typically.
  • the straight surface 49 and the straight surface 59 extend in a direction perpendicular to the magnetic pole center line ML when viewed in a cross section having the rotation center line CL of the rotor 5 as a perpendicular line.
  • pair of side outer surfaces 47 respectively connect corresponding end portions of the inner outer surface 43 and the outer outer surface 45
  • the pair of hole side lines 57 respectively correspond to the corresponding ends of the hole inner line 53 and the hole outer line 55. The parts are tied together.
  • Each of the hole outer lines 55 of the magnet insertion hole 21 includes a first arc surface 55a that occupies most of the hole outer line 55 and a pair of recesses 61.
  • the pair of recesses 61 are located on both sides of the first arc surface 55 a of the hole outer line 55, that is, located at the corresponding hole side line 57 end of the hole outer line 55.
  • Each of the recesses 61 extends toward the corresponding magnetic pole center line ML in the circumferential direction.
  • the bottoms of the recesses 61 are each formed in an arc shape.
  • the concave portion 61 of the magnet insertion hole 21 and the outer outer surface 45 of the permanent magnet 19 are greatly separated from each other.
  • a gap 61 a that is a nonmagnetic region is formed between the outer surface 45 and the outer surface 45.
  • the depth D of the recess 61 (the distance between the bottom of the recess 61 and the outer outer surface 45 of the permanent magnet 19) is considerably smaller than the thickness T of the permanent magnet 19, for example, about 1 mm.
  • the hole side line 57 of the magnet insertion hole 21 is disposed close to the rotor outer peripheral surface 5a. Between the hole side line 57 of the magnet insertion hole 21 and the rotor outer peripheral surface 5a, the side wall thin portion 11a having a uniform thickness exists. Each of these side end thin portions 11a serves as a path for a short-circuit magnetic flux between adjacent magnetic poles, and is preferably as thin as possible.
  • the minimum width that can be pressed is set to about 0.35 mm of the thickness of the electromagnetic steel sheet.
  • the first line is located on the radially outer side of the second line, and the main arc portion 55a along the virtual arc VO on the rotor outer diameter side (radially outer side) substantially perpendicular to the magnetization direction MD of the permanent magnet, A pair of recesses 61 is included.
  • the main arc portion 55a is along the above-described virtual arc VO, and in FIG. 3, the main arc portion 55a is a portion having two points P1 on the virtual arc VO as both ends.
  • the main arc portion 55a has only a portion along the virtual arc VO.
  • the pair of recesses 61 are on both sides of the main arc part 55 a, that is, the main arc part 55 a is sandwiched between the pair of recesses 61.
  • each of the pair of recesses 61 is located at a corresponding end of the first line (hole outer line 55).
  • the first line is a portion having two ends P2 on the virtual arc VO as both ends
  • the concave portions 61 are portions having P1 on the virtual arc VO and P2 on the virtual arc VO as both ends.
  • the second line (hole inner line 53) extends along a virtual arc VI on the rotor center side (radially inner side) substantially perpendicular to the magnetization direction MD of the permanent magnet.
  • the second line has a portion along the virtual arc VI and a straight line indicating the straight surface 59.
  • the second line is a portion having two points P3 on the virtual arc VI as both ends.
  • the third line (hole side line 57) is a portion connecting the first line and the second line. Specifically, this is a portion connecting P2 which is the end of the first line and P3 which is the end of the second line.
  • the pair of recesses 61 is a part of the first line having a terminal end on the virtual arc VO, and is not a part of the third line.
  • the permanent magnet is disposed so that a part of the permanent magnet faces between P ⁇ b> 1 and P ⁇ b> 2 that are both ends of the recess 61.
  • the magnetic flux of the permanent magnet is generated in the magnetization direction. That is, the surface substantially perpendicular to the magnetization direction means a surface where magnetic flux is generated. It can be seen that no magnetic flux is generated from the direction of the third line.
  • FIGS. 6 and 7 are views corresponding to FIGS. 2 and 3, respectively, of the related art that does not have the above-described recess 61 in the magnet insertion hole.
  • the thin side portion between the side line of the magnet insertion hole and the outer peripheral surface of the magnet described above has a function of suppressing magnetic flux from flowing more than magnetic saturation due to magnetic saturation caused by short-circuit magnetic flux between adjacent magnetic poles. . Therefore, the side end thin portion has a lower magnetic permeability than the iron core at the center of the magnetic pole, and becomes a region where the magnetic flux generated by the stator coil is difficult to be linked. For this reason, the magnetic flux MS when the stator is energized concentrates on the region A between the slit and the end near the hole side line in the hole outer line of the magnet insertion hole, avoiding the hole side line of the magnet insertion hole.
  • FIG. 8 shows the result of FFT processing after analyzing the induced voltage generated in the coil when a current is applied to the motor of the related art and driven.
  • the content of high-order components is shown using the third-order component (mechanical angle), which is the fundamental wave component of the induced voltage, as a reference (100%).
  • the content of the 21st-order component is large, which is due to the imbalance of the magnetic flux density on the outer peripheral surface of the rotor described above. As a result, an electromagnetic excitation force is generated, causing vibration.
  • FIG. 9 shows the result, and shows the result of comparing the 21st-order component of the induced voltage analysis result of the related technique with the 21st-order component of the induced voltage analysis result of the first embodiment.
  • the 21st-order component is reduced to 33% compared to the related art, thereby suppressing the generation of electromagnetic excitation force and reducing vibration. Can do.
  • the slit when the slit is formed at a position away from the magnetic pole center line in the radially outer core portion of the magnet insertion hole, that is, the slit is a hole of the magnet insertion hole.
  • the path of the magnetic flux is easily interrupted by the slit, so that local concentration of the magnetic flux is likely to occur, and the effect obtained by providing the recess as in the first embodiment. Will be bigger.
  • the side outer surface of the magnet is the outer peripheral surface of the rotor in order to increase the magnet surface area. It is preferable to arrange them as close as possible.
  • the end near the side outer surface of the outer outer surface of the permanent magnet tends to be demagnetized, and a gap is formed between the side outer surface of the permanent magnet and the hole side line of the magnet insertion hole. Therefore, it was necessary to take measures such as providing a magnet, and thus the magnet surface could not be sufficiently expanded.
  • the portion near the hole side line in the hole outer line of the magnet insertion hole is separated from the outer outer surface of the permanent magnet. It is difficult to interlink with the magnet, and a motor that is difficult to demagnetize can be configured. For this reason, since the permanent magnet can be arranged on the side outer surface of the permanent magnet close to or in contact with the hole side line of the magnet insertion hole, the area of the magnet surface can be designed wide, and the magnetic flux generated by the permanent magnet can be increased. As a result, the driving torque of the motor can be increased, whereby the size can be reduced or the driving efficiency can be improved.
  • the depth D of a recessed part is set to 30% or less of the thickness T of a permanent magnet, and the amount of magnetic flux generated from a magnet is difficult to reduce. It is preferable to do.
  • the outer peripheral surface of the rotor due to the magnetic flux distribution caused by the rotation direction when the motor is driven.
  • the imbalance of magnetic flux density can be suppressed and vibration can be reduced.
  • FIG. 10 is a diagram of the same mode as FIG. 3 regarding the second embodiment.
  • the second embodiment is the same as the first embodiment described above except for the parts described below.
  • five slits 31a, 31b, and 31c that are line-symmetric with respect to the magnetic pole center line MC are formed in each magnetic pole.
  • the five slits 31a, 31b, 31c have their major axis directions substantially parallel to the corresponding magnetic pole center line MC, and one slit 31b on the magnetic pole center line MC and the magnetic pole center.
  • Four slits 31a and 31c are formed at positions symmetrical with respect to the line MC.
  • the pair of slits 31a is the same as that of the first embodiment, and is provided at a position closer to the corresponding hole side line 57 than the magnetic pole center line ML.
  • the slit 31 b on the magnetic pole center line MC is located on the radially outer side of the caulking 33.
  • the pair of slits 31c are located between the slit 31b on the magnetic pole center line MC and the corresponding slit 31a (intermediate in the direction orthogonal to the magnetic pole center line MC).
  • Embodiment 3 a rotary compressor equipped with the permanent magnet embedded electric motor according to the above-described embodiment will be described.
  • this invention includes the compressor which mounts the permanent magnet embedded type electric motor in any one of embodiment mentioned above, the classification of a compressor is not limited to a rotary compressor.
  • FIG. 11 is a longitudinal sectional view of a rotary compressor equipped with an embedded permanent magnet electric motor.
  • the rotary compressor 260 is provided with the permanent magnet embedded type electric motor (electric element) 1 of the first or second embodiment and the compression element 262 in the sealed container 261.
  • refrigerating machine oil that lubricates each sliding portion of the compression element is stored at the bottom of the sealed container 261.
  • the compression element 262 includes, as main elements, a cylinder 263 provided in a vertically stacked state, a rotation shaft 264 that is the shaft 13 that is rotated by the permanent magnet embedded electric motor 1, and a piston 265 that is fitted into the rotation shaft 264.
  • 267 and mufflers 268 mounted on the upper frame 266 and the lower frame 267, respectively.
  • the stator 3 of the permanent magnet embedded motor 1 is directly attached and held in the sealed container 261 by a method such as shrink fitting or welding. Electric power is supplied to the coil of the stator 3 from a glass terminal 269 fixed to the hermetic container 261.
  • the rotor 5 is disposed on the inner diameter side of the stator 3 via a gap (air gap 15), and a bearing portion (upper frame and lower frame) of the compression element 262 via a rotation shaft 264 at the center of the rotor 5. Is held in a freely rotatable state.
  • the refrigerant gas supplied from the accumulator 270 is sucked into the cylinder 263 through a suction pipe 271 fixed to the sealed container 261.
  • the piston 265 fitted to the rotating shaft 264 is rotated in the cylinder 263.
  • the refrigerant is compressed in the cylinder 263.
  • the refrigerant ascends in the sealed container 261 after passing through the muffler. At this time, refrigeration oil is mixed in the compressed refrigerant.
  • the mixture of the refrigerant and the refrigerating machine oil passes through the air hole provided in the rotor core, the separation of the refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil can be prevented from flowing into the discharge pipe 272. In this way, the compressed refrigerant is supplied to the high-pressure side of the refrigeration cycle through the discharge pipe 272 provided in the sealed container 264.
  • any refrigerant such as a low GWP (global warming potential) refrigerant can be applied.
  • a low GWP refrigerant is desired.
  • the low GWP refrigerant there are the following refrigerants.
  • HFO-1234yf (CF3CF CH2).
  • HFO is an abbreviation for Hydro-Fluoro-Olefin, and Olefin is an unsaturated hydrocarbon having one double bond.
  • the GFO of HFO-1234yf is 4.
  • Hydrocarbon having a carbon double bond in the composition for example, R1270 (propylene).
  • GWP is 3, which is smaller than HFO-1234yf, but flammability is larger than HFO-1234yf.
  • Embodiment 4 FIG.
  • the present invention can also be implemented as a refrigeration air conditioner 380 including the above-described compressor 260 as a component of the refrigeration circuit.
  • the refrigeration circuit of the refrigerating and air-conditioning apparatus 380 includes at least a condenser 381, an evaporator 382, and an expansion device 383.
  • the components other than the compressor including the condenser 381, the evaporator 382, and the expansion device 383 are configured. Is not particularly limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 永久磁石埋込型電動機は、永久磁石を有するロータと、ステータとを備え、ロータは、ロータ鉄心を備え、ロータ鉄心は、磁石挿入孔と、複数のスリットとを有し、ロータ鉄心における磁石挿入孔それぞれの径方向外側の部分に、複数のスリットが配置されており、磁石挿入孔は、円弧状に湾曲しており、その円弧形状の凸部側が、ロータの中心側に配置されており記磁石挿入孔は、第1ラインと、第2ラインと、一対の第3ラインとを有しており、第1ラインは、第2ラインよりも径方向外側に位置しており、第3ラインはそれぞれ、第1ラインと第2ラインとを結んでおり、第1ラインは、円弧部と、一対の凹部とを含んでおり、凹部はそれぞれ、第1ラインの円弧部の端部に位置している。

Description

永久磁石埋込型電動機、圧縮機、冷凍空調装置
 本発明は、永久磁石埋込型電動機、圧縮機、冷凍空調装置に関するものである。
 特許文献1の電動機においては、ロータの永久磁石の径方向外側の鉄心部分に、磁石挿入孔の径方向外側からロータの外周面に向けて延びるスリットを設けることにより、q軸位相のステータ磁束が、永久磁石の径方向外側の鉄心部分に鎖交し難くし、ロータ磁気吸引力のアンバランスを小さくし、振動や騒音を低減している。
 また、電動機は、ロータに組み込まれる各永久磁石を断面が弧状となるように形成すると共に、これら各永久磁石を、凸部側が径方向内側を向くようにロータ鉄心に配置している。
 このように配置することで、磁石表面の面積を広く設計でき、永久磁石による磁束を増加し、モータの駆動トルクを大きくでき、これにより小型化、あるいは駆動効率を向上させることができる。
特開2001-37186号
 円弧形状の永久磁石を用いる場合、特許文献1のように円弧が径方向内側に凸となるように配置することが一般的であり、磁石及び磁石挿入孔の円弧側面がロータ外周面に近接して配置される。ロータ外周における磁石及び磁石挿入孔の円弧側面部は、磁極中心の鉄心部に対して透磁率が低いため、ステータコイルにより発生する磁束が鎖交しにくい。そのため、ステータ通電時の磁束は、磁石挿入孔の円弧側面部に隣接する磁石挿入孔の円弧表面端部の鉄心部分に集中し、更に、スリットが設けられている場合、磁束の経路が遮断されるため、磁束の局所集中が発生していた。これにより、ロータ外周表面に磁束密度のアンバランスが生じ、磁束密度のアンバランスにより電磁加振力が発生し、振動の原因となっていた。また、ステータコイルにより発生する磁束が大きくなると、円弧表面端部の鉄心部分に近接する永久磁石の表面端部が減磁しやすいという課題があった。
 本発明は、上記に鑑みてなされたものであり、ロータ磁気吸引力のアンバランスを小さくすべくスリットを有しておりながら、モータ駆動時の回転方向に起因する磁束分布によるロータ外周表面の磁束密度のアンバランスを抑制し、振動を小さくすることができる、永久磁石埋込型電動機を提供することを目的とする。
 上述した目的を達成するため、本発明は、永久磁石を有するロータと、ステータとを備える永久磁石埋込型電動機において、前記ロータは、ロータ鉄心を備え、前記ロータ鉄心は、磁石挿入孔と、スリットとを有し、前記永久磁石は、前記磁石挿入孔に挿入されており、前記磁石挿入孔は、円弧状に湾曲しており、その円弧形状の凸部側が、前記ロータの中心側に配置されており、前記ロータ鉄心における、前記磁石挿入孔の径方向外側の部分に、前記スリットが配置されており、前記磁石挿入孔は、第1ラインと、第2ラインと、一対の第3ラインとを有しており、前記第1ラインは、前記第2ラインよりも径方向外側に位置しており、前記第3ラインはそれぞれ、前記第1ラインと前記第2ラインとを結んでおり、前記第1ラインは、円弧部と、一対の凹部とを含んでおり、前記凹部はそれぞれ、前記第1ラインの円弧部の端部に位置している。
 さらに、同目的を達成するための本発明の圧縮機は、密閉容器内に、電動機と、圧縮要素とを備えた圧縮機であって、前記電動機は、上述した本発明の永久磁石埋込型電動機である。
 さらに、同目的を達成するための本発明の冷凍空調装置は、上述した本発明の圧縮機を冷凍回路の構成要素として含む。
 本発明によれば、ステータ磁束により発生する磁気吸引力を低減する効果をほとんど変えることなく、ロータ外周表面の磁束密度のアンバランスを抑制し、振動を小さくすることができる。
本発明の実施の形態1の永久磁石埋込型電動機の回転中心線と直交する断面を示す図である。 図1において、ロータを拡大して示す図である。 図2において、磁石挿入孔および複数のスリットを拡大して示す図である。 図3において、磁石挿入孔に永久磁石が挿入されていない状態を示す図である。 図3と同態様の図であり、磁石挿入孔の各部の寸法を説明する図である。 磁石挿入孔に凹部を有しない関連技術の図2に対応する図である。 磁石挿入孔に凹部を有しない関連技術の図3に対応する図である。 関連技術のモータに電流を印加し、駆動した際のコイルに発生する誘起電圧を解析し、FFT処理した結果を示すグラフである。 。関連技術の誘起電圧解析結果の21次成分と、本実施の形態1の誘起電圧解析結果の21次成分とを比較した結果を示すグラフである。 本発明の実施の形態2に関する、図3と同態様の図である。 本発明の実施の形態3のロータリ圧縮機の縦断面図である。 本発明の実施の形態4の冷凍空調装置を示す図である。
 以下、本発明の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。
 実施の形態1.
 図1は、本実施の形態1に係る永久磁石埋込型電動機の回転中心線と直交する断面を示す図である。図2は、図1において、ロータを拡大して示す図である。図3は、図2において、磁石挿入孔および複数のスリットを拡大して示す図である。図4は、図3において、磁石挿入孔に永久磁石が挿入されていない状態を示す図である。
 図1~図4に示されるように、永久磁石埋込型電動機1は、ステータ3と、そのステータ3に対向して回転可能に設けられたロータ5とを備えている。ステータ3は、複数のティース部7を有している。複数のティース部7はそれぞれ、対応するスロット部9を介して別のティース部7と隣り合っている。複数のティース部7と複数のスロット部9とが周方向に交互に且つ等間隔で並ぶように配置されている。複数のティース部7には、それぞれ、図示省略する公知のステータ巻線が公知の態様で巻回されている。
 ロータ5は、ロータ鉄心11と、シャフト13とを有している。シャフト13は、ロータ鉄心11の軸心部に、焼嵌、圧入等により連結されており、ロータ鉄心11に回転エネルギーを伝達する。ロータの外周面と、ステータの内周面との間には、エアギャップ15が確保されている。
 このような構成において、ロータ5は、エアギャップ15を介したステータ3の内側で、回転中心線(ロータの回転中心)CLを中心に回転自在に保持されている。具体的には、ステータ3に、指令回転数に同期した周波数の電流を通電することにより、回転磁界を発生させ、ロータ5を回転させる。ステータ3とロータ5との間のエアギャップ15は、0.3~1mmの空隙である。
 次に、ステータ3と、ロータ5との構成を詳細に説明する。ステータ3は、ステータ鉄心17を有する。ステータ鉄心17は、一枚あたりの厚さが0.1~0.7mm程度の電磁鋼板を所定の形状に打ち抜き、所定枚数の電磁鋼板をカシメで締結しながら積層して構成される。ここでは、板厚が0.35mmの電磁鋼板を用いている。
 ステータ鉄心17には、その径方向内側に周方向に略等間隔に並ぶ9個のティース部7が形成されている。ティース部7は、放射状に形成されている。そして、ステータ鉄心17において隣り合うティース部7の間の領域に、対応するスロット部9が形成されている。
 ティース部7はそれぞれ、径方向を延びており、回転中心線CLに向けて突出する。また、ティース部7の大部分は、径方向外側から径方向内側にかけて略等しい周方向の幅を有しているが、ティース部7の最も径方向内側となる先端部には、ティース歯先部7aが形成されている。ティース歯先部7aはそれぞれ、その両側部が周方向に広がる傘状の形状に形成されている。
 ティース部7には、回転磁界を発生させるコイル(図示せず)を構成するステータ巻線(図示せず)が巻かれている。コイルは、マグネットワイヤーを、絶縁体を介してティース部に直接巻き付けて形成される。この巻線方式を、集中巻線という。そして、コイルは、3相Y結線に結線される。コイルのターン数や線径は、要求される特性(回転数やトルク等)、電圧仕様、スロットの断面積に応じて定まる。ここでは、巻線し易いように分割ティースを帯状に展開し、線径φ1.0mm程度のマグネットワイヤーを各磁極のティース部に80ターン程度巻き付け、巻線後、分割ティースを環状に丸め、溶接してステータを構成している。
 ステータ3の中心付近には、回転可能に保持されたシャフト13が配置されている。そして、そのシャフト13にロータ5が嵌合されている。ロータ5は、ロータ鉄心11を有しており、そのロータ鉄心11もまた、ステータ鉄心17と同様、厚さ0.1~0.7mm程度の電磁鋼板を所定の形状に打ち抜き、所定枚数の電磁鋼板をカシメで締結しながら積層して構成される。ここでは、板厚が0.35mmの電磁鋼板を用いている。
 ロータ5は、磁石埋込型であり、ロータ鉄心11の内部には、N極とS極とが交互になるように着磁された複数の(本具体例では6個の)の永久磁石19が設けられている。永久磁石19はそれぞれ、ロータ5の回転中心線CLを垂線とする断面においてみて、円弧状に湾曲しており、その円弧形状の凸部側がロータ5の中心側に配置されている。また、永久磁石19はそれぞれ、対応する磁極中心線MCに対して線対称となるように湾曲している。
 より詳細には、ロータ鉄心11には、複数の永久磁石19に対応した数の磁石挿入孔21が形成されており、複数の磁石挿入孔21にはそれぞれ、対応する永久磁石19が挿入されている。一つの磁石挿入孔21につき一つの永久磁石19が挿入されている。また、これより分かるように、凹部61また、磁石挿入孔21はそれぞれ、対応する磁極中心線MCに対して線対称となるように湾曲している。
 なお、ロータ5の磁極数は、2極以上であればいくつでもよいが、本例では、6極の場合を例示している。ここでは、永久磁石19にフェライト磁石を使用し、フェライト磁石の内周面と外周面とを一定の同心円弧状に形成し、フェライト磁石の湾曲径方向の厚みを一様に6mm程度に維持されるようにしている。
 また、永久磁石19には、図3に矢印MDで示されるように同心円弧の中心から配向磁場を印加した磁石(つまり磁化方向MDの磁石)を用いており、且つ、その磁石に沿った形状の磁石挿入孔に対し、磁石を挿入している。
 なお、磁石の種類は、例えば、ネオジウム、鉄、ボロンを主成分とする希土類磁石を用いて良いし、磁石の形状に関しても、円弧形状に限定することは無く、平板状のものや、平板状のものを複数枚配置して磁極を構成した形でも良い。
 ロータ鉄心11における磁石挿入孔21それぞれの径方向外側の部分には、複数のスリット31aが設けられている。複数のスリット31aはそれぞれ、対応する磁石挿入孔21の径方向外側の孔画定部(後述する孔外側ライン55)の近傍からロータ外周面5a近傍まで延びる空隙部分である。
 ロータ鉄心11は、1つの磁極に対して、2本のスリット31aが設けられている。スリット31aはそれぞれ、その長軸方向が、対応する磁極中心線MCに対して略平行な方向に向くように延びており、2本のスリット31aは、磁極中心線MCに対し線対称に形成されている。また、2本のスリット31aは、磁極中心線MLよりも、後述する孔サイドライン57に近い位置に設けられている。
 磁極中心線MC上には、カシメ33が設けられており、これにより、ロータ5における磁石挿入孔21の径方向外側の鉄心部分の積層を固定し、製造時の変形を抑制している。
 磁石挿入孔21の径方向内側には、周方向に交互に等間隔で並ぶ複数の風穴35と複数のリベット穴37とが設けられており、カシメ33は、対応するリベット穴37と、対応する一対の磁石挿入孔21との間にも、設けられている。
 さらに、スリットの役割を説明する。永久磁石埋込型電動機1は、ロータ5の永久磁石19の径方向外側に鉄心部分を有するため、符号Mdで示されるようにステータ磁束が鎖交し難い磁極中心線方向のd軸方向と、符号Mqで示されるようにステータ磁束が鎖交しやすい磁極中心線に垂直な方向のq軸方向とが存在する。その磁気抵抗の突極差によりリラクタンストルクを利用でき、d軸位相の電流を流すことで弱め界磁運転が出来るというメリットを有する。
 しかし、ロータ5の回転中心がステータ3の回転中心に対してずれている場合や回転磁界にアンバランスが生じた場合、q軸位相のステータ磁束が、ロータの永久磁石の径方向外側の鉄心部分を鎖交する際のロータ磁気吸引力にアンバランスが生じ、振動を大きくするという課題があった。
 具体的には、本例は6極のロータを用いており、永久磁石の径方向外側の鉄心部分が6箇所存在する。この場合、q軸位相のステータ磁束が、永久磁石の径方向外側の鉄心部分を鎖交する際のロータ磁気吸引力のアンバランスは、ロータの1回転中に6回発生し、回転数の6倍の次数成分の振動が発生する。また、異なる例を挙げると、4枚の磁石を用いた永久磁石埋め込み型電動機においては、ロータの回転中心がステータの回転中心に対してずれている場合や回転磁界にアンバランスが生じた場合、回転数の4倍の次数成分の振動が発生する。
 そこで、上記の振動を抑制するために、ロータの永久磁石の径方向外側の鉄心部分に、磁石挿入孔の径方向外側からロータの外周面に向けて延びるスリット(空隙部)を設けることにより、q軸位相のステータ磁束が、永久磁石の径方向外側の鉄心部分に鎖交し難くし、ロータ磁気吸引力のアンバランスを小さくし、振動を低減している。ステータ磁束によるロータの磁気吸引力のアンバランスを低減するためには、q軸位相のステータ磁束が鎖交し難いスリット形状が好ましく、具体的には、スリットは、磁石挿入孔の径方向外側からロータの外周面の近傍まで、対応する磁極中心線MCに対して略平行な方向(長軸方向)に延び、短軸方向(長軸方向と直交する方向)の幅が広い形状が効果的である。
 また、スリット31aと磁石挿入孔21との間には、鉄心薄肉部39が設けられており、スリット31aとロータ外周面5aとの間にも鉄心薄肉部39が設けられている。q軸位相のステータ磁束を鎖交し難くするために、鉄心薄肉部39はそれぞれ、できるだけ狭いことが好ましく、ここでは鉄心薄肉部の最小幅(スリットと磁石挿入孔との最小間隔、または、スリットとロータ外周面との最小間隔)が、プレス可能な最小幅である電磁鋼板の板厚0.35mm程度に設定している。これにより、スリット31aは、ロータ外周面5aの近傍から磁石挿入孔21の近傍まで長く延びている。
 また、スリットの幅(短軸方向)に関しては、最も広い部分の幅が0.5~3mm程度である。つまり、スリットの幅や配置に関しては、ステータ磁束によるロータの磁気吸引力のアンバランス(6次成分の振動)が小さくなるような構成としている。
 また、スリットは、永久磁石の磁束の向きを規制する役割を持ち、ロータ外周面の磁束密度分布は、ロータの磁極中心線で凸となる正弦波状の分布になることが好ましい。そのため、従来のスリットは、スリットの長軸方向の向きが、磁極中心線に対して略平行な方向、もしくは、スリットのロータ外周側の先端が磁極中心線側を向く方向に、磁極中心線に対し線対称な形で形成されるのが一般的である。すなわち、隣接するスリット間の鉄心部分の幅は、磁石挿入孔側からロータ外周面に向けて一定であるか、もしくは、磁石挿入孔側からロータ外周面に向けて狭くなるように形成されるのが一般的である。このようにして、ロータ外周面近傍の鉄心の磁束密度は、磁極中心線付近で高くなるよう構成され、スリットにより、ロータ外周面の磁束密度分布をロータの磁極中心線で凸となる正弦波状の分布にすることで、振動低減する効果も有している。
 次に、永久磁石19および磁石挿入孔21ついて詳細に説明する。永久磁石19および磁石挿入孔21はそれぞれ、ロータ5の回転中心線CLを垂線とする断面においてみて、対応する磁極中心線MLによる線対称に形成されている。
 永久磁石19はそれぞれ、ロータ5の回転中心線CLを垂線とする断面においてみて、内側外面43と、外側外面45と、一対のサイド外面47とを有している。なお、内側外面および外側外面における外側および内側は、回転中心線CLを垂線とする面でみて、相対的な比較で径方向の内側および外側の何れであるかを示しているものとする。
 また、磁石挿入孔21はそれぞれ、ロータ5の回転中心線CLを垂線とする断面においてみて、孔の輪郭として、第1ラインである孔外側ライン55と、第2ラインである孔内側ライン53と、一対の第3ラインとしての一対の孔サイドライン57とを有している。なお、孔内側ラインおよび孔外側ラインにおける外側および内側もまた、回転中心線CLを垂線とする面でみて、相対的な比較で径方向の内側および外側の何れであるかを示しているものとする。
 外側外面45は、その大部分が、第1円弧半径による第1円弧面によって構成されており、孔外側ライン55もまた、その大部分が、第1円弧半径による第1円弧面55aによって構成されている。一方、内側外面43は、第1円弧半径よりも大きい第2円弧半径による第2円弧面43aと、ストレート面49とで構成されており、同様に、孔内側ライン53は、第2円弧半径による第2円弧面53aと、ストレート面59とで構成されている。
 なお、磁石挿入孔21内に永久磁石19が挿入される関係にあるため、磁石挿入孔21に関する第1円弧半径及び第2円弧半径と、永久磁石19に関する第1円弧半径及び第2円弧半径とは、極めて厳密にみると同一ではないが、永久磁石19は磁石挿入孔21にぴったり嵌め込まれる関係にあり、且つ、説明を分かり易くする都合上、永久磁石側と磁石挿入孔側とで共通の文言を用いるものとする。
 第1円弧半径と、第2円弧半径とは、共通の半径中心を有しており、その共通の半径中心は、永久磁石19及び磁石挿入孔21よりも径方向外側に在り、且つ、対応する磁極中心線ML上に在る。換言すると、内側外面43(孔内側ライン53)と、外側外面45(孔外側ライン55)とは、同心円状に構成され、第1円弧面の中心と第2円弧面の中心は、永久磁石の配向中心(配向焦点)に一致している。なお、図3における符号MDの矢印は、配向の方向を模式的に示している。
 ストレート面49及びストレート面59は、ロータ5の回転中心線CLを垂線とする断面においてみて、磁極中心線MLと直交する方向に延びている。
 また、一対のサイド外面47はそれぞれ、内側外面43および外側外面45の対応する端部同士を結んでおり、一対の孔サイドライン57はそれぞれ、孔内側ライン53および孔外側ライン55の対応する端部同士を結んでいる。
 磁石挿入孔21の孔外側ライン55はそれぞれ、孔外側ライン55の大部分を占める第1円弧面55aと、一対の凹部61とを含んでいる。一対の凹部61は、孔外側ライン55の第1円弧面55aの両側に位置しており、すなわち、孔外側ライン55のうちの対応する孔サイドライン57側の端部に位置している。凹部61はそれぞれ、周方向における対応する磁極中心線MLに向けて延びている。凹部61の底部はそれぞれ、円弧状に形成されている。
 図5に示されるように、磁石挿入孔21に永久磁石19が挿入された状態で、磁石挿入孔21の凹部61と、永久磁石19の外側外面45とは大きく離れており、凹部61と外側外面45との間には、非磁性領域である空隙61aが生じている。凹部61の深さD(凹部61の底部と永久磁石19の外側外面45と距離)は、永久磁石19の厚みTよりかなり小さく、例えば、1mm程度である。
 磁石挿入孔21の孔サイドライン57は、ロータ外周面5aに近接して配置されている。磁石挿入孔21の孔サイドライン57とロータ外周面5aとの間は、一様な肉厚の側端薄肉部11aが存在する。これらの側端薄肉部11aはそれぞれ、隣接する磁極間での短絡磁束の経路となるため、できるだけ薄いことが好ましい。ここではプレス可能な最小幅として電磁鋼板の板厚程度0.35mmに設定している。
 さらに、ロータ5の回転中心線CLを垂線とする断面でみた、第1ライン(孔外側ライン55)と、第2ライン(孔内側ライン53)と、第3ライン(孔サイドライン57)について、説明する。第1ラインは、第2ラインよりも径方向外側に位置しており、永久磁石の磁化方向MDに略垂直なロータ外径側(径方向外側)の仮想円弧VOに沿うメイン円弧部55aと、一対の凹部61とを含んでいる。メイン円弧部55aは、上述した仮想円弧VOに沿っており、図3においては、仮想円弧VO上の2点P1を両端とする部分である。また、一例であるが、メイン円弧部55aは、仮想円弧VOに沿う部分のみを有している。一対の凹部61は、メイン円弧部55aの両側にあり、すなわち、メイン円弧部55aは、一対の凹部61に挟まれている。言い換えれば、一対の凹部61はそれぞれ、第1ライン(孔外側ライン55)の対応する端部に位置している。第1ラインは、仮想円弧VO上の2点P2を両端とする部分であり、凹部61はそれぞれ、仮想円弧VO上のP1と仮想円弧VO上のP2とを両端とする部分である。
 第2ライン(孔内側ライン53)は、永久磁石の磁化方向MDに略垂直なロータ中心側(径方向内側)の仮想円弧VIに沿って延びている。また、一例であるが、第2ラインは、仮想円弧VIに沿う部分と、ストレート面59を示す直線とを有している。第2ラインは、図3においては、仮想円弧VI上の2点P3を両端とする部分である。
 第3ライン(孔サイドライン57)は、第1ラインと第2ラインとを結ぶ部分である。具体的には、第1ラインの終端であるP2と、第2ラインの終端であるP3とを結ぶ部分である。一対の凹部61は、仮想円弧VO上に終端を有する第1ラインの一部であり、第3ラインの一部ではない。また、図3から分かるように、永久磁石は、永久磁石の一部が、凹部61の両端であるP1とP2との間に対面するように、配置されている。なお、永久磁石の磁束は、磁化方向に発生する。すなわち、磁化方向に略垂直な面とは、磁束が発生する面のことを意味する。そして、第三ラインの方向からは磁束は発生しないことが分かる。
 次に、図6および図7に示す関連技術を参照しながら、本実施の形態1の永久磁石埋込型電動機の作用について説明する。図6および図7はそれぞれ、磁石挿入孔に、上述した凹部61を有しない関連技術の、図2および図3に対応する図である。
 上述した磁石挿入孔の孔サイドラインとロータ外周面との間の側端薄肉部は、隣接する磁極間の短絡磁束により磁気飽和が生じ、磁気飽和以上に磁束が流れることを抑制する作用がある。したがって、側端薄肉部は、磁極中心の鉄心部に対して透磁率が低く、ステータコイルにより発生する磁束が鎖交しにくい領域となる。このため、ステータ通電時の磁束MSは、磁石挿入孔の孔サイドラインを避けて、磁石挿入孔の孔外側ラインにおける孔サイドライン寄りの端部と、スリットとの間の領域Aに集中する。そして、図6および図7に示す関連技術のように磁石挿入孔に凹部が設けられていないロータでは、一つの磁極にある一対の領域Aの比較でみて、モータ駆動時の回転方向に起因する磁束分布により、一方の鉄心部Aに、他方の鉄心部Aよりも磁束が集中することが分かった。これにより、ロータ外周表面に磁束密度のアンバランスが生じ、磁束密度のアンバランスにより電磁加振力が発生し、振動の原因となっていた。
 図8は、関連技術のモータに電流を印加し、駆動した際のコイルに発生する誘起電圧を解析し、FFT処理した結果である。誘起電圧の基本波成分である3次成分(機械角)を基準(100%)とし、高次成分の含有率を示してある。高次成分の中ではで21次成分の含有率が大きく、これは、上記で記載したロータ外周表面の磁束密度のアンバランスによるものでる。これにより、電磁加振力が発生し、振動の原因となっていた。
 これに対し、本実施の形態1では、磁石挿入孔の孔外側ラインにおける孔サイドライン側の端部に凹部を形成している。これにより、モータ駆動時におけるロータ外周表面の磁束密度のアンバランスを抑制することができる。図9は、その結果を示しており、関連技術の誘起電圧解析結果の21次成分と、本実施の形態1の誘起電圧解析結果の21次成分とを比較した結果を示す。図9から分かるように、本実施の形態1によれば、関連技術に比べて、21次成分を33%まで低減し、これにより、電磁加振力の発生を抑制し、振動を低減することができる。
 また、図2~図5に示されるように、磁石挿入孔の径方向外側の鉄心部分において、スリットが磁極中心線から離れた位置に形成されている場合、すなわち、スリットが磁石挿入孔の孔サイドラインに近い位置に形成されている場合、スリットにより磁束の経路が遮断されやすい構成となるため、磁束の局所集中が発生しやすく、本実施の形態1のように凹部を設けたことによる効果は、より大きなものとなる。
 さらに、本実施の形態1によるその他の作用として、次のような利点がある。永久磁石および磁石挿入孔が円弧状に湾曲しており、その円弧形状の凸部側がロータの中心側に配置されている態様では、磁石表面積を広くするために、磁石のサイド外面がロータ外周面にできる限り近接するように配置することが好ましい。しかし、上述した関連技術の構成では、永久磁石の外側外面におけるサイド外面寄りの端部が減磁しやすいことが分かり、永久磁石のサイド外面と、磁石挿入孔の孔サイドラインとの間に空隙を設ける等の対策が必要であり、このため、磁石表面を十分に広げることができなかった。
 これに対し、本実施の形態1では、上述した凹部の存在により、磁石挿入孔の孔外側ラインにおける孔サイドライン寄りの部分が、永久磁石の外側外面から離れることとなるので、ステータ磁束が永久磁石に鎖交し難くなり、減磁しにくいモータを構成することができる。このため、永久磁石のサイド外面自体は、磁石挿入孔の孔サイドラインに近接または当接させて、永久磁石を配置することができるので、磁石表面の面積を広く設計でき、永久磁石による磁束を増加し、モータの駆動トルクを大きくでき、これにより小型化、あるいは駆動効率を向上させることができる。なお、凹部によって生じる空隙は、非磁性体の部分となるので、凹部の深さDは、永久磁石の厚みTの30%以下にすることで、磁石から発生する磁束量が低減しにくい構成とすることが好適である。
 以上説明したように、本実施の形態1によれば、ロータ磁気吸引力のアンバランスを小さくすべくスリットを有しておりながら、モータ駆動時の回転方向に起因する磁束分布によるロータ外周表面の磁束密度のアンバランスを抑制し、振動を小さくすることができる。
 実施の形態2.
 次に、本発明の実施の形態2について説明する。図10は、本実施の形態2に関する、図3と同態様の図である。なお、本実施の形態2は、以下に説明する部分を除いては、上述した実施の形態1と同様であるものとする。
 本実施の形態2のロータ105では、各磁極において、磁極中心線MCに対し線対称な5本のスリット31a、31b、31cを形成している。5本のスリット31a、31b、31cは、その長軸方向が、対応する磁極中心線MCに対して略平行な方向に向いており、磁極中心線MC上に1本のスリット31bと、磁極中心線MCに対し線対称な位置に4本のスリット31a、31cとが形成されている。
 一対のスリット31aは、実施の形態1の態様と同じであり、磁極中心線MLよりも、対応する孔サイドライン57に近い位置に設けられている。磁極中心線MC上のスリット31bは、カシメ33の径方向外側に位置している。一対のスリット31cは、磁極中心線MC上のスリット31bと、対応するスリット31aとの中間(磁極中心線MCと直交する方向でいう中間)にある。
 このように構成された本実施の形態2においても、上述した実施の形態1と同様な利点が得られている。
 実施の形態3.
 次に、上述した実施の形態の永久磁石埋込型電動機を搭載したロータリ圧縮機について説明する。なお、本発明は、上述した実施の形態何れかの永久磁石埋込型電動機を搭載した圧縮機を含むものであるが、圧縮機の種別は、ロータリ圧縮機に限定されるものではない。
 図11は、永久磁石埋込型電動機を搭載したロータリ圧縮機の縦断面図である。ロータリ圧縮機260は、密閉容器261内に、上記実施の形態1または2の永久磁石埋込型電動機(電動要素)1と、圧縮要素262とを備えている。図示はしないが、密閉容器261の底部に、圧縮要素各摺動部を潤滑する冷凍機油が貯留されている。
 圧縮要素262は、主な要素として、上下積層状態に設けられたシリンダ263と、永久磁石埋込型電動機1により回転するシャフト13である回転軸264と、回転軸264に嵌挿されるピストン265と、シリンダ263内を吸入側と圧縮側とに分けるベーン(図示せず)と、回転軸264が回転自在に嵌挿され、シリンダ263の軸方向端面を閉塞する上下一対の上部フレーム266及び下部フレーム267と、上部フレーム266及び下部フレーム267にそれぞれ装着されたマフラ268とを含んでいる。
 永久磁石埋込型電動機1のステータ3は、密閉容器261に焼嵌または溶接等の方法により直接取り付けられ保持されている。ステータ3のコイルには、密閉容器261に固定されるガラス端子269から電力が供給される。
 ロータ5は、ステータ3の内径側に、空隙(エアギャップ15)を介して配置されており、ロータ5の中心部の回転軸264を介して圧縮要素262の軸受け部(上部フレーム及び下部フレーム)により回転自在な状態で保持されている。
 次に、かかるロータリ圧縮機の動作について説明する。アキュムレータ270から供給された冷媒ガスは、密閉容器261に固定された吸入パイプ271よりシリンダ263内へ吸入される。インバータの通電によって永久磁石埋込型電動機1が回転されていることで、回転軸264に嵌合されたピストン265がシリンダ263内で回転される。それにより、シリンダ263内では冷媒の圧縮が行われる。
 冷媒は、マフラを経た後、密閉容器261内を上昇する。このとき、圧縮された冷媒には冷凍機油が混入している。この冷媒と冷凍機油との混合物は、ロータ鉄心に設けた風穴を通過する際に、冷媒と冷凍機油との分離を促進され、冷凍機油が吐出パイプ272へ流入するのを防止できる。このようにして、圧縮された冷媒が、密閉容器264に設けられた吐出パイプ272を通って冷凍サイクルの高圧側へと供給される。
 尚、ロータリ圧縮機の冷媒には、従来からあるR410A、R407C、R22等を用いてもよいが、低GWP(地球温暖化係数)の冷媒等などいかなる冷媒も適用できる。地球温暖化防止の観点からは、低GWP冷媒が望まれている。低GWP冷媒の代表例として、以下の冷媒がある。
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素:例えば、HFO-1234yf(CF3CF=CH2)である。HFOは、Hydro-Fluoro-Olefinの略で、Olefinは、二重結合を一つ持つ不飽和炭化水素のことである。尚、HFO-1234yfのGWPは4である。
(2)組成中に炭素の二重結合を有する炭化水素:例えば、R1270(プロピレン)である。尚、GWPは3で、HFO-1234yfより小さいが、可燃性はHFO-1234yfより大きい。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物:例えば、HFO-1234yfとR32との混合物等である。HFO-1234yfは、低圧冷媒のため圧損が大きくなり、冷凍サイクル(特に、蒸発器において)の性能が低下しやすい。そのため、HFO-1234yfより高圧冷媒であるR32又はR41等との混合物が実用上は有力になる。
 以上に構成されたロータリ圧縮機においても、上述した永久磁石埋込型電動機を用いることで、ロータ磁気吸引力のアンバランスを小さくすべくスリットを有しておりながら、モータ駆動時の回転方向に起因する磁束分布によるロータ外周表面の磁束密度のアンバランスを抑制し、振動を小さくすることができる。
 実施の形態4.
 また、本発明は、図12に例示するように、上述した圧縮機260を冷凍回路の構成要素として含む、冷凍空調装置380として実施することも可能である。なお、冷凍空調装置380の冷凍回路には、凝縮器381、蒸発器382、膨張装置383を少なくとも含むが、これら凝縮器381、蒸発器382、膨張装置383を含む圧縮機以外の構成要素の構成は、特に、限定されるものではない。
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
 1 永久磁石埋込型電動機、3 ステータ、5 ロータ、5a ロータ外周面、11 ロータ鉄心、19 永久磁石、21 磁石挿入孔、31a スリット、53 孔内側ライン、55 孔外側ライン、55a メイン円弧部、57 孔サイドライン、61 凹部、260 ロータリ圧縮機、261 密閉容器、380 冷凍空調装置。

Claims (8)

  1.  永久磁石を有するロータと、ステータとを備える永久磁石埋込型電動機において、
     前記ロータは、ロータ鉄心を備え、
     前記ロータ鉄心は、磁石挿入孔と、スリットとを有し、
     前記永久磁石は、前記磁石挿入孔に挿入されており、
     前記磁石挿入孔は、円弧状に湾曲しており、その円弧形状の凸部側が、前記ロータの中心側に配置されており、
     前記ロータ鉄心における、前記磁石挿入孔の径方向外側の部分に、前記スリットが配置されており、
     前記磁石挿入孔は、第1ラインと、第2ラインと、一対の第3ラインとを有しており、
     前記第1ラインは、前記第2ラインよりも径方向外側に位置しており、
     前記第3ラインはそれぞれ、前記第1ラインと前記第2ラインとを結んでおり、
     前記第1ラインは、円弧部と、一対の凹部とを含んでおり、
     前記凹部はそれぞれ、前記第1ラインの円弧部の端部に位置している、
    永久磁石埋込型電動機。
  2.  前記スリットは、磁極中心線よりも、前記第3ラインに近い位置に設けられている、
    請求項1の永久磁石埋込型電動機。
  3.  前記スリットと前記磁石挿入孔との間、および、該スリットと前記ロータ外周面との間にはそれぞれ、鉄心薄肉部が設けられている、
    請求項1または2の永久磁石埋込型電動機。
  4.  前記磁石挿入孔に前記永久磁石が挿入された状態で、前記凹部と前記永久磁石との間には、空隙が生じている、
    請求項1~3の何れか一項の永久磁石埋込型電動機。
  5.  前記凹部の深さは、前記永久磁石の厚みの30%以下である、
    請求項1~4の何れか一項の永久磁石埋込型電動機。
  6.  前記永久磁石は、フェライト磁石、もしくは、希土類磁石である、
    請求項1~5の何れか一項の永久磁石埋込型電動機。
  7.  密閉容器内に、電動機と、圧縮要素とを備えた圧縮機であって、
     前記電動機は、請求項1~6の何れか一項の永久磁石埋込型電動機である、
    圧縮機。
  8.  請求項7の圧縮機を冷凍回路の構成要素として含む、冷凍空調装置。
PCT/JP2015/061707 2014-04-23 2015-04-16 永久磁石埋込型電動機、圧縮機、冷凍空調装置 WO2015163229A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016514887A JP6184591B2 (ja) 2014-04-23 2015-04-16 永久磁石埋込型電動機、圧縮機、冷凍空調装置
CN201580016849.0A CN106134046B (zh) 2014-04-23 2015-04-16 永磁体埋入型电动机、压缩机以及制冷空调装置
US15/122,446 US10090743B2 (en) 2014-04-23 2015-04-16 Embedded permanent magnet-type electric motor, compressor, and refrigeration/air-conditioning device
EP15782513.4A EP3136560B1 (en) 2014-04-23 2015-04-16 Embedded permanent magnet-type electric motor, compressor, and refrigeration/air-conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2014/061370 2014-04-23
PCT/JP2014/061370 WO2015162713A1 (ja) 2014-04-23 2014-04-23 永久磁石埋込型電動機、圧縮機、冷凍空調装置

Publications (1)

Publication Number Publication Date
WO2015163229A1 true WO2015163229A1 (ja) 2015-10-29

Family

ID=53968055

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/061370 WO2015162713A1 (ja) 2014-04-23 2014-04-23 永久磁石埋込型電動機、圧縮機、冷凍空調装置
PCT/JP2015/061707 WO2015163229A1 (ja) 2014-04-23 2015-04-16 永久磁石埋込型電動機、圧縮機、冷凍空調装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061370 WO2015162713A1 (ja) 2014-04-23 2014-04-23 永久磁石埋込型電動機、圧縮機、冷凍空調装置

Country Status (5)

Country Link
US (1) US10090743B2 (ja)
EP (1) EP3136560B1 (ja)
JP (1) JP6184591B2 (ja)
CN (2) CN106134046B (ja)
WO (2) WO2015162713A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125976A (ja) * 2017-02-01 2018-08-09 三菱重工サーマルシステムズ株式会社 ロータリ圧縮機システム、ロータリ圧縮機及びモータ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594099B (zh) * 2013-09-25 2018-06-08 三菱电机株式会社 永磁铁埋入型电动机、压缩机以及制冷空调装置
JP6486492B2 (ja) * 2015-10-27 2019-03-20 三菱電機株式会社 ロータ、永久磁石埋込型電動機および圧縮機
GB2562347A (en) * 2016-01-07 2018-11-14 Mitsubishi Electric Corp Permanent magnet embedded motor, compressor, and refrigeration and air conditioning device
CN105978198B (zh) * 2016-06-30 2019-05-24 广东美芝制冷设备有限公司 电动机转子和具有其的电动机、压缩机
US11411478B2 (en) * 2017-03-03 2022-08-09 Shakti Pumps (I) Ltd. High starting torque direct line operated energy efficient motor
JP2019193353A (ja) * 2018-04-19 2019-10-31 スズキ株式会社 回転電機
KR102647099B1 (ko) 2018-06-08 2024-03-14 삼성전자주식회사 내부 영구자석 모터
JP2020078200A (ja) * 2018-11-08 2020-05-21 本田技研工業株式会社 回転電機のロータ
JP7293627B2 (ja) * 2018-12-05 2023-06-20 株式会社デンソー 回転電機及び回転電機の製造方法
JP7331356B2 (ja) * 2018-12-14 2023-08-23 Tdk株式会社 永久磁石および回転電機
JP2020108276A (ja) * 2018-12-27 2020-07-09 本田技研工業株式会社 回転電機のロータ
JPWO2020250383A1 (ja) * 2019-06-13 2021-11-18 三菱電機株式会社 圧縮機および空気調和装置
JP7342447B2 (ja) 2019-06-20 2023-09-12 株式会社デンソー 回転電機及び回転電機の製造方法
JP7371361B2 (ja) * 2019-06-20 2023-10-31 株式会社デンソー 回転電機
JP7204018B2 (ja) * 2020-02-12 2023-01-13 三菱電機株式会社 ロータ、電動機、送風機および空気調和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037186A (ja) * 1999-07-19 2001-02-09 Toshiba Kyaria Kk 永久磁石電動機
WO2004021551A2 (en) * 2002-08-28 2004-03-11 Emerson Electric Co. Permanent magnet excited machine
JP2013118788A (ja) * 2011-12-05 2013-06-13 Samsung Electronics Co Ltd ブラシレスモータ
JP2013126291A (ja) * 2011-12-14 2013-06-24 Mitsuba Corp ブラシレスモータおよび電動パワーステアリング装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339240A (ja) 1993-05-26 1994-12-06 Toshiba Corp 永久磁石形モータ
CN1071061C (zh) * 1996-02-23 2001-09-12 松下电器产业株式会社 电动机
JPH1198721A (ja) * 1997-09-17 1999-04-09 Toshiba Corp 永久磁石電動機
US6917133B2 (en) * 2000-08-29 2005-07-12 Hitachi, Ltd. Air conditioner having permanent magnet rotating electric machine
JP2002354727A (ja) 2001-05-21 2002-12-06 Hitachi Ltd 永久磁石を埋設した回転子および回転電機
JP2003153508A (ja) * 2001-08-29 2003-05-23 Matsushita Electric Ind Co Ltd 電動機
US7786641B2 (en) * 2005-02-28 2010-08-31 Daikin Industries, Ltd. Magnetic member, rotor and motor
KR101065991B1 (ko) * 2007-02-21 2011-09-19 미쓰비시덴키 가부시키가이샤 영구자석 동기 전동기 및 밀폐형 압축기
WO2008113082A1 (en) * 2007-03-15 2008-09-18 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP2010068605A (ja) * 2008-09-09 2010-03-25 Toshiba Corp 永久磁石回転電機
EP2602912A2 (en) 2011-12-05 2013-06-12 Samsung Electronics Co., Ltd Brushless motor
WO2014045445A1 (ja) * 2012-09-24 2014-03-27 三菱電機株式会社 永久磁石埋込型電動機
CN203466649U (zh) * 2012-09-24 2014-03-05 三菱电机株式会社 永磁铁嵌入型电动机
CN105075079B (zh) 2013-02-14 2017-07-21 三菱电机株式会社 永磁铁埋入式电动机、压缩机和冷冻空调装置
CN103259351A (zh) * 2013-05-13 2013-08-21 广东威灵电机制造有限公司 永磁电机
WO2015037127A1 (ja) 2013-09-13 2015-03-19 三菱電機株式会社 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
CN106256079B (zh) 2014-04-22 2019-06-07 三菱电机株式会社 永磁体埋入式电动机、压缩机、制冷空调装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037186A (ja) * 1999-07-19 2001-02-09 Toshiba Kyaria Kk 永久磁石電動機
WO2004021551A2 (en) * 2002-08-28 2004-03-11 Emerson Electric Co. Permanent magnet excited machine
JP2013118788A (ja) * 2011-12-05 2013-06-13 Samsung Electronics Co Ltd ブラシレスモータ
JP2013126291A (ja) * 2011-12-14 2013-06-24 Mitsuba Corp ブラシレスモータおよび電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136560A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125976A (ja) * 2017-02-01 2018-08-09 三菱重工サーマルシステムズ株式会社 ロータリ圧縮機システム、ロータリ圧縮機及びモータ
JP7185389B2 (ja) 2017-02-01 2022-12-07 三菱重工サーマルシステムズ株式会社 空調機用ロータリ圧縮機システム、空調機用ロータリ圧縮機及びモータ

Also Published As

Publication number Publication date
CN204615531U (zh) 2015-09-02
EP3136560A1 (en) 2017-03-01
US10090743B2 (en) 2018-10-02
WO2015162713A1 (ja) 2015-10-29
EP3136560B1 (en) 2022-05-04
CN106134046B (zh) 2019-03-01
JP6184591B2 (ja) 2017-08-23
US20170110944A1 (en) 2017-04-20
JPWO2015163229A1 (ja) 2017-04-13
CN106134046A (zh) 2016-11-16
EP3136560A4 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6184591B2 (ja) 永久磁石埋込型電動機、圧縮機、冷凍空調装置
JP6188927B2 (ja) 永久磁石埋込型電動機、圧縮機、冷凍空調装置
JP6109338B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6022031B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6009088B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP5944014B2 (ja) 永久磁石埋込型電動機および圧縮機
JP6037361B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6289694B2 (ja) 永久磁石埋込型電動機、圧縮機、冷凍空調装置
JP6612215B2 (ja) ロータ、永久磁石埋込型電動機および圧縮機
JP6339103B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6223568B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
CN108141067B (zh) 转子、永磁铁嵌入式电动机以及压缩机
WO2015198444A1 (ja) 永久磁石埋込型電動機、圧縮機、冷凍空調装置
WO2016006103A1 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514887

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15122446

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201607116

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015782513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015782513

Country of ref document: EP