WO2015159713A1 - 圧縮機、圧縮機の筐体および圧縮機の筐体の製造方法 - Google Patents

圧縮機、圧縮機の筐体および圧縮機の筐体の製造方法 Download PDF

Info

Publication number
WO2015159713A1
WO2015159713A1 PCT/JP2015/060323 JP2015060323W WO2015159713A1 WO 2015159713 A1 WO2015159713 A1 WO 2015159713A1 JP 2015060323 W JP2015060323 W JP 2015060323W WO 2015159713 A1 WO2015159713 A1 WO 2015159713A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal
compressor
resin member
metal member
Prior art date
Application number
PCT/JP2015/060323
Other languages
English (en)
French (fr)
Inventor
周 岡坂
山本 晋也
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to US15/303,844 priority Critical patent/US10072647B2/en
Priority to EP15780667.0A priority patent/EP3133285A4/en
Publication of WO2015159713A1 publication Critical patent/WO2015159713A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14008Inserting articles into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14631Coating reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1045Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • B29C2045/14327Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles anchoring by forcing the material to pass through a hole in the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/02Elasticity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced

Definitions

  • the present invention relates to a compressor, a compressor casing, and a compressor casing manufacturing method.
  • Patent Document 1 discloses a resin pressure vessel. While the pressure vessel made of resin is lightweight, there is a problem in gas barrier properties. This document also describes that a metal film is formed on the surface by plating or the like to improve gas barrier properties. However, when the present inventors have studied, the technology of such a resin pressure vessel has been described in vehicles. When applied to a compressor housing of a commercial air conditioner, sufficient durability could not be obtained. As a result of further investigation on the cause, it was newly found that the resistance is insufficient, such as peeling at the metal-resin interface due to repeated stress caused by the operation of the compressor.
  • the present invention provides a compressor casing that is excellent in performance balance between lightness and high durability.
  • Comprising at least one compression chamber for compressing the gas sucked inside It consists of a metal resin composite in which a resin member made of a thermosetting resin composition and a metal member are joined,
  • the metal resin composite has a temperature condition of 25 ° C. in a test piece in which the resin member having a thickness d 1 and the metal member having a thickness d 2 are laminated and bonded, and the ratio d 1 / d 2 is 3.
  • a one-point bending stress of 140 MPa is applied to the center of the surface on the resin member side in the thickness direction.
  • a compressor housing that has bending fatigue resistance that does not peel or break when it is repeatedly applied 1 million times alternately at a frequency of 30 Hz from the first state to the second state in which the center is submerged from the first state. Is done.
  • a compressor including the compressor housing is provided.
  • Preparing a metal member and a mold Disposing the metal member in a molding space of the mold; and A step of filling the molding space with a fluidized resin material containing a thermosetting resin; Curing the filled resin material to obtain a casing made of a metal-resin composite in which a resin member and the metal member are joined in this order,
  • the metal resin composite has a temperature condition of 25 ° C. in a test piece in which the resin member having a thickness d 1 and the metal member having a thickness d 2 are laminated and bonded, and the ratio d 1 / d 2 is 3.
  • FIG. 1 is a diagram for explaining a casing 10 of a compressor 1 according to an embodiment.
  • FIG. 2 is a cross-sectional view schematically showing an example of the structure of the compressor 1.
  • the casing 10 of the compressor 1 includes at least one compression chamber 101 that compresses the gas sucked therein, and the resin member 14 made of a thermosetting resin composition and the metal member 12 are joined to each other.
  • the metal resin composite 16 is made.
  • Metal-resin composite body 16 the test piece relative to the metal member 12 of the resin member 14 and the thickness d 2 of the thickness d 1 is bonded by laminating d 1 / d 2 is 3, the temperature conditions of 25 ° C.
  • a one-point bending stress of 140 MPa is applied in the thickness direction to the center of the surface on the resin member 14 side.
  • the compressor 1 sucks low-temperature and low-pressure gas into a cylinder (compression chamber) 101 and compresses the sucked gas by a piston 20 inside the cylinder 101 to change into high-temperature and high-pressure gas and discharge it.
  • the gas is, for example, a refrigerant gas.
  • the compressor 1 according to this embodiment includes a housing 10, a piston 20, a swash plate 30, a suction pipe 40, a discharge pipe 50, and a shaft 60.
  • a shaft 60 is inserted into the housing 10, and the swash plate 30 is fixed obliquely to the shaft 60.
  • the shaft 60 is connected to a motor or an engine (not shown) and can rotate with respect to the housing 10.
  • a plurality of pistons 20 are provided inside the housing 10, and cylinders 101 are formed at both ends of each piston 20.
  • the cylinder 101 is a cylindrical system, and the piston 20 can reciprocate within the cylinder 101. Gas is sucked into the space formed by the cylinder 101 and the tip of the piston 20 and is compressed by the piston 20.
  • the rotation axis of the shaft 60 and the major axis of the cylinder 101 are parallel.
  • the swash plate 30 is rotatably attached to each piston 20 in the vicinity of the outer peripheral portion thereof.
  • a suction pipe 40 and a discharge pipe 50 are connected to each cylinder 101.
  • a suction valve 401 is provided at a connection portion between the suction pipe 40 and the cylinder 101, and a discharge valve 501 is provided at a connection portion between the discharge pipe 50 and the cylinder 101.
  • the compressor 1 includes a housing 10 made of a metal resin composite 16.
  • the compressor 1 according to the present embodiment includes two casings 10, and the two casings 10 are connected by a plurality of bolts (not shown).
  • the casing 10 according to the present embodiment is composed of the metal-resin composite 16 having the metal member 12 and the resin member 14, but is not limited to this, and the compressor 1 includes a casing made of only metal, for example. It may be configured.
  • the arrangement of the metal member 12 and the resin member 14 is not particularly limited, but the outermost surface of the compressor 1 is formed in the housing 10 from the viewpoint of improving strength and sealing performance.
  • the part is preferably made of a metal member 12.
  • the resin member 14 is exposed on the inner wall of the cylinder 101 in the casing 10, and at least the piston 20 slides on the inner wall of the cylinder 101. It is more preferable that the portion to be made of the resin member 14. The entire inner wall of the cylinder 101 may be made of the resin member 14. Further, from the viewpoint of weight reduction, the housing 10 is preferably made of the resin member 14 by 50% or more in volume ratio.
  • the metal-resin composite 16 has bending fatigue resistance that does not peel or break when a stress application with a bending stress of 140 MPa is repeated one million times by a single swing of three-point bending at 25 ° C. This fatigue resistance evaluation method will be described in detail later. When the metal resin composite 16 has such bending fatigue resistance, the compressor 1 having excellent durability can be obtained. A method for manufacturing the housing 10 will be described later.
  • the shaft 60 is rotated by driving of a motor or an engine.
  • the swash plate 30 fixed to the shaft 60 rotates. Since the swash plate 30 is obliquely fixed to the shaft 60, by rotating, a force is applied to each piston 20 in the major axis direction (the left-right direction in the figure) of the cylinder 101 to reciprocate.
  • the piston 20 compresses the gas in the cylinder 101. While the shaft 60 makes one rotation, the piston 20 reciprocates once.
  • the refrigerant gas is supplied from the outside of the housing 10 through the suction pipe 40 into the cylinder 101 to which the suction pipe 40 is connected.
  • the refrigerant gas compressed by the piston 20 is discharged to the outside of the housing 10 through the discharge pipe 50.
  • the suction valve 401 is opened, and a low-temperature and low-pressure refrigerant gas is discharged from the suction pipe 40. Is introduced and the space is filled with the refrigerant gas.
  • the discharge valve 501 is closed.
  • the piston 20 moves so that the space becomes narrower, the refrigerant gas is compressed and becomes high temperature and pressure.
  • the discharge valve 501 is opened, and the high-temperature and high-pressure refrigerant gas is discharged through the discharge pipe 50.
  • the compressor 1 is used as, for example, a compressor of a car air conditioner mounted on a vehicle, but is not limited thereto.
  • the compressor 1 may be used for an air conditioner that is not mounted on a vehicle, or may be used for applications other than an air conditioner such as a refrigerator, an air compressor, a sprayer, and a supercharger.
  • compressor 1 is a swash plate type compressor
  • other types of compressors such as a crank type, a wapple type, a scroll type, and a vane type may be used.
  • Metal-resin composite constituting the casing 10 16, the resin member 14 and the ratio is bonded and the metal member 12 of a thickness d 2 is laminated d 1 / d 2 of the thickness d 1 is in the test piece is 3
  • a first state where stress is not applied by placing the resin member 14 side surface on two support bases at a temperature of 25 ° C., and a single point bending of 140 MPa at the center of the resin member 14 surface When the stress is applied in the thickness direction and the second state in which the center is submerged from the first state is repeated 1,000,000 times alternately at a frequency of 30 Hz, it has bending fatigue resistance that does not peel or break.
  • such bending fatigue resistance is referred to as “1 million times bending fatigue resistance”.
  • the metal resin composite 16 has a bending fatigue resistance of 1,000,000 times can be evaluated by repeatedly applying a bending stress to the test piece made of the metal resin composite 16. This will be specifically described below.
  • FIG. 2 is a diagram for explaining a method for evaluating a million times bending fatigue resistance.
  • a rectangular parallelepiped test piece made of the metal resin composite 16 is prepared.
  • the thickness h, width b, and depth of the test piece are not limited, but the thickness h of the test piece is 4.0 ⁇ 0.2 mm, width. It is preferable that b is 80.0 ⁇ 2.0 mm and the depth is 10.0 ⁇ 0.2 mm.
  • the joint surface 103 between the metal member 12 and the resin member 14 is orthogonal to the thickness direction.
  • the test piece can be prepared by cutting out from the housing 10, for example.
  • the prepared test piece is placed on the two support bases 703 (first state).
  • the distance between the two support bases 703 is adjusted so that the prepared test piece can ride.
  • the two support bases are arranged symmetrically with respect to the test piece. At this time, it arrange
  • FIG. the indenter 701 is brought into contact with the surface of the resin member 14 on the opposite side, and a single bending stress of 140 MPa is repeatedly applied in a direction perpendicular to the bonding surface 103.
  • the contact position between the indenter 701 and the test piece is a position equidistant from the contact position (fulcrum) between the two support bases 703 and the test piece. Repeated stress application is performed in a 25 ° C. atmosphere.
  • F [N] is the force applied from the indenter 701 (unit is N)
  • L is the distance between fulcrums (unit is mm)
  • b is the width of the test piece (unit is mm)
  • h is the thickness of the test piece. (Unit is mm).
  • the force F can be determined so that the magnitude of the bending stress is 140 MPa, and evaluation can be performed by applying repeated stress.
  • the test piece is slightly bent into a shape in which the center is depressed (second state). Then, the stress application is stopped and the first state is restored to which no stress is applied. The first state and the second state are alternately repeated 1 million times at a frequency of 30 Hz. Thus, the test piece after applying a stress of 1,000,000 times is observed, and it is confirmed that peeling or fracture has not occurred. When neither peeling nor breaking occurs, it is evaluated that it has 1 million times bending fatigue resistance.
  • the metal resin composite 16 has a fulcrum distance L of 64 mm, a test piece width b of 80 mm, a depth of 10 mm, and a thickness h of 4.0 mm (the thickness of the metal member 12 is 1.0 mm).
  • the thickness of the resin member 14 is 3.0 mm), and by setting the force F to 1.87 kN, it can be confirmed that it has a bending fatigue resistance of 1 million times by applying a bending stress of 140 MPa.
  • the conditions are not limited.
  • the present invention is not limited thereto, and the metal resin composite 16 constituting the housing 10 is not limited thereto. May have a bending fatigue resistance of 1,000,000 times.
  • FIG. 3 is a view for explaining the metal resin composite 16 according to the present embodiment.
  • This figure is a model diagram for explaining the joint surface 103 between the metal member 12 and the resin member 14 in the metal resin composite 16 in particular, and does not necessarily show all or part of the structure of the housing 10.
  • This figure is a perspective view schematically showing an example of a molded product of the metal resin composite 16 constituting the housing 10.
  • the metal material which comprises the metal member 12 is not specifically limited, From a viewpoint of availability or a price, iron, stainless steel, aluminum, an aluminum alloy, magnesium, a magnesium alloy, copper, a copper alloy, etc. can be mentioned. These may be used alone or in combination of two or more.
  • the metal member 12 has the roughening layer 104 which consists of a fine unevenness
  • FIG. 4 is a schematic diagram for explaining an example of a cross-sectional shape of the recess 201 constituting the roughened layer 104 on the surface of the metal member 12 according to the present embodiment.
  • the roughened layer 104 refers to a region having a plurality of recesses 201 provided on the surface of the metal member 12.
  • the thickness of the roughened layer 104 is preferably 3 ⁇ m or more and 40 ⁇ m or less, more preferably 4 ⁇ m or more and 32 ⁇ m or less, and particularly preferably 4 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the roughened layer 104 represents the depth D3 of the largest depth among the plurality of recesses 201, and can be calculated from a scanning electron microscope (SEM) photograph. .
  • the cross section of the recess 201 has a shape having a cross section width D2 larger than the cross section width D1 of the opening 203 in at least a part between the opening 203 and the bottom 205 of the recess 201.
  • the cross-sectional shape of the recess 201 is not particularly limited as long as D2 is larger than D1, and can take various shapes.
  • the cross-sectional shape of the recess 201 can be observed with, for example, a scanning electron microscope (SEM).
  • the cross-sectional shape of the recess 201 is the above-mentioned shape, the reason why the metal resin composite 16 that is more excellent in the bonding strength is not always clear, but the surface of the bonding surface 103 is formed between the resin member 14 and the metal member 12. This is thought to be due to the structure in which the anchor effect between them can be expressed more strongly.
  • the cross-sectional shape of the concave portion 201 is the above shape, the resin member 14 is caught between the opening 203 and the bottom portion 205 of the concave portion 201, so that the anchor effect is effective. Therefore, it is considered that the bonding strength and bonding durability between the resin member 14 and the metal member 12 are improved.
  • the average depth of the recess 201 is preferably 0.5 ⁇ m or more and 40 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the thermosetting resin composition (P) can sufficiently enter the depth of the recess 201, so that the resin member 14 and the metal member 12 enter each other. It is possible to further improve the mechanical strength and joining durability of the region.
  • the proportion of the filler (B) present inside the recesses 201 is increased when the thermosetting resin composition (P) contains the filler (B).
  • the average depth of the recess 201 can be measured from a scanning electron microscope (SEM) photograph as follows, for example. First, a cross section of the roughened layer 104 is photographed with a scanning electron microscope. From the observation image, 50 concave portions 201 are arbitrarily selected and their depths are measured. The average depth is obtained by integrating all the depths of the recesses 201 and dividing the sum by the number.
  • SEM scanning electron microscope
  • the surface roughness Ra of the bonding surface 103 of the metal member 12 is preferably 0.5 ⁇ m or more and 40.0 ⁇ m or less, more preferably 1.0 ⁇ m or more and 20.0 ⁇ m or less, and particularly preferably 1.0 ⁇ m or more and 10. 0 ⁇ m or less. When the surface roughness Ra is within the above range, the bonding strength between the resin member 14 and the metal member 12 can be further improved.
  • the maximum height Rz of the joint surface 103 of the metal member 12 is preferably 1.0 ⁇ m or more and 40.0 ⁇ m or less, and more preferably 3.0 ⁇ m or more and 30.0 ⁇ m or less. When the maximum height Rz is within the above range, the bonding strength between the resin member 14 and the metal member 12 and the durability of the bonding can be further improved. Ra and Rz can be measured according to JIS-B0601.
  • the ratio of the actual surface area by the nitrogen adsorption BET method to the apparent surface area of the joint surface 103 to be joined to at least the resin member 14 is preferably 100 or more, more preferably. 150 or more.
  • specific surface area is preferably 400 or less, more preferably 380 or less, and particularly preferably 300 or less.
  • the bonding strength and bonding durability between the resin member 14 and the metal member 12 can be further improved.
  • the apparent surface area in the present embodiment means a surface area when it is assumed that the surface of the metal member 12 is smooth without unevenness.
  • the surface shape is a rectangle, it is represented by vertical length ⁇ horizontal length.
  • the actual surface area by the nitrogen adsorption BET method in the present embodiment means the BET surface area obtained from the adsorption amount of nitrogen gas.
  • BELSORPmini II a specific surface area / pore distribution measurement device for a vacuum dried sample to be measured
  • the nitrogen adsorption / desorption amount at liquid nitrogen temperature is measured, and based on the nitrogen adsorption / desorption amount Can be calculated.
  • the reason why the metal-resin composite 16 having further excellent bonding strength and bonding durability can be obtained is not clear, but the surface of the bonding surface 103 with the resin member 14 is not clear. This is considered to be because the anchor effect between the resin member 14 and the metal member 12 can be expressed more strongly.
  • the specific surface area is equal to or greater than the lower limit, the contact area between the resin member 14 and the metal member 12 is increased, and the region where the resin member 14 and the metal member 12 enter each other increases. As a result, the region where the anchor effect works increases, and it is considered that the bonding strength and bonding durability between the resin member 14 and the metal member 12 are further improved.
  • the specific surface area is too large, the ratio of the metal member 12 in the region where the resin member 14 and the metal member 12 penetrated each other decreases, so that the mechanical strength and bonding durability of this region decrease. . Therefore, when the specific surface area is equal to or less than the upper limit value, the mechanical strength and the durability of bonding of the region where the resin member 14 and the metal member 12 have invaded each other are further improved. It is considered that the bonding strength with the metal member 12 and the durability of the bonding can be further improved. From the above, when the specific surface area is within the above range, the surface of the joint surface 103 with the resin member 14 can exhibit the anchor effect between the resin member 14 and the metal member 12 more strongly and has a well-balanced structure. It is inferred that
  • the metal member 12 is not particularly limited, but at least the glossiness of the bonding surface 103 bonded to the resin member 14 is preferably 0.1 or more, more preferably 0.5 or more, and further preferably 1 or more. is there. When the glossiness is not less than the lower limit, the bonding strength between the resin member 14 and the metal member 12 can be further improved. Further, the glossiness is preferably 30 or less, more preferably 20 or less. When the glossiness is not more than the above upper limit value, the bonding strength between the resin member 14 and the metal member 12 can be further improved.
  • the glossiness in the present embodiment indicates a value at a measurement angle of 60 ° (incident angle of 60 °, reflection angle of 60 °) measured in accordance with ASTM-D523.
  • the glossiness can be measured using, for example, a digital glossiness meter (20 °, 60 °) (GM-26 type, manufactured by Murakami Color Research Laboratory). If the glossiness is within the above range, the reason why the metal resin composite 16 that is more excellent in the bonding strength is not necessarily clear, but the surface of the bonding surface 103 with the resin member 14 has a more messy structure. This is considered to be because the anchor effect between the resin member 14 and the metal member 12 can be expressed more strongly.
  • the shape of the metal member 12 is not particularly limited as long as the shape has the joint surface 103 to be joined to the resin member 14. it can. Moreover, the structure which consists of these combination may be sufficient.
  • the metal member 12 having such a shape can be obtained by processing the above-described metal material by a known processing method.
  • the shape of the joint surface 103 joined to the resin member 14 is not particularly limited, and examples thereof include a flat surface and a curved surface.
  • the roughened layer 104 can be formed, for example, by chemically treating the surface of the metal member 12 using a surface treatment agent.
  • the chemical treatment of the surface of the metal member 12 using the surface treatment agent itself has been performed in the prior art.
  • factors such as (1) combination of metal member and chemical treatment agent, (2) temperature and time of chemical treatment, and (3) post-treatment of the surface of the metal member after chemical treatment are included. Highly controlled. In order to obtain the metal resin composite 16 having a bending fatigue resistance of 1,000,000 times, it is particularly important to highly control these factors.
  • an example of a method for forming the roughened layer 104 on the surface of the metal member 12 will be described.
  • the method for forming the roughened layer 104 according to the present embodiment is not limited to the following example.
  • a combination of a metal member and a surface treatment agent is selected.
  • a metal member composed of iron or stainless steel it is preferable to select an aqueous solution in which an inorganic acid, a chlorine ion source, a cupric ion source, and a thiol compound are combined as necessary as a surface treatment agent.
  • a metal member composed of aluminum or an aluminum alloy it is preferable to select an aqueous solution in which an alkali source, an amphoteric metal ion source, a nitrate ion source, and a thio compound are combined as necessary as a surface treatment agent.
  • an alkali source is used as the surface treatment agent, and it is particularly preferable to select an aqueous solution of sodium hydroxide.
  • an inorganic acid such as nitric acid or sulfuric acid, an organic acid such as an unsaturated carboxylic acid, a persulfate, hydrogen peroxide, an imidazole, or a derivative thereof, Tetrazole and its derivatives, aminotetrazole and its derivatives, azoles such as aminotriazole and its derivatives, pyridine derivatives, triazine, triazine derivatives, alkanolamines, alkylamine derivatives, polyalkylene glycol, sugar alcohol, cupric ion source, chlorine It is preferable to select an aqueous solution using at least one selected from an ion source, a phosphonic acid chelating agent, an oxidizing agent, and N,
  • the metal member is immersed in a surface treatment agent, and the surface of the metal member is chemically treated.
  • the processing temperature is, for example, 30 ° C.
  • the treatment time is appropriately determined depending on the material and surface state of the metal member to be selected, the type and concentration of the surface treatment agent, the treatment temperature, etc., and is, for example, 30 to 300 seconds.
  • the etching amount of the metal member in the depth direction is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the etching amount in the depth direction of the metal member can be evaluated by calculating from the weight, specific gravity and surface area of the dissolved metal member.
  • the etching amount in the depth direction can be adjusted by the type and concentration of the surface treatment agent, the treatment temperature, the treatment time, and the like. In the present embodiment, by adjusting the etching amount in the depth direction, the thickness of the roughened layer 104, the average depth of the recesses 201, Ra, Rz, and the like described above can be adjusted.
  • the resin member 14 is formed by curing the thermosetting resin composition (P).
  • the thermosetting resin composition (P) includes a thermosetting resin (A), and examples of the thermosetting resin (A) include a phenol resin, an epoxy resin, an unsaturated polyester resin, a diallyl phthalate resin, and a melamine resin.
  • Oxetane resin, maleimide resin, urea (urea) resin, polyurethane resin, silicone resin, resin having a benzoxazine ring, cyanate ester resin, and the like are used. These may be used alone or in combination of two or more. Among these, a phenol resin excellent in heat resistance, workability, mechanical properties, adhesiveness, and wear resistance is preferably used.
  • the content of the thermosetting resin (A) is preferably 15 parts by mass or more and 60 parts by mass or less, more preferably 25 parts by mass or more and 50 parts by mass or less, when the entire resin member 14 is 100 parts by mass. is there.
  • phenol resin examples include novolak phenol resins such as phenol novolak resin, cresol novolak resin, and bisphenol A type novolak resin; Examples thereof include resol type phenol resins such as oil-melted resol phenol resin; aryl alkylene type phenol resins and the like. These may be used alone or in combination of two or more. Among these, a novolak type phenol resin is preferable because it is easily available, inexpensive, and has good workability by roll kneading.
  • hexamethylenetetramine when a novolac type phenol resin is used, hexamethylenetetramine is usually used as a curing agent.
  • hexamethylenetetramine is not particularly limited, it is preferably used in an amount of 10 to 25 parts by weight, more preferably 13 to 20 parts by weight, based on 100 parts by weight of the novolak type phenol resin.
  • the amount of hexamethylenetetramine used is not less than the above lower limit, the curing time during molding can be shortened.
  • the external appearance of a molded article can be improved as the usage-amount of hexamethylenetetramine is below the said upper limit.
  • the thermosetting resin composition (P) preferably contains a filler (B).
  • the elastomer (D) described later is excluded from the filler (B).
  • the content of the filler (B) is preferably 30 parts by mass or more and 80 parts by mass or less, and more preferably 40 parts by mass or more and 70 parts by mass or less when the entire resin member 14 is 100 parts by mass.
  • the value of the linear expansion coefficient (alpha) R of the resin member 14 obtained can be adjusted by adjusting the kind and content of a filler (B).
  • Examples of the filler (B) include a fibrous filler, a granular filler, and a plate-like filler.
  • the fibrous filler is a filler whose shape is fibrous.
  • the plate-like filler is a filler whose shape is plate-like.
  • the granular filler is a filler having a shape other than a fiber or plate including an indefinite shape.
  • fibrous filler examples include glass fiber, carbon fiber, asbestos fiber, metal fiber, wollastonite, attapulgite, sepiolite, rock wool, aluminum borate whisker, potassium titanate fiber, calcium carbonate whisker, and titanium oxide whisker.
  • fibrous inorganic fillers such as ceramic fibers; aramid fibers, polyimide fibers, and poly (fibrous organic fillers such as paraphenylene benzobisoxazole fibers). These may be used alone or in two kinds. You may use it in combination.
  • Examples of the plate-like filler and granular filler include talc, kaolin clay, calcium carbonate, zinc oxide, calcium silicate hydrate, mica, glass flakes, glass powder, magnesium carbonate, silica, titanium oxide, Alumina, aluminum hydroxide, magnesium hydroxide, barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate, aluminum nitride, boron nitride, silicon nitride, the above fibers
  • a pulverized product of a filler may be used alone or in combination of two or more.
  • the filler (B) is a filler (B1) having an average particle diameter of more than 5 ⁇ m in the weight-based particle size distribution measured by the laser diffraction scattering particle size distribution measurement method. It is preferable to contain from 99 parts by mass to 99 parts by mass, and more preferably from 85 parts by mass to 98 parts by mass. Thereby, the mechanical strength of the resin member 14 obtained can be further improved while improving the workability of the thermosetting resin composition (P).
  • the upper limit of the average particle diameter of a filler (B1) is not specifically limited, For example, it is 100 micrometers or less.
  • the filler (B1) includes a fibrous filler or a plate-like filler having an average major axis of 5 ⁇ m to 50 mm and an average aspect ratio of 1 to 1000.
  • the average major axis and average aspect ratio of the filler (B1) can be measured from an SEM photograph as follows, for example. First, a plurality of fibrous fillers or plate-like fillers are photographed with a scanning electron microscope.
  • fibrous fillers or plate-like fillers are arbitrarily selected, and their major diameters (fiber length in the case of fibrous fillers, planar major dimension in the case of plate-like fillers) and The short diameter (in the case of a fibrous filler, the fiber diameter, in the case of a plate-like filler, the dimension in the thickness direction) is measured.
  • the average major axis is obtained by integrating all major axes and dividing by the number.
  • the average minor axis is obtained by integrating all minor axes and dividing by the number.
  • the average major axis with respect to the average minor axis is defined as the average aspect ratio.
  • the filler (B1) is preferably one or more selected from glass fibers, carbon fibers, glass beads, calcium carbonate, and the like. When such a filler (B1) is used, the mechanical strength of the resin member 14 can be particularly improved.
  • the filler (B) has an average particle size of 0.1 ⁇ m or more and 5 ⁇ m or less in a weight-based particle size distribution measured by a laser diffraction / scattering particle size distribution measurement method when the entire filler (B) is 100 parts by mass.
  • the filler (B2) is preferably contained in an amount of 1 part by mass or more and 30 parts by mass or less, and more preferably 2 parts by mass or more and 15 parts by mass or less. Thereby, the filler (B) can be sufficiently present inside the recess 201. As a result, the mechanical strength of the region where the resin member 14 and the metal member 12 have entered each other can be further improved.
  • the average major axis is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, more preferably 0.2 ⁇ m or more and 50 ⁇ m or less, and the average aspect ratio is preferably 1 or more and 50 or less, more preferably 1 or more and 40 or less. It is more preferable to include a fibrous filler or a plate-like filler.
  • the average major axis and average aspect ratio of the filler (B2) can be measured from an SEM photograph as follows, for example. First, a plurality of fibrous fillers or plate-like fillers are photographed with a scanning electron microscope.
  • fibrous fillers or plate-like fillers are arbitrarily selected, and their major diameters (fiber length in the case of fibrous fillers, planar major dimension in the case of plate-like fillers) and The short diameter (in the case of a fibrous filler, the fiber diameter, in the case of a plate-like filler, the dimension in the thickness direction) is measured.
  • the average major axis is obtained by integrating all major axes and dividing by the number.
  • the average minor axis is obtained by integrating all minor axes and dividing by the number.
  • the average major axis with respect to the average minor axis is defined as the average aspect ratio.
  • a filler (B2) one type selected from wollastonite, kaolin clay, talc, calcium carbonate, zinc oxide, calcium silicate hydrate, aluminum borate whisker, and potassium titanate fiber or Two or more are preferred.
  • thermosetting resin composition (P) preferably contains a solid lubricant as the filler (B).
  • a solid lubricant for example, one or more selected from graphite, carbon fiber, and fluororesin are preferable.
  • the filler (B) may be subjected to a surface treatment with a coupling agent such as a silane coupling agent (C) described later.
  • a coupling agent such as a silane coupling agent (C) described later.
  • the thermosetting resin composition (P) may further contain a silane coupling agent (C).
  • a silane coupling agent (C) By including the silane coupling agent (C), the adhesion between the resin member 14 and the metal member 12 can be improved. Further, by including the silane coupling agent (C), the affinity between the thermosetting resin (A) and the filler (B) is improved, and as a result, the mechanical strength of the resin member 14 is further improved. be able to.
  • the content of the silane coupling agent (C) is not particularly limited because it depends on the specific surface area of the filler (B), but is preferably 0.01 parts by mass or more and 4 parts by mass with respect to 100 parts by mass of the filler (B). 0.0 part by mass or less, and more preferably 0.1 part by mass or more and 1.0 part by mass or less. When the content of the silane coupling agent (C) is within the above range, the mechanical strength of the resin member 14 can be further improved while sufficiently covering the filler (B).
  • silane coupling agent (C) examples include epoxy groups such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • alkoxysilane compounds mercapto group-containing alkoxysilane compounds such as ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane; ⁇ -ureidopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane, ⁇ - (2- Ureido group-containing alkoxysilane compounds such as ureidoethyl) aminopropyltrimethoxysilane; ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropylmethyldimethoxy Isocyanato group-containing alkoxysilane compounds such as silane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyldime
  • the thermosetting resin composition (P) according to the present embodiment may further include an elastomer (D).
  • the filler (B) described above is excluded from the elastomer (D).
  • the content of the elastomer (D) is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 1.5 parts by mass or more and 7 parts by mass or less when the entire resin member 14 is 100 parts by mass. .
  • Examples of the elastomer (D) include unmodified polyvinyl acetate, carboxylic acid-modified polyvinyl acetate, polyvinyl butyral, natural rubber, isoprene rubber, styrene / butadiene rubber, butadiene rubber, chloroprene rubber, butyl rubber, and ethylene / propylene rubber.
  • unmodified polyvinyl acetate, carboxylic acid-modified polyvinyl acetate, acrylic rubber, acrylonitrile / budadiene rubber, and polyvinyl butyral are preferable.
  • the toughness of the resin member 14 can be particularly improved.
  • thermosetting resin composition P
  • thermosetting resin (A) if necessary, a filler (B), a silane coupling agent (C), an elastomer (D), a curing agent, a curing aid, a release agent, a pigment, a flame retardant, A weathering agent, an antioxidant, a plasticizer, a lubricant, a sliding agent, a foaming agent, and the like are blended and mixed uniformly.
  • thermosetting resin composition (P) is obtained by granulating or pulverizing the obtained mixture.
  • the linear expansion coefficient ⁇ R in the range from 25 ° C. to the glass transition temperature of the resin member 14 is preferably 10 ppm / ° C. or more and 50 ppm / ° C. or less, more preferably 15 ppm / ° C. or more and 45 ppm / ° C. or less.
  • the reliability of the temperature cycle of the metal resin composite 16 can be further improved.
  • the density of the resin member 14 is preferably 2.5 g / cm 3 or less, and more preferably 2.0 g / cm 3 or less, from the viewpoint of weight reduction.
  • the thermal conductivity of the resin member 14 is preferably 90 W / (m ⁇ K) or less, and more preferably 1 W / (m ⁇ K) or less. If it is below the said upper limit, the heat insulation of the compressor 1 will improve. Therefore, the energy efficiency of the compressor 1 can be improved.
  • the thermal conductivity can be measured by a laser flash method. In addition, when there exists anisotropy in heat conductivity, it is about the heat conductivity of the direction perpendicular
  • the metal resin composite 16 is formed by bonding a resin member 14 and a metal member 12.
  • the linear expansion coefficient ⁇ R in the range from 25 ° C. to the glass transition temperature of the resin member 14 and the linear expansion coefficient in the range from 25 ° C. of the metal member 12 to the glass transition temperature of the resin member 14.
  • the absolute value of the difference from ⁇ M ( ⁇ R ⁇ M ) is preferably 25 ppm / ° C. or less, more preferably 10 ppm / ° C. or less. If the difference in the linear expansion coefficient is not more than the above upper limit value, thermal stress due to the difference in linear expansion that occurs when the metal resin composite 16 is exposed to a high temperature can be suppressed.
  • the bonding strength between the resin member 14 and the metal member 12 can be maintained even at a high temperature. That is, if the difference in the linear expansion coefficient is not more than the above upper limit value, the dimensional stability of the metal resin composite 16 at a high temperature can be improved.
  • the linear expansion coefficient has anisotropy, an average value thereof is represented. For example, when the resin member 14 has a sheet shape, when the linear expansion coefficient in the flow direction (MD) and the linear expansion coefficient in the vertical direction (TD) are different from each other, the average value thereof is the linear expansion coefficient ⁇ of the resin member 14. R.
  • the metal resin composite 16 is not particularly limited, but it is preferable that the resin member 14 and the metal member 12 are joined without an adhesive.
  • the resin member 14 and the metal member 12 have excellent bonding strength even without an adhesive. Therefore, the manufacturing process of the metal resin composite 16 can be simplified.
  • thermosetting resin composition (P) containing the filler (B) When the thermosetting resin composition (P) containing the filler (B) is used, the filler (B) is present inside the recess 201, and the scanning electron microscope of the filler (B) present in the recess 201 is used.
  • the average major axis by image analysis of photographs is preferably 0.1 ⁇ m or more and 5.0 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 4 ⁇ m or less. Thereby, the mechanical strength of the area
  • the average aspect ratio of the filler (B) existing inside the recess 201 is preferably 1 or more and 50 or less, more preferably 1 or more and 40 or less.
  • the average major axis and average aspect ratio of the filler (B) present in the recess 201 can be measured from the SEM photograph as follows. First, a cross section of the roughened layer 104 is photographed with a scanning electron microscope. From the observation image, 50 fillers (B) existing inside the recess 201 are arbitrarily selected, and their major diameters (fiber length in the case of fibrous fillers, and major axis in the planar direction in the case of plate-like fillers). Dimension) and a short diameter (in the case of a fibrous filler, the fiber diameter, in the case of a plate-like filler, the dimension in the thickness direction) are measured. The average major axis is obtained by integrating all major axes and dividing by the number. Similarly, the average minor axis is obtained by integrating all minor axes and dividing by the number. The average major axis with respect to the average minor axis is defined as the average aspect ratio.
  • the filler (B) present in the recess 201 is a group consisting of wollastonite, kaolin clay, talc, calcium carbonate, zinc oxide, calcium silicate hydrate, aluminum borate whisker, and potassium titanate fiber. It is preferable that it is 1 type, or 2 or more types chosen from.
  • the resin member 14 when the resin member 14 contains an elastomer (D), the resin member 14 preferably has a sea-island structure, and the elastomer (D) is preferably present in the island phase.
  • the toughness of the resin member 14 can be improved and the impact resistance of the metal resin composite 16 can be improved. Therefore, even if an impact is applied to the metal resin composite 16 from the outside, the bonding strength between the resin member 14 and the metal member 12 can be maintained.
  • the sea-island structure can be observed by scanning electron micrographs.
  • the average diameter by image analysis of the scanning electron micrograph of the island phase is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 30 ⁇ m or less.
  • the average diameter of the island phase can be measured from a scanning electron microscope (SEM) photograph as follows. First, a cross section of the resin member 14 is photographed with a scanning electron microscope. From the observation image, 50 island phases existing in the resin member 14 are arbitrarily selected and their diameters are measured. The average diameter is the sum of the island phase diameters divided by the number.
  • the bending strength of the metal resin composite 16 is preferably 150 MPa or more, and more preferably 200 MPa or more, from the viewpoint of improving the strength of the housing 10.
  • the bending strength can be measured according to JIS K 7171.
  • the bending strength can also be converted from the result of measurement by a dynastat tester.
  • the bending strength measured by a Dynestat tester using a test piece having a width b [mm] and a thickness h [mm] is M [kg ⁇ cm]
  • the bending strength is expressed as ⁇ f. [MPa]
  • ⁇ f 9.8 ⁇ 6 ⁇ 10 ⁇ M / (bh 2 ).
  • the width b of the test piece used for the Dynestat test can be 4 mm
  • the thickness is 4 mm
  • the depth is 15 mm.
  • This evaluation can be performed by preparing an appropriate test piece by cutting it from the housing 10. At this time, the test piece includes only one joint surface between the metal member 12 and the resin member 14.
  • the metal resin composite 16 preferably has low refrigerant gas permeability.
  • the permeability of the refrigerant gas can be evaluated by measuring the gas permeability coefficient according to JIS K 7126-1 using the pressure sensor method.
  • the refrigerant gas is, for example, Freon gas.
  • the gas permeability coefficient measured using Freon gas is preferably less than 1 ⁇ 10 16 mol ⁇ m / (m 2 ⁇ s / Pa), more preferably less than 5 ⁇ 10 17 mol ⁇ m / (m 2 ⁇ s / Pa). preferable. If it is less than the said upper limit, the compressor 1 which functions efficiently can be provided. This evaluation can be performed by preparing an appropriate test piece by cutting it from the housing 10.
  • test piece intended to include only one joint surface of the metal member 12 and the resin member 14, the ratio d 1 / d 2 of the thickness d 2 of the thick d 1 and the metallic member 12 of the resin member 14 is 2 A test piece is used.
  • the housing 10 may include only one metal member 12 or may include a plurality of metal members 12.
  • casing 10 which concerns on this embodiment is an example of the method of manufacturing the housing
  • the casing 10 may be manufactured by other methods as long as the casing 10 is manufactured from the metal resin composite 16 having a bending fatigue resistance of 1,000,000 times.
  • casing 10 For example, the injection molding method, the transfer molding method, the compression molding method, the injection compression molding method etc. are mentioned.
  • FIG. 5 is a diagram for explaining an example of a method for manufacturing the housing 10 according to the present embodiment.
  • the manufacturing method of the housing 10 according to the present embodiment includes a step of preparing the metal member 12 and the mold 8, a step of arranging the metal member 12 in the molding space 810 of the mold 8, and a thermosetting resin ( P) and the step of filling the molding space 810 with the fluidized resin material 850, and the metal resin composite 16 in which the resin member 14 and the metal member 12 are bonded by curing the filled resin material 850.
  • casing 10 which becomes this order is included. This will be described in detail below.
  • the mold 8 includes a first mold part 81 and a second mold part 82, and a molding space is formed by the first mold part 81 and the second mold part 82.
  • a mold 8 on which 810 is formed is used.
  • die part 82 say a part of metal mold
  • the metal member 12 in the step of filling the molding space 810 with the fluidized resin material 850, the metal member 12 is moved to the first mold part 81 and the second mold by the flow pressure of the resin material 850. It is preferable to fill the molding space 810 with the resin material 850 while pressing against either molding surface of the mold part 82.
  • casing 10 of the favorable quality which suppresses generation
  • a transfer mold is used as the mold 8.
  • a transfer molding die, an injection molding die, or a compression molding die may be used as the die 8. May be. Even when an injection mold or a compression mold is used, the same effects as when a transfer mold is used are obtained.
  • a transfer mold is used from the viewpoint of improving the controllability of the dimensional accuracy of the molded product.
  • the case where the outer surface of the housing 10 is formed using a plurality of metal members 12 will be described in detail as an example.
  • the strength of the housing 10 can be improved by using the integrated metal member 12.
  • the shape and arrangement of the metal member 12 can be appropriately determined according to the structure of the housing 10.
  • FIG. 5 is a diagram for explaining an example of a method for manufacturing the housing 10 according to the present embodiment.
  • the shapes of the metal member 12 and the resin member 14 are shown in a simplified manner.
  • (a) is a figure which shows the structure of the metal mold
  • (b) is a figure for demonstrating the process of arrange
  • (c) ) Is a diagram for explaining a process of filling the molding space 810 with the resin material 850
  • (d) is a diagram for explaining a process of obtaining the housing 10 by curing the resin material 850.
  • the mold 8 includes a first mold part 81 and a second mold part 82.
  • a molding space 810 in which the metal member 12 is arranged in a subsequent process is formed.
  • the second mold part 82 has a pot 820 charged with a resin material 850 before molding, and a plunger 830 having an auxiliary ram inserted into the pot 820 to melt the resin material 850 by applying pressure thereafter.
  • a sprue 840 that feeds the molten resin material 850 into the molding space 810.
  • the mold 8 according to the present embodiment is a pot type transfer molding machine that does not include an auxiliary ram, even if it is applied to a plunger type transfer molding machine that includes an auxiliary ram as shown in the figure. It may be applied (not shown).
  • the metal member 12 it is preferable to prepare the metal member 12 in which at least the region to be joined to the resin member 14 is roughened from the viewpoint of improving adhesion and durability.
  • the metal member 12 is disposed in the molding space 810 of the mold 8. Specifically, the first mold part 81 is lowered, and the metal member 12 is arranged in a portion corresponding to the molding space 810 with the mold 8 opened without being fixed. In this way, when the molten resin material 850 is introduced into the molding space 810, the metal member 12 is moved to either the first mold part 81 or the second mold part 82 by the flow pressure of the introduced resin. It can be pressed against the wall surface (molded surface) of the mold member. In the present embodiment, the metal member 12 is pressed against the wall surface of the first mold part 81.
  • the metal member 12 is preferably arranged in advance in contact with either one of the wall surfaces (molding surfaces) of the first mold part 81 or the second mold part 82. By doing so, it is possible to more effectively prevent the molten resin material 850 from entering the gap between the metal member 12 and the wall surface of the mold member.
  • the shape of the metal member 12 is a plate shape or a sheet shape along the wall surface of the first mold portion 81 or the second mold portion 82 to be pressed. With such a shape, the flow pressure of the resin material 850 can be received by the surface of the metal member 12, so that the metal member 12 can be either the second mold portion 82 or the first mold portion 81. It can be surely pressed against the molding surface. Thereby, the position shift of the metal member 12 that occurs when the resin material 850 is introduced into the molding space 810 can be prevented, and the generation of burrs can be more reliably suppressed.
  • the step of filling the molding space 810 with the resin material 850 ((c) in the figure) and a step of obtaining the housing 10 by curing the resin material 850 ((d) in the drawing) will be described.
  • the step of filling the molding space 810 with the resin material 850 first, the first mold part 81 is raised and the mold 8 is closed, and the resin material 850 before molding is placed in the pot 820.
  • the property of the resin material 850 before molding is not particularly limited, it may remain in the form of powder or granules of the thermosetting resin composition (P), or the thermosetting resin composition (P) may be in the form of a column.
  • It may be formed on a tablet, or may be in a semi-molten normal state by preheating with a preheater or the like in advance.
  • a pressure is applied to the resin material 850 by inserting a plunger 830 having an auxiliary ram into the pot 820.
  • the molten resin material 850 is introduced into the molding space 810 through the sprue 840.
  • the resin material 850 introduced into the molding space 810 flows in the direction indicated by the dotted line described in FIG.
  • the metal member 12 can be pressed against the first mold part 81 by the flow pressure of the resin material 850, and the metal member 12 can be apparently fixed to the wall surface of the mold member.
  • the resin material 850 filled in the molding space 810 is cured by being heated and pressurized, and the metal resin composite 16 including the metal member 12 and the resin member 14 is molded ((d in this figure). )).
  • the metal resin composite 16 including the metal member 12 and the resin member 14 is molded ((d in this figure). )).
  • the cured product (cal) of the resin material 850 remaining in the pot 820 and the cured product in the sprue 840 are separated from the metal resin composite 16 by pulling up the plunger 830 before opening the mold 8. .
  • the resin material 850 introduced into the molding space 810 proceeds in one direction without backflow.
  • the mechanical strength of the resin member 14 can be improved.
  • the orientation of the fibrous filler in the cured resin member 14 can be controlled.
  • the molten resin material 850 into the molding space 810 after degassing the molding space 810.
  • thermosetting resin composition (P) preferably has high fluidity in order to perform molding well. Therefore, the thermosetting resin composition (P) has a melt viscosity at 175 ° C. of preferably 10 Pa ⁇ s to 3000 Pa ⁇ s, and more preferably 30 Pa ⁇ s to 2000 Pa ⁇ s.
  • the melt viscosity at 175 ° C. can be measured by, for example, a thermal fluidity evaluation apparatus (flow tester) manufactured by Shimadzu Corporation.
  • the thermosetting resin composition (P) preferably has the following viscosity behavior.
  • the thermosetting resin composition (P) is heated from 60 ° C. to a molten state at a rate of temperature increase of 3 ° C./min and a frequency of 1 Hz using a dynamic viscoelasticity measuring device, the thermosetting resin composition (P) has a characteristic that the melt viscosity decreases at the initial stage and further increases after reaching the minimum melt viscosity, and the minimum melt viscosity is in the range of 10 Pa ⁇ s to 2000 Pa ⁇ s. .
  • thermosetting resin composition (P) contains the filler (B)
  • the thermosetting resin (A) and the filler (B) are separated, Only the thermosetting resin (A) can be prevented from flowing, and a more uniform resin member 14 can be obtained.
  • a filler (B) is fully supplied inside the recessed part 201. FIG. be able to. As a result, the mechanical strength of the region where the resin member 14 and the metal member 12 have entered each other can be further improved.
  • the temperature at which the minimum melt viscosity is reached is preferably in the range of 100 ° C. or higher and 250 ° C. or lower.
  • thermosetting resin composition (P) having such a viscosity behavior, for example, the type and amount of the thermosetting resin (A) described above, the type and amount of the filler (B), an elastomer, What is necessary is just to adjust the kind and quantity of (D) suitably.
  • the molding conditions of the metal resin composite 16 are not particularly limited, and examples include molding conditions of a temperature of 160 to 180 ° C., a pressure of 10 to 30 MPa, and a curing time of 30 seconds to 5 minutes.
  • the casing 10 obtained by the manufacturing method described above has a high quality in which inconveniences such as burrs are eliminated by inserting the resin material 850 through the gap between the metal member 12 and the mold member. Is.
  • the casing 10 according to the present embodiment since the casing 10 according to the present embodiment has no step at the joint portion between the metal member 12 and the resin member 14 in which the generation of burrs is suppressed, it has an excellent balance between mechanical strength and rigidity and is long-term. It can be used for.
  • the compressor 1 according to the present embodiment is manufactured by combining the housing 10 and other components. Other parts can be manufactured by generally known methods.
  • the casing 10 according to the present embodiment can be provided with a casing having an excellent performance balance between light weight and high resistance by being made of the metal resin composite 16 having a bending fatigue resistance of 1,000,000 times.
  • the housing 10 according to the present embodiment is made of the metal-resin composite 16 including the resin member 14, it can be made lighter than the housing 10 made of only the same kind of metal while maintaining the required strength. Therefore, an energy-saving vehicle can be realized even when mounted on a vehicle. Moreover, since the metal resin composite 16 is excellent in heat insulation, the energy efficient compressor 1 can be realized. In addition, since the degree of freedom in processing is high, the housing 10 and thus the compressor 1 can be manufactured efficiently. Moreover, the housing 10 having a complicated shape can be manufactured.
  • the compressor 1 Since the housing 10 according to the present embodiment is made of the metal-resin composite 16 including the metal member 12, the compressor 1 has excellent refrigerant gas sealing performance and energy efficiency compared to the housing 10 made of only resin. Can provide. Moreover, the housing
  • thermosetting resin composition (P1) 34.3 parts by weight of novolac type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 6.0 parts by weight of hexamethylenetetramine as a curing agent, and 57.1 parts by weight of glass fiber (manufactured by Nittobo) as a filler.
  • thermosetting resin composition (P1) ⁇ Evaluation of thermosetting resin composition (P1)> (Melt viscosity of thermosetting resin composition (P1))
  • the melt viscosity of the thermosetting resin composition (P1) at 175 ° C. was measured using a flow characteristic evaluation apparatus (Koka flow tester, CFT-500D).
  • the melt viscosity at 175 ° C. of the thermosetting resin composition (P1) was 425 Pa ⁇ S.
  • a metal sheet A of aluminum alloy A5052 80 mm ⁇ 10 mm, thickness 1.0 mm, density 2.68 g / cm 3) whose surface was sufficiently polished with # 4000 polishing paper, A thermal conductivity of 138 W / (m ⁇ K) was prepared.
  • An aqueous solution of potassium hydroxide (16 parts by mass), zinc chloride (5 parts by mass), sodium nitrate (5 parts by mass), and sodium thiosulfate (13 parts by mass) was prepared.
  • the metal sheet A was immersed and rocked, and dissolved in the depth direction by 15 ⁇ m (calculated from the reduced weight of aluminum). Subsequently, it was washed with water, immersed in a 35 parts by mass aqueous nitric acid solution (30 ° C.) and rocked for 20 seconds. Then, it washed with water and dried and the metal sheet 1 was obtained.
  • the sample to be measured was vacuum-dried at 120 ° C. for 6 hours, and then the nitrogen adsorption / desorption amount at the liquid nitrogen temperature was measured using an automatic specific surface area / pore distribution measuring device (BELSORPmini II, manufactured by Nippon Bell Co., Ltd.).
  • BELSORPmini II automatic specific surface area / pore distribution measuring device
  • the actual surface area by the nitrogen adsorption BET method was calculated from the BET plot.
  • the specific surface area was calculated by dividing the actual surface area measured by the nitrogen adsorption BET method by the apparent surface area.
  • the specific surface area of the metal sheet 1 was 270.
  • thermosetting resin composition (P1) was prepared using the obtained thermosetting resin composition (P1) and the metal sheet 1. Specifically, it was produced by the following procedure. First, the metal mold
  • thermosetting resin composition (P1) in the pot is melted and the thermosetting resin composition (P1) is introduced into the molding space at the same time.
  • the introduced thermosetting resin composition (P) The metal sheet 1 was pressed against the inner wall of the mold by the fluid pressure.
  • the thermosetting resin composition (P1) was molded with an effective pressure of 20 MPa, a mold temperature of 175 ° C., and a curing time of 3 minutes.
  • a metal resin composite 1 composite member which is a two-layer sheet of a resin member sheet (resin member) having a thickness of 3 mm and a metal sheet 1 (metal member) having a thickness of 1 mm constituted by the thermosetting resin composition (P1).
  • This metal resin composite 1 was used as a test piece 1.
  • ⁇ Evaluation of metal parts> (Average depth of recess)
  • the cross section of the joint between the metal member and the resin member of the test piece 1 was photographed with a scanning electron microscope (SEM), and the structure of the cross section of the joint was observed. From this observed image, the thickness of the roughened layer of the metal member and the average depth of the recess were determined.
  • the thickness of the roughened layer of the metal member of the test piece 1 was 15 ⁇ m, and the average depth of the recesses was 13 ⁇ m.
  • the cross section of the concave portion has a shape having a cross sectional width larger than the cross sectional width of the opening portion at least at a part between the opening portion and the bottom portion of the concave portion.
  • the test piece 1 was evaluated for 1 million times bending fatigue resistance. Two supporting points were applied to the surface of the test piece 1 on the metal member side, and an indenter was applied to the center of the surface of the resin member side. In a 25 ° C. atmosphere, the frequency of the repeated stress was 30 Hz, the distance L between the fulcrums was 64 mm, and a bending stress of 140 MPa was continuously applied to the test piece 1 million times. A case where no breakage or peeling occurred even when a stress was repeatedly applied 1 million times was evaluated as ⁇ , and a case where breakage or peeling occurred while applying a stress 1 million times was evaluated as x. Since the test piece 1 was neither peeled nor broken even when the stress was repeatedly applied 1 million times, it was evaluated as “good”.
  • the bending strength of the test piece 1 was measured according to JIS K 7171. At this time, with respect to the test piece of the composite member, two fulcrums were applied to the surface on the metal member side, and a three-point bending stress was applied by applying an indenter to the center of the surface on the resin member side. The bending strength was measured in a 25 ° C. atmosphere at a test speed of 2 mm / min and a distance L between fulcrums of 64 mm. The bending strength of the test piece 1 was 273 MPa.
  • the impermeability of the refrigerant gas of the test piece 1 was evaluated.
  • the gas permeability coefficient was measured using a pressure sensor method according to JIS K 7126-1.
  • a measurement sample having a thickness of 3 mm was cut out from the test piece 1.
  • the test piece of the metal resin composite was cut out so that the thickness of the metal member was 1 mm and the thickness of the resin member was 2 mm.
  • 134a freon gas was used as the test gas.
  • Measured gas permeability coefficient is, 5 ⁇ 10 17 mol ⁇ m / (m 2 ⁇ s / Pa) in the case of less than ⁇ , 5 ⁇ 10 17 mol ⁇ m / (m 2 ⁇ s / Pa) or more ⁇ where As evaluated.
  • a housing (housing) of a compressor (compressor) made of a metal resin composite was produced under the same conditions as those for producing the test piece 1, and a swash plate type compressor using the housing was produced.
  • Compressor parts other than the casing were prepared by a generally known method.
  • the housing was fabricated so that the sliding part between the cylinder and the piston was made of a resin member.
  • a metal member covers the outermost surface of the assembled compressor.
  • Example 2 A metal resin composite 2 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P2) was used instead of the thermosetting resin composition (P1). This metal resin composite 2 was used as a test piece 2, and the same evaluation as in Example 1 was performed.
  • thermosetting resin composition (P2) ⁇ Adjustment of thermosetting resin composition (P2)>
  • 0.5 parts by mass was added to 100 parts by mass, the pH of this reaction system was adjusted to 5.5, and a reflux reaction was carried out for 3 hours. Thereafter, steam distillation was performed at a vacuum degree of 100 Torr and a temperature of 100 ° C.
  • the melt viscosity at 175 ° C. of the thermosetting resin composition (P2) was 435 Pa ⁇ S.
  • the heat conductivity of the resin member of the test piece 2 was 0.4 W / (m ⁇ K), and the density was 1.79 g / cm 3 .
  • Example 3 A metal resin composite 3 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P3) was used instead of the thermosetting resin composition (P1). This metal resin composite 3 was used as a test piece 3 and evaluated in the same manner as in Example 1.
  • thermosetting resin composition (P3) 34.0 parts by mass of novolac type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 21.0 parts by mass of graphite as a filler, and 30.0 parts by mass of carbon fiber (manufactured by Zoltec) as a filler, cured 6.0 parts by mass of hexamethylenetetramine as an agent, 1.5 parts by mass of magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.) as a curing aid, and 7.5 parts by mass of other components such as a lubricant were dry mixed. This was melt-kneaded with a heating roll at 90 ° C., and the cooled product in a sheet form was pulverized to obtain a granular thermosetting resin composition (P3).
  • PR-51305 novolac type phenolic resin
  • carbon fiber manufactured by Zoltec
  • thermosetting resin composition (P3) The melt viscosity at 175 ° C. of the thermosetting resin composition (P3) was 430 Pa ⁇ S. Moreover, the heat conductivity of the resin member of the test piece 2 was 0.4 W / (m ⁇ K), and the density was 1.46 g / cm 3 .
  • Example 4 Instead of the metal sheet A, as a metal sheet that has not been surface-treated, a metal sheet B of aluminum die cast ADC12 (80 mm ⁇ 10 mm, thickness 1.0 mm, whose surface is sufficiently polished with # 4000 polishing paper, A metal resin composite 4 was produced in the same manner as in Example 1 except that the density was 2.71 g / cm 3 and the thermal conductivity was 92 W / (m ⁇ K). The metal sheet B was processed by the same method as in Example 1 to obtain a metal sheet 2 instead of the metal sheet 1. This metal resin composite 4 was used as a test piece 4 and evaluated in the same manner as in Example 1.
  • the characteristics of the metal sheet 2 were as follows. Ra: 5 ⁇ m Rz: 16 ⁇ m Roughening layer thickness: 20 ⁇ m Average depth of recess: 17 ⁇ m Specific surface area: 280 Glossiness: 8
  • the cross section of the concave portion has a shape having a cross sectional width larger than the cross sectional width of the opening portion at least at a part between the opening portion and the bottom portion of the concave portion.
  • Example 5 A metal resin composite 5 was produced in the same manner as in Example 1 except that the following metal sheet 3 was used instead of the metal sheet 1.
  • the metal resin composite 5 was used as a test piece 5 and the same evaluation as in Example 1 was performed.
  • the metal sheet 3 was obtained as follows. First, a metal sheet C (80 mm ⁇ 10 mm, thickness 1.0 mm, density 7.93 g / cm 3 , thermal conductivity 16.7 W / (m ⁇ K)) of stainless steel SUS304 not subjected to surface treatment was prepared.
  • an aqueous solution of sulfuric acid 50 parts by mass
  • cupric sulfate pentahydrate 3 parts by mass
  • potassium chloride 3 parts by mass
  • thiosalicylic acid 0.0001 parts by mass
  • the characteristics of the metal sheet 3 were as follows. Ra: 3 ⁇ m Rz: 15 ⁇ m Roughening layer thickness: 15 ⁇ m Average depth of recess: 13 ⁇ m Specific surface area: 270 Glossiness: 10
  • the cross section of the concave portion has a shape having a cross sectional width larger than the cross sectional width of the opening portion at least at a part between the opening portion and the bottom portion of the concave portion.
  • Example 1 A test piece not containing a resin member was prepared. Specifically, as a metal sheet that has not been surface-treated, a metal sheet D (80 mm ⁇ 10 mm, thickness 4.0 mm, density 2.50 mm) of aluminum alloy A5052 whose surface is sufficiently polished with # 4000 polishing paper. 68 g / cm 3 and a thermal conductivity of 138 W / (m ⁇ K)) were prepared and used as a test piece 6. The test piece 6 was evaluated in the same manner as in Example 1.
  • the surface portion of the test piece 6 was observed with a scanning electron microscope to obtain the thickness of the roughened layer and the average depth of the concave portions.
  • the casing made of only the metal member of this comparative example was manufactured by processing aluminum alloy A5052 by a known processing method.
  • the characteristics of the metal sheet D were as follows. Ra: 0.5 ⁇ m Rz: 0.7 ⁇ m Roughening layer thickness: 0 ⁇ m Average depth of recess: 0 ⁇ m Specific surface area: 50 Glossiness: 260
  • thermosetting resin composition (P1) (P1) is cured by compression molding to obtain 80 mm ⁇ 10 mm, A test piece 7 made of only a resin member having a thickness of 4.0 mm was obtained.
  • the compression molding conditions were an effective pressure of 20 MPa, a mold temperature of 175 ° C., and a curing time of 3 minutes.
  • the test piece 7 was evaluated in the same manner as in Example 1.
  • Example 3 (Comparative Example 3) Instead of the metal sheet 1, a metal resin composite 6 was produced in the same manner as in Example 1 except that the metal sheet A that was not subjected to the surface treatment used in Example 1 was used. The metal resin composite 6 was used as a test piece 8, and the same evaluation as in Example 1 was performed.
  • the characteristics of the metal sheet A were as follows. Ra: 0.5 ⁇ m Rz: 0.7 ⁇ m Roughening layer thickness: 0 ⁇ m Average depth of recess: 0 ⁇ m Specific surface area: 50 Glossiness: 260
  • the metal resin composites 1 to 5 obtained in Examples 1 to 5 were bent without peeling or breaking even when stress application with a bending stress of 140 MPa was repeated 1 million times at 25 ° C. It was confirmed to have fatigue resistance (1 million times bending fatigue resistance). Therefore, the casings of the compressors of Examples 1 to 5 were excellent in the performance balance of light weight and high resistance.
  • the comparative example 1 is excellent in the performance of the compressor and the durability of the casing, the weight is large. In the comparative example 2, the weight of the compressor is not exhibited, while the lightweight is not achieved in the comparative example 3.
  • the durability of the housing was inferior, and there was a problem in the performance balance between lightness and high resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Compressor (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 本実施形態に係る圧縮機(1)の筐体(10)は、内部に吸入された気体を圧縮する少なくとも1つの圧縮室(101)を備え、熱硬化性樹脂組成物からなる樹脂部材(14)と金属部材(12)とが接合された金属樹脂複合体(16)からなる。金属樹脂複合体(16)は、厚みdの樹脂部材(14)と厚みdの金属部材(12)とが積層して接合されており比d/dが3である試験片において、25℃の温度条件で、2つの支持台上に樹脂部材(14)の露出面を上にして配置して応力を加えない第1状態と、樹脂部材(14)側の面の中央に140MPaの1点曲げ応力を厚さ方向に印加して第1状態から中央を沈み込ませた第2状態とを、周波数30Hzで交互に100万回繰り返したとき、剥離も破断もしない曲げ疲労耐性を有する。

Description

圧縮機、圧縮機の筐体および圧縮機の筐体の製造方法
 本発明は圧縮機、圧縮機の筐体および圧縮機の筐体の製造方法に関する。
 エネルギー消費の少ない車両が求められている。そこで、車両に搭載される部品の軽量化により、省エネルギー化を図る方法がある。
 特許文献1には、樹脂製耐圧容器が開示されている。樹脂製の耐圧容器は軽量である一方、ガスバリア性に問題があった。本文献には、めっきなどにより表面に金属膜を成膜してガスバリア性の向上を図ることも記載されているが、本発明者が検討したところ、このような樹脂製耐圧容器の技術を車両用エアコンのコンプレッサーのハウジングに適用した場合には、十分な耐久性が得られなかった。この原因についてさらに検討したところ、圧縮機の動作による繰り返し応力によって金属と樹脂界面で剥離が生じるなど、耐性が不足していることが新たに見出された。
特開2004-196926号公報
 本発明は、軽量性と高耐性との性能バランスに優れる圧縮機の筐体を提供するものである。
 本発明によれば、
 内部に吸入された気体を圧縮する少なくとも1つの圧縮室を備え、
 熱硬化性樹脂組成物からなる樹脂部材と金属部材とが接合された金属樹脂複合体からなり、
 前記金属樹脂複合体は、厚みdの前記樹脂部材と厚みdの前記金属部材とが積層して接合されており比d/dが3である試験片において、25℃の温度条件で、2つの支持台上に前記樹脂部材の露出面を上にして配置して応力を加えない第1状態と、前記樹脂部材側の面の中央に140MPaの1点曲げ応力を厚さ方向に印加して前記第1状態から中央を沈み込ませた第2状態とを、周波数30Hzで交互に100万回繰り返したとき、剥離も破断もしない曲げ疲労耐性を有する、圧縮機の筐体
が提供される。
 本発明によれば、
 上記圧縮機の筐体を備える圧縮機
が提供される。
 本発明によれば、
 金属部材および金型を準備する工程と、
 前記金型の成形空間内に前記金属部材を配置する工程と、
 熱硬化性樹脂を含み、流動化した樹脂材料で前記成形空間内を充填する工程と、
 充填された前記樹脂材料を硬化させて樹脂部材と前記金属部材とが接合された金属樹脂複合体からなる筐体を得る工程とをこの順に含み、
 前記金属樹脂複合体は、厚みdの前記樹脂部材と厚みdの前記金属部材とが積層して接合されており比d/dが3である試験片において、25℃の温度条件で、2つの支持台上に前記樹脂部材の露出面を上にして配置して応力を加えない第1状態と、前記樹脂部材側の面の中央に140MPaの1点曲げ応力を厚さ方向に印加して前記第1状態から中央を沈み込ませた第2状態とを、周波数30Hzで交互に100万回繰り返したとき、剥離も破断もしない曲げ疲労耐性を有する、圧縮機の筐体の製造方法
が提供される。
 本発明によれば、軽量性と高耐性との性能バランスに優れる圧縮機の筐体を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態に係る圧縮機の筐体について説明するための模式図である。 100万回曲げ疲労耐性の評価方法について説明するための模式図である。 実施形態に係る金属樹脂複合体について説明するための図である。 実施形態に係る金属部材表面の粗化層を構成する凹部の断面形状の例を説明するための模式図である。 実施形態に係る筐体の製造方法の一例を説明するための図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 図1は、実施形態に係る圧縮機1の筐体10について説明するための図である。本図は、圧縮機1の構造の一例を模式的に示した断面図である。
 本実施形態に係る圧縮機1の筐体10は、内部に吸入された気体を圧縮する少なくとも1つの圧縮室101を備え、熱硬化性樹脂組成物からなる樹脂部材14と金属部材12とが接合された金属樹脂複合体16からなる。金属樹脂複合体16は、厚みdの樹脂部材14と厚みdの金属部材12とが積層して接合されており比d/dが3である試験片において、25℃の温度条件で、2つの支持台上に樹脂部材14の露出面を上にして配置して応力を加えない第1状態と、樹脂部材14側の面の中央に140MPaの1点曲げ応力を厚さ方向に印加して第1状態から中央を沈み込ませた第2状態とを、周波数30Hzで交互に100万回繰り返したとき、剥離も破断もしない曲げ疲労耐性を有する。
<圧縮機および筐体>
 まず、圧縮機1の構造について説明する。本実施形態では、圧縮機1が斜板式のコンプレッサーであり、筐体10がそのハウジングである例について説明する。圧縮機1は、低温低圧のガスをシリンダー(圧縮室)101に吸入し、吸入したガスをシリンダー101の内部でピストン20によって圧縮することにより、高温高圧のガスに変化させて吐出する。ガスはたとえば冷媒ガスである。本実施形態に係る圧縮機1は、筐体10、ピストン20、斜板30、吸入管40、吐出管50、シャフト60を備える。筐体10の内部にはシャフト60が挿入されており、シャフト60には、斜板30が斜めに固定されている。シャフト60は図示しないモーターやエンジンに接続され、筐体10に対して回転可能である。筐体10の内部には複数のピストン20が備えられており、各ピストン20の両端にはシリンダー101が形成されている。シリンダー101は円筒系であり、ピストン20はシリンダー101内を往復運動可能である。シリンダー101とピストン20の先端により形成される空間に、ガスが吸入され、ピストン20により圧縮される。ここで、シャフト60の回転軸とシリンダー101の長軸とは平行である。斜板30は、その外周部付近で各ピストン20に回転可能に取り付けられている。
 各シリンダー101には、吸入管40および吐出管50が接続されている。また、吸入管40とシリンダー101との接続部には吸入弁401が設けられ、および吐出管50とシリンダー101との接続部には吐出弁501が設けられている。
 圧縮機1は、金属樹脂複合体16からなる筐体10を備えている。本実施形態に係る圧縮機1は2つの筐体10を備え、2つの筐体10は、図示しない複数のボルトで接続されている。本実施形態に係る筐体10はいずれも金属部材12と樹脂部材14とを有する金属樹脂複合体16からなるが、これに限定されず、圧縮機1はたとえば金属のみからなる筐体を含んで構成されても良い。本実施形態に係る筐体10のうち、金属部材12および樹脂部材14の配置は特に限定されないが、強度および密封性を向上させる観点から、筐体10のうち圧縮機1の最外面を形成する部分は、金属部材12からなることが好ましい。また、シリンダー101におけるピストン20の摺動性向上のため、筐体10のうちシリンダー101の内壁に樹脂部材14が露出していることが好ましく、シリンダー101の内壁のうち、少なくともピストン20と摺動する部分が樹脂部材14からなることがより好ましい。シリンダー101の内壁が全て樹脂部材14からなってもよい。また、軽量化の観点から、筐体10は体積比にして50%以上が樹脂部材14からなることが好ましい。
 金属樹脂複合体16は、25℃において三点曲げの片振りで140MPaの曲げ応力による応力印加を100万回繰り返し行ったとき、剥離も破断もしない曲げ疲労耐性を有する。この疲労耐性の評価方法については後に詳細に説明する。金属樹脂複合体16がこのような曲げ疲労耐性を有することにより、耐久性に優れる圧縮機1とすることができる。筐体10の製造方法については後述する。
 次に、圧縮機1の動作について説明する。シャフト60はモーターまたはエンジンの駆動により回転する。シャフト60が回転することにより、シャフト60に固定された斜板30が回転する。斜板30はシャフト60に斜めに固定されているため、回転することで各ピストン20にシリンダー101の長軸方向(本図の左右方向)への力を加え、往復運動をさせる。そしてピストン20は、シリンダー101内の気体を圧縮する。シャフト60が一回転する間に、ピストン20は1往復することになる。
 冷媒ガスは、筐体10の外部から、吸入管40が接続されたシリンダー101内に、吸入管40を通って供給される。そしてピストン20で圧縮された冷媒ガスは吐出管50を通って筐体10の外部へ排出される。具体的には、吸入管40が接続されたシリンダー101内の空間が広がるようにピストン20が移動したとき、当該空間内が減圧され、吸入弁401が開き、吸入管40から低温低圧の冷媒ガスが導入され、当該空間が冷媒ガスで満たされる。このとき、吐出弁501は閉じている。反対に当該空間が狭くなるようにピストン20が移動したとき、冷媒ガスが圧縮され、高温高圧となる。当該空間内の圧力が規定の圧力以上に高まったとき、吐出弁501が開き、高温高圧の冷媒ガスが吐出管50を通って排出される。
 圧縮機1は、たとえば車両に搭載されるカーエアコンのコンプレッサーとして用いられるが、これに限定されない。圧縮機1は車両に搭載されないエアコンに用いられても良いし、冷凍機、空気圧縮機、噴霧機、過給器など、エアコン以外の用途に用いられても良い。
 なお、本実施形態では、圧縮機1が斜板式のコンプレッサーである例について説明したが、たとえばクランク式、ワップル式、スクロール式、ベーン式など、他の方式のコンプレッサーであってもよい。
 次に、本実施形態に係る筐体10について説明する。筐体10を構成する金属樹脂複合体16は、厚みdの樹脂部材14と厚みdの金属部材12とが積層して接合されており比d/dが3である試験片において、25℃の温度条件で、2つの支持台上に樹脂部材14側の面を上にして配置して応力を加えない第1状態と、樹脂部材14側の面の中央に140MPaの1点曲げ応力を厚さ方向に印加して第1状態から中央を沈み込ませた第2状態とを、周波数30Hzで交互に100万回繰り返したとき、剥離も破断もしない曲げ疲労耐性を有する。以後、このような曲げ疲労耐性を、「100万回曲げ疲労耐性」と呼ぶ。
 金属樹脂複合体16が、100万回曲げ疲労耐性を有するか否かは、金属樹脂複合体16からなる試験片に曲げ応力の繰り返し印加を行って評価することができる。以下に具体的に説明する。
 図2は、100万回曲げ疲労耐性の評価方法について説明するための図である。まず、金属樹脂複合体16からなる直方体の試験片を準備する。試験片は、金属部材12と樹脂部材14との接合面103を1つ有し、樹脂部材14の厚みが金属部材12の厚みの3倍(d/d=3)であるものとする。ここで、d/dが3であれば、試験片の厚さh、幅b、および奥行きの大きさは問わないが、試験片の厚さhは4.0±0.2mm、幅bは80.0±2.0mm、奥行きは10.0±0.2mmであることが好ましい。試験片において、金属部材12と樹脂部材14の接合面103は、厚さ方向に直交するようにする。試験片はたとえば筐体10から切り出して準備することができる。
 準備した試験片を2つの支持台703上に配置する(第1状態)。2つの支持台703間の距離は、準備した試験片が乗るように調節しておく。2つの支持台は試験片に対して左右対称に配置する。このとき、金属部材12側の面が下に向き、支持台703に接するように配置する。そして、反対側の樹脂部材14の面に圧子701を接触させ、接合面103に垂直な方向に140MPaの片振りの曲げ応力を繰り返し印加する。圧子701と試験片との接触位置は、2つの支持台703と試験片との接触位置(支点)から等距離の位置とする。繰り返し応力印加は25℃雰囲気下にて行う。
 曲げ応力の大きさσ[MPa]は、σ=3FL/2bhで表される。ここで、F[N]は圧子701から印加する力(単位はN)、Lは支点間距離(単位はmm)、bは試験片の幅(単位はmm)、hは試験片の厚さ(単位はmm)である。試験片の幅、厚さ、および支点間の距離に応じて、曲げ応力の大きさが140MPaとなるよう力Fを決定し、繰り返し応力を印加して評価することができる。
 このように140MPaの応力を印加することにより、試験片は中央が沈み込んだ形にわずかに曲がる(第2状態)。そして応力印加をやめ、応力を加えない第1状態に戻す。この第1状態と第2状態を交互に30Hzの周波数で100万回繰り返す。このように100万回の繰り返し応力を印加した後の試験片を観察し、剥離または破断が生じていないことを確認する。剥離も破断も生じていない場合、100万回曲げ疲労耐性があると評価する。
 たとえば、本実施形態に係る金属樹脂複合体16は、支点間距離Lを64mm、試験片の幅bを80mm、奥行きを10mm、厚さhを4.0mm(金属部材12の厚さ1.0mm、樹脂部材14の厚さ3.0mm)、力Fを1.87kNとすることにより、140MPaの曲げ応力を印加して、100万回曲げ疲労耐性があることを確認することができるが、上述の通り、この条件には限定されない。
 以下では、100万回曲げ疲労耐性を有する金属樹脂複合体16の接合面103などの構造および製造方法の例を説明するが、これに限定されず、筐体10を構成する金属樹脂複合体16は、100万回曲げ疲労耐性を有すればよい。
<金属部材>
 図3は、本実施形態に係る金属樹脂複合体16について説明するための図である。本図は、特に金属樹脂複合体16における金属部材12と樹脂部材14との接合面103を説明するためのモデル図であって、必ずしも筐体10の構造の全部もしくは一部を示すものではない。本図は、筐体10を構成する金属樹脂複合体16の成型品の一例を模式的に示した斜視図である。
 金属部材12を構成する金属材料は特に限定されないが、入手の容易さや価格の観点から、鉄、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅および銅合金などを挙げることができる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。これらの中でも、軽量かつ高強度の点から、アルミニウムおよびアルミニウム合金が好ましい。金属部材12は、樹脂部材14と金属部材12との接合強度を向上させる観点から、金属部材12の樹脂部材14との接合面103に微細な凹凸からなる粗化層104を有していることが好ましい。
 図4は、本実施形態に係る金属部材12表面の粗化層104を構成する凹部201の断面形状の例を説明するための模式図である。ここで、粗化層104とは、金属部材12の表面に設けられた複数の凹部201を有する領域をいう。
 粗化層104の厚みは、好ましくは3μm以上40μm以下であり、より好ましくは4μm以上32μm以下であり、特に好ましくは4μm以上30μm以下である。粗化層104の厚みが上記範囲内であると、樹脂部材14と金属部材12との接合強度および接合の耐久性をより一層向上させることができる。ここで、本実施形態において、粗化層104の厚みは、複数の凹部201の中で、最も深さが大きいものの深さD3を表し、走査型電子顕微鏡(SEM)写真から算出することができる。
 凹部201の断面は、凹部201の開口部203から底部205までの間の少なくとも一部に開口部203の断面幅D1よりも大きい断面幅D2を有する形状となっていることが好ましい。
 図4に示すように、凹部201の断面形状は、D2がD1よりも大きければ特に限定されず、様々な形状を取り得る。凹部201の断面形状は、例えば、走査型電子顕微鏡(SEM)により観察することができる。
 凹部201の断面形状が上記形状であると、接合強度により一層優れた金属樹脂複合体16が得られる理由は必ずしも明らかではないが、接合面103の表面が、樹脂部材14と金属部材12との間のアンカー効果がより一層強く発現できる構造となっているからだと考えられる。
 凹部201の断面形状が上記形状であると、樹脂部材14が凹部201の開口部203から底部205までの間で引っかかるため、アンカー効果が効果的に働く。そのため、樹脂部材14と金属部材12との接合強度および接合の耐久性が向上すると考えられる。
 凹部201の平均深さは、好ましくは0.5μm以上40μm以下であり、より好ましくは1μm以上30μm以下である。凹部201の平均深さが上記上限値以下であると、熱硬化性樹脂組成物(P)が凹部201の奥まで十分に入り込むことができるため、樹脂部材14と金属部材12とが相互に侵入した領域の機械的強度および接合の耐久性をより一層向上させることができる。凹部201の平均深さが上記下限値以上であると、熱硬化性樹脂組成物(P)が充填材(B)を含む場合に凹部201の内部に存在する充填材(B)の割合を増やすことができるため、樹脂部材14と金属部材12とが相互に侵入した領域の機械的強度および接合の耐久性を向上させることができる。したがって、凹部201の平均深さが上記範囲内であると、樹脂部材14と金属部材12との接合強度および接合の耐久性をより一層向上させることができる。
 凹部201の平均深さは、例えば、以下のように走査型電子顕微鏡(SEM)写真から測定することができる。まず、走査型電子顕微鏡により、粗化層104の断面を撮影する。その観察像から、凹部201を任意に50個選択し、それらの深さをそれぞれ測定する。凹部201の深さの全てを積算して個数で除したものを平均深さとする。
 金属部材12の接合面103の表面粗さRaは、好ましくは0.5μm以上40.0μm以下であり、より好ましくは1.0μm以上20.0μm以下であり、特に好ましくは1.0μm以上10.0μm以下である。上記表面粗さRaが上記範囲内であると、樹脂部材14と金属部材12との接合強度をより一層向上させることができる。
 また、金属部材12の接合面103の最大高さRzは、好ましくは1.0μm以上40.0μm以下であり、より好ましくは3.0μm以上30.0μm以下である。上記最大高さRzが上記範囲内であると、樹脂部材14と金属部材12との接合強度および接合の耐久性をより一層向上させることができる。なお、RaおよびRzは、JIS-B0601に準拠して測定することができる。
 金属部材12は、少なくとも樹脂部材14と接合する接合面103の見掛け表面積に対する窒素吸着BET法による実表面積の比(以下、単に比表面積とも呼ぶ。)が、好ましくは100以上であり、より好ましくは150以上である。上記比表面積が上記下限値以上であると、樹脂部材14と金属部材12との接合強度および接合の耐久性をより一層向上させることができる。また、上記比表面積が、好ましくは400以下であり、より好ましくは380以下であり、特に好ましくは300以下である。上記比表面積が上記上限値以下であると、樹脂部材14と金属部材12との接合強度および接合の耐久性をより一層向上させることができる。
 ここで、本実施形態における見掛け表面積は、金属部材12の表面が凹凸のない平滑状であると仮定した場合の表面積を意味する。例えば、その表面形状が長方形の場合には、縦の長さ×横の長さで表される。一方、本実施形態における窒素吸着BET法による実表面積は、窒素ガスの吸着量により求めたBET表面積を意味する。例えば、真空乾燥した測定対象試料について、自動比表面積/細孔分布測定装置(BELSORPminiII、日本ベル社製)を用いて、液体窒素温度における窒素吸脱着量を測定し、その窒素吸脱着量に基づいて算出することができる。
 上記比表面積が上記範囲内であると、より一層接合強度および接合の耐久性に優れた金属樹脂複合体16が得られる理由は必ずしも明らかではないが、樹脂部材14との接合面103の表面が、樹脂部材14と金属部材12との間のアンカー効果がより一層強く発現できる構造となっているからだと考えられる。
 上記比表面積が上記下限値以上であると、樹脂部材14と金属部材12の接触面積が大きくなり、樹脂部材14と金属部材12とが相互に侵入する領域が増える。その結果、アンカー効果が働く領域が増え、樹脂部材14と金属部材12との接合強度および接合の耐久性がより一層向上すると考えられる。
 一方、上記比表面積が大きすぎると、樹脂部材14と金属部材12とが相互に侵入した領域の金属部材12の割合が減るため、この領域の機械的強度および接合の耐久性が低下してしまう。そのため、上記比表面積が上記上限値以下であると、樹脂部材14と金属部材12とが相互に侵入した領域の機械的強度および接合の耐久性がより一層向上し、その結果、樹脂部材14と金属部材12との接合強度および接合の耐久性をより一層向上させることができると考えられる。
 以上から、上記比表面積が上記範囲内であると、樹脂部材14との接合面103の表面が、樹脂部材14と金属部材12との間のアンカー効果がより一層強く発現できる、バランスの良い構造になっていると推察される。
 金属部材12は、特に限定されないが、少なくとも樹脂部材14と接合する接合面103の光沢度が、好ましくは0.1以上であり、より好ましくは0.5以上であり、さらに好ましくは1以上である。上記光沢度が上記下限値以上であると、樹脂部材14と金属部材12との接合強度をより一層向上させることができる。また、上記光沢度が、好ましくは30以下であり、より好ましくは20以下である。上記光沢度が上記上限値以下であると、樹脂部材14と金属部材12との接合強度をより一層向上させることができる。ここで、本実施形態における光沢度は、ASTM-D523に準拠して測定した測定角度60°(入射角60°、反射角60°)の値を示す。光沢度は、例えば、ディジタル光沢度計(20°、60°)(GM-26型、村上色彩技術研究所社製)を用いて測定することができる。
 上記光沢度が上記範囲内であると、接合強度により一層優れた金属樹脂複合体16が得られる理由は必ずしも明らかではないが、樹脂部材14との接合面103の表面がより一層乱雑な構造となり、樹脂部材14と金属部材12との間のアンカー効果がより一層強く発現できる構造となっているからだと考えられる。
 金属部材12の形状は、樹脂部材14と接合する接合面103を有する形状であれば特に限定されず、例えば、シート状、平板状、曲板状、棒状、筒状、塊状などとすることができる。また、これらの組み合わせからなる構造体であってもよい。こうした形状の金属部材12は、前述した金属材料を公知の加工法により加工することにより得ることができる。
 また、樹脂部材14と接合する接合面103の形状は、特に限定されないが、平面、曲面などが挙げられる。
 次に、金属部材12の表面を粗化処理して粗化層104を形成する方法について説明する。
 粗化層104は、例えば、表面処理剤を用いて、金属部材12の表面を化学的処理することにより形成することができる。
 ここで、表面処理剤を用いて金属部材12の表面を化学的処理すること自体は従来技術においても行われてきた。しかし、本実施形態では、(1)金属部材と化学的処理剤の組み合わせ、(2)化学的処理の温度および時間、(3)化学的処理後の金属部材表面の後処理、などの因子を高度に制御している。100万回曲げ疲労耐性を有する金属樹脂複合体16を得るためには、これらの因子を高度に制御することが特に重要となる。
 以下、金属部材12の表面上に粗化層104を形成する方法の一例を示す。ただし、本実施形態に係る粗化層104の形成方法は、以下の例に限定されない。
 はじめに、(1)金属部材と表面処理剤の組み合わせを選択する。
 鉄やステンレスから構成される金属部材を用いる場合は、表面処理剤として、無機酸、塩素イオン源、第二銅イオン源、チオール系化合物を必要に応じて組合せた水溶液を選択するのが好ましい。
 アルミニウムやアルミニウム合金から構成される金属部材を用いる場合は、表面処理剤として、アルカリ源、両性金属イオン源、硝酸イオン源、チオ化合物を必要に応じて組合せた水溶液を選択するのが好ましい。
 マグネシウムやマグネシウム合金から構成される金属部材を用いる場合は、表面処理剤として、アルカリ源が用いられ、特に水酸化ナトリウムの水溶液を選択するのが好ましい。
 銅や銅合金から構成される金属部材を用いる場合は、表面処理剤として、硝酸、硫酸などの無機酸、不飽和カルボン酸などの有機酸、過硫酸塩、過酸化水素、イミダゾールおよびその誘導体、テトラゾールおよびその誘導体、アミノテトラゾールおよびその誘導体、アミノトリアゾールおよびその誘導体などのアゾール類、ピリジン誘導体、トリアジン、トリアジン誘導体、アルカノールアミン、アルキルアミン誘導体、ポリアルキレングリコール、糖アルコール、第二銅イオン源、塩素イオン源、ホスホン酸系キレート剤酸化剤、N,N-ビス(2-ヒドロキシエチル)-N-シクロヘキシルアミンから選ばれる少なくとも1種を用いた水溶液を選択するのが好ましい。
 つぎに、(2)金属部材を表面処理剤に浸漬させ、金属部材表面に化学的処理をおこなう。このとき、処理温度は、例えば、30℃である。また、処理時間は選定する金属部材の材質や表面状態、表面処理剤の種類や濃度、処理温度などにより適宜決定されるが、例えば、30~300秒である。このとき、金属部材の深さ方向のエッチング量を、好ましくは3μm以上、より好ましくは5μm以上にすることが重要である。金属部材の深さ方向のエッチング量は、溶解した金属部材の重量、比重および表面積から算出して、評価することができる。この深さ方向のエッチング量は、表面処理剤の種類や濃度、処理温度、処理時間などにより調整することができる。
 本実施形態では、深さ方向のエッチング量を調整することにより、前述した粗化層104の厚み、凹部201の平均深さ、Ra、Rz等を調整することができる。
 最後に、(3)化学的処理後の金属部材表面に後処理をおこなう。まず、金属部材表面を水洗、乾燥する。次いで、化学的処理をおこなった金属部材表面を硝酸水溶液などで処理する。
 以上の手順により、本実施形態に係る粗化層104を有する金属部材12を得ることができる。
<樹脂部材>
 つぎに、本実施形態に係る樹脂部材14について説明する。
 樹脂部材14は、熱硬化性樹脂組成物(P)を硬化してなる。
 熱硬化性樹脂組成物(P)は、熱硬化性樹脂(A)を含み、熱硬化性樹脂(A)としては、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、メラミン樹脂、オキセタン樹脂、マレイミド樹脂、ユリア(尿素)樹脂、ポリウレタン樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネートエステル樹脂などが用いられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。
 これらの中でも、耐熱性、加工性、機械的特性、接着性および耐摩耗性に優れるフェノール樹脂が好適に用いられる。
 熱硬化性樹脂(A)の含有量は、樹脂部材14の全体を100質量部としたとき、好ましくは15質量部以上60質量部以下であり、より好ましくは25質量部以上50質量部以下である。
 フェノール樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂などのノボラック型フェノール樹脂;メチロール型レゾール樹脂、ジメチレンエーテル型レゾール樹脂、桐油、アマニ油、クルミ油などで溶融した油溶融レゾールフェノール樹脂などのレゾール型フェノール樹脂;アリールアルキレン型フェノール樹脂などが挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。
 これらの中でも入手容易性、安価およびロール混練による作業性が良好などの理由からノボラック型フェノール樹脂が好ましい。
 上記フェノール樹脂において、ノボラック型フェノール樹脂を用いる場合は、通常、硬化剤としてヘキサメチレンテトラミンを使用する。ヘキサメチレンテトラミンは、特に限定されないが、ノボラック型フェノール樹脂100質量部に対して、10~25質量部使用することが好ましく、13~20質量部使用することがより好ましい。ヘキサメチレンテトラミンの使用量が上記下限値以上であると、成形時の硬化時間を短縮することができる。また、ヘキサメチレンテトラミンの使用量が上記上限値以下であると、成形品の外観を向上させることができる。
 熱硬化性樹脂組成物(P)は、樹脂部材14の機械的強度を向上させる観点から、充填材(B)を含むことが好ましい。ただし、本実施形態では、充填材(B)から後述するエラストマー(D)は除かれる。
 充填材(B)の含有量は、樹脂部材14の全体を100質量部としたとき、好ましくは30質量部以上80質量部以下であり、より好ましくは40質量部以上70質量部以下である。充填材(B)の含有量を上記範囲内とすることにより、熱硬化性樹脂組成物(P)の作業性を向上させつつ、得られる樹脂部材14の機械的強度をより一層向上させることができる。これにより、樹脂部材14と金属部材12との接合強度により一層優れた金属樹脂複合体16を得ることができる。また、充填材(B)の種類や含有量を調整することにより、得られる樹脂部材14の線膨張係数αの値を調整することができる。
 充填材(B)としては、例えば、繊維状充填材、粒状充填材、板状充填材などが挙げられる。ここで、繊維状充填材はその形状が繊維状である充填材である。板状充填材はその形状が板状である充填材である。粒状充填材は、不定形状を含む繊維状・板状以外の形状の充填材である。
 上記繊維状充填材としては、例えば、ガラス繊維、炭素繊維、アスベスト繊維、金属繊維、ワラストナイト、アタパルジャイト、セピオライト、ロックウール、ホウ酸アルミニウムウイスカー、チタン酸カリウム繊維、炭酸カルシウムウィスカー、酸化チタンウィスカー、セラミック繊維などの繊維状無機充填材;アラミド繊維、ポリイミド繊維、ポリ(パラフェニレンベンゾビスオキサゾール繊維などの繊維状有機充填材;が挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。
 また、上記板状充填材、粒状充填材としては、例えば、タルク、カオリンクレー、炭酸カルシウム、酸化亜鉛、ケイ酸カルシウム水和物、マイカ、ガラスフレーク、ガラス粉、炭酸マグネシウム、シリカ、酸化チタン、アルミナ、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、上記繊維状充填材の粉砕物などが挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。
 充填材(B)は、充填材(B)の全体を100質量部としたとき、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径が5μmを超える充填材(B1)を70質量部以上99質量部以下含むことが好ましく、85質量部以上98質量部以下含むことがより好ましい。これにより、熱硬化性樹脂組成物(P)の作業性を向上させつつ、得られる樹脂部材14の機械的強度をより一層向上させることができる。充填材(B1)の平均粒子径の上限は特に限定されないが、例えば、100μm以下である。
 充填材(B1)としては、平均長径が5μm以上50mm以下で、平均アスペクト比が1以上1000以下である繊維状充填材または板状充填材を含むことがより好ましい。
 充填材(B1)の平均長径および平均アスペクト比は、例えば、以下のようにSEM写真から測定することができる。まず、走査型電子顕微鏡により、複数の繊維状充填材または板状充填材を撮影する。その観察像から、繊維状充填材または板状充填材を任意に50個選択し、それらの長径(繊維状充填材の場合は繊維長、板状充填材の場合は平面方向の長径寸法)および短径(繊維状充填材の場合は繊維径、板状充填材の場合は厚み方向の寸法)をそれぞれ測定する。長径の全てを積算して個数で除したものを平均長径とする。同様に、短径の全てを積算して個数で除したものを平均短径とする。そして、平均短径に対する平均長径を平均アスペクト比とする。
 充填材(B1)としてはガラス繊維、炭素繊維、ガラスビーズ、炭酸カルシウムなどから選択される1種または2種以上が好ましい。このような充填材(B1)を用いると、樹脂部材14の機械的強度を特に向上させることができる。
 また、充填材(B)は、充填材(B)の全体を100質量部としたとき、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径が0.1μm以上5μm以下である充填材(B2)を1質量部以上30質量部以下含むことが好ましく、2質量部以上15質量部以下含むことがより好ましい。これにより、凹部201の内部に充填材(B)を十分に存在させることができる。その結果、樹脂部材14と金属部材12とが相互に侵入した領域の機械的強度をより一層向上させることができる。
 充填材(B2)としては、平均長径が好ましくは0.1μm以上100μm以下、より好ましくは0.2μm以上50μm以下であり、平均アスペクト比が好ましくは1以上50以下、より好ましくは1以上40以下である繊維状充填材または板状充填材を含むことがより好ましい。
 充填材(B2)の平均長径および平均アスペクト比は、例えば、以下のようにSEM写真から測定することができる。まず、走査型電子顕微鏡により、複数の繊維状充填材または板状充填材を撮影する。その観察像から、繊維状充填材または板状充填材を任意に50個選択し、それらの長径(繊維状充填材の場合は繊維長、板状充填材の場合は平面方向の長径寸法)および短径(繊維状充填材の場合は繊維径、板状充填材の場合は厚み方向の寸法)をそれぞれ測定する。長径の全てを積算して個数で除したものを平均長径とする。同様に、短径の全てを積算して個数で除したものを平均短径とする。そして、平均短径に対する平均長径を平均アスペクト比とする。
 このような充填材(B2)としては、ワラストナイト、カオリンクレー、タルク、炭酸カルシウム、酸化亜鉛、ケイ酸カルシウム水和物、ホウ酸アルミニウムウイスカー、およびチタン酸カリウム繊維から選択される1種または2種以上が好ましい。
 また、熱硬化性樹脂組成物(P)は充填材(B)として固体潤滑剤を含むことが好ましい。固体潤滑剤としてはたとえば、黒鉛、炭素繊維、フッ素樹脂から選択される1種または2種以上が好ましい。固体潤滑剤を含むことにより、樹脂部材14の摩擦係数が低くなる。そして、筐体10においてシリンダー101とピストン20との摺動部を樹脂部材14とした場合の摺動性が向上し、圧縮機1のエネルギー効率が向上させることができる。
 また、充填材(B)は、後述するシランカップリング剤(C)などのカップリング剤による表面処理が行われていてもよい。
 熱硬化性樹脂組成物(P)は、シランカップリング剤(C)をさらに含んでもよい。シランカップリング剤(C)を含むことにより、樹脂部材14と金属部材12との密着性を向上させることができる。また、シランカップリング剤(C)を含むことにより、熱硬化性樹脂(A)と充填材(B)との親和性が向上し、その結果、樹脂部材14の機械的強度をより一層向上させることができる。
 シランカップリング剤(C)の含有量は、充填材(B)の比表面積に依存するので特に限定されないが、充填材(B)100質量部に対して、好ましくは0.01質量部以上4.0質量部以下であり、より好ましくは0.1質量部以上1.0質量部以下である。シランカップリング剤(C)の含有量が上記範囲内であると、充填材(B)を十分に被覆しつつ、樹脂部材14の機械的強度をより一層向上させることができる。
 シランカップリング剤(C)としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物;γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-(2-ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物;γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシランなどのイソシアナト基含有アルコキシシラン化合物;γ-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物;γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシランなどの水酸基含有アルコキシシラン化合物などが挙げられる。
 これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。
 本実施形態に係る熱硬化性樹脂組成物(P)は、樹脂部材14の靭性を向上させる観点から、エラストマー(D)をさらに含んでもよい。ただし、本実施形態では、エラストマー(D)から前述した充填材(B)は除かれる。
 エラストマー(D)の含有量は、樹脂部材14の全体を100質量部としたとき、好ましくは1質量部以上10質量部以下であり、より好ましくは1.5質量部以上7質量部以下である。エラストマー(D)の含有量を上記範囲内とすることにより、樹脂部材14の機械的強度を維持しつつ、樹脂部材14の靭性をより一層向上させることができる。これにより、樹脂部材14と金属部材12との接合強度により一層優れた金属樹脂複合体16を得ることができる。
 エラストマー(D)としては、例えば、未変性のポリ酢酸ビニル、カルボン酸変性のポリ酢酸ビニル、ポリビニルブチラール、天然ゴム、イソプレンゴム、スチレン・ブタジエンゴム、ブタジエンゴム、クロロプレンゴム、ブチルゴム、エチレン・プロピレンゴム、アクリルゴム、スチレン・イソプレンゴム、アクリロニトリル・ブダジエンゴム、ウレタンゴム、シリコンゴム、フッ素ゴムなどが挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。これらの中でも未変性のポリ酢酸ビニル、カルボン酸変性のポリ酢酸ビニル、アクリルゴム、アクリロニトリル・ブダジエンゴム、ポリビニルブチラールが好ましい。これらのエラストマーを用いると、樹脂部材14の靭性を特に向上させることができる。
 熱硬化性樹脂組成物(P)の製造方法は特に限定されず、一般的に公知の方法により製造することができる。例えば、以下の方法が挙げられる。まず、熱硬化性樹脂(A)に、必要に応じて充填材(B)、シランカップリング剤(C)、エラストマー(D)、硬化剤、硬化助剤、離型剤、顔料、難燃剤、耐候剤、酸化防止剤、可塑剤、潤滑剤、摺動剤、発泡剤などを配合して均一に混合する。次いで、得られた混合物をロール、コニーダ、二軸押出し機などの混練装置単独で、またはロールと他の混練装置との組合せで加熱溶融混練する。最後に、得られた混合物を造粒または粉砕することにより、熱硬化性樹脂組成物(P)が得られる。
 樹脂部材14の25℃からガラス転移温度までの範囲における線膨張係数αは、好ましくは10ppm/℃以上50ppm/℃以下であり、より好ましくは15ppm/℃以上45ppm/℃以下である。線膨張係数αが上記範囲内であると、金属樹脂複合体16の温度サイクルの信頼性をより一層向上させることができる。
 樹脂部材14の密度は軽量化の観点から、2.5g/cm以下であることが好ましく、2.0g/cm以下であることがより好ましい。
 樹脂部材14の熱伝導率は90W/(m・K)以下であることが好ましく、1W/(m・K)以下であることがより好ましい。上記上限以下であれば、圧縮機1の断熱性が向上する。そのため、圧縮機1のエネルギー効率を向上させることができる。熱伝導率はレーザーフラッシュ法で測定することができる。なお、熱伝導率に異方性がある場合は、金属部材12と樹脂部材14の接合面103に垂直な方向の熱伝導率についてである。
<金属樹脂複合体>
 つぎに、本実施形態に係る金属樹脂複合体16について説明する。
 金属樹脂複合体16は、樹脂部材14と金属部材12とが接合されてなる。
 金属樹脂複合体16において、樹脂部材14の25℃からガラス転移温度までの範囲における線膨張係数αと、金属部材12の25℃から樹脂部材14の上記ガラス転移温度までの範囲における線膨張係数αとの差(α-α)の絶対値が、25ppm/℃以下であることが好ましく、10ppm/℃以下であることがより好ましい。上記線膨張係数の差が上記上限値以下であれば、金属樹脂複合体16が高温下に晒された際に発生する、線膨張の差による熱応力を抑制することができる。そのため、上記線膨張係数の差が上記上限値以下であれば、高温下でも、樹脂部材14と金属部材12との接合強度を維持することができる。すなわち、上記線膨張係数の差が上記上限値以下であれば、金属樹脂複合体16の高温での寸法安定性を向上させることができる。
 なお、本実施形態において、線膨張係数に異方性がある場合は、それらの平均値を表す。例えば、樹脂部材14がシート状の場合、流動方向(MD)の線膨張係数と、それと垂直方向(TD)の線膨張係数とが異なる場合、それらの平均値が樹脂部材14の線膨張係数αとなる。
 金属樹脂複合体16は、特に限定されないが、樹脂部材14と金属部材12とが接着剤を介在することなく接合されているのが好ましい。樹脂部材14と金属部材12とは、接着剤を介在しなくても優れた接合強度を有する。そのため、金属樹脂複合体16の製造工程を簡略化することができる。
 充填材(B)を含む熱硬化性樹脂組成物(P)を用いる場合、凹部201の内部には充填材(B)が存在し、凹部201に存在する充填材(B)の走査型電子顕微鏡写真の画像解析による平均長径が、好ましくは0.1μm以上5.0μm以下であり、より好ましくは0.2μm以上4μm以下である。これにより、樹脂部材14と金属部材12とが相互に侵入した領域の機械的強度をより一層向上させることができる。
 また、凹部201の内部に存在する充填材(B)の平均アスペクト比が、好ましくは1以上50以下であり、より好ましくは1以上40以下である。
 凹部201の内部に存在する充填材(B)の平均長径および平均アスペクト比は、以下のようにSEM写真から測定することができる。まず、走査型電子顕微鏡により、粗化層104の断面を撮影する。その観察像から、凹部201の内部に存在する充填材(B)を任意に50個選択し、それらの長径(繊維状充填材の場合は繊維長、板状充填材の場合は平面方向の長径寸法)および短径(繊維状充填材の場合は繊維径、板状充填材の場合は厚み方向の寸法)をそれぞれ測定する。長径の全てを積算して個数で除したものを平均長径とする。同様に、短径の全てを積算して個数で除したものを平均短径とする。そして、平均短径に対する平均長径を平均アスペクト比とする。
 また、凹部201の内部に存在する充填材(B)はワラストナイト、カオリンクレー、タルク、炭酸カルシウム、酸化亜鉛、ケイ酸カルシウム水和物、ホウ酸アルミニウムウイスカー、およびチタン酸カリウム繊維からなる群から選ばれる一種または二種以上であることが好ましい。
 また、樹脂部材14がエラストマー(D)を含む場合、樹脂部材14は好ましくは海島構造であり、エラストマー(D)が島相に存在することが好ましい。
 こうした構造であると、樹脂部材14の靭性を向上させるとともに金属樹脂複合体16の耐衝撃性を向上できる。そのため、金属樹脂複合体16に外部から衝撃が加わっても、樹脂部材14と金属部材12との接合強度を維持することができる。
 海島構造は、走査型電子顕微鏡写真により観察することができる。
 上記島相の走査型電子顕微鏡写真の画像解析による平均径は、好ましくは0.1μm以上100μm以下であり、より好ましくは0.2μm以上30μm以下である。島相の平均径が上記範囲内であると、樹脂部材14の靭性をより一層向上できるとともに金属樹脂複合体16の耐衝撃性をより一層向上できる。
 島相の平均径は、以下のように走査型電子顕微鏡(SEM)写真から測定することができる。まず、走査型電子顕微鏡により、樹脂部材14の断面を撮影する。その観察像から、樹脂部材14に存在する島相を任意に50個選択し、それらの直径をそれぞれ測定する。島相の直径の全てを積算して個数で除したものを平均径とする。
 金属樹脂複合体16の曲げ強さは、筐体10の強度向上の観点から、150MPa以上であることが好ましく、200MPa以上であることがより好ましい。曲げ強さは、JIS K 7171に準拠して測定できる。試験片としては、樹脂部材14と金属部材12とが積層して接合されており厚さの比d/dを3としたものを用い、試験片の樹脂部材14側の面が凹となるように曲げて測定する。また、曲げ強さはダインスタット試験機による測定の結果からも換算できる。具体的には、幅b[mm]、厚さh[mm]の試験片を用いてダインスタット試験機により測定した曲げモーメントがM[kg・cm]であったとき、曲げ強さをσ[MPa]は、σ=9.8×6×10×M/(bh)の関係から算出できる。たとえば、ダインスタット試験に用いる試験片の幅bは4mm、厚みは4mm、奥行きは15mmとすることができる。
 なお、本評価は適正な試験片を筐体10から切り出して準備し、行うことができる。このとき、試験片は、金属部材12と樹脂部材14の接合面をひとつのみ含むものとする。
 金属樹脂複合体16は、冷媒ガスの透過性が低いことが好ましい。冷媒ガスの透過性は、圧力センサ法を用い、JIS K 7126-1に準じてガス透過係数を測定して評価することができる。ここで、冷媒ガスはたとえばフロンガスである。フロンガスを用いて測定したガス透過係数は、1×1016mol・m/(m・s/Pa)未満が好ましく、5×1017mol・m/(m・s/Pa)未満がより好ましい。上記上限未満であれば、効率よく機能する圧縮機1を提供できる。
 なお、本評価は適正な試験片を筐体10から切り出して準備し、行うことができる。このとき、試験片は、金属部材12と樹脂部材14の接合面をひとつのみ含むものとし、樹脂部材14の厚さdと金属部材12の厚さdとの比d/dが2である試験片を用いる。
 筐体10は、1つの金属部材12のみを含んでも良いし、複数の金属部材12を含んでも良い。
 以下に、筐体10の製造方法について説明する。ただし、本実施形態に係る筐体10の製造方法は、上述した100万回曲げ疲労耐性を有する金属樹脂複合体16からなる筐体10を製造する方法の一例である。筐体10は、100万回曲げ疲労耐性を有する金属樹脂複合体16からなるように製造されれば、他の方法で製造されても良い。筐体10の製造方法としては特に限定されないが、例えば、射出成形法、移送成形法、圧縮成形法、射出圧縮成形法などが挙げられる。
 図5は、本実施形態に係る筐体10の製造方法の一例を説明するための図である。本実施形態に係る筐体10の製造方法は、金属部材12および金型8を準備する工程と、前記金型8の成形空間810内に金属部材12を配置する工程と、熱硬化性樹脂(P)を含み、流動化した樹脂材料850で成形空間810内を充填する工程と、充填された樹脂材料850を硬化させて樹脂部材14と金属部材12とが接合された金属樹脂複合体16からなる筐体10を得る工程とをこの順に含む。以下で詳細に説明する。
 本実施形態に係る筐体10の製造方法では、金型8は、第1金型部81および第2金型部82を備え、第1金型部81および第2金型部82により成形空間810が形成される金型8を用いる。ここで、第1金型部81および第2金型部82は、金型8の一部をいい、入れ子やスライドコアも含んでいてもよい。
 本実施形態に係る筐体10の製造方法では、流動化した樹脂材料850で成形空間810内を充填する工程において、樹脂材料850の流動圧力により金属部材12を第1金型部81および第2金型部82のいずれか一方の成形面に押しつけながら成形空間810を樹脂材料850で充填することが好ましい。このようにすることで、バリの発生を抑制し、かつ金属部材12と樹脂部材14との密着性に優れる良好な品質の筐体10を得ることができる。
 以下、本実施形態に係る筐体10の製造方法について、金型8としてトランスファー成形用金型を用いる場合を例に挙げて詳説する。なお、本実施形態に係る筐体10の製造方法においては、金型8としてトランスファー成形用金型を用いてもよく、射出成形用金型を用いてもよいし、コンプレッション成形用金型を用いてもよい。なお、射出成形用金型またはコンプレッション成形用金型を用いる場合においても、トランスファー成形用金型を用いる場合と同様の効果を奏する。本実施形態では、成形品の寸法精度の制御性を高める観点から、トランスファー成形用金型を用いている。
 本実施形態では、筐体10の外面を複数の金属部材12を用いて形成する場合を例に挙げて詳説する。なお、特にこの方法に限定されず、たとえば外面を構成する各部分が一体化されたひとつの金属部材12を用いて筐体10を製造しても良い。複数の金属部材12を用いて筐体10を製造することで、大きな金属部材12を準備する必要が無く、製造コストが抑えられる。一方、一体化された金属部材12を用いることで、筐体10の強度を向上させることができる。金属部材12の形状と配置は、筐体10の構造に応じて適切に決定することができる。
 上述した通り、図5は、本実施形態に係る筐体10の製造方法の一例を説明するための図である。本図において、金属部材12および樹脂部材14の形状は簡略化して示されている。ここで、本図において、(a)は、金属部材12を配置する前の金型8の構造を示す図、(b)は、金属部材12を配置する工程を説明するための図、(c)は、樹脂材料850で成形空間810内を充填する工程を説明するための図、(d)は、樹脂材料850を硬化させて筐体10を得る工程を説明するための図である。
 まず本図の(a)に示す金型8を準備する。本実施形態に係る金型8は、第1金型部81と第2金型部82とを備えている。この第1金型部81と第2金型部82とを組み合わせることにより、後工程において金属部材12を配置する成形空間810が形成される。また、第2金型部82には、成形前の樹脂材料850を仕込むポット820と、その後、圧力をかけて樹脂材料850を溶融させるためにポット820に挿入する補助ラムを備えたプランジャー830と、溶融させた樹脂材料850を成形空間810内に送り込むスプルー840とが設けられている。なお、本実施形態に係る金型8は、本図に示すような、補助ラムを備えたプランジャー式トランスファー成形機に適用するものであっても、補助ラムを備えないポット式トランスファー成形機に適用するものであってもよい(図示せず)。
 金属部材12は、密着性、耐久性向上等の観点から、少なくとも樹脂部材14と接合させる領域が粗化処理された金属部材12を準備することが好ましい。
 次に、金属部材12を配置する工程について説明する。
 本図の(b)に示すように、金型8の成形空間810内に金属部材12を配置する。具体的には、第1金型部81を下げて、金型8を開いた状態で成形空間810に相当する部分に金属部材12を固定することなく配置する。こうすることで、溶融した樹脂材料850を成形空間810内に導入した時に、導入した樹脂の流動圧力によって金属部材12を第1金型部81または第2金型部82のいずれか一方の金型部材の壁面(成形面)に押しつけることができる。本実施形態では、金属部材12が第1金型部81の壁面に押しつけられる。これにより、金属部材を金型内に固定した状態で樹脂材料を金型内に導入した場合に生じる、挿入しろや金属部材12と金型壁面との間の隙間から樹脂が入り込むことによるバリの発生を防止することができ、かつ金属部材12と樹脂部材14との密着性の良い筐体10を製造することができる。
 ここで、金属部材12は、あらかじめ、第1金型部81または第2金型部82のいずれか一方の壁面(成形面)に当接させた状態で配置することが好ましい。こうすることで、金属部材12と金型部材の壁面との間の隙間に溶融した樹脂材料850が入り込むことを、より効果的に防ぐことができる。
 金属部材12の形状は、押しつける第1金型部81または第2金型部82の壁面に沿った形状の板状またはシート状である。このような形状とすれば、樹脂材料850の流動圧力を金属部材12の面で受けることができるため、金属部材12を第2金型部82または第1金型部81のいずれかの壁面(成形面)に確実に押しつけることができる。これにより、成形空間810内に樹脂材料850を導入した際に生じる金属部材12の位置ズレを防ぐことができ、バリの発生をより確実に抑制することができる。
 次に、樹脂材料850で成形空間810内を充填する工程(本図の(c))、および樹脂材料850を硬化させて筐体10を得る工程(本図の(d))について説明する。
 本実施形態に係る樹脂材料850で成形空間810内を充填する工程では、まず、第1金型部81を上げて、金型8を閉じた状態で、ポット820内に成形前の樹脂材料850を仕込む。成形前の樹脂材料850の性状は特に限定されないが、熱硬化性樹脂組成物(P)の粉末又は顆粒状のままであってもよいし、熱硬化性樹脂組成物(P)を円柱状のタブレットに形成したものであってもよく、また、予め、プレヒーター等によって予熱することにより半溶融の常態にされていてもよい。次に、ポット820内に仕込んだ樹脂材料850を溶融させるために、樹脂材料850に対して、補助ラムを備えたプランジャー830をポット820に挿入して圧力をかける。その後、溶融した樹脂材料850をスプルー840を介して成形空間810内に導入する。成形空間810内に導入された樹脂材料850は、本図の(c)に記載されている点線で示す方向に流動する。そして、樹脂材料850の流動圧力によって金属部材12を第1金型部81に押しつけて、見かけ上、金型部材の壁面に金属部材12を固定した状態とすることができる。このとき、ポット820内での樹脂材料850の溶融、成形空間810内への溶融した樹脂材料850の導入および充填は、同時進行で進むことになる。次に、成形空間810内に充填された樹脂材料850が、加熱加圧されることにより硬化し、金属部材12および樹脂部材14からなる金属樹脂複合体16が成形される(本図の(d))。樹脂材料850の硬化後、金型8を開くことにより、バリの発生が抑制され、かつ金属部材12と樹脂部材14との密着性に優れる良好な品質の筐体部品10を得ることができる。なお、ポット820内に残った樹脂材料850の硬化物(カル)とスプルー840内の硬化物は、金型8を開く前にプランジャー830を引き上げることにより、金属樹脂複合体16と分離される。
 本工程において成形空間810内に導入された樹脂材料850、逆流することなく一方向に進行する。これにより熱硬化性樹脂組成物(P)中に繊維状充填材を含有させている場合、樹脂部材14の機械的強度を向上させることができる。成形空間810内に導入された樹脂材料850が逆流することなく一方向に進行すれば、硬化後の樹脂部材14中における繊維状充填材の配向を制御することができる。こうすることで、本実施形態に係る筐体10の製造方法によれば、強度という観点において、均一であり、かつ優れた品質の筐体10を得ることができる。
 また、成形空間810内を樹脂材料850で充填する工程では、成形空間810内を脱気してから溶融した樹脂材料850を成形空間810内に導入することが好ましい。こうすることで、後工程において、硬化して得られる樹脂部材14中にボイドが生じる可能性を低減できる。これにより、より一層機械的強度に優れた筐体10を得ることができる。
 熱硬化性樹脂組成物(P)は、成形を良好におこなうために流動性が高いことが好ましい。そのため、熱硬化性樹脂組成物(P)は、175℃での溶融粘度が、好ましくは10Pa・s以上3000Pa・s以下であり、より好ましくは30Pa・s以上2000Pa・s以下である。175℃での溶融粘度は、例えば、島津製作所社製の熱流動評価装置(フローテスタ)により測定することができる。
 また、熱硬化性樹脂組成物(P)は以下のような粘度挙動を有することが好ましい。動的粘弾性測定装置を用いて、当該熱硬化性樹脂組成物(P)を60℃から昇温速度3℃/min、周波数1Hzで溶融状態まで昇温したときに、熱硬化性樹脂組成物(P)は、初期は溶融粘度が減少し、最低溶融粘度に到達した後、さらに上昇するような特性を有し、かつ、最低溶融粘度が10Pa・s以上2000Pa・s以下の範囲内である。
 最低溶融粘度が上記下限値以上であると、熱硬化性樹脂組成物(P)が充填材(B)を含む場合に、熱硬化性樹脂(A)と充填材(B)とが分離し、熱硬化性樹脂(A)のみが流動してしまうことを抑制でき、より均質な樹脂部材14を得ることができる。
 また、最低溶融粘度が上記上限値以下であると、熱硬化性樹脂組成物(P)の凹部201への侵入性を向上できるため、凹部201の内部に充填材(B)を十分に供給することができる。その結果、樹脂部材14と金属部材12とが相互に侵入した領域の機械的強度をより一層向上させることができる。
 また、上記最低溶融粘度に到達する温度は、好ましくは100℃以上250℃以下の範囲内である。
 このような粘度挙動を有すると、熱硬化性樹脂組成物(P)を加熱硬化して樹脂部材14を形成する際に、熱硬化性樹脂組成物(P)中に空気が侵入するのを抑制できるとともに、熱硬化性樹脂組成物(P)中に溶けている気体を十分に外部に排出できる。その結果、樹脂部材14に気泡が生じてしまうことを抑制できる。気泡の発生が抑制されることにより、樹脂部材14の機械的強度をより一層向上させることができる。
 このような粘度挙動を有する熱硬化性樹脂組成物(P)を実現するためには、例えば、前述した熱硬化性樹脂(A)の種類や量、充填材(B)の種類や量、エラストマー(D)の種類や量を適宜調整すればよい。
 本実施形態において、金属樹脂複合体16の成形条件は特に限定されないが、例えば、温度が160~180℃、圧力10~30MPa、硬化時間30秒間から5分間の成形条件を挙げることができる。
 上述した製造方法により得られた筐体10は、挿入しろや金属部材12と金型部材との間の隙間から樹脂材料850が入り込むことにより、バリが発生する等の不都合を解消した高品質なものである。また、本実施形態に係る筐体10は、バリの発生を抑制した金属部材12と樹脂部材14の接合箇所に段差がないものであるため、機械的強度と剛性のバランスに優れ、かつ長期的に使用できるものである。
 本実施形態に係る圧縮機1は、筐体10と、他の部品とを組み合わせて製造される。他の部品は一般的に公知の方法で製造することができる。
 次に、本実施形態の作用および効果について説明する。本実施形態に係る筐体10は、100万回曲げ疲労耐性を有する金属樹脂複合体16からなることにより、軽量性と高耐性との性能バランスに優れる筐体を提供することができる。
 本実施形態に係る筐体10は、樹脂部材14を含む金属樹脂複合体16からなるため、必要な強度を保ちつつも、同種の金属のみからなる筐体10に比べて軽量にできる。よって、車両に搭載しても省エネルギーの車両を実現できる。また、金属樹脂複合体16は断熱性に優れるため、エネルギー効率の良い圧縮機1を実現できる。くわえて、加工自由度が高いため、効率良く筐体10、ひいては圧縮機1を製造できる。また、複雑な形状の筐体10も製造できる。
 本実施形態に係る筐体10は、金属部材12を含む金属樹脂複合体16からなるため、樹脂のみからなる筐体10に比べて、冷媒ガスの密閉性に優れ、エネルギー効率のよい圧縮機1を提供できる。また、強度や耐久性に優れる筐体10、ひいては圧縮機1を提供できる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。
(実施例1)
<熱硬化性樹脂組成物(P1)の調整>
 ノボラック型フェノール樹脂(PR-51305、住友ベークライト社製)を34.3質量部、硬化剤としてヘキサメチレンテトラミンを6.0質量部、充填剤としてガラス繊維(日東紡社製)を57.1質量部、シランカップリング剤としてγ-アミノプロピルトリエトキシシラン(信越化学社製)を0.2質量部、硬化助剤として酸化マグネシウム(神島化学工業社製)を0.5質量部、潤滑剤等のその他の成分を1.9質量部、それぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却した物を粉砕して顆粒状の熱硬化性樹脂組成物(P1)を得た。
<熱硬化性樹脂組成物(P1)の評価>
(熱硬化性樹脂組成物(P1)の溶融粘度)
 流動特性評価装置(高化式フローテスター、CFT-500D)を用いて、175℃における熱硬化性樹脂組成物(P1)の溶融粘度を測定した。熱硬化性樹脂組成物(P1)の175℃における溶融粘度は425Pa・Sであった。
<金属部材の準備>
 表面処理がされていない金属シートとして、その表面が#4000の研磨紙で十分研磨された、アルミニウム合金A5052の金属シートA(80mm×10mm、厚さ1.0mm、密度2.68g/cm、熱伝導率138W/(m・K))を用意した。水酸化カリウム(16質量部)、塩化亜鉛(5質量部)、硝酸ナトリウム(5質量部)、チオ硫酸ナトリウム(13質量部)の水溶液を調製した。得られた水溶液(30℃)中に、金属シートAを浸漬して揺動させ、深さ方向に15μm(アルミニウムの減少した重量から算出)溶解させた。次いで、水洗を行い、35質量部の硝酸水溶液(30℃)中に浸漬して、20秒間揺動させた。その後、水洗、乾燥し、金属シート1を得た。
<金属部材の評価>
(表面粗さ)
 超深度形状測定顕微鏡(キーエンス社製VK9700)を用いて、倍率20倍における金属部材の樹脂部材との接合面の表面形状を測定した。表面粗さはRaおよびRzを測定した。RaおよびRzは、JIS-B0601に準拠して測定した。
 金属シート1のRaは4.0μm、Rzは15.5μmであった。
(比表面積)
 測定対象試料を120℃で、6時間真空乾燥した後、自動比表面積/細孔分布測定装置(BELSORPminiII、日本ベル社製)を用いて、液体窒素温度における窒素吸脱着量を測定した。窒素吸着BET法による実表面積はBETプロットから算出した。測定した窒素吸着BET法による実表面積を、見掛け表面積で割ることにより比表面積を算出した。金属シート1の比表面積は270であった。
(光沢度)
 金属部材の表面の光沢度を、ディジタル光沢度計(20°、60°)(GM-26型、村上色彩技術研究所社製)を用いて、ASTM-D523に準拠して測定角度60°(入射角60°、反射角60°)で測定した。金属シート1の光沢度は10であった。
<金属樹脂複合体の作製>
 得られた熱硬化性樹脂組成物(P1)および金属シート1を用いて、金属樹脂複合体1を作製した。具体的には、以下の手順により作製した。はじめに、第1金型部と第2金型部からなる金型を準備し、金型内に厚み1mmの金属シート1を固定せずに配置した。次いで、第1金型部と第2金型部型を型締めして、第1金型部と第2金型部との間に金属シート1が配置された成型空間を形成した。次いで、第2金型部に設けられたポット内において溶融させた熱硬化性樹脂組成物(P1)を、スプルーを介して成型空間内に注入し、熱硬化性樹脂組成物(P1)の成型を行った。なお、ポット内での熱硬化性樹脂組成物(P1)の溶融、成型空間内への熱硬化性樹脂組成物(P1)の導入は同時に行い、導入された熱硬化性樹脂組成物(P)の流体圧力により、金属シート1を金型の内壁に押しつけるようにした。なお、熱硬化性樹脂組成物(P1)の成形は、実効圧力20MPa、金型温度175℃、硬化時間3分間で行った。こうして、熱硬化性樹脂組成物(P1)により構成される厚み3mmの樹脂部材シート(樹脂部材)と厚み1mmの金属シート1(金属部材)の2層シートである金属樹脂複合体1(複合部材)を得た。この金属樹脂複合体1を試験片1とした。
<樹脂部材の評価>
(熱伝導率および密度)
 作製した試験片1の、樹脂部材シートから厚さ2mmの樹脂試料を切り出し、レーザーフラッシュ法を用いて樹脂部材の厚さ方向の熱伝導率を測定した。また、樹脂部材の密度を測定した。試験片1の樹脂部材の熱伝導率は0.4W/(m・K)であり、密度は1.78g/cmであった。
<金属部材の評価>
(凹部の平均深さ)
 試験片1の金属部材と樹脂部材の接合部の断面を走査型電子顕微鏡(SEM)で撮影し、接合部の断面の構造を観察した。この観察像から、金属部材の粗化層の厚みおよび凹部の平均深さをそれぞれ求めた。試験片1の金属部材の粗化層の厚みは15μmであり、凹部の平均深さは13μmであった。また、凹部の断面は、凹部の開口部から底部までの間の少なくとも一部に開口部の断面幅よりも大きい断面幅を有する形状になっていた。
(100万回曲げ疲労耐性)
 実施形態において説明した方法で、試験片1の100万回曲げ疲労耐性を評価した。試験片1の金属部材側の面に2つの支点をあて、樹脂部材側の面の中央に圧子をあてた。25℃雰囲気にて、繰り返し応力の周波数を30Hz、支点間の距離Lを64mmとし、140MPaの曲げ応力を試験片1に連続して100万回加えた。100万回繰り返し応力を印加しても破断も剥離もしなかった場合を○とし、100万回繰り返し応力を印加する間に破断または剥離が生じた場合を×として評価した。試験片1は、100万回繰り返し応力を加えても剥離も破断もしなかったため、○と評価した。
(曲げ強さ)
 試験片1の曲げ強さをJIS K 7171に準じて測定した。このとき、複合部材の試験片については、金属部材側の面に2つの支点をあて、樹脂部材側の面の中央に圧子をあてて3点曲げ応力を加えた。25℃雰囲気にて、試験速度を2mm/min、支点間の距離Lを64mmとして曲げ強さを測定した。試験片1の曲げ強さは、273MPaであった。
(冷媒非透過性)
 試験片1の冷媒ガスの非透過性を評価した。JIS K 7126-1に準じて圧力センサ法を用いて、ガス透過係数を測定した。まず、試験片1から厚み3mmの測定試料を切り出した。このとき、金属樹脂複合体の試験片については、金属部材の厚みが1mm、樹脂部材の厚みが2mmとなるように切り出した。試験ガスとしては134aフロンガスを用いた。測定したガス透過係数が、5×1017mol・m/(m・s/Pa)未満の場合を○、5×1017mol・m/(m・s/Pa)以上の場合を×として評価した。
<筐体の作製>
 試験片1を作製するのと同様の条件で、金属樹脂複合体からなるコンプレッサー(圧縮機)のハウジング(筐体)を作製し、その筐体を用いた斜板式のコンプレッサーを作製した。筐体以外のコンプレッサーの部品は一般的な公知の方法で作製されたものを準備した。シリンダーとピストンとの摺動部が樹脂部材からなるよう、筐体を作製した。組み立てたコンプレッサーの最外面を金属部材が覆うように構成した。
(圧縮機性能の評価)
 作製した圧縮機を利用したエアコンを、1mの空間の温度を室温から3℃下げる設定で駆動した。空間の温度を設定値まで下げる機能を示したものを○、機能を示さなかったものを×として評価した。
(耐久性の評価)
 作製した圧縮機を24時間継続して駆動した。その後、圧縮機から筐体を取り外して観察し、損傷が生じていなかったものを○、製品として問題にならない程度の損傷が生じたものを△、問題となる損傷が生じたものを×として評価した。
(実施例2)
 熱硬化性樹脂組成物(P1)の代わりに、以下の熱硬化性樹脂組成物(P2)を使用した以外は、実施例1と同様の方法により金属樹脂複合体2を作製した。この金属樹脂複合体2を試験片2とし、実施例1と同様の評価を行った。
<熱硬化性樹脂組成物(P2)の調整>
 還流コンデンサー撹拌機、加熱装置、真空脱水装置を備えた反応釜内に、フェノール(p)とホルムアルデヒド(f)とをモル比(f/p)=1.7で仕込み、これに酢酸亜鉛をフェノール100質量部に対して0.5質量部添加し、この反応系のpHを5.5に調整して還流反応を3時間行った。その後、真空度100Torr、温度100℃で2時間水蒸気蒸留を行って未反応フェノールを除去し、さらに、真空度100Torr、温度115℃で1時間反応させることにより得られた、数平均分子量800のジメチレンエーテル型の固形物をレゾール型フェノール樹脂として得た。
 得られたレゾール型フェノール樹脂を25.3質量部、ノボラック型フェノール樹脂(PR-51305、住友ベークライト社製)を10.7質量部、充填剤としてガラス繊維(日東紡社製)を53.5質量部、充填剤としてクレー(エンゲル・ハート社製)を4.9質量部、シランカップリング剤としてγ-アミノプロピルトリエトキシシラン(信越化学社製)を0.5質量部、硬化助剤として消石灰(秩父石灰工業社製)を1.8質量部、潤滑剤等のその他の成分を3.3質量部、それぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却した物を粉砕して顆粒状の熱硬化性樹脂組成物(P2)を得た。
 熱硬化性樹脂組成物(P2)の、175℃における溶融粘度は435Pa・Sであった。また、試験片2の樹脂部材の熱伝導率は0.4W/(m・K)であり、密度は1.79g/cmであった。
(実施例3)
 熱硬化性樹脂組成物(P1)の代わりに、以下の熱硬化性樹脂組成物(P3)を使用した以外は、実施例1と同様の方法により金属樹脂複合体3を作製した。この金属樹脂複合体3を試験片3とし、実施例1と同様の評価を行った。
<熱硬化性樹脂組成物(P3)の調整>
ノボラック型フェノール樹脂(PR-51305、住友ベークライト社製)を34.0質量部、充填剤として黒鉛を21.0質量部、充填剤として炭素繊維(ゾルテック社製)を30.0質量部、硬化剤としてヘキサメチレンテトラミンを6.0質量部、硬化助剤として酸化マグネシウム(神島化学工業社製)を1.5質量部、潤滑剤等のその他の成分を7.5質量部、それぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却した物を粉砕して顆粒状の熱硬化性樹脂組成物(P3)を得た。
 熱硬化性樹脂組成物(P3)の、175℃における溶融粘度は430Pa・Sであった。また、試験片2の樹脂部材の熱伝導率は0.4W/(m・K)であり、密度は1.46g/cmであった。
(実施例4)
 金属シートAの代わりに、表面処理がされていない金属シートとして、その表面が#4000の研磨紙で十分研磨された、アルミダイキャストADC12の金属シートB(80mm×10mm、厚さ1.0mm、密度2.71g/cm、熱伝導率92W/(m・K))を使用した以外は実施例1と同様の方法により金属樹脂複合体4を作製した。金属シートBを実施例1と同様の方法により処理して、金属シート1の代わりに金属シート2を得た。この金属樹脂複合体4を試験片4とし、実施例1と同様の評価をおこなった。
 金属シート2の特性は以下のとおりであった。
 Ra:5μm
 Rz:16μm
 粗化層の厚み:20μm
 凹部の平均深さ:17μm
 比表面積:280
 光沢度:8
また、凹部の断面は、凹部の開口部から底部までの間の少なくとも一部に開口部の断面幅よりも大きい断面幅を有する形状になっていた。
(実施例5)
 金属シート1の代わりに以下の金属シート3を使用した以外は、実施例1と同様の方法により金属樹脂複合体5を作製した。この金属樹脂複合体5を試験片5とし、実施例1と同様の評価をおこなった。金属シート3は以下の様にして得た。まず、表面処理がされていないステンレスSUS304の金属シートC(80mm×10mm、厚さ1.0mm、密度7.93g/cm、熱伝導率16.7W/(m・K))を準備した。また、硫酸(50質量部)、硫酸第二銅5水和物(3質量部)、塩化カリウム(3質量部)、チオサリチル酸(0.0001質量部)の水溶液を調製した。そして、得られた水溶液(30℃)中に、金属シートCを浸漬して揺動させ、深さ方向に15μm(ステンレスの減少した重量から算出)溶解させた。次いで、水洗、乾燥し、金属シート3を得た。
 金属シート3の特性は以下のとおりであった。
 Ra:3μm
 Rz:15μm
 粗化層の厚み:15μm
 凹部の平均深さ:13μm
 比表面積:270
 光沢度:10
また、凹部の断面は、凹部の開口部から底部までの間の少なくとも一部に開口部の断面幅よりも大きい断面幅を有する形状になっていた。
(比較例1)
 樹脂部材を含まない試験片を用意した。具体的には、表面処理がされていない金属シートとして、その表面が#4000の研磨紙で十分研磨された、アルミニウム合金A5052の金属シートD(80mm×10mm、厚さ4.0mm、密度2.68g/cm、熱伝導率138W/(m・K))を用意し、試験片6とした。
 試験片6について、実施例1と同様の評価をおこなった。ただし、粗化層の厚みおよび凹部の平均深さの評価では、試験片6の表面部分を走査型電子顕微鏡で断面観察して粗化層の厚みおよび凹部の平均深さを求めた。
 本比較例の金属部材のみからなる筐体は、アルミニウム合金A5052を公知の加工法により加工することにより作製した。
 金属シートDの特性は以下のとおりであった。
 Ra:0.5μm
 Rz:0.7μm
 粗化層の厚み:0μm
 凹部の平均深さ:0μm
 比表面積:50
 光沢度:260
(比較例2)
 金属部材を含まない試験片を作製した。具体的には、熱硬化性樹脂組成物(P1)を加熱し、金型内に所定量注入した後、圧縮成形により熱硬化性樹脂組成物(P1)を硬化することにより、80mm×10mm、厚さ4.0mmの樹脂部材のみからなる試験片7を得た。なお、圧縮成形条件は、実効圧力20MPa、金型温度175℃、硬化時間3分間とした。
 試験片7について、実施例1と同様の評価をおこなった。
(比較例3)
 金属シート1の代わりに、実施例1で使用した表面処理がされていない金属シートAを使用した以外は実施例1と同様の方法により金属樹脂複合体6を作製した。この金属樹脂複合体6を試験片8とし、実施例1と同様の評価をおこなった。
 金属シートAの特性は以下のとおりであった。
 Ra:0.5μm
 Rz:0.7μm
 粗化層の厚み:0μm
 凹部の平均深さ:0μm
 比表面積:50
 光沢度:260
 以上の条件および評価結果を表1および表2に示す。ただし、比較例1について、複合部材の特性として記載しているのは、樹脂部材を含まず金属部材のみからなる試験片6による評価結果である。また、比較例2について、複合部材の特性として記載しているのは、金属部材を含まず樹脂部材のみからなる試験片7による評価結果である。
 なお、実施例1で作製した筐体から切り出した試験片を用いて、樹脂部材、金属部材および金属樹脂複合部材に関する上述の各評価を行っても、試験片1と同様の評価結果が得られることは理解される。また、筐体から切り出した試験片の形状が、試験片1とは異なる形状であっても、必要に応じ実施形態にて上述した各方法で換算して、同様の評価結果が得られることは理解される。実施例2~5および比較例1~3においても同様である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 作製した筐体を用いた圧縮機性能の評価において、実施例1~5、比較例1、および比較例3では、30分以内に設定値まで室温が低下し、機能を確認できた。一方、比較例2では1時間駆動しても温度が設定値まで下がらなかった。比較例2では、冷媒が圧縮される際に筐体を透過してしまい、圧縮機内に密閉されなかったため機能が発揮できなかったものと思われる。
 圧縮機の筐体の耐久性評価の結果、実施例1~5および比較例1では、損傷は見られなかった。一方、比較例3では、樹脂部材からの金属部材の剥離などが見られた。比較例2は、評価しなかった。この結果から実施例1~5の高い耐久性が確認できた。
 また、実施例1~5の筐体は、金属樹脂複合体からなるため、同種の金属のみからなる筐体に比べて軽量化できた。
 実施例1~5で得られた金属樹脂複合体1~5は、25℃において三点曲げの片振りで140MPaの曲げ応力による応力印加を100万回繰り返し行っても、剥離も破断もしない曲げ疲労耐性(100万回曲げ疲労耐性)を有することが確認された。そのため、実施例1~5の圧縮機の筐体は、軽量性および高耐性の性能バランスに優れていた。
 それに対し、比較例1では圧縮機の性能および筐体の耐久性には優れるものの重量が大きく、比較例2では軽量性に優れるものの圧縮機の性能を発揮できず、比較例3では軽量ではあるものの筐体の耐久性に劣っており、いずれも軽量性と高耐性との性能バランスに問題があった。
 この出願は、2014年4月16日に出願された日本出願特願2014-084325号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (15)

  1.  内部に吸入された気体を圧縮する少なくとも1つの圧縮室を備え、
     熱硬化性樹脂組成物からなる樹脂部材と金属部材とが接合された金属樹脂複合体からなり、
     前記金属樹脂複合体は、厚みdの前記樹脂部材と厚みdの前記金属部材とが積層して接合されており比d/dが3である試験片において、25℃の温度条件で、2つの支持台上に前記樹脂部材の露出面を上にして配置して応力を加えない第1状態と、前記樹脂部材側の面の中央に140MPaの1点曲げ応力を厚さ方向に印加して前記第1状態から中央を沈み込ませた第2状態とを、周波数30Hzで交互に100万回繰り返したとき、剥離も破断もしない曲げ疲労耐性を有する、圧縮機の筐体。
  2.  請求項1に記載の圧縮機の筐体において、
     前記樹脂部材と前記金属部材とが積層して接合されており前記比d/dを3とした試験片についてJIS K 7171に準拠して前記樹脂部材側の面が凹となるように曲げて測定した、前記金属樹脂複合体の曲げ強さが150MPa以上である、圧縮機の筐体。
  3.  請求項1または2に記載の圧縮機の筐体において、
     前記圧縮室の内壁に、前記樹脂部材が露出している、圧縮機の筐体。
  4.  請求項1から3のいずれか一項に記載の圧縮機の筐体において、
     前記金属樹脂複合体は、少なくとも前記樹脂部材と接合する面のASTM-D523に準拠して入射角60°、反射角60°で測定した光沢度が0.1以上30以下である前記金属部材と、前記樹脂部材とを接合してなる、圧縮機の筐体。
  5.  請求項1から4のいずれか一項に記載の圧縮機の筐体において、
     前記金属部材は、前記樹脂部材との接合面に複数の凹部を有し、
     前記凹部の断面形状は、前記凹部の開口部から底部までの間の少なくとも一部に前記開口部の断面幅よりも大きい断面幅を有する形状となっている、圧縮機の筐体。
  6.  請求項5に記載の圧縮機の筐体において、
     前記金属部材の前記接合面には、複数の前記凹部が設けられた粗化層が形成されており、
     前記粗化層の厚みが、3μm以上40μm以下である、圧縮機の筐体。
  7.  請求項1から6のいずれか一項に記載の圧縮機の筐体において、
     前記金属樹脂複合体は、少なくとも前記樹脂部材と接合する面の見掛け表面積に対する窒素吸着BET法による実表面積の比が100以上400以下である前記金属部材と、前記樹脂部材とを接合してなる、圧縮機の筐体。
  8.  請求項1から7のいずれか一項に記載の圧縮機の筐体において、
     前記樹脂部材の密度が2.5g/cm以下である、圧縮機の筐体。
  9.  請求項1から8のいずれか一項に記載の圧縮機の筐体において、
     レーザーフラッシュ法で測定した前記樹脂部材の熱伝導率が90W/(m・K)以下である、圧縮機の筐体。
  10.  請求項1から9のいずれか一項に記載の圧縮機の筐体において、
     前記樹脂部材はフェノール樹脂を含む、圧縮機の筐体。
  11.  請求項1から10のいずれか一項に記載の圧縮機の筐体を備える圧縮機。
  12.  請求項11に記載の圧縮機において、
     前記圧縮室内に吸入された気体を圧縮するピストンをさらに備え、
     前記圧縮室の内壁のうち、少なくとも前記ピストンと摺動する部分が前記樹脂部材からなる、圧縮機。
  13.  金属部材および金型を準備する工程と、
     前記金型の成形空間内に前記金属部材を配置する工程と、
     熱硬化性樹脂を含み、流動化した樹脂材料で前記成形空間内を充填する工程と、
     充填された前記樹脂材料を硬化させて樹脂部材と前記金属部材とが接合された金属樹脂複合体からなる筐体を得る工程とをこの順に含み、
     前記金属樹脂複合体は、厚みdの前記樹脂部材と厚みdの前記金属部材とが積層して接合されており比d/dが3である試験片において、25℃の温度条件で、2つの支持台上に前記樹脂部材の露出面を上にして配置して応力を加えない第1状態と、前記樹脂部材側の面の中央に140MPaの1点曲げ応力を厚さ方向に印加して前記第1状態から中央を沈み込ませた第2状態とを、周波数30Hzで交互に100万回繰り返したとき、剥離も破断もしない曲げ疲労耐性を有する、圧縮機の筐体の製造方法。
  14.  請求項13に記載の圧縮機の筐体の製造方法において、
     前記金属部材および金型を準備する工程では、
      前記金属部材の表面のうち、少なくとも前記樹脂部材と接合させる領域が粗化処理された前記金属部材を準備する、圧縮機の筐体の製造方法。
  15.  請求項13または14に記載の圧縮機の筐体の製造方法において、
     前記充填する工程において、前記樹脂材料の流動圧力により前記金型の成形面に押しつけながら前記成形空間を前記樹脂材料で充填する、圧縮機の筐体の製造方法。
PCT/JP2015/060323 2014-04-16 2015-04-01 圧縮機、圧縮機の筐体および圧縮機の筐体の製造方法 WO2015159713A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/303,844 US10072647B2 (en) 2014-04-16 2015-04-01 Compressor, compressor housing, and method for manufacturing compressor housing
EP15780667.0A EP3133285A4 (en) 2014-04-16 2015-04-01 Compressor, compressor chassis, compressor chassis manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-084325 2014-04-16
JP2014084325A JP6331631B2 (ja) 2014-04-16 2014-04-16 圧縮機、圧縮機の筐体および圧縮機の筐体の製造方法

Publications (1)

Publication Number Publication Date
WO2015159713A1 true WO2015159713A1 (ja) 2015-10-22

Family

ID=54323924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060323 WO2015159713A1 (ja) 2014-04-16 2015-04-01 圧縮機、圧縮機の筐体および圧縮機の筐体の製造方法

Country Status (5)

Country Link
US (1) US10072647B2 (ja)
EP (1) EP3133285A4 (ja)
JP (1) JP6331631B2 (ja)
TW (1) TW201608224A (ja)
WO (1) WO2015159713A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143455A1 (en) * 2016-02-26 2017-08-31 Standard Aero Limited Coating for lining a compressor case

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102041118B1 (ko) * 2016-02-24 2019-11-06 미쓰비시덴키 가부시키가이샤 회전 압축기
JP7213688B2 (ja) 2016-12-13 2023-01-27 株式会社日立ハイテク 自動分析装置及び自動分析方法
TWM590419U (zh) * 2019-02-24 2020-02-11 毅力科技有限公司 驅動裝置
JP7431105B2 (ja) * 2020-05-28 2024-02-14 株式会社日立産機システム 圧縮機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106697U (ja) * 1988-01-06 1989-07-18
JPH021482U (ja) * 1988-06-14 1990-01-08
JPH0286431A (ja) * 1988-09-22 1990-03-27 Toray Ind Inc 複合材料
JPH0419373A (ja) * 1990-05-14 1992-01-23 Toshiba Corp 密閉型圧縮機およびその製造方法
JP2008126417A (ja) * 2006-11-16 2008-06-05 Rimtec Kk 複合成形体
JP2013063513A (ja) * 2011-09-15 2013-04-11 Nitto Denko Corp 樹脂成形品用補強シート、樹脂成形品の補強構造および補強方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1602568A (en) 1978-05-26 1981-11-11 Buckell R A Body having fluid passages
US4304533A (en) * 1978-05-26 1981-12-08 Bucknell Engineering Ltd. Body having fluid passages
US20030017440A1 (en) 2001-07-18 2003-01-23 The Procter & Gamble Company Methods for improving patient compliance with a treatment regimen
JP2004196926A (ja) 2002-12-18 2004-07-15 Toray Ind Inc 熱可塑性樹脂製耐圧容器および高圧体封入容器
US20050048260A1 (en) * 2003-08-27 2005-03-03 The Boeing Company Method and apparatus for fabricating a laminated fiber metal composite
US7785085B2 (en) 2003-10-03 2010-08-31 Advics Co., Ltd. Piston pump
JP4218491B2 (ja) * 2003-10-10 2009-02-04 株式会社アドヴィックス ピストンポンプ
US8807015B2 (en) * 2010-03-31 2014-08-19 Nissin Kogyo Co., Ltd. Piston pump
JP5825894B2 (ja) * 2011-07-15 2015-12-02 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 二次電池用電極、二次電池用電極の製造方法並びに二次電池
JP2013249741A (ja) * 2012-05-30 2013-12-12 Toyota Industries Corp 電動圧縮機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106697U (ja) * 1988-01-06 1989-07-18
JPH021482U (ja) * 1988-06-14 1990-01-08
JPH0286431A (ja) * 1988-09-22 1990-03-27 Toray Ind Inc 複合材料
JPH0419373A (ja) * 1990-05-14 1992-01-23 Toshiba Corp 密閉型圧縮機およびその製造方法
JP2008126417A (ja) * 2006-11-16 2008-06-05 Rimtec Kk 複合成形体
JP2013063513A (ja) * 2011-09-15 2013-04-11 Nitto Denko Corp 樹脂成形品用補強シート、樹脂成形品の補強構造および補強方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3133285A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143455A1 (en) * 2016-02-26 2017-08-31 Standard Aero Limited Coating for lining a compressor case

Also Published As

Publication number Publication date
EP3133285A1 (en) 2017-02-22
US10072647B2 (en) 2018-09-11
US20170030343A1 (en) 2017-02-02
EP3133285A4 (en) 2017-12-27
JP2015203390A (ja) 2015-11-16
TW201608224A (zh) 2016-03-01
JP6331631B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
WO2015159713A1 (ja) 圧縮機、圧縮機の筐体および圧縮機の筐体の製造方法
WO2015087720A1 (ja) 金属樹脂複合体
JP5874841B2 (ja) 金属樹脂複合体および金属樹脂複合体の製造方法
JP5874840B2 (ja) 金属樹脂複合体および金属樹脂複合体の製造方法
JP6627270B2 (ja) 整流子
JP6651853B2 (ja) 熱硬化性樹脂組成物および金属樹脂複合体
JP6398280B2 (ja) ギア
TW201607408A (zh) 電力轉換裝置之殼體、熱硬化性樹脂組成物及電力轉換裝置
WO2015087722A1 (ja) 金属樹脂複合体
JP6413312B2 (ja) ポンプ、および樹脂組成物
JP2017005870A (ja) モータハウジングおよびモータハウジングの製造方法
JP2015214595A (ja) フェノール樹脂組成物および金属樹脂一体成形品
TW201600757A (zh) 煞車活塞、圓盤煞車、煞車活塞之製造方法及熱硬化性樹脂組成物
JP2021080338A (ja) 熱硬化性樹脂組成物
JP2017003000A (ja) ブレーキ用ロータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15303844

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015780667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015780667

Country of ref document: EP