WO2015163103A1 - NOx濃度測定システム - Google Patents

NOx濃度測定システム Download PDF

Info

Publication number
WO2015163103A1
WO2015163103A1 PCT/JP2015/060359 JP2015060359W WO2015163103A1 WO 2015163103 A1 WO2015163103 A1 WO 2015163103A1 JP 2015060359 W JP2015060359 W JP 2015060359W WO 2015163103 A1 WO2015163103 A1 WO 2015163103A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
nox
sensor
exhaust gas
derived
Prior art date
Application number
PCT/JP2015/060359
Other languages
English (en)
French (fr)
Inventor
恵里子 前田
水谷 圭吾
岳人 木全
祐介 藤堂
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to EP17207651.5A priority Critical patent/EP3324178B1/en
Priority to US15/305,410 priority patent/US20170045471A1/en
Priority to EP15783318.7A priority patent/EP3136091B1/en
Priority to CN201580020364.9A priority patent/CN106233129B/zh
Publication of WO2015163103A1 publication Critical patent/WO2015163103A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Definitions

  • the present invention relates to a NOx concentration measurement system that measures NOx concentration in exhaust gas containing NOx and NH 3 .
  • a vehicle or the like is equipped with a NOx sensor that measures the concentration of NOx contained in the exhaust gas.
  • a NOx sensor one having a gas chamber into which exhaust gas is introduced, an oxygen pump cell for adjusting the oxygen concentration in the gas chamber, and a sensor cell for measuring the NOx concentration in the gas chamber is known (the following patent document). 1).
  • the sensor cell includes a solid electrolyte body having oxygen ion conductivity and a noble metal electrode formed on the surface of the solid electrolyte body.
  • the NOx sensor is configured to measure the NOx concentration by decomposing NOx on the surface of the electrode to generate oxygen ions and measuring a current generated when the oxygen ions flow through the solid electrolyte body. Yes. *
  • the urea SCR system is a system in which urea water is injected into exhaust gas containing NOx, and NH 3 and NOx generated from the urea water are chemically reacted to change them into harmless N 2 , H 2 O, or the like.
  • the exhaust gas treated by the urea SCR system contains NOx and NH 3 that could not be reacted. For this reason, it has been studied to accurately measure the NOx concentration contained in the exhaust gas and feed it back to the injection amount of urea water, engine control, and the like.
  • the following method was examined. That is, the NH 3 derived NO concentration in the outer NOx sensor, because it was presumed to be substantially equal to the NH 3 concentration in the exhaust gas (sensor outside NH 3 concentration), separately provided means for estimating the sensor outside NH 3 concentration The non-sensor NH 3 concentration is subtracted from the total concentration measured by the NOx sensor to originally calculate the NOx concentration. Thereby, it was considered that the NOx concentration can be accurately measured.
  • the NOx concentration cannot be measured sufficiently accurately. That is, a part of NH 3 receives heat when introduced into the gas chamber, and changes to N 2 that is not detected by the NOx sensor. That is, not all NH 3 changes to NO detectable by the NOx sensor in the NOx sensor. Therefore, the NH 3 -derived NO concentration is often lower than the non-sensor NH 3 concentration.
  • the NOx sensor measures the total concentration of the original NOx concentration in the exhaust gas and the NH 3 -derived NO concentration, and this NH 3 -derived NO concentration is the NH 3 concentration outside the sensor. Is different. Therefore, the NOx concentration cannot be accurately measured by simply subtracting the NH 3 concentration outside the sensor from the total concentration measured by the NOx sensor.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a NOx concentration measurement system that can more accurately measure the NOx concentration in exhaust gas containing NOx and NH 3 .
  • One aspect of the present invention is a NOx concentration measurement system for measuring NOx concentration in exhaust gas containing NOx and NH 3 , wherein the gas chamber into which the exhaust gas is introduced, and a plate-like solid having oxygen ion conductivity
  • a sensor cell having an electrode provided on the surface of the electrolyte body; and a gas introduction part that forms a passage for the exhaust gas introduced from outside the sensor into the gas chamber.
  • the sensor cell has a concentration of the NOx contained in the exhaust gas.
  • a NOx sensor in which the NH 3 is to measure the total concentration of NH 3 from NO concentration is the concentration of NO generated by oxidation, the air-fuel ratio of the exhaust gas, O 2 concentration in the flue gas
  • a detection means for detecting at least one of H 2 O concentration in the exhaust gas the sensor outside NH 3 conc a NH 3 concentration in the flue gas before it is introduced into the gas inlet portion
  • the total A NOx concentration measuring system comprising: a calculating means for calculating the original NOx concentration from the concentration and the NH 3 -derived NO concentration.
  • the NH 3 -derived NO concentration can be calculated by measuring the NH 3 concentration outside the sensor and the H 2 O concentration.
  • the NH 3 -derived NO concentration can be calculated by measuring the NH 3 concentration outside the sensor and the air-fuel ratio.
  • the total concentration measured by the NOx sensor (originally the total concentration of the NO x concentration and the NH 3 -derived NO concentration), and the NH 3 -derived NO concentration can be used to accurately calculate the original NOx concentration.
  • the NOx concentration can be accurately calculated by subtracting the NH 3 -derived NO concentration from the total concentration.
  • the relationship between the total concentration, the NH 3 -derived NO concentration, and the original NOx concentration is stored in advance as a database, and using this database and the obtained total concentration and the NH 3 -derived NO concentration, the original NOx concentration is accurately determined. You can ask for it.
  • FIG. 1 is an overall view of a NOx concentration measurement system according to Embodiment 1 of the present invention, in particular, a cross-sectional view of a NOx sensor used in the NOx concentration measurement system. It is II-II sectional drawing of the NOx sensor shown in FIG.
  • FIG. 3 is a sectional view of the NOx sensor shown in FIG. 1 taken along the line III-III.
  • FIG. 2 is an exploded perspective view of a NOx sensor used in the NOx concentration measurement system according to Example 1 shown in FIG. 1. It is a partial expanded sectional view of the NOx sensor shown in FIG. It is a conceptual diagram of the NOx concentration measurement system according to Example 1 shown in FIG. In the NOx concentration measurement system according to Example 1 shown in FIG.
  • FIG. 3 is a graph showing the relationship between H 2 O concentration and NH 3 sensitivity in the NOx concentration measurement system according to Example 1.
  • 3 is a graph showing the relationship between O 2 concentration and NH 3 sensitivity in the NOx concentration measurement system according to Example 1.
  • FIG. 3 is a graph showing the relationship between A / F and Ip in the NOx concentration measurement system according to Example 1.
  • 3 is a graph showing the relationship between A / F and O 2 concentration in the NOx concentration measurement system according to Example 1.
  • FIG. 3 is a graph showing the relationship between A / F and H 2 O concentration in the NOx concentration measurement system according to Example 1.
  • 3 is a graph showing the relationship between the trap layer thickness and NH 3 sensitivity in the NOx sensor of the NOx concentration measurement system according to Example 1;
  • 6 is a graph showing the relationship between the film thickness of the gas introduction part and the NH 3 sensitivity in the NOx sensor of the NOx concentration measurement system according to Example 1.
  • FIG. 3 is a cross-sectional view of a gas sensor in which a restriction is formed as a gas introduction part in the NOx sensor of the NOx concentration measurement system according to Example 1.
  • FIG. 6 is a graph showing the relationship between the NH 3 concentration in the test gas and the output of the NOx sensor when correction is not performed using the air-fuel ratio in the NOx concentration measurement system according to Experimental Example 1.
  • the NOx concentration measurement system according to the experimental example 1 of the present invention in the case of correction using the air-fuel ratio, and the NH 3 concentration in the test gas is a graph showing the relationship between the output of the NOx sensor.
  • the relationship between the temperature of the gas inlet and the intensity of the detection signal from the sensor cell is plotted for each flow velocity of the test gas.
  • the horizontal axis of the graph representing the relationship between the H 2 O concentration and the NH 3 sensitivity is represented by an area of A / F 40 or more and an area of A / F 40 or less. It is a divided graph.
  • the horizontal axis of the graph representing the relationship between the O 2 concentration and the NH 3 sensitivity is a graph in which the region above A / F 20 and the region below A / F 20 are separated. is there. 7 is a flowchart of calculation means 7 in the NOx concentration measurement system according to Embodiment 2. It is a conceptual diagram of the original NOx concentration in the exhaust gas and the NH 3 concentration outside the sensor, the original NOx concentration and the NH 3 -derived NO concentration measured by the NOx sensor, and the original NOx concentration obtained by calculation in Comparative Example 1.
  • the NOx concentration measurement system can measure the NOx concentration contained in the exhaust gas of the internal combustion engine with high accuracy and high efficiency, and can be applied to various internal combustion engine systems. For example, it can be suitably applied to a vehicle equipped with a urea SCR system.
  • the NOx concentration measurement system 1 of this example includes a NOx sensor 2, a detection means 3, an NH 3 concentration estimation means 5, and a calculation means 7.
  • the NOx sensor 2 includes a gas chamber 20 into which the exhaust gas g is introduced, a sensor cell 26s, and a gas introduction unit 29.
  • the sensor cell 26s is provided with electrodes 23 (23s, 23b) on the surface of a plate-shaped solid electrolyte body 22 having oxygen ion conductivity.
  • the gas introduction part 29 is a passage for the exhaust gas g introduced from the outside of the sensor into the gas chamber 20. It said the sensor cell 26s, the concentration of NOx contained in the exhaust gas g (originally NOx concentration c 1: see FIG. 7) total concentration of, and the concentration of NO NH 3 occurs by oxidation (NH 3 from NO concentration c 3) c 4 is configured to measure.
  • the detection means 3 detects at least one of the air-fuel ratio A / F of the exhaust gas g, the O 2 concentration in the exhaust gas g, and the H 2 O concentration in the exhaust gas g.
  • NH 3 concentration estimation means 5 estimates the sensor outside NH 3 concentration c 2 is NH 3 concentration in the exhaust gas g before being introduced into the gas inlet portion 29 (see FIG. 7).
  • the calculating means 7 calculates the NH 3 -derived NO concentration c 3 from at least one of the air-fuel ratio A / F, the O 2 concentration, and the H 2 O concentration, and the NH 3 concentration c 2 outside the sensor. Then, the NOx concentration c 1 is originally calculated from the total concentration c 4 and the NH 3 -derived NO concentration c 3 .
  • the NOx concentration measurement system 1 of this example is provided to calculate the NOx concentration (originally NOx concentration c 1 ) in the exhaust gas processed by the urea SCR system 82.
  • the urea SCR system 82 is a system that converts NOx contained in the exhaust gas g of the internal combustion engine into N 2 , H 2 O, or the like.
  • the urea water 80 is injected into the exhaust gas g using the urea water injection valve 8, and NH 3 generated from the urea water 80 and NOx are chemically reacted in the SCR catalyst 81. Thereby, NOx is converted into N 2 , H 2 O, or the like.
  • the exhaust gas g that has passed through the SCR catalyst 81 contains NOx and NH 3 that could not be reacted.
  • the NOx concentration (originally NOx concentration c 1 ) contained in the exhaust gas g is calculated using the NOx concentration measuring system 1 and the injection amount of the urea water 80 is controlled.
  • the gas introduction unit 29 includes a trap layer 291 that traps poisonous substances contained in the exhaust gas g, and a diffusion layer 292 that limits the inflow speed of the exhaust gas g.
  • the trap layer 291 and the diffusion layer 292 are made of alumina, for example.
  • a part of NH 3 in the exhaust gas g may change to NO.
  • NH 3 contained in the exhaust gas g receives heat from the gas introduction part 29, and a part thereof changes to NO and N 2 . Therefore, the gas chamber 20, and the NOx contained originally in the exhaust gas g, and NH 3, is NO and N 2 derived from the NH 3 is introduced.
  • NH 3 is oxidized at a pump electrode 23p described later to become NO.
  • the concentration of NO NH 3 occurs by oxidation (NH 3 from NO concentration c 3) is lower than the sensor outside NH 3 concentration c 2. This is because a part of NH 3 changes to N 2 in the gas introduction part 29 as described above. Therefore, as shown in FIG. 23, when the sensor-excluded NH 3 concentration c 2 is subtracted from the total concentration c 4 measured by the NOx sensor 2, the calculated original NOx concentration c 1 ′ becomes the actual original NOx concentration c 1. Lower than.
  • the calculating means 7 calculates the NH 3 derived NO concentration c 3, as shown in FIG. 7, by subtracting the NH 3 derived NO concentration c 3 from the total concentration c 4 Yes. As a result, an accurate original NOx concentration c 1 is calculated.
  • NH 3 sensitivity NH 3 -derived NO concentration c 3 / Non-sensor NH 3 concentration c 2
  • the NH 3 -derived NO concentration c 3 can be calculated as follows, for example. That is, the function of the graph of FIG. 8 is stored in advance in the storage unit 6 in the calculation unit 70 (see FIG. 1). Then, by utilizing this function, determine the NH 3 sensitivity alpha H2 O from the detected H 2 O concentration, substitutes and the NH 3 sensitivity alpha H2 O and the sensor outer NH 3 concentration c 2 in the following formula (4). Thereby, the NH 3 -derived NO concentration c 3 can be calculated.
  • c 3 ⁇ H 2 O ⁇ c 2 (4)
  • NH 3 derived NO concentration c 3 It is also possible to calculate the NH 3 derived NO concentration c 3 by the following method. That is, the function of the graph of FIG. 9 is stored in the storage unit 6 in advance. Then, by utilizing this function, determine the NH 3 sensitivity alpha O2 from the detected O 2 concentration, substitutes and the NH 3 sensitivity alpha O2 sensor outside NH 3 concentration c 2 in the formula (5). Thereby, the NH 3 -derived NO concentration c 3 can be calculated.
  • c 3 ⁇ O 2 ⁇ c 2 (5)
  • the following method can be employed. That is, there is a relationship shown in FIG. 10 between a pump cell current Ip flowing through a pump cell 26p (see FIG. 1) described later and an air-fuel ratio A / F of the exhaust gas g. Therefore, the air-fuel ratio A / F of the exhaust gas g can be calculated using the measured value of the pump cell current Ip and the graph of FIG. Further, there is a relationship of FIG. 11 between the air-fuel ratio A / F and the O 2 concentration. Therefore, the O 2 concentration in the exhaust gas g can be calculated using the obtained air-fuel ratio A / F value and the graph of FIG. Further, the NH 3 sensitivity ⁇ O2 can be calculated using the obtained O 2 concentration and the graph of FIG. Therefore, the NH 3 -derived NO concentration c 3 can be calculated using the above equation (5).
  • the air-fuel ratio A / F of the exhaust gas g is calculated using the measured value of the pump cell current Ip and the graph of FIG.
  • the air-fuel ratio A / F and H 2 O concentration of the exhaust gas g have the relationship shown in FIG. Therefore, the H 2 O concentration in the exhaust gas g can be calculated using the obtained value of the air-fuel ratio A / F and the graph of FIG.
  • the NH 3 sensitivity ⁇ H2O can be calculated using the obtained H 2 O concentration and the graph of FIG. Therefore, the NH 3 -derived NO concentration c 3 can be calculated using the above equation (4).
  • H 2 O concentration and the air-fuel ratio A / F is a relationship of FIG. 12, the water vapor in the urea water 80 (see FIG. 6) contained in the exhaust gas g. Therefore, it is preferable to correct the H 2 O concentration using the injection amount of the urea water 80.
  • the program of the calculation means 7 can be set so as to directly calculate the NH 3 -derived NO concentration c 3 using the air-fuel ratio A / F and the NH 3 concentration c 2 outside the sensor. .
  • the NO 3 concentration NO c 1 is accurately calculated by subtracting the NH 3 -derived NO concentration c 3 from the total concentration c 4. (See FIG. 7).
  • the NOx sensor 2 includes an insulating plate 14, a first spacer 15, a solid electrolyte body 22, a second spacer 16, and a heater 10.
  • a gas chamber 20 is formed between the solid electrolyte body 22 and the insulating plate 14.
  • a reference gas chamber 21 is formed between the solid electrolyte body and the heater 10. The reference gas chamber 21 is configured to introduce the atmosphere as a reference gas.
  • a pump electrode 23p, a sensor electrode 23s, and a monitor electrode 23m are formed on the surface of the solid electrolyte body 22 on the gas chamber 20 side.
  • a reference electrode 23b is formed on the surface of the solid electrolyte body 22 on the reference gas chamber 21 side.
  • the pump electrode 23p and the monitor electrode 23m are formed of a Pt—Au alloy that is inactive for NOx decomposition.
  • the sensor electrode 23s is made of a Pt—Rh alloy that is active in decomposing NOx. *
  • a pump cell 26p is formed by the pump electrode 23p, the solid electrolyte body 22, and the reference electrode 23b.
  • a sensor cell 26s is formed by the sensor electrode 23s, the solid electrolyte body 22, and the reference electrode 23b.
  • a monitor cell 26m is formed by the monitor electrode 23m, the solid electrolyte body 22, and the reference electrode 23b.
  • the pump cell 26p is a cell for adjusting the O 2 concentration in the exhaust gas g.
  • the pump electrode 23p is used to decompose O 2 to generate oxygen ions.
  • the oxygen ions are discharged to the reference gas chamber 21 through the solid electrolyte body 22.
  • NH 3 is oxidized to NO.
  • the exhaust gas g enters the gas chamber 20 from the gas introduction part 29, passes over the pump electrode 23p, and reaches the sensor electrode 23s and the monitor electrode 23m.
  • the sensor electrode 23s decomposes NOx to generate oxygen ions, and also decomposes NO generated by the oxidation of NH 3 to generate oxygen ions. Then, the oxygen ions by measuring the sensor current Is generated when flowing through the solid electrolyte body 22, it measures the total concentration c 4 of the original NOx concentration c 1 and NH 3 from NO concentration c 3.
  • the O 2 concentration is measured by the monitor cell 26m and corrected. That is, the monitor current Im generated when O 2 is decomposed by the monitor electrode 23m (see FIG. 3) and flows through the solid electrolyte body 22 is measured. Then, the monitor current Im is subtracted from the sensor current Is. Thus, without being affected by the residual O 2, it is as the total concentration c 4 can be measured accurately.
  • an upstream NOx sensor 200 that measures the NOx concentration (upstream NOx concentration) in the exhaust gas g is provided upstream of the urea water injection valve 8. Further, a temperature sensor 210 for measuring the temperature T of the SCR catalyst 81 is provided. There is a certain relationship among the upstream NOx concentration, the temperature T of the SCR catalyst 81, the amount of injected urea water 80, and the NH 3 concentration contained in the exhaust gas g downstream of the SCR catalyst 81.
  • NH 3 and NOx are more likely to react with each other, so that NH 3 is less likely to remain in the downstream exhaust gas g.
  • NH 3 tends to remain in the exhaust gas g downstream.
  • the upstream NOx concentration is high, the NH 3 concentration remaining in the downstream exhaust gas g tends to decrease.
  • the NH 3 concentration in the exhaust gas g on the downstream side can be estimated.
  • an NH 3 sensor may be provided on the downstream side of the SCR catalyst 81, and the NH 3 concentration may be measured using this NH 3 sensor.
  • the trap layer 291 of this example has a film thickness of 1200 ⁇ m or less. Further, the film thickness of the diffusion layer 292 is 5 mm or less. The porosity of the trap layer 291 and the diffusion layer 292 is 10 to 90%, respectively. Furthermore, the temperature of the gas introduction part 29 when using the NOx sensor 2 is 600 to 850 ° C. *
  • the O 2 concentration in the exhaust gas g the NH 3 concentration outside the sensor c 2
  • the NH 3 -derived NO concentration c 3 the O 2 concentration and the NH 3 concentration outside the sensor c If 2 is detected, the NH 3 -derived NO concentration c 3 can be calculated.
  • the H 2 O concentration in the exhaust gas g the NH 3 concentration outside the sensor c 2, and the NH 3 -derived NO concentration c 3
  • the H 2 O concentration and the NH 3 concentration outside the sensor by detecting and c 2 it is possible to calculate the NH 3 derived NO concentration c 3. Then, by subtracting the obtained NH 3 -derived NO concentration c 3 from the total concentration c 4 , the original NO x concentration c 1 can be accurately measured.
  • the NH 3 -derived NO is used by using any one of the air-fuel ratio A / F, the O 2 concentration, and the H 2 O concentration of the exhaust gas g and the NH 3 concentration c 2 outside the sensor. Since the concentration c 3 is calculated and the NH 3 -derived NO concentration c 3 is subtracted from the total concentration c 4 , the NOx concentration c 1 can be accurately measured.
  • the air-fuel ratio A / F, the O 2 concentration, and the H 2 O concentration can be used in combination.
  • the calculated original NOx concentration c 1 ′ is , actual often originally it is less than the NOx concentration c 1.
  • the reason is that a part of NH 3 becomes N 2, and therefore the NH 3 -derived NO concentration c 3 is smaller than the sensor outside NH 3 concentration c 2 .
  • the NOx concentration c 1 can be accurately measured.
  • the NH 3 -derived NO concentration c 3 is subtracted from the total concentration c 4.
  • the present invention is not limited to this. That is, for example, the relationship between the total concentration c 4 , the NH 3 -derived NO concentration c 3, and the original NO x concentration c 1 is made into a database in advance, and this database, the obtained total concentration c 4 and the NH 3 -derived NO concentration c 3 and using, can also accurately determine that the original NOx concentration c 1.
  • the air-fuel ratio A / F is detected, and the O 2 concentration or the H 2 O concentration is calculated using the air-fuel ratio A / F. ing. In this way, it is not necessary to separately provide an O 2 sensor or an H 2 O sensor. Therefore, the NOx concentration measurement system 1 can be constructed at a low cost.
  • the calculation means 7 can be configured to calculate the NH 3 -derived NO concentration using the O 2 concentration and the NH 3 concentration outside the sensor. Similarly, the calculation means 7 can be configured to calculate the NH 3 -derived NO concentration using the H 2 O concentration and the non-sensor NH 3 concentration. In this case, since neither the H 2 O concentration nor the O 2 concentration is used, the NH 3 -derived NO concentration can be obtained by simple calculation. Therefore, the calculation speed of the NH 3 -derived NO concentration can be improved.
  • the pump cell current Ip flowing through the pump cell 26p of the NOx sensor 2 is measured, and the air-fuel ratio A / F is calculated using this pump cell current Ip. This eliminates the need to separately provide an A / F sensor. Therefore, the NOx concentration measurement system 1 can be constructed at a low cost.
  • the thickness of the trap layer 291 is 1200 ⁇ m or less.
  • the NH 3 sensitivity of the NOx sensor 2 does not vary greatly depending on the film thickness. If the thickness of the trap layer 291 exceeds 1200 ⁇ m, the exhaust gas g is likely to receive heat when passing through the trap layer 291, so that NH 3 is easily changed to N 2 , and NH 3 sensitivity is lowered. However, if the thickness of the trap layer 291 is 1200 ⁇ m or less, the NH 3 sensitivity is not greatly affected by the thickness of the trap layer 291. Therefore, the NH 3 -derived NO concentration c 3 can be accurately measured using, for example, the above formula (4).
  • the film thickness of the diffusion layer 292 (see FIG. 1) is 5 mm or less. If the film thickness of the diffusion layer 292 is made sufficiently thin to be 5 mm or less, variation in NH 3 sensitivity can be easily reduced. Further, since the amount of the exhaust gas g introduced into the gas chamber 20 per unit time can be increased, the large sensor current Is easily flows through the sensor cell 26s.
  • the porosity of the trap layer 291 and the diffusion layer 292 is 10 to 90%, respectively. If the porosity is 10 to 90%, the trap layer 291 and the diffusion layer 292 can be easily manufactured. *
  • the temperature of the gas introduction unit 29 when using the NOx sensor 2 is 600 to 850 ° C.
  • the NH 3 sensitivity does not change greatly.
  • the exhaust gas g is likely to receive heat when passing through the gas introduction part 29, so that NH 3 is likely to change to N 2 .
  • the NH 3 sensitivity tends to decrease.
  • the temperature of the gas introduction part 29 is 600 to 850 ° C.
  • the NH 3 sensitivity is hardly affected by the temperature. Therefore, the NH 3 -derived NO concentration c 3 can be accurately calculated.
  • the inclination of the graph when it exceeds 850 degreeC in FIG. 14 can also be memorize
  • FIG. When the temperature of the gas accommodating section 29 exceeded 850 ° C. calculates the NH 3 sensitivity using this chart, using the calculated value may be corrected NH 3 from NO concentration c 3 .
  • the trap layer 291 and the diffusion layer 292 are provided as the gas introduction part 29, but the present invention is not limited to this.
  • a throttle portion 293 that penetrates between the external space of the NOx sensor 2 and the gas chamber 20 and limits the inflow speed of the exhaust gas g may be formed as the gas introduction portion 29.
  • the exhaust gas g convects in the throttle part 293 and receives heat from the surroundings, so that a part of NH 3 may change to N 2.
  • the NOx concentration c 1 can be accurately measured.
  • the trap layer 291 may be omitted.
  • the A / F is measured using the NOx sensor 2, and the O 2 concentration or the H 2 O concentration in the exhaust gas g is calculated using this A / F. It is not limited to. That is, an A / F sensor may be provided separately, and the A / F may be detected by the A / F sensor to calculate the O 2 concentration or the H 2 O concentration in the exhaust gas g.
  • Experimental Example 1 An experiment for confirming the effect of the NOx concentration measuring system according to the present invention was performed. First, a test gas not containing NOx but containing only NH 3 was prepared. Then, the concentration of the test gas was measured using the NOx sensor 2 described in Example 1. That is, when the test gas is measured using the NOx sensor 2, NH 3 in the test gas changes in the gas introduction part 29 and becomes NO. This NO concentration was measured by the NOx sensor 2. The NH 3 concentration in the test gas was set to 100 ppm, 200 ppm, and 350 ppm. 16 and 17 show the relationship between the NO concentration detected by the NOx sensor 2 and the NH 3 concentration in the test gas.
  • the NO concentration is not corrected. That is, in the experiment shown in FIG. 16, the NO 3 concentration measured by the NOx sensor 2 is not multiplied by the NH 3 sensitivity.
  • the NO concentration is corrected using the air-fuel ratio A / F. That is, in the experiment shown in FIG. 17, the air-fuel ratio A / F is detected, and the NH 3 sensitivity is calculated using the detected value. Then, the obtained NH 3 sensitivity is multiplied by the measured NO concentration.
  • the concentration of NO in which NH 3 has changed that is, the NH 3 -derived NO concentration c 3 can be accurately calculated. Therefore, when measuring the exhaust gas g containing NOx and NH 3 , it is possible to subtract the exact value of the NH 3 -derived NO concentration c 3 from the total concentration c 4 measured by the NOx sensor 2. It can be seen that the concentration c 1 can be accurately calculated.
  • Example 2 The relationship between the flow rate of the exhaust gas g and the rate at which NH 3 in the exhaust gas g changes to NO was confirmed.
  • a quartz tube 299 and an alumina trap layer 290 disposed in the quartz tube 299 were prepared. Then, the quartz tube 299 was disposed in the heater 100. A test gas containing NH 3 and N 2 but not NOx was passed through the quartz tube 299. The concentration of NO generated by changing NH 3 in the trap layer 290 was measured by the mass spectrometer 109.
  • the NH 3 concentration in the test gas before flowing into the quartz tube 299 was 4800 ppm, and the O 2 concentration and the H 2 O concentration were 0%.
  • the flow rate of the test gas was adjusted to 50, 100, and 200 ml 3 / min. Further, the temperature of the trap layer 290 was changed from 100 ° C. to 1000 ° C. by the heater 100. The results are shown in FIG.
  • the NH 3 -derived NO concentration c 3 can be calculated more accurately by measuring the flow rate of the exhaust gas g and correcting the NH 3 -derived NO concentration c 3 using the measured value. Therefore, it can be seen that the calculation accuracy of the NOx concentration c 1 can be further increased.
  • FIG. 20 is a graph in which the horizontal axis of the graph of H 2 O concentration and NH 3 sensitivity (the graph of FIG. 8) is divided into a region where the air-fuel ratio A / F 40 is higher and a region where the air-fuel ratio A / F 40 is lower. is there.
  • the air-fuel ratio A / F is 40 or more
  • the NH 3 sensitivity changes greatly only by slightly changing the H 2 O concentration.
  • the air-fuel ratio A / F is 40 or less, the NH 3 sensitivity hardly changes even if the H 2 O concentration changes. Therefore, the air-fuel ratio A / F is 40 or more regions, i.e., in the region where the NH 3 sensitivity by H 2 O concentration changes slightly changes significantly, by calculating the NH 3 sensitivity using of H 2 O concentration , NH 3 sensitivity can be accurately calculated. Therefore, the NH 3 -derived NO concentration c 3 can be accurately measured, and the NOx concentration c 1 can be originally measured more accurately.
  • FIG. 21 shows the horizontal axis of the graph of O 2 concentration and NH 3 sensitivity (the graph of FIG. 9), where the air-fuel ratio A / F is 20 or more, and the air-fuel ratio A / F is 20 or less. It is the graph divided into.
  • the air-fuel ratio A / F is 20 or less
  • the NH 3 sensitivity changes greatly only when the O 2 concentration changes slightly.
  • the NH 3 sensitivity hardly changes even if the O 2 concentration changes.
  • the air-fuel ratio A / F is 20 or less in the region, namely, in a region where only the O 2 concentration is changed slightly NH 3 sensitivity changes greatly, by calculating the NH 3 sensitivity using O 2 concentration, NH It becomes possible to calculate 3 sensitivity correctly. Therefore, the NH 3 -derived NO concentration c 3 can be accurately measured, and the NOx concentration c 1 can be originally measured more accurately.
  • step S1 it is determined whether the air-fuel ratio A / F is 40 or more. When the determination is Yes, the process proceeds to step S2, and the NH 3 -derived NO concentration c 3 is calculated using the H 2 O concentration.
  • step S3 determines whether the air-fuel ratio A / F is 20 or less. If YES is determined here, the process proceeds to step S4, where NH 3 sensitivity is calculated using the O 2 concentration. If NO is determined in step S3, the process proceeds to step S5.
  • the one with higher calculation accuracy of the NH 3 -derived NO concentration c 3 is selected from the O 2 concentration and the H 2 O concentration,
  • the NH 3 -derived NO concentration c 3 is obtained. That is, the NH 3 sensitivity is obtained using the H 2 O concentration when the air-fuel ratio A / F is 40 or more, and using the O 2 concentration when the air-fuel ratio A / F is 20 or less. Then, by using the NH 3 sensitivity obtained, and it calculates the NH 3 derived NO concentration c 3. Therefore, the NH 3 -derived NO concentration c 3 can be measured more accurately, and the NOx concentration c 1 can be calculated more accurately.
  • the configuration and operational effects similar to those of the first embodiment are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 NOx濃度測定システムは、NOxセンサ2と、検出手段3と、NH濃度推定手段5と、算出手段7とを備える。NOxセンサ2は、排ガスgに含まれるNOxの濃度(本来NOx濃度c)と、NHが酸化して発生したNOの濃度(NH由来NO濃度c)との合計濃度cを測定する。算出手段7は、空燃比A/FとO濃度とHO濃度との少なくとも一つと、センサ外NH濃度cとから、NH由来NO濃度cを算出する。そして、合計濃度cおよびNH由来NO濃度cから、本来NOx濃度cを算出する。

Description

NOx濃度測定システム
 本発明は、NOxとNHとを含有する排ガス中のNOx濃度を測定するNOx濃度測定システムに関する。
車両等には、排ガスに含まれるNOxの濃度を測定するNOxセンサが搭載されている。このNOxセンサとして、排ガスが導入されるガス室と、該ガス室内の酸素濃度を調整する酸素ポンプセルと、ガス室内のNOx濃度を測定するセンサセルとを備えたものが知られている(下記特許文献1参照)。センサセルは、酸素イオン伝導性を有する固体電解質体と、該固体電解質体の表面に形成された貴金属製の電極とからなる。NOxセンサは、この電極の表面においてNOxを分解して酸素イオンを発生させ、この酸素イオンが固体電解質体を流れたときに生じる電流を測定することにより、上記NOx濃度を測定するよう構成されている。 
近年、NOxの他にNHを含む排ガス中の、NOx濃度を測定する方法が開発されている。その背景には、尿素SCRシステムと呼ばれるシステムがある。尿素SCRシステムは、NOxを含む排ガスに尿素水を噴射し、この尿素水から発生したNHとNOxとを化学反応させて、無害なNやHO等に変化させるシステムである。尿素SCRシステムによって処理された排ガスには、反応しきれなかったNOxとNHが含まれる。そのため、この排ガスに含まれるNOx濃度を正確に測定し、尿素水の噴射量やエンジンの制御等にフィードバックすることが検討されている。 
しかし、排ガスにNOxとNHとが両方とも含まれる場合は、NOx濃度を正確に測定しにくいという問題がある。すなわち、NHは、NOxセンサの内部等において酸化してNOになる。そのためNOxセンサは、排ガスに元々含まれるNOxと、NHの酸化により生じたNOとを両方とも検出してしまう。したがってNOxセンサは、NOxの濃度のみを測定することはできず、排ガスに元々含まれるNOxの濃度(本来NOx濃度)と、NHの酸化によって生じたNOの濃度(NH由来NO濃度)との合計濃度しか測定できない。 
この問題を解決するため、次の方法が検討された。すなわち、上記NH由来NO濃度は、NOxセンサの外側における、排ガス中のNH濃度(センサ外NH濃度)と略等しいと推測されたため、このセンサ外NH濃度を推定する手段を別途設け、NOxセンサによって測定した上記合計濃度から上記センサ外NH濃度を減算して、本来NOx濃度を算出するのである。これにより、本来NOx濃度を正確に測定できると考えられた。
特開2011-75546号公報
しかしながら、上記方法を用いても、本来NOx濃度を充分正確に測定することができない。すなわち、NHの一部は、上記ガス室に導入される際に熱を受けて、NOxセンサに検出されないNに変化する。つまりNHは、NOxセンサ内において、全てが、NOxセンサによって検出可能なNOに変化するわけではない。そのため、上記NH由来NO濃度は、上記センサ外NH濃度よりも低いことが多い。 
以上説明したように、NOxセンサは、排ガス中の上記本来NOx濃度と、上記NH由来NO濃度との合計濃度を測定しており、このNH由来NO濃度は、上記センサ外NH濃度とは異なる。そのため、NOxセンサにより測定された上記合計濃度から、センサ外NH濃度を単に減算しただけでは、本来NOx濃度を正確に測定することはできない。 
本発明は、かかる背景に鑑みてなされたもので、NOxとNHとを含む排ガス中のNOx濃度を、より正確に測定できるNOx濃度測定システムを提供しようとするものである。
本発明の一態様は、NOxとNHとを含む排ガス中のNOx濃度を測定するNOx濃度測定システムであって、上記排ガスが導入されるガス室と、酸素イオン伝導性を有する板状の固体電解質体の表面に電極を設けてなるセンサセルと、センサ外から上記ガス室へ導入される上記排ガスの通路をなすガス導入部とを備え、上記センサセルにより、上記排ガスに含まれる上記NOxの濃度である本来NOx濃度と、上記NHが酸化して発生したNOの濃度であるNH由来NO濃度との合計濃度を測定するNOxセンサと、上記排ガスの空燃比と、上記排ガス中のO濃度と、上記排ガス中のHO濃度との少なくとも一つを検出する検出手段と、上記ガス導入部に導入される前の上記排ガス中のNH濃度であるセンサ外NH濃度を推定するNH濃度推定手段と、上記空燃比と上記O濃度と上記HO濃度との少なくとも一つと、上記センサ外NH濃度とから上記NH由来NO濃度を算出し、上記合計濃度および上記NH由来NO濃度から上記本来NOx濃度を算出する算出手段とを備えることを特徴とするNOx濃度測定システムにある。
本発明者らは、上記課題を解決するため検討した結果、排ガス中のNHがNに変化する要因として、排ガス中のOとHOが関与していることを見出した。すなわち、排ガスは、NOxセンサのガス室に導入される際に上記ガス導入部において熱を受け、下記(1)の反応が生じると共に、下記(2)又は(3)の反応が生じる。 4NH+5O→4NO+6HO・・・(1),  4NH+6NO→5N+6HO・・・(2),  4NH+4NO+O→4N+6HO  ・・・(3) 
上記式(1)から分かるように、排ガス中のHO濃度が低い場合は、反応が右へ進み、NHがNOに変化する。そして、反応はさらに式(2)、(3)の右へ進み、NOがNに変化する。つまり、排ガス中のHO濃度が低い場合は、NHがNに変化する割合が増え、NOxセンサによって検出可能なNOに変化する割合が少なくなる。そのため、上記NH由来NO濃度がセンサ外NH濃度よりも低くなる。 
このように、センサ外NH濃度と、HO濃度と、NH由来NO濃度との間には一定の関係がある。そのため、センサ外NH濃度とHO濃度とを測定すれば、NH由来NO濃度を算出することができる。 
また、上記(1)から分かるように、排ガス中のO濃度が高いと、反応が右へ進み、NHがNOに変化する。そして、反応はさらに式(3)の右へ進み、NOがNに変化する。つまり、排ガス中のO濃度が高い場合は、NHがNに変化する割合が増え、NOxセンサによって検出可能なNOに変化する割合が少なくなる。そのため、上記NH由来NO濃度がセンサ外NH濃度よりも低くなる。 
このように、センサ外NH濃度と、O濃度と、NH由来NO濃度との間には一定の関係がある。そのため、排ガス中のセンサ外NH濃度と、O濃度とを測定すれば、上記関係を利用して、NH由来NO濃度を算出することができる。 
また、排ガスの空燃比とO濃度との間、および空燃比とHO濃度との間には一定の関係がある。そのため、センサ外NH濃度と空燃比とを測定すれば、NH由来NO濃度を算出することができる。 
このように、NH由来NO濃度を正確に算出すれば、NOxセンサによって測定された上記合計濃度(本来NOx濃度とNH由来NO濃度との合計の濃度)と、上記NH由来NO濃度とを用いて、上記本来NOx濃度を正確に算出することができる。例えば、合計濃度からNH由来NO濃度を減算することにより、本来NOx濃度を正確に算出することができる。また、合計濃度とNH由来NO濃度と本来NOx濃度との関係を予めデータベース化しておき、このデータベースと、得られた合計濃度およびNH由来NO濃度とを用いて、本来NOx濃度を正確に求めることもできる。 
以上のごとく、本発明によれば、NOxとNHとを含む排ガス中のNOx濃度を、より正確に測定できるNOx濃度測定システムを提供することができる。 
本願発明の実施例1に係るNOx濃度測定システムの全体図、特に、当該NOx濃度測定システムで用いるNOxセンサの断面図である。 図1に示すNOxセンサのII-II断面図である。 図1に示すNOxセンサのIII-III断面図である。 図1に示す実施例1に係るNOx濃度測定システムで用いるNOxセンサの分解斜視図である。 図1に示すNOxセンサの部分拡大断面図である。 図1に示す実施例1に係るNOx濃度測定システムの概念図である。 図1に示す実施例1に係るNOx濃度測定システムにおける、排ガス中の本来NOx濃度及びセンサ外NH濃度と、NOxセンサによって測定された本来NOx濃度及びNH由来NO濃度と、計算によって求めた本来NOx濃度との概念図である。 実施例1に係るNOx濃度測定システムにおける、HO濃度とNH感度との関係を表したグラフである。 実施例1に係るNOx濃度測定システムにおける、O濃度とNH感度との関係を表したグラフである。 実施例1に係るNOx濃度測定システムにおける、A/FとIpとの関係を表したグラフである。 実施例1に係るNOx濃度測定システムにおける、A/FとO濃度との関係を表したグラフである。 実施例1に係るNOx濃度測定システムにおける、A/FとHO濃度との関係を表したグラフである。 実施例1に係るNOx濃度測定システムのNOxセンサにおける、トラップ層の膜厚とNH感度との関係を表したグラフである。 実施例1に係るNOx濃度測定システムのNOxセンサにおける、ガス導入部の膜厚とNH感度との関係を表したグラフである。 実施例1に係るNOx濃度測定システムのNOxセンサにおける、ガス導入部として、絞りを形成したガスセンサの断面図である。 実験例1に係るNOx濃度測定システムにおける、空燃比を用いて補正しない場合の、試験ガス中のNH濃度と、NOxセンサの出力との関係を表したグラフである。 本願発明の実験例1に係るNOx濃度測定システムにおける、空燃比を用いて補正した場合の、試験ガス中のNH濃度と、NOxセンサの出力との関係を表したグラフである。 本願発明の実験例2に係るNOx濃度測定システムにおける、実験装置の概念図である。 本願発明の実験例2に係るNOx濃度測定システムにおける、ガス導入口の温度と、センサセルによる検出信号の強度との関係を、試験ガスの流速毎にグラフにしたものである。 本願発明の実施例2に係るNOx濃度測定システムにおける、HO濃度とNH感度との関係を表したグラフの横軸を、A/F40以上の領域と、A/F40以下の領域とで分けたグラフである。 実施例2に係るNOx濃度測定システムにおける、O濃度とNH感度との関係を表したグラフの横軸を、A/F20以上の領域と、A/F20以下の領域とで分けたグラフである。 実施例2に係るNOx濃度測定システムにおける、算出手段7のフローチャートである。 比較例1における、排ガス中の本来NOx濃度及びセンサ外NH濃度と、NOxセンサによって測定された本来NOx濃度及びNH由来NO濃度と、計算によって求めた本来NOx濃度との概念図である。
本願発明に係るNOx濃度測定システムは、内燃機関の排ガスに含まれるNOx濃度を高精度、高効率で測定でき、様々な内燃機関システムにも適用可能である。例えば、尿素SCRシステムを搭載した車両に好適に適用可能である。
(実施例1)上記NOx濃度測定システムに係る実施例について、図1~図15を用いて説明する。図1に示すごとく、本例のNOx濃度測定システム1は、NOxセンサ2と、検出手段3と、NH濃度推定手段5と、算出手段7とを備える。 
NOxセンサ2は、排ガスgが導入されるガス室20と、センサセル26sと、ガス導入部29とを備える。センサセル26sは、酸素イオン伝導性を有する板状の固体電解質体22の表面に電極23(23s,23b)を設けたものである。また、ガス導入部29は、センサ外からガス室20へ導入される排ガスgの通路になっている。上記センサセル26sにより、排ガスgに含まれるNOxの濃度(本来NOx濃度c:図7参照)と、NHが酸化して発生したNOの濃度(NH由来NO濃度c)との合計濃度cを測定するよう構成されている。 
検出手段3は、排ガスgの空燃比A/Fと、排ガスg中のO濃度と、排ガスg中のHO濃度との少なくとも一つを検出する。NH濃度推定手段5は、ガス導入部29に導入される前の排ガスg中のNH濃度であるセンサ外NH濃度c(図7参照)を推定する。 
算出手段7は、上記空燃比A/FとO濃度とHO濃度との少なくとも一つと、上記センサ外NH濃度cとから、上記NH由来NO濃度cを算出する。そして、合計濃度cおよびNH由来NO濃度cから、本来NOx濃度cを算出する。 
図6に示すごとく、本例のNOx濃度測定システム1は、尿素SCRシステム82によって処理された排ガス中のNOx濃度(本来NOx濃度c)を算出するために設けられている。尿素SCRシステム82は、内燃機関の排ガスg中に含まれるNOxをNやHO等に変換するシステムである。尿素SCRシステム82では、尿素水噴射弁8を用いて尿素水80を排ガスgに噴射し、SCR触媒81において、尿素水80から発生したNHとNOxとを化学反応させる。これにより、NOxをNやHO等に変換する。SCR触媒81を通過した排ガスgには、反応しきれなかったNOxやNHが含まれる。この排ガスgに含まれるNOx濃度(本来NOx濃度c)を、上記NOx濃度測定システム1を用いて算出し、尿素水80の噴射量の制御等を行うよう構成されている。 
図5に示すごとく、排ガスgは、ガス導入部29を通って、上記ガス室20に導入される。ガス導入部29は、排ガスgに含まれる被毒物質をトラップするトラップ層291と、排ガスgの流入速度を制限する拡散層292とからなる。トラップ層291及び拡散層292は、例えばアルミナからなる。 
ガス導入部29の前の空間Sにおいて、排ガスg中のNHの一部がNOに変化することがある。また、排ガスgがガス導入部29を通過すると、排ガスgに含まれるNHは、ガス導入部29から熱を受けて、その一部がNOとNに変化する。そのため、ガス室20には、排ガスgに元々含まれるNOxと、NHと、NHに由来するNO及びNが導入される。NHは、後述するポンプ電極23pにおいて酸化され、NOになる。この、NHに由来するNOの濃度(NH由来NO濃度c)と、排ガスに元々含まれるNOxの濃度(本来NOx濃度c)との合計濃度cを、センサセル26sによって測定している。センサセル26sは、NH由来NO濃度cと本来NOx濃度cとを別々に測定することはできない。 
図7に示すごとく、NHが酸化して発生したNOの濃度(NH由来NO濃度c)は、センサ外NH濃度cよりも低い。これは、上述したように、NHの一部が、ガス導入部29においてNに変化するためである。そのため、仮に図23に示すごとく、NOxセンサ2によって測定された合計濃度cからセンサ外NH濃度cを減算すると、算出された本来NOx濃度c’は、実際の本来NOx濃度cよりも低くなる。そこで本例では、上述したように、上記算出手段7を用いてNH由来NO濃度cを算出し、図7に示すごとく、合計濃度cからNH由来NO濃度cを減算している。これにより、正確な本来NOx濃度cを算出している。 
NH由来NO濃度cを算出する方法について、より詳細に説明する。図8に示すごとく、排ガスg中のHO濃度と、NOxセンサのNH感度との間には一定の関係がある。NH感度は、以下の式によって表される値である。NH感度=NH由来NO濃度c/センサ外NH濃度c 
図8のグラフから分かるように、排ガスg中のHO濃度が低いと、NH由来NO濃度cが減少し、NH感度が低下する。これは、HO濃度が低いと、NHがNに変化する割合が増えるからである。 
また、図9に示すごとく、排ガスg中のO濃度と、NOxセンサのNH感度との間にも一定の関係がある。排ガスg中のO濃度が上昇すると、NH由来NO濃度cが減少し、NH感度が低下する。これは、O濃度が高いと、NHがNに変化する割合が増えるからである。 
NH由来NO濃度cは、例えば、以下のようにして算出することができる。すなわち、算出部70(図1参照)内の記憶部6に、図8のグラフの関数を予め記憶させておく。そして、この関数を利用して、検出したHO濃度からNH感度αH2Oを求め、このNH感度αH2Oとセンサ外NH濃度cとを下記式(4)に代入する。これにより、NH由来NO濃度cを算出することができる。  c=αH2O×c    ・・・(4) 
また、以下に示す方法でNH由来NO濃度cを算出することもできる。すなわち、上記記憶部6に、図9のグラフの関数を予め記憶させておく。そして、この関数を利用して、検出したO濃度からNH感度αO2を求め、このNH感度αO2とセンサ外NH濃度cとを下記式(5)に代入する。これにより、NH由来NO濃度cを算出することができる。  c=αO2×c・・・(5) 
また、以下の方法を採用することもできる。すなわち、後述するポンプセル26p(図1参照)を流れるポンプセル電流Ipと、排ガスgの空燃比A/Fとには、図10に示す関係がある。したがって、ポンプセル電流Ipの測定値と、図10のグラフとを用いて、排ガスgの空燃比A/Fを算出できる。また、空燃比A/FとO濃度とには図11の関係がある。そのため、得られた空燃比A/Fの値と、図11のグラフとを用いて、排ガスg中のO濃度を算出することができる。また、得られたO濃度と、図9のグラフとを用いて、上記NH感度αO2を算出することができる。したがって、上記式(5)を用いて、NH由来NO濃度cを算出することができる。 
同様に、以下の方法を採用することもできる。まず、上述したように、ポンプセル電流Ipの測定値と、図10のグラフとを用いて、排ガスgの空燃比A/Fを算出する。排ガスgの空燃比A/FとHO濃度には、図12の関係がある。そのため、得られた空燃比A/Fの値と、図12のグラフとを用いて、排ガスg中のHO濃度を算出することができる。また、得られたHO濃度と、図8のグラフとを用いて、上記NH感度αH2Oを算出することができる。したがって、上記式(4)を用いて、NH由来NO濃度cを算出することができる。なお、HO濃度と空燃比A/Fとの間には図12の関係があるが、尿素水80(図6参照)中の水蒸気も排ガスgに含まれる。そのため、尿素水80の噴射量を用いて、HO濃度を補正する方が好ましい。 
なお、空燃比A/Fを用いる場合は、必ずしも、空燃比A/FからO濃度やHO濃度を求める必要はない。すなわち、空燃比A/Fとセンサ外NH濃度cとを用いて、NH由来NO濃度cを直接算出するように、算出手段7(図1参照)のプログラムを設定することもできる。 
以上説明した方法を用いて、NH由来NO濃度cを正確に算出すれば、上記合計濃度cからNH由来NO濃度cを減算して、本来NOx濃度cを正確に算出することが可能となる(図7参照)。 
次に、NOxセンサ2の、より詳細な構造について説明する。図1~図4に示すごとく、NOxセンサ2は、絶縁板14と、第1スペーサ15と、固体電解質体22と、第2スペーサ16と、ヒータ10とを備える。固体電解質体22と絶縁板14との間に、ガス室20が形成されている。また、固体電解質体とヒータ10との間に、基準ガス室21が形成されている。この基準ガス室21に、基準ガスとしての大気を導入するよう構成されている。 
図1、図2に示すごとく、固体電解質体22の、ガス室20側の表面には、ポンプ電極23pと、センサ電極23sと、モニタ電極23mとが形成されている。また、固体電解質体22の、基準ガス室21側の表面には、基準電極23bが形成されている。ポンプ電極23pとモニタ電極23mは、NOxの分解に不活性なPt-Au合金によって形成されている。また、センサ電極23sは、NOxの分解に活性なPt-Rh合金によって形成されている。 
ポンプ電極23pと固体電解質体22と基準電極23bとによって、ポンプセル26pが形成されている。また、センサ電極23sと固体電解質体22と基準電極23bとによって、センサセル26sが形成されている。さらに、モニタ電極23mと固体電解質体22と基準電極23bとによって、モニタセル26mが形成されている。 
ポンプセル26pは、排ガスg中のO濃度を調整するためのセルである。ポンプセル26pでは、ポンプ電極23pを用いてOを分解し、酸素イオンを発生させる。この酸素イオンは、固体電解質体22を通って基準ガス室21に排出される。また、ポンプ電
極23p上では、NHがNOに酸化される。 
図1に示すごとく、排ガスgは、ガス導入部29からガス室20に入り、ポンプ電極23p上を通ってセンサ電極23s及びモニタ電極23m上に到達する。ガス導入部29からセンサ電極23sに近づくほど、排ガスg中のO濃度は低くなる。また、ガス導入部29からセンサ電極23sに近づくほど、NHの濃度は低くなり、NH由来NO濃度cは高くなる。 
センサ電極23sでは、NOxを分解して酸素イオンを発生すると共に、NHの酸化によって発生したNOをも分解して酸素イオンを発生する。そして、この酸素イオンが固体電解質体22を流れるときに生じるセンサ電流Isを測定することにより、本来NOx濃度cとNH由来NO濃度cとの合計濃度cを測定している。 
なお、センサ電極23sの表面における排ガスg中には、ポンプセル26pによって除去されなかったOが僅かに残留している。そのため、このOの濃度をモニタセル26mによって測定し、補正するようにしている。すなわち、Oがモニタ電極23m(図3参照)によって分解され固体電解質体22を流れる際に生じるモニタ電流Imを測定する。そして、センサ電流Isからモニタ電流Imを減算する。これにより、残留するOの影響を受けることなく、上記合計濃度cを正確に測定できるようにしてある。 
次に、NH濃度推定手段5について説明する。例えば図6に示すごとく、尿素水噴射弁8の上流側に、排ガスg中のNOx濃度(上流側NOx濃度)を測定する上流側NOxセンサ200を設けておく。また、SCR触媒81の温度Tを測定する温度センサ210を設けておく。上流側NOx濃度と、SCR触媒81の温度Tと、噴射した尿素水80の量と、SCR触媒81の下流の排ガスgに含まれるNH濃度との間には一定の関係がある。つまり、SCR触媒81の温度Tが高いほど、NHとNOxとが反応しやすくなるため、下流の排ガスgにNHが残留しにくくなる。また、尿素水80の噴射量が多いと、下流の排ガスgにNHが残留しやすくなる。また、上流側NOx濃度が高いと、下流の排ガスgに残留するNH濃度が低下しやすくなる。このような関係を用いて、下流側の排ガスg中のNH濃度を推定することができる。なお、NH濃度を推定する方法は、他にも種々の方法を採用することができる。また、図示しないが、SCR触媒81の下流側にNHセンサを設けておき、このNHセンサを用いて、NH濃度を測定してもよい。 
一方、本例のトラップ層291は、膜厚が1200μm以下である。また、拡散層292の膜厚は5mm以下である。トラップ層291と拡散層292の気孔率は、それぞれ10~90%である。さらには、NOxセンサ2を使用する際における、ガス導入部29の温度は、600~850℃である。 
本例の作用効果について説明する。上述したように、排ガスgの空燃比A/Fと、センサ外NH濃度cと、NH由来NO濃度cとの間には一定の関係がある。そのため、空燃比A/Fとセンサ外NH濃度cとを検出すれば、これらの検出値を用いて、NH由来NO濃度cを算出することができる。そして、NOxセンサ2によって測定された上記合計濃度c(本来NOx濃度cとNH由来NO濃度cとの合計の濃度)からNH由来NO濃度cを減算することにより、本来NOx濃度cを正確に測定することが可能となる。 
同様に、排ガスg中のO濃度と、センサ外NH濃度cと、NH由来NO濃度cとの間には一定の関係があるため、O濃度とセンサ外NH濃度cとを検出すれば、NH由来NO濃度cを算出することができる。また、排ガスg中のHO濃度と、センサ外NH濃度cと、NH由来NO濃度cとの間には一定の関係があるため、HO濃度とセンサ外NH濃度cとを検出すれば、NH由来NO濃度cを算出することができる。そして、得られたNH由来NO濃度cを上記合計濃度cから減算することにより、本来NOx濃度cを正確に測定することができる。 
以上説明したように、本例では、排ガスgの空燃比A/FとO濃度とHO濃度とのいずれか一つと、センサ外NH濃度cとを用いて、NH由来NO濃度cを算出し、このNH由来NO濃度cを上記合計濃度cから減算するため、本来NOx濃度cを正確に測定することができる。なお、NH由来NO濃度cを算出する際に、空燃比A/FとO濃度とHO濃度とを組み合わせて用いることもできる。 
ここで仮に、図23に示すごとく、NH由来NO濃度cを算出せず、合計濃度cからセンサ外NH濃度cを単に減算したとすると、算出した本来NOx濃度c’は、実際の本来NOx濃度cよりも少なくなる場合が多い。その理由は、NHの一部がNになるため、NH由来NO濃度cがセンサ外NH濃度cよりも少なくなるからである。しかし、本例のようにNH由来NO濃度cを正確に算出し、これを合計濃度cから減算すれば、本来NOx濃度cを正確に測定することができる。 
なお、本例では、上記合計濃度cからNH由来NO濃度cを減算したが、本発明はこれに限るものではない。すなわち、例えば、合計濃度cとNH由来NO濃度cと本来NOx濃度cとの関係を予めデータベース化しておき、このデータベースと、得られた合計濃度cおよびNH由来NO濃度cとを用いて、本来NOx濃度cを正確に求めることもできる。しかしながら、本例のように減算すれば、記憶部6(図1参照)にデータベースを記憶させる必要がないため、減算することが望ましい。 
また、本例では、O濃度又はHO濃度を用いる場合は、上記空燃比A/Fを検出し、該空燃比A/Fを用いて、O濃度又はHO濃度を算出している。このようにすると、OセンサやHOセンサを別途設ける必要がなくなる。そのため、NOx濃度測定システム1を安価に構築することが可能となる。 
また、上記算出手段7は、O濃度とセンサ外NH濃度とを用いて、NH由来NO濃度を算出するよう構成することができる。同様に、算出手段7は、HO濃度とセンサ外NH濃度とを用いて、NH由来NO濃度を算出するよう構成することができる。この場合には、HO濃度とO濃度を両方とも用いないため、NH由来NO濃度を、簡単な計算によって求めることができる。そのため、NH由来NO濃度の算出速度を向上させることができる。 
また、本例では、空燃比A/Fを用いる場合は、NOxセンサ2のポンプセル26pを流れるポンプセル電流Ipを測定し、このポンプセル電流Ipを用いて、空燃比A/Fを算出している。このようにすると、A/Fセンサを別途設ける必要がなくなる。そのため、NOx濃度測定システム1を安価に構築することが可能となる。 
また、本例では、トラップ層291(図1参照)の膜厚を1200μm以下にしてある。図13に示すごとく、トラップ層291の膜厚が1200μm以下であれば、NOxセンサ2の上記NH感度は、膜厚によって大きく変動しない。トラップ層291の膜厚が1200μmを超えると、排ガスgがトラップ層291を通過するときに熱を受けやすくなるため、NHがNに変化しやすくなり、NH感度が低下する。しかし、トラップ層291の膜厚が1200μm以下であれば、NH感度はトラップ層291の膜厚の影響を大きく受けない。そのため、例えば上記式(4)を用いて、NH由来NO濃度cを正確に測定することができる。 
また、本例では、拡散層292(図1参照)の膜厚を5mm以下にしてある。拡散層292の膜厚を充分に薄くし、5mm以下にすれば、NH感度のばらつきを低減しやすくなる。また、ガス室20に導入される排ガスgの、単位時間当たりの量を増やすことができるため、センサセル26sに大きな上記センサ電流Isが流れやすくなる。 
また、本例では、トラップ層291と拡散層292の気孔率は、それぞれ10~90%である。気孔率を10~90%にすれば、トラップ層291及び拡散層292を容易に製造することができる。 
また、本例では、NOxセンサ2を使用する際における、ガス導入部29(図1参照)の温度は、600~850℃である。図14に示すごとく、ガス導入部29の温度が600~850℃であれば、NH感度は大きく変化しない。ガス導入部29の温度が850℃を超えると、排ガスgがガス導入部29を通過する際に熱を受けやすくなるため、NHがNに変化しやすくなる。そのため、NH感度が低下しやすくなる。しかし、ガス導入部29の温度が600~850℃であれば、NH感度は温度の影響を大きく受けにくい。そのため、NH由来NO濃度cを正確に算出することができる。 なお、図14における、850℃を超えた場合のグラフの傾きを記憶部6に記憶しておくこともできる。そして、ガス導入部29の温度が850℃を超えた場合には、このグラフを用いてNH感度を算出し、この算出値を用いて、NH由来NO濃度cを補正してもよい。 
また、後述の実験例2において説明するように、排ガスgの流速と、NHがNOに変化する割合とには一定の関係がある。そのため、排ガスgの流速を測定する手段を設けておき、測定した流速を用いて、NH由来NO濃度cを補正してもよい。これにより、本来NOx濃度をより正確に算出することが可能になる。 
以上のごとく、本例によれば、NOxとNHとを含む排ガス中のNOx濃度を、より正確に測定できるNOx濃度測定システムを提供することができる。 
なお、本例では図1に示すごとく、ガス導入部29として、トラップ層291及び拡散層292を設けたが、本発明はこれに限るものではない。例えば図15に示すごとく、ガス導入部29として、NOxセンサ2の外部空間とガス室20との間を貫通し、排ガスgの流入速度を制限する絞り部293を形成してもよい。絞
り部293を形成した場合、排ガスgが絞り部293において対流し、周囲から熱を受けて、NHの一部がNに変化する場合があるが、本発明を用いれば、この場合でも、本来NOx濃度cを正確に測定することができる。また、トラップ層291は無くてもよい。 
また、本例では、NOxセンサ2を用いてA/Fを測定し、このA/Fを用いて、排ガスg中のO濃度又はHO濃度を算出しているが、本発明はこれに限るものではない。すなわち、A/Fセンサを別途設け、このA/FセンサによってA/Fを検出して、排ガスg中のO濃度又はHO濃度を算出してもよい。 
(実験例1) 本発明に係るNOx濃度測定システムの効果を確認するための実験を行った。まず、NOxを含まずNHのみを含む試験ガスを用意した。そして、実施例1において説明したNOxセンサ2を用いて、試験ガスの濃度測定を行った。すなわち、NOxセンサ2を用いて上記試験ガスを測定すると、試験ガス中のNHがガス導入部29において変化し、NOになる。このNO濃度を、NOxセンサ2によって測定した。試験ガス中のNH濃度は、100ppm、200ppm、350ppmにした。NOxセンサ2によって検出されたNO濃度と、試験ガス中のNH濃度との関係を図16、図17に示す。 
図16に示す実験では、NO濃度を補正していない。すなわち、図16に示す実験では、NOxセンサ2によって測定されたNO濃度に、上記NH感度を乗じていない。また、図17に示す実験では、空燃比A/Fを用いて、NO濃度を補正している。すなわち、図17に示す実験では、空燃比A/Fを検出し、その検出値を用いて上記NH感度を算出している。そして、得られたNH感度を、測定されたNO濃度に乗じている。 
なお、図16、図17では、両方とも、グラフの傾きの平均値が1になるように、測定値に補正係数を乗じている。 
図16に示すごとく、NO濃度を補正しない場合は、測定されたNO濃度のばらつきは大きい。図16のグラフでは、測定値のばらつきは40%程度になった。NHの一部は、試験ガス中のOやHOの影響を受けてNになる。そのため、空燃比A/F等を用いて補正しない場合は、O濃度やHO濃度のばらつきの影響を受けてしまい、NOxセンサ2の測定値に大きなばらつきが生じると考えられる。 
これに対して、図17に示すごとく、空燃比A/Fを用いて補正した場合は、NO濃度のばらつきは小さくなる。図17のグラフでは、測定値のばらつきは20%程度になった。図17では、空燃比A/Fを用いて補正しているため、NOxセンサ2の測定値が、O濃度やHO濃度のばらつきの影響を大きく受けにくくなる。そのため、測定値のばらつきが小さくなったと考えられる。 
以上の実験から、空燃比A/Fを用いることにより、NHが変化したNOの濃度、すなわちNH由来NO濃度cを正確に算出できることが分かる。そのため、NOxとNHとを含有する排ガスgを測定する場合、NOxセンサ2によって測定された合計濃度cから、NH由来NO濃度cの正確な値を減算することができ、本来NOx濃度cを正確に算出できることが分かる。 
(実験例2) 排ガスgの流速と、排ガスg中のNHがNOに変化する割合との関係について確認した。まず、NOxセンサ2のガス導入部29の代わりとして、石英管299と、該石英管299内に配されたアルミナ製のトラップ層290とを用意した。そして、石英管299をヒータ100内に配置した。この石英管299に、NH、Nを含有し、NOxを含有しない試験ガスを流した。そして、トラップ層290においてNHが変化して発生したNOの濃度を、質量分析計109によって測定した。 
石英管299に流す前の試験ガス中の、NH濃度は4800ppmとし、O濃度とHO濃度は0%とした。試験ガスの流速は、50、100、200ml/minに条件振りした。また、ヒータ100によって、トラップ層290の温度を100℃~1000℃まで変化させた。結果を図19に示す。 
同図に示すごとく、試験ガスの流速が速いほど、NHがNOに変化する割合が低くなることが分かる。これは、試験ガスの流速が速いと、NHがNOに変化する前にトラップ層290を通過してしまうためだと考えられる。また、OやHOが存在する場合においても、流速による影響は同じである。 
上記実験結果から、排ガスgの流速を測定し、その測定値を用いてNH由来NO濃度cを補正すれば、NH由来NO濃度cをより正確に算出できることが分かる。そのため、本来NOx濃度cの算出精度をより高めることが可能になることが分かる。 
(実施例2) 本実施例2に係るNOx濃度測定システムでは、排ガスgの空燃比A/Fによって、HO濃度とO濃度とのいずれを用いるか選択するようにした例である。まず、図20について説明する。図20は、HO濃度とNH感度とのグラフ(図8のグラフ)の横軸を、空燃比A/F40以上の領域と、空燃比A/F40以下の領域とに分けたグラフである。同図から分かるように、空燃比A/Fが40以上の場合は、HO濃度が僅かに変化しただけで、NH感度が大きく変化する。これに対して、空燃比A/Fが40以下の領域では、HO濃度が変化しても、NH感度は殆ど変化しない。そのため、空燃比A/Fが40以上の領域、すなわち、HO濃度が僅かに変化しただけでNH感度が大きく変化する領域では、HO濃度を用いてNH感度を算出すれば、NH感度を正確に算出することが可能になる。そのため、NH由来NO濃度cを正確に測定することができ、本来NOx濃度cをより正確に測定することが可能になる。 
また、図21は、O濃度とNH感度とのグラフ(図9のグラフ)の横軸を、空燃比A/Fが20以上の領域と、空燃比A/Fが20以下の領域とに分けたグラフである。同図から分かるように、空燃比A/Fが20以下の場合は、O濃度が僅かに変化しただけで、NH感度が大きく変化する。これに対して、空燃比A/Fが20以上の領域では、O濃度が変化しても、NH感度は殆ど変化しない。そのため、空燃比A/Fが20以下の領域、すなわち、O濃度が僅かに変化しただけでNH感度が大きく変化する領域では、O濃度を用いてNH感度を算出すれば、NH感度を正確に算出することが可能になる。そのため、NH由来NO濃度cを正確に測定することができ、本来NOx濃度cをより正確に測定することが可能になる。 
本例の算出手段7(図1参照)のフローチャートを図22に示す。同図に示すごとく、本例では、まず、ステップS1において、空燃比A/Fが40以上か否かを判断する。ここでYesと判断したときは、ステップS2に移り、HO濃度を用いてNH由来NO濃度cを算出する。 
また、ステップS1においてNoと判断したときは、ステップS3に移り、空燃比A/Fが20以下か否かを判断する。ここでYesと判断したときは、ステップS4に移り、O濃度を用いてNH感度を算出する。また、ステップS3においてNOと判断したときは、ステップS5に移る。ここでは、センサ外NH濃度cにNH感度を乗ずる補正を行わない。すなわち、センサ外NH濃度c=NH由来NO濃度cにして、本来NOx濃度cを算出する。 
このように、本例では、空燃比A/Fの測定値に応じて、O濃度とHO濃度とのうち、NH由来NO濃度cの算出精度が高い方を選択して、NH由来NO濃度cを求めている。つまり、空燃比A/Fが40以上のときはHO濃度を用い、空燃比A/Fが20以下のときはO濃度を用いて、NH感度を求めている。そして、得られたNH感度を用いて、NH由来NO濃度cを算出している。そのため、NH由来NO濃度cをより正確に測定でき、本来NOx濃度cをより正確に算出することができる。その他、実施例1と同様の構成および作用効果を備える。
1 NOx濃度測定システム、  2 NOxセンサ、 20 ガス室、 21 基準ガス室、26s センサセル、 29 ガス導入部、  3 検出手段、  5 NH濃度推定手段、  7 算出手段。

Claims (10)

  1. NOxとNHとを含む排ガス中のNOx濃度を測定するNOx濃度測定システム(1)であって、 上記排ガスが導入されるガス室(20)と、酸素イオン伝導性を有する板状の固体電解質体(22)の表面に電極を設けてなるセンサセル(26s)と、センサ外から上記ガス室(20)へ導入される上記排ガスの通路をなすガス導入部(29)とを備え、上記センサセル(26s)により、上記排ガスに含まれる上記NOxの濃度である本来NOx濃度と、上記NHが酸化して発生したNOの濃度であるNH由来NO濃度との合計濃度を測定するNOxセンサ(2)と、 上記排ガスの空燃比(A/F)と、上記排ガス中のO濃度と、上記排ガス中のHO濃度との少なくとも一つを検出する検出手段(3)と、 上記ガス導入部(29)に導入される前の上記排ガス中のNH濃度であるセンサ外NH濃度を推定するNH濃度推定手段(5)と、 上記空燃比と上記O濃度と上記HO濃度との少なくとも一つと、上記センサ外NH濃度とから上記NH由来NO濃度を算出し、上記合計濃度および上記NH由来NO濃度から上記本来NOx濃度を算出する算出手段(7)とを備えることを特徴とするNOx濃度測定システム(1)。
  2. 上記算出手段(7)は、上記合計濃度から上記NH由来NO濃度を減算することにより、上記本来NOx濃度を算出するよう構成されていることを特徴とする請求項1に記載のNOx濃度測定システム(1)。
  3. 上記検出手段(3)は、上記空燃比(A/F)を検出し、該空燃比(A/F)から、上記O濃度と上記HO濃度との少なくとも一方を算出するよう構成されていることを特徴とする請求項1又は請求項2に記載のNOx濃度測定システム(1)。
  4. 上記NOxセンサ(2)は、上記排ガス中のO濃度を調整するポンプセル(26p)を備え、上記検出手段(3)は、該ポンプセル(26p)を流れるポンプセル電流(Ip)を測定することにより、上記空燃比(A/F)を求めるよう構成されていることを特徴とする請求項1~請求項3のいずれか一項に記載のNOx濃度測定システム(1)。
  5. 上記NOxセンサ(2)を使用する際における上記ガス導入部(29)の温度は、600~850℃となるよう構成されていることを特徴とする請求項1~請求項4のいずれか1項に記載のNOx濃度測定システム(1)。
  6. 上記NOxセンサ(2)は、上記ガス導入部(29)として、上記排ガスに含まれる被毒物質をトラップする、気孔率が10~90%のトラップ層(291)と、上記ガス室(20)に導入される上記排ガスの速度を制限する、気孔率が10~90%の拡散層(292)との、少なくとも一方を備えることを特徴とする請求項1~請求項5のいずれか1項に記載のNOx濃度測定システム(1)。
  7. 上記トラップ層(291)の膜厚は1200μm以下であり、上記拡散層(292)の厚さは5mm以下であることを特徴とする請求項6に記載のNOx濃度測定システム(1)。
  8. 上記算出手段(7)は、上記O濃度と上記センサ外NH濃度とを用いて、上記NH由来NO濃度を算出するよう構成されていることを特徴とする請求項1~請求項7のいずれか一項に記載のNOx濃度測定システム(1)。
  9. 上記算出手段(7)は、上記HO濃度と上記センサ外NH濃度とを用いて、上記NH由来NO濃度を算出するよう構成されていることを特徴とする請求項1~請求項7のいずれか一項に記載のNOx濃度測定システム(1)。
  10. 上記算出手段(7)は、上記空燃比(A/F)の測定値に応じて、上記O濃度と上記HO濃度とのうち、上記NH由来NO濃度の算出精度が高い方を選択して、上記NH由来NO濃度を求めるよう構成されていることを特徴とする請求項1~請求項7のいずれか一項に記載のNOx濃度測定システム(1)。
PCT/JP2015/060359 2014-04-22 2015-04-01 NOx濃度測定システム WO2015163103A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17207651.5A EP3324178B1 (en) 2014-04-22 2015-04-01 Nox concentration measurement system
US15/305,410 US20170045471A1 (en) 2014-04-22 2015-04-01 NOx CONCENTRATION MEASUREMENT SYSTEM
EP15783318.7A EP3136091B1 (en) 2014-04-22 2015-04-01 NOx CONCENTRATION MEASUREMENT SYSTEM
CN201580020364.9A CN106233129B (zh) 2014-04-22 2015-04-01 NOx浓度测定系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014088468 2014-04-22
JP2014-088468 2014-04-22
JP2015-023370 2015-02-09
JP2015023370A JP6305945B2 (ja) 2014-04-22 2015-02-09 NOx濃度測定システム

Publications (1)

Publication Number Publication Date
WO2015163103A1 true WO2015163103A1 (ja) 2015-10-29

Family

ID=54332271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060359 WO2015163103A1 (ja) 2014-04-22 2015-04-01 NOx濃度測定システム

Country Status (5)

Country Link
US (1) US20170045471A1 (ja)
EP (2) EP3136091B1 (ja)
JP (1) JP6305945B2 (ja)
CN (2) CN109991299B (ja)
WO (1) WO2015163103A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499736B2 (ja) 2021-06-24 2024-06-14 株式会社Soken ガス検出装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6305945B2 (ja) 2014-04-22 2018-04-04 株式会社デンソー NOx濃度測定システム
JP6311686B2 (ja) * 2015-10-08 2018-04-18 トヨタ自動車株式会社 多ガス検出装置
JP6382178B2 (ja) * 2015-12-17 2018-08-29 株式会社Soken ガスセンサ
JP6730069B2 (ja) 2016-04-14 2020-07-29 ローム株式会社 窒素酸化物系ガスセンサ、および酸素ポンプ
JP6737680B2 (ja) 2016-10-12 2020-08-12 日本碍子株式会社 ガスセンサ
JP6753786B2 (ja) * 2017-01-18 2020-09-09 日本特殊陶業株式会社 濃度算出装置およびガス検出装置
JP6572932B2 (ja) 2017-04-04 2019-09-11 トヨタ自動車株式会社 アンモニア検出装置の異常診断装置
JP2018178762A (ja) * 2017-04-04 2018-11-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN110907597A (zh) * 2018-09-17 2020-03-24 上海鑫璞传感科技有限公司 基于附带氨气检测量补偿的氮氧化物测量系统及方法
JP2020060128A (ja) * 2018-10-09 2020-04-16 株式会社Soken アンモニアセンサの異常判定装置
CN109374829A (zh) * 2018-10-22 2019-02-22 江苏大学 一种氮氧化物传感器控制器
JP7122248B2 (ja) * 2018-12-27 2022-08-19 日本碍子株式会社 センサ素子
CN111141800A (zh) * 2020-02-19 2020-05-12 浙江百岸科技有限公司 传感器芯片
JP2022089378A (ja) * 2020-12-04 2022-06-16 株式会社Soken ガス濃度検出装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038806A (ja) * 2008-08-07 2010-02-18 Ngk Spark Plug Co Ltd マルチガスセンサ及びガスセンサ制御装置
EP2169395A2 (en) * 2008-09-29 2010-03-31 Delphi Technologies, Inc. Exhaust gas sensing system and method for determining concentrations of exhaust gas constituents
JP2010071195A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp NOxセンサの出力較正装置及び出力較正方法
JP2011043333A (ja) * 2009-08-19 2011-03-03 Nippon Soken Inc NOxセンサ
JP2013088119A (ja) * 2011-10-13 2013-05-13 Nippon Soken Inc ガスセンサ素子および内燃機関用ガスセンサ
JP2013221931A (ja) * 2012-04-19 2013-10-28 Ngk Spark Plug Co Ltd マルチガスセンサおよびマルチガスセンサ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205843B1 (en) * 1998-11-16 2001-03-27 Denso Corporation Gas sensing element and a method for measuring a specific gas concentration
DE60319214T2 (de) * 2002-04-25 2009-03-05 Japan Science And Technology Agency, Kawaguchi Elektrode für einen Stickstoffoxidsensor und Stickstoffoxidsensor mit derselben
JP3835439B2 (ja) * 2003-08-20 2006-10-18 トヨタ自動車株式会社 濃度検出装置
DE102004016986B3 (de) * 2004-04-02 2005-10-06 Siemens Ag Vorrichtung und Verfahren zur Messung mehrerer Abgasbestandteile
JP2005326394A (ja) * 2004-04-13 2005-11-24 Denso Corp ガスセンサ
JP2009210297A (ja) * 2008-02-29 2009-09-17 Sumitomo Electric Ind Ltd NOxセンサおよび排気浄化システム
JP4877298B2 (ja) * 2008-09-10 2012-02-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5328807B2 (ja) * 2008-11-25 2013-10-30 ボッシュ株式会社 NOxセンサのセンサ値補正装置及び内燃機関の排気浄化装置
JP5204160B2 (ja) * 2009-09-03 2013-06-05 日本特殊陶業株式会社 マルチガスセンサの制御方法及びマルチガスセンサの制御装置
JP5287807B2 (ja) * 2009-10-28 2013-09-11 株式会社デンソー ガスセンサ素子
DE102009058089B4 (de) * 2009-12-12 2016-09-22 Bayerische Motoren Werke Aktiengesellschaft Mess- und Regelungsverfahren sowie Vorrichtung für ein SCR- Abgasnachbehandlungssystem mit Bestimmung des linearen Zusammenhangs zweier mittels NOx-Sensoren bestimmter Signale
JP5215500B2 (ja) * 2012-11-13 2013-06-19 日本特殊陶業株式会社 マルチガスセンサ及びガスセンサ制御装置
JP6305945B2 (ja) 2014-04-22 2018-04-04 株式会社デンソー NOx濃度測定システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038806A (ja) * 2008-08-07 2010-02-18 Ngk Spark Plug Co Ltd マルチガスセンサ及びガスセンサ制御装置
JP2010071195A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp NOxセンサの出力較正装置及び出力較正方法
EP2169395A2 (en) * 2008-09-29 2010-03-31 Delphi Technologies, Inc. Exhaust gas sensing system and method for determining concentrations of exhaust gas constituents
JP2011043333A (ja) * 2009-08-19 2011-03-03 Nippon Soken Inc NOxセンサ
JP2013088119A (ja) * 2011-10-13 2013-05-13 Nippon Soken Inc ガスセンサ素子および内燃機関用ガスセンサ
JP2013221931A (ja) * 2012-04-19 2013-10-28 Ngk Spark Plug Co Ltd マルチガスセンサおよびマルチガスセンサ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136091A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499736B2 (ja) 2021-06-24 2024-06-14 株式会社Soken ガス検出装置

Also Published As

Publication number Publication date
CN106233129B (zh) 2019-01-01
EP3136091A1 (en) 2017-03-01
EP3136091A4 (en) 2017-04-26
JP2015215334A (ja) 2015-12-03
CN109991299B (zh) 2021-07-20
EP3136091B1 (en) 2018-03-21
EP3324178A1 (en) 2018-05-23
US20170045471A1 (en) 2017-02-16
EP3324178B1 (en) 2019-06-05
JP6305945B2 (ja) 2018-04-04
CN109991299A (zh) 2019-07-09
CN106233129A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6305945B2 (ja) NOx濃度測定システム
JP5745455B2 (ja) マルチガスセンサおよびマルチガスセンサ装置
US10502114B2 (en) Concentration calculation apparatus, concentration calculation system, and concentration calculation method
JP4894889B2 (ja) Noxセンサの補正方法およびnoxセンサ
WO2015030165A1 (ja) ガス濃度検出装置
US10046276B2 (en) Sensor control method and sensor control apparatus
JP6475117B2 (ja) センサ制御方法およびセンサ制御装置
JP2006037771A (ja) 排気浄化装置のNOx低減率測定方法
JP3979240B2 (ja) ガス濃度検出装置
JP6305850B2 (ja) ガス濃度測定システム
JP6794272B2 (ja) アンモニアセンサのキャリブレーション方法
JP6966348B2 (ja) 特定ガス濃度測定装置及び特定ガス濃度測定システム
JP6664515B2 (ja) プローブの動作方法
JP5247780B2 (ja) ガスセンサの校正方法
JP6344262B2 (ja) 排気センサ
JP6305832B2 (ja) 特定ガス濃度検出方法
JP6862400B2 (ja) アンモニア検出装置
JP5718883B2 (ja) NOx検出装置及びNOxセンサシステム
JP4784670B2 (ja) ガス濃度検出装置
JP2018116053A (ja) 濃度算出装置およびガス検出装置
JP2008215964A (ja) 酸素センサ及び酸素センサのNOx感受性評価方法
JP2004245604A (ja) 排気ガスセンサの劣化診断装置
JP2007255917A (ja) 濃度測定装置
US11391194B2 (en) Gas sensor control apparatus, gas sensor apparatus, and internal combustion engine control apparatus
US20200132617A1 (en) Gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783318

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015783318

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015783318

Country of ref document: EP

REEP Request for entry into the european phase

Ref document number: 2015783318

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15305410

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE