WO2015159350A1 - ブタジエン含有組成物 - Google Patents

ブタジエン含有組成物 Download PDF

Info

Publication number
WO2015159350A1
WO2015159350A1 PCT/JP2014/060648 JP2014060648W WO2015159350A1 WO 2015159350 A1 WO2015159350 A1 WO 2015159350A1 JP 2014060648 W JP2014060648 W JP 2014060648W WO 2015159350 A1 WO2015159350 A1 WO 2015159350A1
Authority
WO
WIPO (PCT)
Prior art keywords
butadiene
containing composition
cyclic ether
unsaturated cyclic
polymerization
Prior art date
Application number
PCT/JP2014/060648
Other languages
English (en)
French (fr)
Inventor
赤荻 隆之
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to PCT/JP2014/060648 priority Critical patent/WO2015159350A1/ja
Publication of WO2015159350A1 publication Critical patent/WO2015159350A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation

Definitions

  • the present invention relates to a butadiene-containing composition.
  • 1,3-butadiene (hereinafter also simply referred to as “butadiene”) is widely used as a raw material for resins such as synthetic rubber and acrylonitrile-styrene-butadiene copolymer (ABS).
  • the method for producing butadiene include a method for extracting butadiene from cracked gas obtained by naphtha cracking, and a method for producing butadiene by oxidative dehydrogenation of n-butene.
  • a butadiene polymer or a copolymer of butadiene and an aromatic vinyl compound such as styrene is a raw material for synthetic rubber.
  • the polymerization initiator for butadiene alkali metal compounds and alkaline earth metal compounds described in Patent Documents 1 and 2 can be used, and organic lithium compounds are generally used.
  • branching may occur in some polymers.
  • the branched polymer may repeat polymerization to build a network structure to generate a gel.
  • the accumulated gel may be peeled off and mixed into the product.
  • the gel adheres to the inner wall of the reactor, stirring blades, and the like and inhibits the stirring and flow of the raw material and the polymer, thereby hindering continuous operation of the polymerization reaction.
  • the yield of the target conjugated diene polymer is also lowered.
  • the present invention has been made in view of the above problems.
  • the amount of gel generation is small, and a butadiene polymer can be obtained in a high yield.
  • An object of the present invention is to provide a butadiene-containing composition capable of continuously performing a polymerization reaction at a reduced frequency.
  • the present invention is as follows.
  • the amount of gel formation is small, a butadiene polymer can be obtained in a high yield, and further the frequency of performing the gel washing process is reduced to continuously polymerize.
  • a butadiene-containing composition capable of performing the reaction can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not restrict
  • the butadiene-containing composition of the present embodiment is Containing butadiene and unsaturated cyclic ether, The butadiene content is 98% by mass or more, The concentration x of the unsaturated cyclic ether is 1.0 molppm ⁇ x ⁇ 500 molppm.
  • butadiene The butadiene is not particularly limited, and butadiene produced by naphtha cracking, gas phase catalytic oxidation reaction or gas phase dehydrogenation reaction, or a commercially available product can be used (for example, see JP 2010-90082).
  • Butadiene obtained by a gas phase catalytic oxidation reaction may contain a cyclic ether described later as a by-product. Therefore, it is preferable to use an butadiene obtained by a gas phase catalytic oxidation reaction because the addition step described later may be simplified.
  • the butadiene content is 98% by mass or more, preferably 99% by mass or more, with respect to 100% by mass of the butadiene-containing composition. More preferably, it is 99.3% by mass or more.
  • the upper limit of the butadiene content is not particularly limited, but is preferably less than 100% by mass.
  • the unsaturated cyclic ether is not particularly limited as long as it is an ether having a structure in which carbon of unsaturated cyclic hydrocarbon is substituted with oxygen, and specifically, oxylene, furan, pyran, oxepin. , And dihydropyran. Among these, it is preferable to include furan. Among unsaturated cyclic ethers, furan has a high affinity for metal compounds, and the mechanism described below tends to work more effectively. In addition, unsaturated cyclic ether may be used individually by 1 type, or may use 2 or more types together.
  • the concentration of the unsaturated cyclic ether is extremely small, it is effective.
  • the lower limit of the concentration of the cyclic ether is not particularly limited, but specifically, it is preferably not less than the detection lower limit (1.0 molppm) in the measurement method described later. Even with such a very small amount of unsaturated cyclic ether, since the unsaturated cyclic ether participates in the chain reaction and the mechanism for reducing the gel generation amount works, the butadiene can reduce the gel generation amount during the polymerization reaction. Conceivable.
  • the mechanism by which the amount of gel generated during polymerization is reduced is not clear, but the unsaturated cyclic ether is coordinated to the alkali metal ion or alkaline earth metal ion of the polymerization initiator at the polymer active end and branched during the butadiene polymerization reaction.
  • the inventor speculates that there is an effect of suppressing gelation and inhibiting gel structure construction to reduce gelation.
  • the concentration x of the unsaturated cyclic ether contained in the butadiene-containing composition is 1.0 molppm ⁇ x ⁇ 500 molppm, preferably 1.0 molppm ⁇ x ⁇ 180 molppm, more preferably 5.0 molppm ⁇ x ⁇ 100 molppm. .
  • concentration of the unsaturated cyclic ether is 500 molppm or less, the unsaturated cyclic ether itself is prevented from being polymerized to generate impurities.
  • “molppm” is a mole fraction, which is obtained by multiplying the number of moles of the unsaturated cyclic ether contained by the total number of moles of the butadiene-containing composition by 10 6 .
  • the butadiene-containing composition preferably further contains a polymerization inhibitor.
  • a polymerization inhibitor By including a polymerization inhibitor, the storage stability of the butadiene-containing composition tends to be better.
  • a polymerization inhibitor is not particularly limited.
  • the content of the polymerization inhibitor is not particularly limited, but is preferably 1.0 to 400 molppm, more preferably 5.0 to 200 molppm, and still more preferably 10 to 100 molppm. When the content of the polymerization inhibitor is within the above range, the storage stability tends to be better.
  • Method for producing butadiene-containing composition (Adding process of unsaturated cyclic ether)
  • the method and timing for adding unsaturated cyclic ether to butadiene are not particularly limited.
  • An unsaturated cyclic ether may be directly added to butadiene produced by naphtha cracking or gas phase catalytic oxidation reaction, or an unsaturated cyclic ether may be directly added to commercially available butadiene.
  • unsaturated cyclic ether when unsaturated cyclic ether is produced as a by-product and contained in the butadiene product, it can be used as it is when the concentration of the unsaturated cyclic ether is appropriate. If the concentration of the unsaturated cyclic ether is excessive, it can be purified to lower the concentration of the unsaturated cyclic ether. If the unsaturated cyclic ether concentration is insufficient, the unsaturated cyclic ether is added to obtain an appropriate unsaturated cyclic ether concentration. It can be used after adjusting.
  • the butadiene-containing composition When the butadiene-containing composition is stored for a while after adding the unsaturated cyclic ether, it is preferable to add a polymerization inhibitor to the butadiene-containing composition.
  • a polymerization inhibitor removing step for removing the polymerization inhibitor. In this step, only the polymerization inhibitor is selectively selected by a method such as distillation or water washing. It is possible to remove.
  • the method and timing which add a polymerization inhibitor with respect to a butadiene containing composition are not specifically limited, either.
  • the method and timing for removing the polymerization inhibitor are not particularly limited. What is necessary is just to implement the suitable polymerization inhibitor removal method according to the used polymerization inhibitor.
  • a NaOH aqueous solution having a molar concentration of 2.5 to 6 times the molar concentration of TBC and a butadiene-containing composition Are mixed in the same amount and kept in a tank kept at 15 ° C. or more and 35 ° C. or less for 10 hours or more and 28 hours or less. By doing so, it is possible to selectively remove only the polymerization inhibitor.
  • the polymerization method using the butadiene-containing composition is not particularly limited, and a conventionally known method can be used.
  • a compound copolymerizable with butadiene such as styrene can be used.
  • the polymerization reactor is not particularly limited, and a continuous polymerization reactor, a batch reactor, or the like can be used.
  • steps can be included.
  • Other steps are not particularly limited as long as they are known operations that can be used in conjugated diene polymers, and examples include a modification reaction step for introducing a functional group at the end of a rubber molecule.
  • Example 1 (Adding process of unsaturated cyclic ether) 50 molppm of TBC as a polymerization inhibitor was added to butadiene (Tokyo Chemical Industry Co., Ltd .; 1,3-butadiene), and 50 L was put in a pressure vessel kept at 20 ° C. Furthermore, furan was added as an unsaturated cyclic ether so as to be 100 molppm, and maintained for 6 hours to produce a butadiene-containing composition.
  • butadiene Tokyo Chemical Industry Co., Ltd .; 1,3-butadiene
  • the furan concentration in the butadiene-containing composition was measured using gas chromatography (manufactured by Shimadzu Corporation; GC-2010plus). As a result, the concentration of furan was 100.0 molppm.
  • the measurement conditions are shown below. [Measurement condition] Column: “HP-AL / S” (trade name) manufactured by Agilent Technologies, Inc. [inner diameter 0.32 mm, length 25 m] Sampling line temperature: maintained at 250 ° C. Sample volume: 1 ⁇ L Carrier gas: He Column flow rate: 2.30 mL / min Column temperature increase program: 10 minutes from the start of analysis, held at 35 ° C., then heated to 200 ° C. at 20 ° C./minute, and then held at 200 ° C. for 20 minutes.
  • a butadiene-containing composition was mixed at a rate of 5.0 g / min, styrene at 2.5 g / min, and n-hexane at 40 g / min, and the resulting mixture was mixed with n-butyllithium just before being put into the polymerization reactor.
  • 6.2 mg / min of 2,2-bis (2-oxolanyl) propane as a polar substance and 0.10 mmol / min of n-butyllithium as a polymerization initiator are fed into the reactor from the bottom of the polymerization reactor. Then, the polymerization reaction was continued by adjusting the internal temperature of the reactor outlet to 90 ° C.
  • Example 2 Except that the concentration of furan in the butadiene-containing composition was 5.0 molppm, the polymerization step was performed under the same conditions as in Example 1, and the gel formation rate was measured.
  • Example 3 Except that the concentration of furan in the butadiene-containing composition was 450 molppm, the polymerization step was performed under the same conditions as in Example 1, and the gel formation rate was measured. As a result, it was 0.60%.
  • Example 1 A polymerization process was carried out under the same conditions as in Example 1 using butadiene (Tokyo Chemical Industry Co., Ltd .; 1,3-butadiene) to which no unsaturated cyclic ether was added. It was 8%. In addition, as a result of analyzing raw material butadiene, furan in raw material butadiene was not detected.
  • butadiene Tokyo Chemical Industry Co., Ltd .; 1,3-butadiene
  • Example 4 The same conditions as in Example 1 except that butadiene produced by a gas phase catalytic oxidation reaction described later was used, and furan was further added to the furan contained in this butadiene, so that the concentration of furan in the butadiene-containing composition was 80 molppm. The polymerization step was performed and the gel production rate was measured and found to be 0.50%.
  • a method for producing butadiene by a gas phase catalytic oxidation reaction will be described.
  • Oxygen and nitrogen were supplied at 106.56 g / Hr and 816.3 g / Hr, respectively.
  • the contact time between the catalyst and the mixed gas was 2.9 (g ⁇ sec / cc).
  • the obtained reaction product gas was analyzed 24 hours after the start of the reaction. As a result, the conversion of n-butene was 95.5%, the selectivity of butadiene was 83.1%, and the butadiene yield was 79. 4%.
  • step (B) Reaction gas quenching step
  • the reaction product gas obtained in step (a) is subjected to a quenching section (tube diameter 100 mm, height 1000 mm) at the top of the quenching tower (column bottom (tube diameter 200 mm, height 300 mm)). And the exhaust gas was obtained from the top of the quenching tower.
  • the quenching section in the quenching tower is a three-stage type.
  • the liquid extracted from the bottom of the three-stage quenching section was sprayed at 90, 180, and 180 L / Hr on the upper, middle, and lower stages, respectively.
  • Monoethanolamine was added to the spray solution to the middle stage while adjusting the pH of the bottom extract to be 7.6.
  • the spray liquid to the upper stage was sprayed after cooling to 47 ° C. through a heat exchanger. At this time, the exhaust gas temperature from the top of the quenching tower was 53 ° C.
  • step (C) C4 component absorption step While the exhaust gas obtained in step (b) was pressurized to 0.5 MPaG with a compressor and controlled at 50 ° C through a heat exchanger, an absorption tower (tube diameter 2.5 inches) , Made of SUS304 having a height of 3300 mm and filled with a Raschig ring having a diameter of 5 mm * height of 5 mm inside the tower. To the upper stage of this absorption tower, m-xylene cooled to 10 ° C. (boiling point: 139.1 ° C.) is supplied at 5.0 kg / Hr and brought into countercurrent contact with the exhaust gas introduced from the lower stage. The C4 component containing 99.8% butadiene was absorbed in m-xylene. The m-xylene at 50 ° C. that absorbed the C4 component was extracted from the bottom of the column.
  • step (D) C4 component recovery step
  • the m-xylene that has absorbed the C4 component obtained in step (c) is collected into a recovery tower (tube diameter 2.5 inches, height 3000 mm, inside the tower 5 mm in diameter * 5 mm in height).
  • a recovery tower tube diameter 2.5 inches, height 3000 mm, inside the tower 5 mm in diameter * 5 mm in height.
  • the recovery tower was operated so that the pressure was 0.11 MPaG, the bottom liquid temperature was 110 ° C., and the top gas temperature was 25 ° C.
  • a gas containing 50.2% by mass of butadiene was obtained from the top of the recovery tower.
  • the obtained gas containing butadiene was compressed to 0.6 MPaG to obtain a liquefied gas, which was extracted at 332 g / Hr.
  • m-xylene containing no butadiene was extracted at 5.0 kg / Hr and supplied as the absorbing liquid in the above step (c).
  • the gas containing butane (n-butane and isobutane) and a low-boiling compound was extracted from the top of the tower at 161 g / hr while controlling the top temperature at 55 ° C. and the bottom temperature at 140 ° C. DMF in which C4 component containing butadiene was dissolved was extracted from the bottom of the column.
  • step (F) Butadiene component recovery step DMF containing butadiene obtained in step (e) is collected into a recovery tower (tube diameter 2.5 inches, height 3500 mm, inside the tower with a Raschig ring 6 mm in diameter and 6 mm in height). It was introduced into the middle stage of a filled SUS304). The recovery tower was operated such that the pressure was 0.15 MPaG, the bottom liquid temperature was 140 ° C., and the gas temperature at the top of the tower was 30 ° C.
  • a liquefied gas containing 96.5% by mass of butadiene is extracted from the tower top at 166 g / Hr, and DMF not containing butadiene is extracted from the tower bottom at 4.5 kg / Hr and supplied as an absorbing liquid in the step (e). did.
  • the liquefied gas containing butadiene obtained in the step (f) is 332 g / Hr at the bottom of the water washing tower (tube diameter 3 inches, height 2500 mm, made of SUS304 filled with Raschig rings inside the tower).
  • the washing tower was operated such that the pressure was 0.6 MPaG, and the temperature at the bottom and the top of the tower was 25 ° C.
  • 6500 ppm by weight of acetaldehyde was contained in the liquefied gas before being supplied to the water washing tower.
  • Water was supplied at a rate of 4.0 kg / Hr from the top of the washing tower, and the liquefied gas was washed with water by making countercurrent contact with the liquefied gas supplied from the tower bottom.
  • the liquid extracted from the top of the washing tower was separated into oil and water, and a liquefied gas was obtained at a rate of 329 g / Hr.
  • the content of acetaldehyde contained in the liquefied gas containing butadiene was 12 ppm by weight.
  • a liquefied gas containing water and butadiene is passed from the top of the tower through an oil-water separator and extracted from the system at 0.2 g / Hr, and a liquefied gas containing butadiene containing almost no water is drawn from the bottom of the tower. It extracted at 329 g / Hr.
  • Step (I) Step of removing high-boiling components
  • a liquefied gas containing butadiene extracted from the bottom of the column in step (h) is distilled into a distillation column (manufactured by SUS304 having a diameter of 2.5 inches with 52 trays and a height of 3300 mm). Introduced in the middle.
  • the distillation column was operated such that the pressure was 0.60 MPaG, the bottom liquid temperature was 61 ° C., and the gas temperature at the top of the column was 52 ° C. From the top of the distillation column, a liquid containing 98.0% by mass of butadiene and 6 molppm of furan was extracted at 169 g / Hr. No low boiling point component having 3 or less carbon atoms was detected in the extracted liquid containing butadiene.
  • the liquid containing butadiene was used as the butadiene of Example 4.
  • the butadiene-containing composition of the present invention has industrial applicability as a raw material for synthetic rubber and resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 ブタジエンと、不飽和環状エーテルと、を含有し、 前記ブタジエンの含有量が、98質量%以上であり、 前記不飽和環状エーテルの濃度xが、1.0molppm≦x≦500molppmである、ブタジエン含有組成物。

Description

ブタジエン含有組成物
 本発明は、ブタジエン含有組成物に関する。
 1,3-ブタジエン(以下、単に「ブタジエン」ともいう。)は合成ゴムやアクリロニトリル-スチレン-ブタジエン共重合体(ABS)等の樹脂の原料として広く用いられている。ブタジエンを製造する方法としては、ナフサのクラッキングにより得られた分解ガスからブタジエンを抽出する方法や、n-ブテンの酸化的脱水素反応によりブタジエンを製造する方法が挙げられる。ブタジエンの重合体やブタジエンとスチレン等の芳香族ビニル化合物との共重合体は、合成ゴムの原料となる。ブタジエンの重合開始剤には特許文献1及び2に記載のアルカリ金属化合物やアルカリ土類金属化合物を用いることができ、一般的には有機リチウム化合物が用いられる。
国際公開第11/040312号パンフレット 特開2002-284814号公報
 共役ジエン系重合体の重合において、一部の重合体には分岐が生じ得る。さらに、分岐の生じた重合体が重合を繰り返して網目構造を構築し、ゲルを生成することがある。重合槽内壁に付着した分岐を有するリビングポリマーにモノマーが次々と反応し、ゲルに成長すると、蓄積されたゲルが剥離して、製品中に混入する可能性がある。また、ゲルは反応器内壁や撹拌羽等に付着し、原料及び重合物の撹拌や流動を阻害するため、重合反応の連続運転が妨げられる。さらに、目的とする共役ジエン系重合体の収率も低くなる。
 本発明は、上記問題点に鑑みてなされたものであり、ブタジエン重合体を製造する重合工程において、ゲル生成量が少なく、高収率でブタジエン重合体を得ることができ、さらにゲル洗浄工程を行う頻度を減らして、連続して重合反応を行うことができるブタジエン含有組成物を提供することを目的とする。
 本発明者らは、上記問題点について鋭意検討した結果、予め微量の不飽和環状エーテルを添加したブタジエン含有組成物を原料とすることで、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は次に示すとおりである。
〔1〕
 ブタジエンと、不飽和環状エーテルと、を含有し、
 前記ブタジエンの含有量が、98質量%以上であり、
 前記不飽和環状エーテルの濃度xが、1.0molppm≦x≦500molppmである、ブタジエン含有組成物。
〔2〕
 前記不飽和環状エーテルが、フランである、前項〔1〕に記載のブタジエン含有組成物。
〔3〕
 重合禁止剤をさらに含む、前項〔1〕又は〔2〕に記載のブタジエン含有組成物。
 本発明によれば、ブタジエン重合体を製造する重合工程において、ゲル生成量が少なく、高収率でブタジエン重合体を得ることができ、さらにゲル洗浄工程を行う頻度を減らして、連続して重合反応を行うことができるブタジエン含有組成物を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施形態に制限されるものではなく、その要旨の範囲内で種々変形して実施することができる。
〔ブタジエン含有組成物〕
 本実施形態のブタジエン含有組成物は、
 ブタジエンと、不飽和環状エーテルとを含有し、
 前記ブタジエンの含有量が、98質量%以上であり、
 前記不飽和環状エーテルの濃度xが、1.0molppm≦x≦500molppmである。
(ブタジエン)
 ブタジエンとしては、特に限定されず、ナフサクラッキング若しくは気相接触酸化反応若しくは気相脱水素反応により製造されたもの、又は市販のものを用いることができる(例えば、特開2010-90082号参照)。気相接触酸化反応により得られたブタジエンは、副生物として後述する環状エーテルを含むことがある。そのため、気相接触酸化反応により得られたブタジエンを用いることにより後述する添加工程を簡略化できる場合があるため好ましい。
 重合前の精製工程の簡素化や製品不純物の低減の観点から、ブタジエンの含有量は、ブタジエン含有組成物100質量%に対して、98質量%以上であり、好ましくは99質量%以上であり、より好ましくは99.3質量%以上である。ブタジエンの含有量の上限は、特に限定されないが、100質量%未満が好ましい。
(不飽和環状エーテル)
 本実施形態において、不飽和環状エーテルとは、不飽和の環状炭化水素の炭素が酸素で置換された構造を持つエーテルであれば特に限定されず、具体的には、オキシレン、フラン、ピラン、オキセピン、及びジヒドロピラン等が挙げられる。このなかでも、フランを含むことが好ましい。不飽和環状エーテルの中でも、フランは金属化合物との親和性が高く、以下に説明するメカニズムがより有効に働く傾向にある。なお、不飽和環状エーテルは、1種単独で用いても、2種以上を併用してもよい。
 不飽和環状エーテルの濃度は、極めて微量であっても効果を有する。環状エーテルの濃度の下限値は、特に限定されないが、具体的には、後述する測定方法における検出下限(1.0molppm)以上であることが好ましい。このような極めて微量の不飽和環状エーテルであっても、不飽和環状エーテルが連鎖反応に関与して、ゲル生成量が少なくなるメカニズムが働くため、重合反応時にゲル生成量を少なくできるブタジエンとなると考えられる。
 重合時にゲル生成量が少なくなるメカニズムについては、明確ではないが、不飽和環状エーテルがポリマー活性末端の重合開始剤のアルカリ金属イオン、あるいはアルカリ土類金属イオンに配位し、ブタジエン重合反応時に分岐の発生を抑え、網目構造構築を阻害してゲル化を低減する効果があるものと発明者は推測している。
 ブタジエン含有組成物に含まれる不飽和環状エーテルの濃度xは、1.0molppm≦x≦500molppmであり、好ましくは1.0molppm≦x≦180molppmであり、より好ましくは5.0molppm≦x≦100molppmである。不飽和環状エーテルの濃度が500molppm以下であることにより、不飽和環状エーテル自体が重合して不純物を生成することが抑制される。ここで、「molppm」とは、モル分率であり、含有する不飽和環状エーテルのモル数をブタジエン含有組成物の総モル数で割ったものに10を乗じたものをいう。
(不飽和環状エーテルの濃度xの測定方法)
 ブタジエン含有組成物の一部を耐圧ボンベにサンプリングし、重量を測定する。不飽和環状エーテルの濃度が低い場合は、0℃以上、10℃以下に冷却しながら耐圧ボンベ内を減圧し、ブタジエンガスのみを揮発させることで不飽和環状エーテルを濃縮する。耐圧ボンベに残った液体サンプルを、マイクロシリンジを用いて少量抜き出し、ガスクロマトグラフィー(島津製作所社製;GC-2010plus)で分析することにより、添加された不飽和環状エーテルの定量分析を行うことができる。この測定方法の検出限界は通常1.0molppm程度である。
(重合禁止剤)
 ブタジエン含有組成物は、重合禁止剤をさらに含むことが好ましい。重合禁止剤を含むことにより、ブタジエン含有組成物の保存安定性がより良好となる傾向にある。このような重合禁止剤としては、特に限定されないが、具体的には、4-tert-ブチルカテコール(TBC)、2,2,6,6-テトラメチルピペリジニル-1-オキシル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジニル-1-オキシル、トリフェニルフェルダジル、p-メトキシフェノール、ヒドロキノン、ブチルヒドロオキシトルエン(BHT)、1,1-ジフェニル-2-ピクリルヒドラジル、1,3,5-トリフェニルフェルダジル、2,6-ジ-tert-ブチル-α-(3,5-ジ-tert-ブチル-4-オキソ-2,5-シクロヘキサジエン-1-イリデン-p-トリルオキシ)、2,2,6,6-テトラメチル-4-ピペリドン-1-オキシル、N-(3-N-オキシアニリノ-1,3-ジメチルブチリデン)-アニリンオキシド、2-(2-シアノプロピル)-フェルダジル、ジフェニルピクリルヒドラジン、ジフェニルアミン、ジエチルヒドロキシルアミン、ジメチルヒドロキシルアミン、メチルエチルヒドロキシルアミン、ジプロピルヒドロキシルアミン、ジブチルヒドロキシルアミン、ジペンチルヒドロキシルアミン、ジチオベンゾイルジスルフィド、p,p’-ジトリルトリスルフィド、p,p’-ジトリルテトラスルフィド、ジベンジルテトラスルフィド、テトラエチルチウラムジスルフィド、酸素、硫黄、アントラセン、1,2-ベンズアントラセン、テトラセン、クロラニル、p-ベンゾキノン、2,6-ジクロルベンゾキノン、2,5-ジクロルベンゾキノン、フルフリデンマロノニトリル、トリニトロベンゼン、m-ジニトロベンゼン、ニトロソベンゼン2-メチル-2-ニトロソプロパン、塩化第二鉄、臭化第二鉄等が挙げられる。このなかでも、好ましくはTBC、TEMPO、ヒドロキノン、ジエチルヒドロキシルアミンが挙げられる。これら重合禁止剤は1種単独で用いても、2種以上を併用してもよい。
 重合禁止剤の含有量は、特に制限されないが、好ましくは1.0~400molppmであり、より好ましくは5.0~200molppmであり、さらに好ましくは10~100molppmである。重合禁止剤の含有量が上記範囲であることにより、保存安定性がより良好となる傾向にある。
〔ブタジエン含有組成物の製造方法〕
(不飽和環状エーテルの添加工程)
 本実施形態において、ブタジエンに対して不飽和環状エーテルを添加する方法やタイミングは特に限定されない。ナフサクラッキング又は気相接触酸化反応により製造されたブタジエンに対し、不飽和環状エーテルを直接添加してもよいし、市販のブタジエンに不飽和環状エーテルを直接してもよい。
 また、ブタジエン製造過程において、不飽和環状エーテルが副生物として生成し、ブタジエン製品中に含まれている場合、その不飽和環状エーテルの濃度が適切な場合はそのまま用いることができ、不飽和環状エーテルの濃度が過剰な場合は精製して不飽和環状エーテルの濃度を下げて用いることができ、不飽和環状エーテルの濃度が不足する場合は不飽和環状エーテルを添加して適切な不飽和環状エーテル濃度に調整して用いることができる。
 不飽和環状エーテルを添加した後、ブタジエン含有組成物をしばらく保存しておく場合は、ブタジエン含有組成物に重合禁止剤を添加することが好ましい。この場合、ブタジエン含有組成物を重合に供する際、重合禁止剤を除去する重合禁止剤除去工程を行うことが好ましいが、この工程においては蒸留や水洗などの方法によって重合禁止剤のみを選択的に除去することが可能である。なお、ブタジエン含有組成物に対して重合禁止剤を添加する方法やタイミングも特に限定されない。
(重合禁止剤除去工程)
 本実施形態において、重合禁止剤を除去する方法やタイミングは特に限定されない。用いた重合禁止剤に応じた適切な重合禁止剤除去方法を実施すればよい。重合禁止剤にTBCを用い、不飽和環状エーテルにフランを用いたブタジエン含有組成物の場合は、TBCのモル濃度の2.5倍から6倍程度のモル濃度のNaOH水溶液とブタジエン含有組成物とを同量混合し、15℃以上35℃以下に保温されたタンクで10時間以上28時間以内保持した後、この混合液を45℃以上60℃以下に加熱してブタジエンとフランを気化させて回収することで重合禁止剤のみを選択的に除去することが可能である。
(重合工程)
 ブタジエン含有組成物を用いた重合方法は特に限定されず、従来公知の方法を利用することができる。重合工程では、ブタジエン含有組成物以外にも、スチレン等のブタジエンと共重合可能な化合物を用いることができる。重合反応器は特に限定されず、連続重合反応器、回分式反応器などを用いることができる。
(その他の工程)
 本実施形態において、その他の工程を含むことができる。その他の工程としては、共役ジエン系重合体で用いられ得る公知の操作であれば特に限定されず、例えばゴム分子末端に官能基を導入する変性反応工程などが挙げられる。
 以下、本発明を実施例及び比較例によってさらに具体的に説明するが、本発明はこれらの実施例に限定されない。
〔実施例1〕
(不飽和環状エーテルの添加工程)
 ブタジエン(東京化成工業株式会社製;1,3-ブタジエン)に、重合禁止剤としてTBCを50molppm加え、20℃に保温した耐圧容器に50L入れた。さらに、不飽和環状エーテルとしてフランを100molppmになるように加え、6時間保持し、ブタジエン含有組成物を製造した。
(重合禁止剤除去工程)
 ブタジエン含有組成物を、NaOHの濃度が200molppmの水溶液50Lの入った耐圧容器に50L加え、25℃で24時間保持した。その後、容器を加熱して溶液を54℃にしてブタジエン含有組成物を気化させて重合禁止剤を除去し、ブタジエン含有組成物を再び冷却・圧縮して一時保管タンクに保管した。
(不飽和環状エーテルの添加量の測定)
 ブタジエン含有組成物の一時保管タンクから、シリンジに約50gのブタジエン含有組成物を抜き出し、正確な重量を測定したところ50.010gであった。この抜き出したブタジエン含有組成物をテフロン(登録商標)製の圧力容器に全量入れた。この容器を3℃に冷却しながら減圧してブタジエンを一部蒸発させて、ブタジエン含有組成物の重量を10.00gとし、フランを5倍に濃縮した。その後、ガスクロマトグラフィー(島津製作所社製;GC-2010plus)を用いて、このブタジエン含有組成物中のフラン濃度を測定した。その結果、フランの濃度は、100.0molppmであった。測定条件を以下に示す。
[測定条件]
 カラム   :Agilent Technologies社製の「HP-AL/S」(商品名)[内径0.32mm、長さ25m]
 サンプリングラインの温度:250℃に保持
 サンプル液量:1μL
 キャリアガス:He
 カラム流量 :2.30mL/分
 カラムの昇温プログラム:分析開始から10分間は35℃に保持、その後20℃/分で200℃まで昇温した後、200℃で20分保持した。
(重合工程)
 内部の直径12cm、高さ40cmの円筒形で、ジャケットと攪拌機のついたSUS304製の反応器を、底部を入り口、頂部を出口として重合反応器として用いた。
 ブタジエン含有組成物を5.0g/min、スチレンを2.5g/min、n-ヘキサンを40g/minの条件で混合し、得られた混合液に、重合反応器に入れる直前にn-ブチルリチウムを0.02mmol/minでさらに混合し、スタティックミキサーで撹拌した後に、得られた混合液を重合反応器底部から反応器内に連続供給した。さらに、極性物質として2,2-ビス(2-オキソラニル)プロパンを6.2mg/minと、重合開始剤としてn-ブチルリチウムを0.10mmol/minとを重合反応器底部から反応器内に供給し、反応器出口の内温が90℃になるように調整して、重合反応を継続した。
(ゲル生成率の測定)
 重合反応を200時間継続した後、原料の供給を停止し、反応器内部をテトラヒドロフランで洗浄し、内部に残った残留物と洗浄液をすべて回収した。この回収した物質を250メッシュのワイヤーメッシュでろ過し、ゲル状物質を回収した。さらにこのゲル状物質を10Lのテトラヒドロフランに加え、25℃で1時間撹拌した後、250メッシュのワイヤーメッシュでろ過してゲルを回収した。このゲルを真空乾燥した後、重量を測定し、ブタジエン含有組成物及びスチレンの投入量に対する割合をゲル生成率として、求めた。測定の結果、ゲル生成率は0.50%であった。 
〔実施例2〕
 ブタジエン含有組成物中のフランの濃度を5.0molppmとした以外は、実施例1と同じ条件で重合工程を行い、ゲル生成率を測定したところ、0.70%であった。
〔実施例3〕
 ブタジエン含有組成物中のフランの濃度を450molppmとした以外は、実施例1と同じ条件で重合工程を行い、ゲル生成率を測定したところ、0.60%であった。
〔比較例1〕
 不飽和環状エーテルを添加していないブタジエン(東京化成工業株式会社製;1,3-ブタジエン)を用いて、実施例1と同じ条件で重合工程を行い、ゲル生成率を測定したところ、1.8%であった。なお、原料ブタジエンを分析した結果、原料ブタジエン中のフランは検出されなかった。
〔比較例2〕
 ブタジエン含有組成物中のフランの濃度を1,000molppmとした以外は、実施例1と同じ条件で重合工程を行い、ゲル生成率を測定したところ、1.5%であった。
〔実施例4〕
 後述する気相接触酸化反応により製造したブタジエンを用い、このブタジエンに含まれるフランにさらにフランを追添し、ブタジエン含有組成物中のフランの濃度を80molppmとした以外は、実施例1と同じ条件で重合工程を行い、ゲル生成率を測定したところ、0.50%であった。以下、気相接触酸化反応によるブタジエン製造方法を説明する。
(a)ブタジエン製造工程
 組成がMo12Bi0.60Fe1.8Ni5.00.09Rb0.05Mg2.0Ce0.75で表される酸化物を、50質量%のシリカに担持して調製した触媒1300gを、管径3インチで高さ950mmのSUS304製反応器に入れた。この反応管に、炭素数4の成分(以下、「C4原料」とも言う)として、n-ブテン:n-ブタン:イソブタン:イソブテン=53.9:37.0:8.4:0.7(質量比)の混合原料を、405.9g/Hrで連続供給した。また、酸素及び窒素をそれぞれ106.56g/Hr及び816.3g/Hrで供給した。このように原料を連続供給しつつ、反応温度T=360℃、反応圧力P=0.05MPaの条件で気相接触酸化反応を行って反応生成ガスを得た。このとき、触媒と混合ガス(C4原料、酸素及び窒素)との接触時間は2.9(g・sec/cc)であった。
 反応開始から24時間後、得られた反応生成ガスについて分析したところ、反応成績は、n-ブテンの転化率が95.5%、ブタジエンの選択率が83.1%、ブタジエン収率が79.4%であった。
(b)反応ガスの急冷工程
 工程(a)で得られた反応生成ガスを、急冷塔(塔底(管径200mm、高さ300mm)の上部に急冷部(管径100mm、高さ1000mm)を有するSUS304製)の下段に導入し、該急冷塔の塔頂から排出ガスを得た。該急冷塔における急冷部は3段式とした。該3段式の急冷部の、上段、中段及び下段に対して塔底から抜出した液をそれぞれ90、180、180L/Hrでスプレーした。中段へのスプレー液にはボトム抜出液のpHが7.6になる様にモノエタノールアミンを調整しながら添加した。また、上段へのスプレー液は熱交換器を通して47℃に冷却してスプレーした。このとき、急冷塔塔頂からの排出ガス温度は53℃であった。
(c)C4成分の吸収工程
 工程(b)で得られた排出ガスを、圧縮機で0.5MPaGまで加圧し、熱交換器を通して50℃に制御しながら、吸収塔(管径2.5インチ、高さ3300mm、塔の内部に直径5mm*高さ5mmのラシヒリングを充填したSUS304製)の下段に導入した。この吸収塔の上段には10℃に冷却したm-キシレン(沸点:139.1℃)を5.0kg/Hrで供給し、下段より導入した前記排出ガスと向流接触させ、該排出ガスにおける99.8%のブタジエンを含むC4成分をm-キシレンに吸収させた。このC4成分を吸収した50℃のm-キシレンを塔底から抜出した。
(d)C4成分の回収工程
 工程(c)で得られたC4成分を吸収したm-キシレンを、回収塔(管径2.5インチ、高さ3000mm、塔の内部に直径5mm*高さ5mmのラシヒリングを充填したSUS304製)の中段に導入した。該回収塔は、圧力が0.11MPaG、塔底液温度が110℃、塔頂のガス温度が25℃になるように運転した。該回収塔の塔頂からは50.2質量%のブタジエンを含むガスが得られた。得られたブタジエンを含むガスを、0.6MPaGまで圧縮して液化ガスとしたものを332g/Hrで抜出した。該回収塔の塔底からはブタジエンを含まないm-キシレンを5.0kg/Hrで抜出し、上記工程(c)の吸収液として供給した。
(e)ブタジエン成分の吸収工程
 工程(d)で得られたブタジエンを含む液化ガスを、吸収塔(管径2.5インチ、高さ3200mm、塔の内部に直径6mm*高さ6mmのラシヒリングを充填したSUS304製)の下段に導入した。該吸収塔の塔頂圧力を0.45MPaGとした。この吸収塔の上段には15℃に冷却したN,N-ジメチルホルムアミド(以下「DMF」とも記す、沸点:153℃)を4.5kg/Hrで供給し、下段より導入した前記液化ガスと向流接触させ、抽出蒸留を行った。該吸収塔において、塔頂の温度を55℃、塔底の温度を140℃に制御しながら、塔頂からブタン(n-ブタン及びイソブタン)や低沸点化合物を含むガスを161g/hrで抜出し、塔底からブタジエンを含むC4成分が溶解したDMFを抜出した。
(f)ブタジエン成分の回収工程
 工程(e)で得られたブタジエンを含有するDMFを、回収塔(管径2.5インチ、高さ3500mm、塔の内部に直径6mm*高さ6mmのラシヒリングを充填したSUS304製)の中段に導入した。該回収塔は、圧力が0.15MPaG、塔底液温度が140℃、塔頂のガス温度が30℃になるように運転した。塔頂からは96.5質量%のブタジエンを含む液化ガスを166g/Hrで抜出し、塔底からはブタジエンを含まないDMFを4.5kg/Hrで抜出し、上記工程(e)の吸収液として供給した。
(g)水洗工程
 工程(f)で得られたブタジエンを含む液化ガスを、水洗塔(管径3インチ、高さ2500mm、塔の内部にラシヒリングを充填したSUS304製)の塔底に332g/Hrの割合で供給した。該水洗塔は、圧力が0.6MPaG、塔底及び塔頂の温度が25℃となるように運転した。本工程において、該水洗塔に供給前の液化ガスにはアセトアルデヒドが6500重量ppm含まれていた。この水洗塔の塔頂から水を4.0kg/Hrの割合で供給し、塔底より供給した前記液化ガスと向流接触を行って、該液化ガスを水で洗浄した。該水洗塔の塔頂から抜き出された液の油水分離を行い、液化ガスを329g/Hrの割合で得た。このブタジエンを含む液化ガスに含まれるアセトアルデヒドの含有量は12重量ppmであった。
(h)水を除去する工程
 工程(g)で塔頂から抜出したブタジエンを含む液化ガスを、一時、タンクに保管し、329g/Hrで、脱水塔(36段のトレイを有する管径2.5インチ、高さ3000mmのSUS304製)の上段に導入した。該脱水塔は、圧力が0.60MPaG、塔底液温度が53℃、塔頂のガス温度が51℃になるように運転した。該脱水塔において、塔頂からは水及びブタジエンを含む液化ガスを、油水分離器に通し、0.2g/Hrで系外に抜出し、塔底からは水をほとんど含まずブタジエンを含む液化ガスを、329g/Hrで抜出した。
(i)高沸成分を除去する工程
 工程(h)で塔底から抜出したブタジエンを含む液化ガスを、蒸留塔(52段のトレイを有する管径2.5インチ、高さ3300mmのSUS304製)の中段に導入した。該蒸留塔は、圧力が0.60MPaG、塔底液温度が61℃、塔頂のガス温度が52℃になるように運転した。該蒸留塔の塔頂からはブタジエンを98.0質量%、フランが6molppmを含む液を169g/Hrで抜き出した。この抜き出されたブタジエンを含む液には、炭素数3以下の低沸点成分は検出されなかった。このブタジエンを含む液を実施例4のブタジエンとした。
Figure JPOXMLDOC01-appb-T000001
 本発明のブタジエン含有組成物は、合成ゴムや樹脂の原料として産業上の利用可能性を有する。

Claims (3)

  1.  ブタジエンと、不飽和環状エーテルと、を含有し、
     前記ブタジエンの含有量が、98質量%以上であり、
     前記不飽和環状エーテルの濃度xが、1.0molppm≦x≦500molppmである、ブタジエン含有組成物。
  2.  前記不飽和環状エーテルが、フランである、請求項1に記載のブタジエン含有組成物。
  3.  重合禁止剤をさらに含む、請求項1又は2に記載のブタジエン含有組成物。
PCT/JP2014/060648 2014-04-14 2014-04-14 ブタジエン含有組成物 WO2015159350A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060648 WO2015159350A1 (ja) 2014-04-14 2014-04-14 ブタジエン含有組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060648 WO2015159350A1 (ja) 2014-04-14 2014-04-14 ブタジエン含有組成物

Publications (1)

Publication Number Publication Date
WO2015159350A1 true WO2015159350A1 (ja) 2015-10-22

Family

ID=54323601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060648 WO2015159350A1 (ja) 2014-04-14 2014-04-14 ブタジエン含有組成物

Country Status (1)

Country Link
WO (1) WO2015159350A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263804A (ja) * 1993-01-13 1994-09-20 Shin Etsu Chem Co Ltd 重合体スケール付着防止剤、及びそれを利用する重合体の製造方法
JP2010090082A (ja) * 2008-10-10 2010-04-22 Mitsubishi Chemicals Corp 共役ジエンの製造方法
JP2012106942A (ja) * 2010-11-16 2012-06-07 Mitsubishi Chemicals Corp 共役ジエンの製造方法
WO2013080967A1 (ja) * 2011-11-28 2013-06-06 旭化成ケミカルズ株式会社 1,3-ブタジエンの精製方法
WO2013136434A1 (ja) * 2012-03-13 2013-09-19 旭化成ケミカルズ株式会社 共役ジオレフィンの製造方法
JP2014084290A (ja) * 2012-10-23 2014-05-12 Asahi Kasei Chemicals Corp ブタジエン含有組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263804A (ja) * 1993-01-13 1994-09-20 Shin Etsu Chem Co Ltd 重合体スケール付着防止剤、及びそれを利用する重合体の製造方法
JP2010090082A (ja) * 2008-10-10 2010-04-22 Mitsubishi Chemicals Corp 共役ジエンの製造方法
JP2012106942A (ja) * 2010-11-16 2012-06-07 Mitsubishi Chemicals Corp 共役ジエンの製造方法
WO2013080967A1 (ja) * 2011-11-28 2013-06-06 旭化成ケミカルズ株式会社 1,3-ブタジエンの精製方法
WO2013136434A1 (ja) * 2012-03-13 2013-09-19 旭化成ケミカルズ株式会社 共役ジオレフィンの製造方法
JP2014084290A (ja) * 2012-10-23 2014-05-12 Asahi Kasei Chemicals Corp ブタジエン含有組成物

Similar Documents

Publication Publication Date Title
US9126877B2 (en) Polymers of isobutene from renewable sources
US9255041B2 (en) Method for producing conjugated diolefin and apparatus for production
US10329224B2 (en) Method for production of conjugated diolefin
TW201410722A (zh) 二烯類的聚合
JP5780124B2 (ja) 共役ジエンの製造方法
JP2017533931A5 (ja)
JP2016503073A (ja) 酸化的脱水素化によるn−ブテン類からの1,3−ブタジエンの製造方法
KR20160032188A (ko) 산화성 탈수소화에 의해 n-부텐으로부터 1,3-부타디엔을 제조하는 방법
JP2014224070A (ja) 共役ジエンの製造方法
CN105246864B (zh) 提纯来自氧化脱氢方法的1,3‑丁二烯的方法
EP3095772B1 (en) Method and apparatus for preparing conjugated diene
WO2015159350A1 (ja) ブタジエン含有組成物
KR20140109400A (ko) 선택성 용매를 사용하는 추출 증류 공정을 위한 공급 스트림으로서의 증기상의 정제된 조 c4 분획을 제공하는 방법
KR20180101361A (ko) n-부텐의 산화성 탈수소화에 의해 부타디엔을 제조하는 방법
US10463987B2 (en) Process for purifying an aqueous solution comprising diethylacetal
TWI545103B (zh) Butadiene-containing compositions
JP2014084290A (ja) ブタジエン含有組成物
EP3010874A1 (en) Co-extraction systems for separation and purification of butadiene and isoprene
RU2469030C1 (ru) Способ получения окиси гексафторпропилена
KR20140003447A (ko) 가스 스트림으로부터 아세틸렌을 선택적으로 제거하는 방법 및 촉매
CN109641815A (zh) 集成了萃取蒸馏的由乙醇生产丁二烯的方法
EP3374336B1 (en) Methods for using nitric oxide to inhibit popcorn polymerization during butadiene processing
JP2010235751A (ja) 共役ジエン系重合体の製造方法
NO312095B1 (no) Fremgangsmåte for fremstilling av mettede karboksylsyrer med 1-4 C-atomer, og anordning for anvendelse ved fremgangsmåten
JP5246027B2 (ja) ブタジエンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP