WO2015152391A1 - 浄水器用活性炭 - Google Patents

浄水器用活性炭 Download PDF

Info

Publication number
WO2015152391A1
WO2015152391A1 PCT/JP2015/060556 JP2015060556W WO2015152391A1 WO 2015152391 A1 WO2015152391 A1 WO 2015152391A1 JP 2015060556 W JP2015060556 W JP 2015060556W WO 2015152391 A1 WO2015152391 A1 WO 2015152391A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
less
pore volume
water
pore diameter
Prior art date
Application number
PCT/JP2015/060556
Other languages
English (en)
French (fr)
Inventor
孝規 塚▲崎▼
尚一 竹中
徳康 赤松
天能 浩次郎
Original Assignee
関西熱化学株式会社
株式会社Mcエバテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西熱化学株式会社, 株式会社Mcエバテック filed Critical 関西熱化学株式会社
Priority to KR1020167006371A priority Critical patent/KR102050343B1/ko
Priority to CN201580001883.0A priority patent/CN105555714B/zh
Priority to JP2015534716A priority patent/JP6290900B2/ja
Publication of WO2015152391A1 publication Critical patent/WO2015152391A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Definitions

  • the present invention relates to activated carbon for water purifiers, and in particular, relates to activated carbon for water purifiers excellent in organic halogen compound adsorption performance.
  • Raw water for tap water is obligated to be chlorinated, and the treated tap water contains a certain amount of residual chlorine.
  • the residual chlorine has an oxidative decomposition action of organic substances in addition to the bactericidal action, and produces organic halogen compounds such as trihalomethanes which are carcinogenic substances.
  • the organohalogen compound remaining in tap water has a low molecular weight, and the concentration in tap water is extremely dilute. Therefore, it has been difficult to sufficiently remove these organic halogen compounds with conventional activated carbon.
  • Patent Document 1 proposes a granular carbon molded product obtained by carbonizing phenol resin powder and combining activated particles.
  • the specific surface area, the relationship between pore diameter and pore volume, particle bulk density, and packing density A technique for improving the adsorptivity to low-boiling organochlorine compounds by controlling is disclosed.
  • the adsorptivity to trihalomethanes is improved by controlling the pore volume ratio of 20 to 100 pores and the pore volume ratio of 10 to 10 pores with respect to the pore volume of 100 pores or less. Techniques for making them disclosed are disclosed.
  • activated carbon is required to have improved adsorption performance for organic halogen compounds under water-flowing conditions.
  • the conventional activated carbon did not have sufficient adsorption performance under water flow conditions.
  • the present invention has been made paying attention to the above-mentioned circumstances, and the object thereof is to provide activated carbon for water purifiers that is excellent not only in the amount of equilibrium adsorption for organic halogen compounds but also in adsorption performance even under water passage conditions. That is.
  • the powdered or granular activated carbon for water purifier according to the present invention that has solved the above problems has a BET specific surface area of 700 m 2 / g or more and less than 1250 m 2 / g, and a pore diameter of 2 nm with respect to a pore volume of pore diameter of 30 nm or less.
  • the gist of the present invention is that the following pore volume ratio is 50% or more and less than 80%, and the pore volume ratio of the pore diameter of more than 2 nm to 10 nm or less with respect to the pore volume of pore diameter of 30 nm or less is 10% or more and less than 40%.
  • the average pore diameter of the activated carbon is preferably 2.0 nm to 4.0 nm, and the pore volume ratio of 10 nm or less to the pore volume of the activated carbon having a pore diameter of 30 nm or less is 80%. This is also a preferred embodiment.
  • the activated carbon for water purifier of the present invention is preferably obtained by activating the carbide of the paper-phenolic resin laminate until the BET specific surface area falls within the above range, and the activating treatment is preferably a steam activating treatment. It is an aspect.
  • FIG. 1 is a graph showing the relationship between the equilibrium adsorption amount of 1,1,1-trichloroethane and the specific surface area in the equilibrium test of each activated carbon of the example.
  • FIG. 2 is a graph showing the relationship between the 1,1,1-trichloroethane water flow rate and the specific surface area in the water flow test of each activated carbon of the example.
  • FIG. 3 is a graph showing the pore size distribution of each activated carbon of the example.
  • the organic halogen compound is adsorbed in micropores having a pore diameter of 2 nm or less.
  • it is necessary to improve the diffusion rate of the organic halogen compound in the particles.
  • it is considered essential to increase the number of mesopores having a pore diameter of more than 2 nm and not more than 50 nm as an introduction path to the micropores.
  • the conventional activated carbon has insufficient strict control of the specific surface area and pore volume, and the organic halogen compound cannot be efficiently removed under water-flowing conditions.
  • Patent Document 1 the ratio of the pore volume of the spherical phenol resin having a pore diameter of 0.6 to 0.8 nm is increased.
  • Patent Document 1 does not sufficiently consider the relatively large pores that contribute to the improvement of the diffusion rate in the pores of the organic halogen compound, and has not yet improved the adsorption performance under water passage conditions. .
  • Patent Document 2 the adsorption performance for organic halogen compounds under water-flowing conditions is improved by improving the pore volume ratio of the pore diameter of 2 to 10 nm of activated carbon made from fullerene.
  • the relationship between the pore diameter and the pore volume from the viewpoint of achieving both a better adsorption amount and a diffusion rate of the organic halogen compound under water flow conditions.
  • fullerene is used as a raw material for activated carbon.
  • the present inventors examined activated carbon having excellent adsorption performance not only in the amount of equilibrium adsorption with respect to the organic halogen compound but also under water flow conditions. As a result, the relationship between the pore diameter and the pore volume, and the specific surface area, which can achieve a good balance between the adsorption amount and the diffusion rate of the organic halogen compound were found.
  • the powdered or granular activated carbon for water purifiers of the present invention has a pore volume ratio (hereinafter referred to as “pores of 2 to 10 nm”) having a pore diameter of more than 2 nm and not more than 10 nm among mesopores contributing to an improvement in the diffusion rate of the organic halogen compound.
  • pores of 2 to 10 nm a pore volume ratio having a pore diameter of more than 2 nm and not more than 10 nm among mesopores contributing to an improvement in the diffusion rate of the organic halogen compound.
  • volume ratio a pore volume ratio of pore diameter of 2 nm or less (hereinafter sometimes referred to as“ pore volume ratio of 2 nm or less ”), which contributes to an improvement in the adsorption amount of organic halogen compounds. It was found that by controlling the specific surface area strictly, the equilibrium adsorption amount with respect to the organic halogen compound and the adsorption performance under water flow conditions can be improved.
  • the activated carbon for water purifiers of the present invention has a BET specific surface area of 700 m 2 / g or more and less than 1250 m 2 / g, and a pore volume with a pore diameter of 30 nm or less (hereinafter sometimes referred to as “total pore volume”).
  • the pore volume ratio of 2 nm or less is 50% or more and less than 80%, and the pore volume ratio of 2 to 10 nm to the total pore volume is 10% or more and less than 40%.
  • the activated carbon for water purifiers of the present invention having the above-described structure has a fast movement and diffusion of the organic halogen compound in the activated carbon and has sufficient adsorption sites. Therefore, the activated carbon of the present invention is excellent in adsorption performance under water flow conditions.
  • the BET specific surface area of 700 m 2 / g or more and less than 1250 m 2 / g If the BET specific surface area of the activated carbon is too small, a sufficient amount of adsorption cannot be obtained. Therefore, the BET specific surface area is 700 m 2 / g or more, preferably 800 m 2 / g or more, more preferably 900 m 2 / g or more. On the other hand, if the BET specific surface area becomes too large, the packing density of activated carbon decreases, and the pore volume ratio of 2 nm or less that contributes to the improvement of the adsorption amount and the pore volume ratio of 2 to 10 nm that contributes to the improvement of the diffusion rate are balanced. Cannot secure well.
  • the BET specific surface area is less than 1250 m 2 / g, preferably 1100 m 2 / g or less, more preferably 1050 m 2 / g or less, and further preferably less than 1000 m 2 / g.
  • the pore volume ratio of the pore diameter of 2 nm or less to the total pore volume is 50% or more and less than 80%]
  • the pores having a pore diameter of 2 nm or less of the activated carbon are effective pores for improving the adsorption amount of the organic halogen compound. If the pore volume ratio of 2 nm or less is too small, a sufficient adsorption amount cannot be ensured. Therefore, the pore volume ratio of 2 nm or less with respect to the total pore volume is 50% or more, preferably 60% or more, more preferably 70% or more.
  • the pore volume ratio of 2 nm or less is excessively large, a pore volume ratio of 2 to 10 nm that contributes to the improvement of the diffusion rate cannot be secured sufficiently, and the adsorption performance under water-flowing conditions decreases. Therefore, the pore volume ratio of 2 nm or less with respect to the total pore volume is less than 80%, preferably 75% or less.
  • the ratio of the pore volume of the pore diameter exceeding 2 nm to 10 nm to the total pore volume is 10% or more and less than 40%]
  • the pores having a pore diameter of more than 2 nm and not more than 10 nm of the activated carbon are effective for improving the diffusion rate of the organic halogen compound into the activated carbon and improving the adsorption performance under water-flowing conditions. If the pore volume ratio of 2 to 10 nm is too small, the diffusion rate becomes slow, and the adsorption performance under water-flowing conditions decreases. Therefore, the pore volume ratio of 2 to 10 nm with respect to the total pore volume is 10% or more, preferably 15% or more, more preferably 20% or more, and further preferably 25% or more.
  • the pore volume ratio of 2 to 10 nm is less than 40%, preferably 35% or less.
  • the pores having a pore diameter of 10 nm or less of the activated carbon are pores that contribute to the improvement of the adsorption amount and the diffusion rate as described above, and the adsorption performance of the activated carbon can be enhanced by ensuring a certain level or more. Therefore, the total volume ratio of the pore volume ratio of 2 nm or less and the pore volume ratio of 2 to 10 nm to the total pore volume of activated carbon (hereinafter sometimes referred to as “pore volume ratio of 10 nm or less”) is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more.
  • the upper limit is not particularly limited, but if the pore volume ratio of 10 nm or less becomes too large, the number of mesopores and macropores having a large pore diameter of more than 10 nm that serves as an introduction path for the organic halogen compound is reduced, and the inside of the activated carbon is reduced. The transfer and diffusion efficiency of the organic halogen compound is reduced, and the adsorption performance under water-flowing conditions is reduced. Therefore, the ratio of the pore volume of 10 nm or less to the total pore volume is preferably 98% or less, more preferably 96% or less, and still more preferably 95% or less.
  • the activated carbon of the present invention only needs to satisfy the above pore volume ratio, and the pore volume with a pore diameter of 30 nm or less, that is, the total pore volume is not limited, but if the total pore volume is too small, a sufficient amount of adsorption Cannot be secured. Therefore, the total pore volume is preferably 0.30 cm 3 / g or more, more preferably 0.40 cm 3 / g or more, and still more preferably 0.50 cm 3 / g or more.
  • the upper limit of the total pore volume is not particularly limited, and for example, is preferably 0.80 cm 3 / g or less, more preferably 0.70 cm 3 / g or less.
  • the average pore diameter of the activated carbon is not particularly limited, but from the viewpoint of improving the introduction efficiency of the organic halogen compound into the activated carbon, it is preferably 2.0 nm or more, more preferably 2.1 nm or more, still more preferably 2.2 nm or more, More preferably, it is 2.3 nm or more.
  • the average pore diameter becomes too large, the packing density may be lowered. Therefore, it is preferably 4.0 nm or less, more preferably 3.5 nm or less, and still more preferably 3.0 nm or less.
  • the activated carbon of the present invention may be powdery or granular, and the average particle diameter is not particularly limited, but is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, still more preferably 40 ⁇ m or more, preferably 300 ⁇ m or less, more preferably Is 150 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the activated carbon of the present invention is trihalomethanes such as trichloromethane, trifluoromethane, chlorodifluoromethane, bromodichloromethane, dibromochloromethane, and tribromomethane, and organic halogen compounds such as trichloroethane and trichloroethylene, and more preferably has a low molecular weight and is difficult to be adsorbed. Excellent adsorption performance for 1,1,1-trichloroethane.
  • the activated carbon of the present invention is suitable for removing the above substances contained in tap water and industrial wastewater.
  • the activated carbon of the present invention can achieve an equilibrium adsorption amount based on an equilibrium test of Examples described later, preferably 20 mg / g or more, more preferably 25 mg / g or more.
  • the activated carbon of the present invention is suitable as activated carbon for removing trihalo compounds under water-flowing conditions, and the amount of water that can maintain an organic halogen compound removal rate of 80% or more based on the water-flow test in the examples below is preferably
  • the water flow rate is 52 L / g or more, more preferably the water flow rate is 60 L / g or more, still more preferably the water flow rate is 70 L / g or more, and even more preferably the water flow rate is 80 L / g or more.
  • the form of the water purifier using the activated carbon of the present invention is not particularly limited, and can be used for various known water purifiers.
  • the activated carbon of the present invention can be produced by activating the activation raw material.
  • “Activation treatment” is treatment for forming pores on the surface of the activation raw material to increase the specific surface area and pore volume.
  • As the activation process it is recommended that steam activation be performed.
  • the activation process may be performed only once or multiple times.
  • the activation raw material may be one used as a normal activated carbon raw material, but the following raw materials are particularly recommended.
  • an activation raw material an activation raw material in which relatively large pores are easily formed (hereinafter sometimes referred to as “mesopore formation raw material”) and an activation raw material in which relatively small pores are easily formed (hereinafter referred to as “micropore formation raw material”). In some cases). If a composite of mesopore forming raw material and micropore forming raw material is used as the activation raw material, the pore volume ratio corresponding to each predetermined pore diameter can be obtained by a single activation treatment without performing the activation treatment multiple times. The activated carbon which has is obtained.
  • Examples of the mesopore forming raw material include cellulosic raw materials such as paper, cotton fiber, and woody material.
  • Examples of the micropore forming raw material include synthetic resin raw materials such as phenol resin and furan resin. At least one or more of these mesopore forming raw materials and micropore forming raw materials are used. In addition, what is necessary is just to change suitably the compounding ratio of a mesopore formation raw material and a micropore formation raw material according to the physical property of the desired activated carbon.
  • a paper-phenol resin laminate is suitable as the composite of the mesopore forming raw material and the micropore forming raw material.
  • Paper-phenolic resin laminates can form mesopores and micropores by controlling the activation conditions compared to activated carbon made from phenolic resin, fullerene, etc. used in Patent Literature 1 and Patent Literature 2. It can be strictly controlled. Therefore, it is possible to control the specific surface area and pore volume ratio of the activated carbon more precisely. Therefore, an activated carbon that is extremely excellent in the adsorption performance of the organic halogen compound under water-flowing conditions can be obtained.
  • the mixture or composite of the mesopore forming raw material and the micropore forming raw material is preferably used after being carbonized.
  • the carbonization treatment may be usually performed by heat treatment at a temperature and time at which the carbon raw material does not burn in an inert gas atmosphere such as nitrogen gas, helium, or argon gas.
  • the carbonization temperature is preferably 500 ° C. or higher, more preferably 550 ° C. or higher, preferably 850 ° C. or lower, more preferably 800 ° C. or lower.
  • the holding time is not particularly limited, but it may be held at the carbonization temperature for about 5 to 10 minutes or more.
  • the activation treatment is not particularly limited as long as the BET specific surface area and the pore volume ratio of the activated carbon of the present invention are obtained. From the viewpoint of easily and precisely controlling the BET specific surface area and pore volume ratio, steam activation is preferred.
  • the activation treatment is performed so that the predetermined BET specific surface area and the pore volume ratio are within a range by supplying water vapor.
  • the activation raw material is preferably heated in an inert gas atmosphere such as nitrogen, argon or helium.
  • the temperature (furnace temperature) at the time of the activation treatment is preferably 400 ° C. or higher, more preferably 450 ° C. or higher, preferably 1500 ° C. or lower, more preferably 1300 ° C. or lower.
  • the heating time at the time of performing an activation process has preferable 0.5 hours or more, More preferably, it is 1.0 hours or more, 10 hours or less are preferable, More preferably, it is 5 hours or less.
  • the total amount of water vapor supplied during the activation process is not particularly limited.
  • the supply mode of water vapor is not particularly limited, and for example, either a mode in which water vapor is supplied without dilution or a mode in which water vapor is diluted with an inert gas and supplied as a mixed gas is possible.
  • an embodiment in which the reaction is diluted with an inert gas and supplied is preferable.
  • the water vapor partial pressure in the mixed gas (total pressure 101.3 kPa) is preferably 30 kPa or more, more preferably 40 kPa or more.
  • the activated carbon after steam activation may be subjected to washing treatment, heat treatment, and pulverization treatment as necessary.
  • the washing treatment the activated carbon after steam activation is performed using a known solvent such as water, an acid solution, or an alkaline solution.
  • a known solvent such as water, an acid solution, or an alkaline solution.
  • impurities such as ash can be removed.
  • the heat treatment the activated carbon after steam activation or after washing is further heated in an inert gas atmosphere.
  • heat-treating the activated carbon water contained in the activated carbon can be removed.
  • the grinding process is performed using a disk mill, a ball mill, a bead mill or the like. In addition, what is necessary is just to adjust the particle size of activated carbon suitably as needed.
  • Average pore diameter (nm) (4 ⁇ total pore volume (V total : cm 3 / g)) / specific surface area (m 2 / g) (1)
  • Pore volume ratio of each pore diameter ( ⁇ V2nm, V2-10nm, V10nm ⁇ ) with respect to the total pore volume (Vtotal) The pore volume ratio of each pore diameter by dividing each pore volume by the total pore volume ( %) was calculated.
  • Water flow test 2.0 g of activated carbon with a particle size adjusted within the range of 53 to 250 ⁇ m is packed in a column (diameter 15 mm), and a water flow test is performed according to JIS S 3201 (2010: Water purifier test method for home use). went. Specifically, raw water adjusted to have a 1,1,1-trichloroethane concentration of 0.3 ⁇ 0.060 mg / L was passed through the column at a space velocity (SV) of 500 h ⁇ 1 . The 1,1,1-trichloroethane concentration before and after passing through the column was quantitatively measured by the headspace gas chromatogram method.
  • SV space velocity
  • the amount of water (L) / activated carbon mass (g)]) was calculated and used as filtration performance.
  • the headspace was TurboMatrix HS manufactured by Perkin Elmer, and the gas chromatogram mass spectrometer QP2010 manufactured by Shimadzu Corporation was used.
  • Activated carbon No. 1 The pulverized charcoal obtained by carbonizing the paper-phenolic resin laminate as a carbon raw material was heated to 870 ° C. and placed in a heating furnace adjusted to an inert atmosphere. At the same time when the paper-phenolic resin laminate was charged, steam (steam partial pressure: 40 kPa) was supplied into the heating furnace, and steam activation treatment was carried out for 2.0 hours in an inert gas atmosphere. 1 was obtained. The supply amount of water vapor was 300 parts by mass with respect to 100 parts by mass of the paper-phenol resin laminate that was added.
  • Activated carbon No. 2-4 Except for changing the activation time, activated carbon No. In the same manner as in No. 1, activated carbon no. 2-4 were produced.
  • Activated carbon No. 5 Commercially available coconut shell steam activated activated carbon (manufactured by MC Evatech) was prepared. It was set to 5.
  • Activated carbon No. 6 After adding potassium hydroxide having a mass ratio of 0.64 times as an activator to 30 g of the carbonized paper-phenol resin laminate, it was put into a heating furnace and activated at 800 ° C. for 2 hours in a nitrogen atmosphere. The activated carbon thus obtained was washed with water at 60 ° C. in warm water, then washed with hydrochloric acid (hydrochloric acid concentration 5.25% by mass), and washed with water at 60 ° C. in water. Thereafter, the activated carbon was put into a muffle furnace, the temperature in the furnace was increased to 750 ° C. (temperature increase rate: 10 ° C./min) under a nitrogen flow (2 L / min), and maintained at 750 ° C. for 2 hours to be activated carbon No. . 6 was produced.
  • FIG. 1 shows the relationship between the equilibrium adsorption amount of 1,1,1-trichloroethane and the specific surface area in the equilibrium test of each activated carbon.
  • FIG. 2 shows the relationship between the water flow rate of 1,1,1-trichloroethane and the specific surface area in the water flow test of each activated carbon.
  • FIG. A pore size distribution of 1 to 6 is shown.

Abstract

 本発明の粉末状または粒状の浄水器用活性炭は、活性炭のBET比表面積が700m2/g以上1250m2/g未満であり、細孔径30nm以下の細孔容積に対する細孔径2nm以下の細孔容積比率が50%以上80%未満、かつ細孔径30nm以下の細孔容積に対する細孔径2nm超10nm以下の細孔容積比率が10%以上40%未満であることに要旨を有する。

Description

浄水器用活性炭
 本発明は浄水器用活性炭に関し、詳細には有機ハロゲン化合物の吸着性能に優れた浄水器用活性炭に関する。
 水道水用の原水は塩素処理することが義務付けられており、処理後の水道水には一定量の残留塩素が含まれている。一方で、残留塩素は、殺菌作用以外に有機物の酸化分解作用も有しており、発ガン性物質であるトリハロメタン類などの有機ハロゲン化合物を生成する。水道水に残存している有機ハロゲン化合物は、分子量が小さく、また水道水中の濃度は極めて希薄である。そのため従来の活性炭では、これらの有機ハロゲン化合物を十分除去することが困難であった。
 このような問題に対し活性炭の細孔径分布を最適化することが提案されている。有機ハロゲン化合物の吸着にはメソ孔容積比率を高めることが有用であると考えられており、各種提案がされている。
 例えば特許文献1では、フェノール樹脂粉末の炭化、賦活粒子が結合してなる粒状炭素成形物が提案されており、比表面積、細孔直径と細孔容積の関係、粒子嵩密度、および充填密度を制御することで、低沸点有機塩素化合物に対する吸着性を向上させる技術が開示されている。
 また特許文献2では、細孔径が100Å以下の細孔容積に対する、細孔径20Å~100Åの細孔容積比率と細孔径10Å以下の細孔容積比率を制御することで、トリハロメタン類に対する吸着性を向上させる技術が開示されている。
特開平9-110409号公報 特開2006-247527号公報
 近年、水需要の増大に伴って、活性炭には通水条件下における有機ハロゲン化合物に対する吸着性能の向上が求められている。しかしながら従来の活性炭は通水条件下で十分な吸着性能を有していなかった。
 本発明は上記のような事情に着目してなされたものであって、その目的は、有機ハロゲン化合物に対する平衡吸着量だけでなく、通水条件下でも吸着性能に優れた浄水器用活性炭を提供することである。
 上記課題を解決し得た本発明に係る粉末状または粒状の浄水器用活性炭は、BET比表面積が700m2/g以上1250m2/g未満であり、細孔径30nm以下の細孔容積に対する細孔径2nm以下の細孔容積比率が50%以上80%未満、かつ細孔径30nm以下の細孔容積に対する細孔径2nm超10nm以下の細孔容積比率が10%以上40%未満であることに要旨を有する。
 本発明の浄水器用活性炭は、活性炭の平均細孔径が2.0nm以上4.0nm以下であることも好ましく、また活性炭の細孔径30nm以下の細孔容積に対する10nm以下の細孔容積比率が80%以上であることも好ましい実施態様である。
 また本発明の浄水器用活性炭は、紙-フェノール樹脂積層体の炭化物をBET比表面積が前記範囲になるまで賦活処理したものであることが好ましく、更に賦活処理は水蒸気賦活処理であることも好ましい実施態様である。
 本発明の浄水器用活性炭は、比表面積、及び細孔構造が最適化されているため、有機ハロゲン化合物に対する平衡吸着量だけでなく、通水条件下でも優れた吸着性能を発揮できる。
図1は、実施例の各活性炭の平衡試験での1,1,1-トリクロロエタン平衡吸着量と比表面積の関係を示すグラフである。 図2は、実施例の各活性炭の通水試験での1,1,1-トリクロロエタン通水量と比表面積との関係を示すグラフである。 図3は、実施例の各活性炭の細孔径分布を示すグラフである。
 有機ハロゲン化合物は細孔径2nm以下のミクロ孔に吸着するが、通水条件下で有機ハロゲン化合物に対する吸着性能を向上させるには、有機ハロゲン化合物の粒子内での拡散速度を向上させる必要がある。そのためにはミクロ孔への導入路となる細孔径2nm超50nm以下のメソ孔の増大が必須であると考えられている。しかしながら従来の活性炭は比表面積や細孔容積の厳密な制御が不十分であり、通水条件下での有機ハロゲン化合物の効率的な除去ができなかった。
 例えば特許文献1では、球状フェノール樹脂の細孔直径0.6~0.8nmの細孔容積の割合を高めている。しかしながら特許文献1では有機ハロゲン化合物の細孔内での拡散速度向上に寄与する比較的大きな細孔については十分に考慮されておらず、通水条件下での吸着性能を改善するには至っていない。
 また特許文献2では、フラーレンを原料とする活性炭の細孔径2~10nmの細孔容積比率を改善することで通水条件下での有機ハロゲン化合物に対する吸着性能の向上を図っている。しかしながら通水条件下でより優れた吸着量と有機ハロゲン化合物の拡散速度とを両立させる観点から、細孔径と細孔容積との関係を検討する余地があった。特に特許文献2では活性炭原料としてフラーレンを用いているが、製造コストが高く、またフラーレンを原料とする活性炭では、通水条件下での有機ハロゲン化合物に対する吸着性能向上に適した比表面積、及び細孔容積に調整することが難しいという問題があった。
 そこで本発明者らは、有機ハロゲン化合物に対する平衡吸着量だけでなく、通水条件下でも優れた吸着性能を有する活性炭について検討した。その結果、吸着量と有機ハロゲン化合物の拡散速度とをバランスよく両立できる細孔径と細孔容積との関係、及び比表面積を見出した。
 すなわち本発明の粉末状または粒状の浄水器用活性炭は、有機ハロゲン化合物の拡散速度向上に寄与するメソ孔のうち、細孔径2nm超10nm以下の細孔容積比率(以下、「2~10nmの細孔容積比率」ということがある)、および有機ハロゲン化合物の吸着量向上に寄与する細孔径2nm以下の細孔容積比率(以下、「2nm以下の細孔容積比率」ということがある)、更に活性炭の比表面積を厳密に制御することで、有機ハロゲン化合物に対する平衡吸着量、および通水条件下での吸着性能を向上できることを見出した。
 本発明の浄水器用活性炭は、BET比表面積が700m2/g以上1250m2/g未満であり、細孔径30nm以下の細孔容積(以下、「全細孔容積」ということがある)に対して2nm以下の細孔容積比率が50%以上80%未満であり、全細孔容積に対して2~10nmの細孔容積比率が10%以上40%未満であることを特徴とする。
 上記構成を有する本発明の浄水器用活性炭は、活性炭内での有機ハロゲン化合物の移動、拡散が早くなり、かつ、吸着サイトも十分に存在する。そのため、本発明の活性炭は通水条件下での吸着性能に優れている。
 以下、本発明の活性炭について具体的に説明する。
 [BET比表面積が700m2/g以上1250m2/g未満]
 活性炭のBET比表面積が小さすぎると十分な吸着量が得られない。したがってBET比表面積は700m2/g以上、好ましくは800m2/g以上、より好ましくは900m2/g以上である。一方、BET比表面積が大きくなりすぎると活性炭の充填密度が低下すると共に、吸着量向上に寄与する2nm以下の細孔容積比率と、拡散速度向上に寄与する2~10nmの細孔容積比率をバランスよく確保できなくなる。したがってBET比表面積は1250m2/g未満、好ましくは1100m2/g以下、より好ましくは1050m2/g以下、更に好ましくは1000m2/g未満である。
 [全細孔容積に対する細孔径2nm以下の細孔容積比率が50%以上80%未満]
 活性炭の細孔径2nm以下の細孔は、有機ハロゲン化合物の吸着量向上に有効な細孔であり、2nm以下の細孔容積比率が小さすぎると十分な吸着量を確保できない。したがって全細孔容積に対する2nm以下の細孔容積比率は50%以上、好ましくは60%以上、より好ましくは70%以上である。一方、2nm以下の細孔容積比率が大きくなりすぎると、拡散速度向上に寄与する2~10nmの細孔容積比率を十分に確保できず、通水条件下での吸着性能が低下する。したがって全細孔容積に対する2nm以下の細孔容積比率は80%未満、好ましくは75%以下である。
 [全細孔容積に対する細孔径2nm超10nm以下の細孔容積比率が10%以上40%未満]
 活性炭の細孔径2nm超10nm以下の細孔は、有機ハロゲン化合物の活性炭内部への拡散速度を向上させて通水条件下での吸着性能向上に有効である。2~10nmの細孔容積比率が小さすぎると、拡散速度が遅くなり通水条件下での吸着性能が低下する。したがって全細孔容積に対する2~10nmの細孔容積比率は10%以上、好ましくは15%以上、より好ましくは20%以上、更に好ましくは25%以上である。一方、2~10nmの細孔容積比率が大きくなりすぎると、2nm以下の細孔容積比率が低下して吸着量が低下する。したがって全細孔容積に対する2~10nmの細孔容積比率は40%未満、好ましくは35%以下である。
 有機ハロゲン化合物に対する通水条件下の吸着性能を更に向上させるためには以下の条件を満足することが望ましい。
 [全細孔容積に対する10nm以下の細孔容積比率]
 更に活性炭の細孔径10nm以下の細孔は、上記の通り、吸着量と拡散速度向上に寄与する細孔であり、一定以上確保することで、活性炭の吸着性能を高めることができる。したがって活性炭の全細孔容積に対する上記2nm以下の細孔容積比率と2~10nmの細孔容積比率の合計容積比率(以下、「10nm以下の細孔容積比率」ということがある)は、好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上である。上限は特に限定されないが、10nm以下の細孔容積比率が大きくなりすぎると、有機ハロゲン化合物の導入路となる細孔径10nm超の大きな細孔径を有するメソ孔やマクロ孔が減少して活性炭内部での有機ハロゲン化合物の移動、拡散効率が低下して通水条件下での吸着性能が低下する。したがって全細孔容積に対する10nm以下の細孔容積比率は、好ましくは98%以下、より好ましくは96%以下、更に好ましくは95%以下である。
 [活性炭の全細孔容積]
 本発明の活性炭は上記細孔容積比率を満足していればよく、細孔径30nm以下の細孔容積、すなわち全細孔容積は限定されないが、全細孔容積が小さすぎると、十分な吸着量を確保できない。したがって全細孔容積は好ましくは0.30cm3/g以上、より好ましくは0.40cm3/g以上、更に好ましくは0.50cm3/g以上である。全細孔容積の上限は特に限定されず、例えば好ましくは0.80cm3/g以下、より好ましくは0.70cm3/g以下である。
 [活性炭の平均細孔径]
 活性炭の平均細孔径は特に限定されないが、活性炭内部への有機ハロゲン化合物の導入効率を向上させる観点から、好ましくは2.0nm以上、より好ましくは2.1nm以上、更に好ましくは2.2nm以上、より更に好ましくは2.3nm以上である。一方、平均細孔径が大きくなりすぎると、充填密度が低下することがあるため、好ましくは4.0nm以下、より好ましくは3.5nm以下、更に好ましくは3.0nm以下である。
 [活性炭の平均粒径]
 本発明の活性炭は粉末状または粒状であればよく、平均粒径は特に限定されないが、好ましくは20μm以上、より好ましくは30μm以上、更に好ましくは40μm以上であって、好ましくは300μm以下、より好ましくは150μm以下、更に好ましくは100μm以下である。
 本発明の活性炭は、トリクロロメタン、トリフルオロメタン、クロロジフルオロメタン、ブロモジクロロメタン、ジブロモクロロメタン、トリブロモメタンなどのトリハロメタン類、トリクロロエタン、トリクロロエチレンなどの有機ハロゲン化合物、より好ましくは分子量が小さく、吸着されにくい1,1,1-トリクロロエタンに対して優れた吸着性能を有する。
 本発明の活性炭は水道水や工業廃水に含まれる上記物質の除去に好適である。
 本発明の活性炭は、後記実施例の平衡試験に基づく平衡吸着量で好ましくは20mg/g以上、より好ましくは25mg/g以上を達成できる。また本発明の活性炭は、通水条件下でのトリハロ化合物除去用活性炭として好適であり、後記実施例の通水試験に基づく有機ハロゲン化合物の除去率80%以上を維持できる通水量は、好ましくは通水量52L/g以上、より好ましくは通水量60L/g以上、更に好ましくは通水量70L/g以上、より更に好ましくは通水量80L/g以上である。
 本発明の活性炭を使用する浄水器の形態は特に限定されず、各種公知の浄水器に使用できる。
 以下、本発明の活性炭の製造方法について具体的に説明するが、本発明の製造方法は下記製造例に限定されず、適宜変更することができ、それらも本発明に含まれる。
 上記本発明の活性炭は、賦活原料を賦活処理することで製造できる。「賦活処理」とは、賦活原料の表面に細孔を形成して、比表面積および細孔容積を大きくする処理である。賦活処理としては、水蒸気賦活することが推奨される。また、賦活処理は一回のみ行ってもよいし、複数回行ってもよい。賦活原料は、通常の活性炭の原料として用いられるものでもよいが、特に下記原料が推奨される。
 賦活原料としては、比較的大きい細孔が形成されやすい賦活原料(以下、「メソ孔形成原料」という場合がある)と比較的小さい細孔が形成されやすい賦活原料(以下、「ミクロ孔形成原料」という場合がある)との複合物が好適である。賦活原料として、メソ孔形成原料とミクロ孔形成原料との複合物を用いれば、賦活処理を複数回行うことなく、一回の賦活処理で上記所定の各細孔径に応じた細孔容積比率を有する活性炭が得られる。
 メソ孔形成原料としては、例えば、紙、綿繊維、木質材料などのセルロース系原料などが挙げられる。ミクロ孔形成原料としては、例えば、フェノール樹脂、フラン樹脂などの合成樹脂系原料などが挙げられる。これらのメソ孔形成原料、およびミクロ孔形成原料は、それぞれ少なくとも1種以上使用する。なお、メソ孔形成原料とミクロ孔形成原料との配合比は、所望する活性炭の物性に応じて適宜変更すればよい。メソ孔形成原料とミクロ孔形成原料との複合物としては、例えば、紙-フェノール樹脂積層体が好適である。
 紙-フェノール樹脂積層体は、特許文献1や特許文献2で用いられているフェノール樹脂やフラーレンなどを原料とした活性炭と比べて、賦活条件を制御することで、メソ孔やミクロ孔の形成を厳密にコントロールできる。そのため、活性炭の比表面積、及び細孔容積比率などをより精緻に制御することが可能である。したがって通水条件下で有機ハロゲン化合物の吸着性能に極めて優れた活性炭が得られる。
 メソ孔形成原料とミクロ孔形成原料との混合物または複合物は、炭化処理して用いることが好ましい。前記炭化処理は、通常、窒素ガス、ヘリウム、アルゴンガス等の不活性ガス雰囲気下で炭素原料が燃焼しない温度、時間で加熱処理すればよい。該炭化処理の温度は、好ましくは500℃以上、より好ましくは550℃以上であり、好ましくは850℃以下、より好ましくは800℃以下である。保持時間は特に限定されないが、該炭化処理温度で5~10分程度以上保持すればよい。
 賦活処理は特に限定されず、上記本発明の活性炭のBET比表面積、および細孔容積比率が得られればよい。BET比表面積や細孔容積比率を簡便かつ精緻にコントロールする観点からは水蒸気賦活が好ましい。
 水蒸気賦活では、賦活原料を所定の温度まで加熱した後、水蒸気を供給することにより上記所定のBET比表面積、及び細孔容積比率の範囲となるように賦活処理を行う。賦活原料の加熱は、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気で行うことが好ましい。
 賦活処理を行う際の温度(炉内温度)は400℃以上が好ましく、より好ましくは450℃以上であり、1500℃以下が好ましく、より好ましくは1300℃以下である。また、賦活処理を行う際の加熱時間は0.5時間以上が好ましく、より好ましくは1.0時間以上であり、10時間以下が好ましく、より好ましくは5時間以下である。
 賦活処理中に供給する水蒸気の総量は特に限定されない。
 水蒸気の供給態様は特に限定されず、例えば水蒸気を希釈せずに供給する態様、水蒸気を不活性ガスで希釈して混合ガスとして供給する態様のいずれも可能である。賦活反応を効率良く進行させるためには、不活性ガスで希釈して供給する態様が好ましい。水蒸気を不活性ガスで希釈して供給する場合、該混合ガス(全圧101.3kPa)中の水蒸気分圧は好ましくは30kPa以上、より好ましくは40kPa以上である。
 水蒸気賦活後の活性炭は、必要に応じて洗浄処理、熱処理、粉砕処理を行ってもよい。洗浄処理は、水蒸気賦活後の活性炭を、水や酸溶液またはアルカリ溶液などの公知の溶媒を用いて行う。活性炭を洗浄することにより、灰分などの不純物を除去できる。熱処理は、水蒸気賦活後あるいは洗浄後の活性炭を、さらに不活性ガス雰囲気下で加熱する。活性炭を熱処理することにより、活性炭に含まれる水を除去できる。粉砕処理は、ディスクミル、ボールミル、ビーズミルなどを用いて行う。なお、活性炭の粒径は、必要に応じて適宜調整すればよい。
 本願は、2014年4月3日に出願された日本国特許出願第2014-76685号に基づく優先権の利益を主張するものである。2014年4月3日に出願された日本国特許出願第2014-76685号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 (測定条件など)
1.比表面積、全細孔容積
 活性炭0.2gを250℃にて真空加熱した後、窒素吸着装置(マイクロメリティックス社製、「ASAP-2400」)を用いて、吸着等温線を求め、BET法により比表面積(m2/g)を算出し、吸着等温線から細孔直径30nm以下の細孔の全細孔容積(Vtotal:cm3/g)を算出した。
2.平均細孔径、および各細孔径の細孔容積
 平均細孔径は、活性炭に形成された細孔の形状をシリンダー状と仮定して算出した。また各細孔径の細孔容積は、BJH法において解析して各細孔径における細孔容積を算出した。上記算出した比表面積と全細孔容積に基づき、下記式(1)~(4)により算出した。なお、細孔径分布は図3のグラフに示した。
 平均細孔径(nm)=(4×全細孔容積(Vtotal:cm3/g))/比表面積(m2/g)・・・(1)
 細孔直径2nm以下の細孔容積(≦V2nm:cm3/g)=全細孔容積(Vtotal:cm3/g)-(2~10nmの細孔容積(V2-10nm:cm3/g)+10nm超の細孔容積(V10nm<:cm3/g))・・・(2)
 細孔直径2nm超10nm以下の細孔容積(V2-10nm:cm3/g)=全細孔容積(Vtotal:cm3/g)-(2nm以下の細孔容積(≦V2nm:cm3/g)+10nm超の細孔容積(V10nm<:cm3/g))・・・(3)
 10nm超の細孔容積(V10nm<:cm3/g)=全細孔容積(Vtotal:cm3/g)-(2nm以下の細孔容積(≦V2nm:cm3/g)+2~10nmの細孔容積(V2-10nm:cm3/g))・・・(4)
3.全細孔容積(Vtotal)に対する各細孔径(≦V2nm、V2-10nm、V10nm<)の細孔容積比率
 上記各細孔容積を全細孔容積で除して各細孔径の細孔容積比率(%)を算出した。
4.通水試験
 粒径を53~250μmの範囲内に調整した活性炭2.0gをカラム(直径15mm)に充填し、JIS S 3201(2010年:家庭用浄水器試験法)に準じて通水試験を行った。具体的には1,1,1-トリクロロエタン濃度0.3±0.060mg/Lとなるように調整した原水を空間速度(SV)500h-1でカラムに通過させた。カラム通過前後の1,1,1-トリクロロエタン濃度をヘッドスペースガスクロマトグラム法にて定量測定を行った。破過点をカラム流入水に対する流出水の1,1,1-トリクロロエタン濃度20%とし、破過点に達した時点の1,1,1-トリクロロエタン通水量(=[破過点までの総ろ過水量(L)/活性炭質量(g)])を算出し、ろ過性能とした。なお、ヘッドスペースはパーキンエルマー社製TurboMatrixHS、ガスクロマトグラム質量分析計は島津製作所社製QP2010を用いた。
5.平衡試験
 1,1,1-トリクロロエタン0.5gをメタノール50mLで希釈した後、更にメタノールで10倍希釈して原液を調整した。原液5mLを純水で希釈し、濃度5mg/Lの1,1,1-トリクロロエタン水溶液を調整した。容量100mLの褐色三角フラスコに攪拌子と粒径を53~250μmの範囲内に調整した活性炭を入れた後、1,1,1-トリクロロエタン水溶液で満水にして密閉した。その後20℃に維持した恒温槽に三角フラスコを載置し、14時間攪拌した。14時間経過後、三角フラスコ内の水溶液をシリンジフィルターでろ過した。得られたろ過液をヘッドスペースガスクロマトグラム法にて1,1,1-トリクロロエタン水溶液の平衡濃度(mg/L)、および活性炭質量で除した1,1,1-トリクロロエタン水溶液の平衡吸着量(mg/g)を求めて吸着等温線を作成し、平衡濃度0.3mg/Lにおける1,1,1-トリクロロエタン平衡吸着量を算出し、1,1,1-トリクロロエタンに対する吸着量とした。
 活性炭No.1
 炭素原料として紙-フェノール樹脂積層体を炭化して得られる粉砕炭を870℃に加熱し、不活性雰囲気に調整した加熱炉内に投入した。紙-フェノール樹脂積層体の投入と同時に加熱炉内に水蒸気(水蒸気分圧:40kPa)を供給し、不活性ガス雰囲気で、2.0時間水蒸気賦活処理を行って活性炭No.1を得た。なお、水蒸気の供給量は投入した紙-フェノール樹脂積層体100質量部に対して300質量部とした。
 活性炭No.2~4
 賦活時間を変更した以外は、活性炭No.1と同様にして活性炭No.2~4を製造した。
 活性炭No.5
 市販されている椰子殻水蒸気賦活活性炭(MCエバテック社製)を用意しNo.5とした。
 活性炭No.6
 炭化した紙-フェノール樹脂積層体30gに賦活剤として質量比0.64倍の水酸化カリウムを添加した後、加熱炉に投入して窒素雰囲気中、800℃で2時間賦活処理した。得られた賦活炭に60℃の温水で水洗浄処理をしてから塩酸洗浄処理(塩酸濃度5.25質量%)を行い、60℃の温水で水洗浄処理。その後、活性炭をマッフル炉にいれて、窒素流通下(2L/分)、炉内温度を750℃まで昇温(昇温速度:10℃/分)し、750℃で2時間保持して活性炭No.6を製造した。
Figure JPOXMLDOC01-appb-T000001
 図1に各活性炭の平衡試験での1,1,1-トリクロロエタン平衡吸着量と比表面積の関係を示す。また図2に各活性炭の通水試験での1,1,1-トリクロロエタン通水量と比表面積との関係を示す。図3に活性炭No.1~6の細孔径分布を示す。
 図1に示すように、紙-フェノール樹脂積層体を用いた活性炭No.1~4、6は、ヤシガラを用いた活性炭No.5よりも平衡試験において優れた吸着性能を有していた。また図2に示すように、通水試験においては活性炭No.1~4は、活性炭No.6よりも優れた吸着性能を有していた。
 図3に示すように、活性炭No.1~4は活性炭No.5、6と比べて2~10nmの細孔容積比率が大きい。したがって本発明の要件を満足する活性炭No.1~4は、図1、2に示すように、平衡試験、および通水試験のいずれにおいても、1,1,1-トリクロロエタンに対する優れた吸着性能を発揮したと考えられる。

Claims (5)

  1.  BET比表面積が700m2/g以上1250m2/g未満であり、
     細孔径30nm以下の細孔容積に対する細孔径2nm以下の細孔容積比率が50%以上80%未満、かつ
     細孔径30nm以下の細孔容積に対する細孔径2nm超10nm以下の細孔容積比率が10%以上40%未満であることを特徴とする粉末状または粒状の浄水器用活性炭。
  2.  前記活性炭の平均細孔径が2.0nm以上4.0nm以下である請求項1に記載の浄水器用活性炭。
  3.  前記活性炭の細孔径30nm以下の細孔容積に対する10nm以下の細孔容積比率が80%以上である請求項1または2に記載の浄水器用活性炭。
  4.  前記活性炭は、紙-フェノール樹脂積層体の炭化物をBET比表面積が前記範囲になるまで賦活処理したものである請求項1~3の何れかに記載の浄水器用活性炭。
  5.  前記賦活処理は水蒸気賦活処理である請求項4に記載の浄水器用活性炭。
     
     
     
PCT/JP2015/060556 2014-04-03 2015-04-03 浄水器用活性炭 WO2015152391A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167006371A KR102050343B1 (ko) 2014-04-03 2015-04-03 정수기용 활성탄
CN201580001883.0A CN105555714B (zh) 2014-04-03 2015-04-03 净水器用活性炭
JP2015534716A JP6290900B2 (ja) 2014-04-03 2015-04-03 浄水器用活性炭

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-076685 2014-04-03
JP2014076685 2014-04-03

Publications (1)

Publication Number Publication Date
WO2015152391A1 true WO2015152391A1 (ja) 2015-10-08

Family

ID=54240698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060556 WO2015152391A1 (ja) 2014-04-03 2015-04-03 浄水器用活性炭

Country Status (4)

Country Link
JP (1) JP6290900B2 (ja)
KR (1) KR102050343B1 (ja)
CN (1) CN105555714B (ja)
WO (1) WO2015152391A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244905A1 (ja) * 2018-06-19 2019-12-26 株式会社アドール 活性炭
WO2020065930A1 (ja) * 2018-09-28 2020-04-02 関西熱化学株式会社 活性炭、及び該活性炭の製造方法
JP2020049451A (ja) * 2018-09-28 2020-04-02 関西熱化学株式会社 活性炭、及び該活性炭の製造方法
JP6683968B1 (ja) * 2018-06-19 2020-04-22 株式会社アドール 活性炭
US20200360915A1 (en) * 2018-01-04 2020-11-19 Asahi Kasei Kabushiki Kaisha Porous Molding
EP3932539A1 (de) * 2020-07-03 2022-01-05 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Ein imprägniertes sorbens und sein herstellungsverfahren zum oxidieren und sorbieren von quecksilber
WO2022004594A1 (ja) * 2020-06-30 2022-01-06 株式会社クラレ 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器
JP2022533387A (ja) * 2019-05-20 2022-07-22 ネクシオン リミテッド 金属イオン電池用電気活性材料
WO2022255249A1 (ja) * 2021-06-03 2022-12-08 フタムラ化学株式会社 ペルフルオロアルキル化合物吸着活性炭

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135794B (zh) * 2018-06-19 2023-09-05 株式会社安德如 活性炭
CN109012581B (zh) * 2018-07-24 2021-12-17 北海和荣活性炭科技有限责任公司 净水用复合炭棒滤芯的生产方法
WO2024042564A1 (ja) * 2022-08-22 2024-02-29 株式会社シナネンゼオミック 重金属吸着剤、浄水材及び重金属吸着剤の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145516A (ja) * 1993-11-18 1995-06-06 Petoca:Kk 活性炭素繊維、その製造方法及び該活性炭素繊維を吸着体とする浄水器
JPH07215711A (ja) * 1994-01-27 1995-08-15 Kansai Coke & Chem Co Ltd 高機能活性炭の製造法
JPH09110409A (ja) * 1995-10-18 1997-04-28 Kanebo Ltd 有機塩素化合物吸着用活性炭
JP2006083052A (ja) * 2004-08-20 2006-03-30 Japan Enviro Chemicals Ltd 球状活性炭及びその製造法
JP2006247527A (ja) * 2005-03-10 2006-09-21 Kansai Coke & Chem Co Ltd 吸着剤
JP2011020907A (ja) * 2009-07-17 2011-02-03 Kansai Coke & Chem Co Ltd 活性炭および該活性炭を用いた電気二重層キャパシタ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580584U (ja) * 1992-04-09 1993-11-02 船井電機株式会社 トリハロメタン除去浄水器
JP3767923B2 (ja) * 1995-05-23 2006-04-19 株式会社ダスキン 飲料用水の浄水器及び浄水方法
JP2002346321A (ja) * 2001-05-25 2002-12-03 Minebea Co Ltd 浄水フィルター
JP4142341B2 (ja) * 2002-05-24 2008-09-03 フタムラ化学株式会社 活性炭及びその製法
TWI385120B (zh) * 2004-04-02 2013-02-11 Kureha Corp 球狀活性碳之製造方法
JP2006282441A (ja) * 2005-03-31 2006-10-19 Japan Enviro Chemicals Ltd かび臭除去用粉末活性炭
WO2007103422A1 (en) * 2006-03-07 2007-09-13 Clemson University Mesoporous carbon fiber with a hollow interior or a convoluted surface
JP2008149267A (ja) * 2006-12-18 2008-07-03 Unitika Ltd 有機ハロゲン系化合物除去フィルター
JP5936423B2 (ja) * 2012-04-19 2016-06-22 フタムラ化学株式会社 浄水器用活性炭及びこれを用いた活性炭カートリッジ
JP5159970B1 (ja) * 2012-05-16 2013-03-13 株式会社アルメディオ 活性炭及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145516A (ja) * 1993-11-18 1995-06-06 Petoca:Kk 活性炭素繊維、その製造方法及び該活性炭素繊維を吸着体とする浄水器
JPH07215711A (ja) * 1994-01-27 1995-08-15 Kansai Coke & Chem Co Ltd 高機能活性炭の製造法
JPH09110409A (ja) * 1995-10-18 1997-04-28 Kanebo Ltd 有機塩素化合物吸着用活性炭
JP2006083052A (ja) * 2004-08-20 2006-03-30 Japan Enviro Chemicals Ltd 球状活性炭及びその製造法
JP2006247527A (ja) * 2005-03-10 2006-09-21 Kansai Coke & Chem Co Ltd 吸着剤
JP2011020907A (ja) * 2009-07-17 2011-02-03 Kansai Coke & Chem Co Ltd 活性炭および該活性炭を用いた電気二重層キャパシタ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200360915A1 (en) * 2018-01-04 2020-11-19 Asahi Kasei Kabushiki Kaisha Porous Molding
US11865509B2 (en) * 2018-01-04 2024-01-09 Asahi Kasei Kabushiki Kaisha Porous molding
JP6683968B1 (ja) * 2018-06-19 2020-04-22 株式会社アドール 活性炭
WO2019244905A1 (ja) * 2018-06-19 2019-12-26 株式会社アドール 活性炭
JPWO2019244905A1 (ja) * 2018-06-19 2020-06-25 株式会社アドール 活性炭
JP2020110801A (ja) * 2018-06-19 2020-07-27 株式会社アドール 活性炭
JP2020049451A (ja) * 2018-09-28 2020-04-02 関西熱化学株式会社 活性炭、及び該活性炭の製造方法
KR20210058742A (ko) 2018-09-28 2021-05-24 간사이네쯔카가꾸가부시끼가이샤 활성탄, 및 그 활성탄의 제조 방법
WO2020065930A1 (ja) * 2018-09-28 2020-04-02 関西熱化学株式会社 活性炭、及び該活性炭の製造方法
JP2022533387A (ja) * 2019-05-20 2022-07-22 ネクシオン リミテッド 金属イオン電池用電気活性材料
JP7447150B2 (ja) 2019-05-20 2024-03-11 ネクシオン リミテッド 金属イオン電池用電気活性材料
WO2022004594A1 (ja) * 2020-06-30 2022-01-06 株式会社クラレ 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器
US11795066B2 (en) 2020-06-30 2023-10-24 Kuraray Co., Ltd. Carbonaceous material and method for producing same, water purification filter, and water purifier
EP3932539A1 (de) * 2020-07-03 2022-01-05 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Ein imprägniertes sorbens und sein herstellungsverfahren zum oxidieren und sorbieren von quecksilber
WO2022255249A1 (ja) * 2021-06-03 2022-12-08 フタムラ化学株式会社 ペルフルオロアルキル化合物吸着活性炭

Also Published As

Publication number Publication date
JPWO2015152391A1 (ja) 2017-04-13
KR20160142275A (ko) 2016-12-12
JP6290900B2 (ja) 2018-03-07
KR102050343B1 (ko) 2019-11-29
CN105555714B (zh) 2020-01-14
CN105555714A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
JP6290900B2 (ja) 浄水器用活性炭
Liu et al. 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water
WO2016013619A1 (ja) 吸着性能に優れた活性炭、およびその製造方法
Islam et al. Adsorption capability of activated carbon synthesized from coconut shell
Gaya et al. Adsorption of aqueous Cd (II) and Pb (II) on activated carbon nanopores prepared by chemical activation of doum palm shell
US9802824B2 (en) Granular activated carbon, and manufacturing method for same
JP5781992B2 (ja) 塩基性官能基を付与した非経口用吸着材、およびその製造方法
WO2016072932A1 (en) Activated carbon, hydrochar and processes for making same
US9737871B2 (en) Granular activated carbon having many mesopores, and manufacturing method for same
WO2014017588A1 (ja) 高活性表面積を有する活性炭
WO2018116859A1 (ja) 活性炭及びその製造方法
JP6175552B2 (ja) 多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体
Sirichote et al. Adsorption of iron (III) ion on activated carbons obtained from bagasse, pericarp of rubber fruit and coconut shell
JP2011212531A (ja) アルキルシラノール除去材及びそれを製造する方法
JP2006282441A (ja) かび臭除去用粉末活性炭
TWI755715B (zh) 碳質材料及其製造方法、以及淨水用過濾器及淨水器
JP5863532B2 (ja) 活性炭及びその製造方法
CN111247097B (zh) 活性炭及该活性炭的制备方法
TW202222705A (zh) 碳質材料及其製造方法、以及去除含氟有機化合物之材料、淨水用過濾器及淨水器
JPH06106161A (ja) 活性炭浄水器
JP2009057239A (ja) 活性炭の製法
JP6542968B1 (ja) 活性炭、及び該活性炭の製造方法
JP7477999B2 (ja) 活性炭およびそれを用いたカビ臭を抑制する方法
KR20180069833A (ko) 다공질 탄소, 및 그것을 사용한 유기 할로겐 화합물 제거 장치
JPH06100310A (ja) 有機ハロゲン化合物除去用活性炭

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001883.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015534716

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006371

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15772436

Country of ref document: EP

Kind code of ref document: A1