WO2022004594A1 - 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器 - Google Patents
炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器 Download PDFInfo
- Publication number
- WO2022004594A1 WO2022004594A1 PCT/JP2021/024149 JP2021024149W WO2022004594A1 WO 2022004594 A1 WO2022004594 A1 WO 2022004594A1 JP 2021024149 W JP2021024149 W JP 2021024149W WO 2022004594 A1 WO2022004594 A1 WO 2022004594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pore volume
- carbonaceous material
- less
- calculated
- total pore
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
- C02F1/003—Processes for the treatment of water whereby the filtration technique is of importance using household-type filters for producing potable water, e.g. pitchers, bottles, faucet mounted devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2055—Carbonaceous material
- B01D39/2058—Carbonaceous material the material being particulate
- B01D39/2062—Bonded, e.g. activated carbon blocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28064—Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28069—Pore volume, e.g. total pore volume, mesopore volume, micropore volume
- B01J20/28071—Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/2808—Pore diameter being less than 2 nm, i.e. micropores or nanopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3071—Washing or leaching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/318—Preparation characterised by the starting materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/336—Preparation characterised by gaseous activating agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/354—After-treatment
- C01B32/382—Making shaped products, e.g. fibres, spheres, membranes or foam
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/14—Pore volume
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
- C02F1/685—Devices for dosing the additives
- C02F1/688—Devices in which the water progressively dissolves a solid compound
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/36—Organic compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
Definitions
- the present invention relates to a carbonaceous material. Further, the present invention relates to a method for producing a carbonaceous material, a water purification filter and a water purifier using the carbonaceous material.
- Trihalomethane is a general term for compounds in which three of the four hydrogen atoms of a methane molecule are substituted with halogen, and chloroform, dichlorobromomethane, chlorodibromomethane, bromoform and the like are typical examples thereof, and they are similar.
- 1,1,1-trichloroethane which is an organic halogen compound in which three of the hydrogen atoms of ethane are replaced with chlorine atoms, is the substance to be removed by the water purifier.
- Patent Document 1 describes the specific surface area, the amount of surface oxide, the ratio of the pore volume having a predetermined size obtained from the pore distribution by the MP method, and the predetermined size obtained from the pore distribution by the DH method. It is disclosed that the removal performance of chloroform and 1,1,1-trichloroethane is enhanced by using activated carbon in which the ratio of the pore volume having the above is specified. Further, Patent Document 2 also reports that trihalomethanes and the like can be adsorbed by an adsorbent containing porous carbon having a predetermined pore volume ratio.
- trihalomethane is a substance that is difficult to remove, and among them, chloroform is the most difficult substance to remove. Therefore, a means for more effectively removing chloroform from tap water or the like is desired.
- the chloroform removal performance is also an alternative evaluation for removing other substances even in the criteria represented by the NSF (National Science Foundation), and improvement of the chloroform removal performance is expected from such a viewpoint.
- the reality is that it is rare.
- An object of the present invention is to provide a carbonaceous material which can exhibit superior chloroform removal performance and has a long life, and a water purifier using the carbonaceous material.
- the carbonaceous material according to one aspect of the present invention has a BET specific surface area of 750 m 2 / g or more and 1000 m 2 / g or less calculated by the BET method from the nitrogen adsorption isotherm, and is calculated by the HK method from the nitrogen adsorption isotherm.
- the ratio of the pore volume in the range of 0.3875 to 0.9125 nm calculated by the HK method to the total pore volume is 80% or more, and from the BET specific surface area and the nitrogen adsorption isotherm.
- the average pore diameter obtained by the following formula is 1.614 nm or less.
- D 4000 x V / S (In the formula, D: average pore diameter (nm), V: total pore volume (mL / g), S: specific surface area (m 2 / g))
- the carbonaceous material according to another aspect of the present invention has a benzene adsorption amount of 20% by weight or more and 28% by weight or less, and is calculated by the BET specific surface area calculated by the BET method from the nitrogen adsorption isotherm and the carbon dioxide gas adsorption DFT method.
- a carbonaceous material having an average pore diameter of 1.300 to 1.600 nm obtained by the following formula using the total pore volume obtained.
- D 4000 x V / S (In the formula, D: average pore diameter (nm), V: total pore volume (mL / g), S: specific surface area (m 2 / g))
- the carbonaceous material according to the first embodiment of the present invention has a BET specific surface area of 750 m 2 / g or more and 1000 m 2 / g or less calculated by the BET method from the nitrogen adsorption isotherm, and is calculated by the HK method from the nitrogen adsorption isotherm.
- the ratio of the pore volume in the range of 0.3875 to 0.9125 nm calculated by the HK method to the total pore volume is 80% or more, and the BET specific surface area and the nitrogen adsorption isotherm.
- the average pore diameter obtained by the following formula is 1.614 nm or less.
- D 4000 x V / S (In the formula, D: average pore diameter (nm), V: total pore volume (mL / g), S: specific surface area (m 2 / g))
- the carbonaceous material of the present embodiment has a high adsorption rate to chloroform.
- the contact time is short, the faster the adsorption rate, the higher the chloroform removal performance. Therefore, according to the present invention, it is possible to provide a carbonaceous material which can exhibit superior chloroform removing performance and has a long life, and a water purifier using the carbonaceous material.
- the carbonaceous material of the present embodiment has a BET specific surface area calculated by the nitrogen adsorption method of 750 m 2 / g or more and 1000 m 2 / g or less.
- BET specific surface area calculated by the nitrogen adsorption method of 750 m 2 / g or more and 1000 m 2 / g or less.
- a more preferable upper limit of the BET specific surface area is 980 m 2 / g or less, more preferably 970 m 2 / g or less, and particularly preferably 950 m 2 / g or less.
- the lower limit of the BET specific surface area is 750 m 2 / g or more, preferably 800 m 2 / g or more, from the viewpoint that a volume contributing to the adsorption of chloroform is required to be a certain amount or more.
- the specific surface area of the carbonaceous material can be calculated from the nitrogen adsorption isotherm using the BET method, but the measurement of the nitrogen adsorption isotherm and the calculation of the specific surface area are described in [Measurement of nitrogen adsorption isotherm] and [Measurement of nitrogen adsorption isotherm] and [ Measurement of specific surface area] can be carried out by the method described.
- the carbonaceous material of the present embodiment has pores having a pore diameter in the range of 0.3875 to 0.9125 nm calculated by the HK method with respect to the total pore volume calculated by the HK method from the nitrogen adsorption isotherm.
- the ratio (%) of the pore volume (simply referred to as “pore volume of 0.3875 to 0.9125 nm”) is 80% or more.
- the carbonaceous material is excellent in the dynamic adsorption of chloroform.
- a more preferable range of the above ratio is 80.5% or more, and more preferably 80.8% or more.
- the upper limit is not particularly limited, but from the viewpoint of diffusivity, it is preferably 90% or less, and more preferably 85% or less.
- the carbonaceous material of the present embodiment has a total pore volume of 0.400 mL / g or less calculated by the HK method. When the total pore volume is in this range, it becomes an excellent carbonaceous material due to the dynamic adsorption of chloroform.
- the more preferable upper limit value of the total pore volume is 0.390 mL / g or less, and more preferably 0.385 mL / g or less.
- the lower limit of the pore volume is not particularly limited, but is preferably 0.320 mL / g or more, more preferably 0.330 mL / g or more, from the viewpoint that a volume contributing to the adsorption of chloroform is required to be a certain level or more.
- the carbonaceous material of the present embodiment has a pore volume of 0.3875 to 0.9125 nm calculated by the HK method of 0.250 mL / g or more and 0.350 mL / g or less. Is preferable. As a result, it is considered that a carbonaceous material having excellent dynamic adsorption of chloroform can be obtained more reliably.
- the preferable lower limit of the pore volume in the range of 0.3875 to 0.9125 nm is 0.260 L / g or more, and more preferably 0.270 L / g or more.
- a more preferable upper limit value is 0.340 L / g or less, and more preferably 0.320 L / g or less.
- the pore volume and total pore volume of the carbonaceous material can be calculated from the nitrogen adsorption isotherm using the HK (Horverse Kawazoe) method.
- the measurement of the nitrogen adsorption isotherm and the calculation of the pore volume, etc. can be carried out by the methods described in [Measurement of nitrogen adsorption isotherm] and [Measurement of pore volume and total pore volume by HK method] described later. can.
- the carbonaceous material of the present embodiment has an average pore diameter of 1.614 nm or less obtained from the specific surface area and the pore volume. When the average pore diameter is in this range, it becomes a carbonaceous material having excellent chloroform removal performance.
- a more preferable upper limit value of the average pore diameter is 1.612 nm or less, and more preferably 1.610 nm or less.
- the lower limit of the average pore diameter is not particularly limited, but is preferably 1.450 nm or more, more preferably 1.450 nm or more, from the viewpoint that if the average pore diameter is too small, the optimum pores for adsorption of chloroform are reduced. It is 510 nm or more, more preferably 1.530 nm or more.
- the average pore diameter is obtained by the following formula using the BET specific surface area and the HK method pore volume.
- D 4000 x V / S (In the formula, D: average pore diameter (nm), V: total pore volume (mL / g), S: specific surface area (m 2 / g))
- the average pore diameter of this embodiment can be carried out by the methods described in [Measurement of nitrogen adsorption isotherm] and [Measurement of average pore diameter] described later.
- Benzene adsorption amount The amount of benzene adsorbed is an index showing the progress of activation of carbonaceous materials. Carbonaceous materials with many micropores tend to be suitable for more efficient adsorption of chloroform. Therefore, in the carbonaceous material according to the first embodiment, the benzene adsorption amount is preferably in the range of 20% by weight or more and 28% by weight or less, and it is considered that further excellent chloroform adsorption performance is exhibited.
- the benzene adsorption amount of the carbonaceous material is in the range of 28% by weight or less, and a more preferable upper limit value is preferably 27% by weight or less, still more preferably 26.5% by weight. It is as follows.
- the lower limit of the amount of benzene adsorbed is not particularly limited, but is 20% by weight or more, preferably 21% by weight or more, and more preferably 22% by weight or more from the viewpoint that a volume contributing to the adsorption of chloroform is required to be a certain amount or more. be.
- the amount of benzene adsorbed on the carbonaceous material can be measured by the method described in [Measurement of benzene adsorption amount] described later.
- the carbonaceous material according to the second embodiment of the present invention has a benzene adsorption amount of 20% by weight or more and 28% by weight or less, and is calculated by the BET specific surface area calculated by the BET method from the nitrogen adsorption isotherm and the carbon dioxide gas adsorption DFT method.
- D 4000 x V / S (In the formula, D: average pore diameter (nm), V: total pore volume (mL / g), S: specific surface area (m 2 / g)) gives an average pore diameter of 1.300. It is characterized by having a diameter of about 1.600 nm.
- the carbonaceous material of the present embodiment also has a high adsorption rate for chloroform and has excellent chloroform removal performance.
- the carbonaceous material according to the present embodiment has a benzene adsorption amount in the range of 20% by weight or more and 28% by weight or less, and thus has excellent chloroform adsorption performance.
- the benzene adsorption amount of the carbonaceous material is in the range of 28% by weight or less, and a more preferable upper limit value is preferably 27% by weight or less, still more preferably 26.5% by weight. It is as follows.
- the lower limit of the amount of benzene adsorbed is not particularly limited, but is 20% by weight or more, preferably 21% by weight or more, and more preferably 22% by weight or more from the viewpoint that a volume contributing to the adsorption of chloroform is required to be a certain amount or more. be.
- the amount of benzene adsorbed on the carbonaceous material can be measured by the same method as in the first embodiment.
- the carbonaceous material of the present embodiment has an average pore diameter of 1.300 to less than 1.600 nm obtained from the BET specific surface area calculated by the BET method from the nitrogen adsorption isotherm and the total pore volume. When the average pore diameter is in this range, it becomes a carbonaceous material having excellent chloroform removal performance.
- a more preferable upper limit value of the average pore diameter is 1.590 nm or less, and more preferably 1.575 nm or less.
- a more preferable lower limit value of the average pore diameter is 1.340 nm or more, and more preferably 1.355 nm or more.
- the average pore diameter of this embodiment can be carried out by the method described in [Measurement of average pore diameter] described later.
- the carbonaceous material of the second embodiment further has the following characteristics.
- the carbonaceous material of the present embodiment preferably has a total pore volume of 0.400 mL / g or less calculated by the carbon dioxide adsorption DFT method. As a result, it is considered that a carbonaceous material having excellent dynamic adsorption of chloroform can be obtained more reliably.
- the total pore volume refers to the pore volume in the range of 0.30 to 1.48 nm by DFT analysis of the carbonaceous material, and the more preferable upper limit value thereof is 0.390 mL / g or less. More preferably, it is 0.380 mL / g or less.
- the lower limit of the total pore volume is not particularly limited, but is preferably 0.290 mL / g or more, more preferably 0.300 mL / g or more, from the viewpoint that a volume contributing to the adsorption of chloroform is required to be a certain level or more. ..
- the carbonaceous material of the present embodiment has a pore volume of pores having a pore diameter in the range of 0.4 to 0.7 nm calculated by the carbon dioxide adsorption DFT method (simply, “0.4 to”. It is also preferable that the pore volume of 0.7 nm) is 0.140 to 0.175 mL / g. It is considered that when the total pore volume and the pore volume of 0.4 to 0.7 nm are in this range, a carbonaceous material having excellent dynamic adsorption of chloroform can be obtained more reliably.
- the more preferable upper limit value of the pore volume (0.4 to 0.7 nm) is 0.170 mL / g or less, and more preferably 0.167 mL / g or less.
- the more preferable lower limit value is 0.145 mL / g or more, and more preferably 0.150 mL / g or more.
- the ratio of the pore volume in the range of 0.4 to 0.7 nm to the total pore volume is preferably 0.535 or less.
- a more preferable range of the ratio is 0.533 or less, and more preferably 0.530 or less.
- the lower limit is not particularly limited, but from the viewpoint of adsorption capacity, it is preferably 0.400 or more, and more preferably 0.410 or more.
- the total pore volume means the above-mentioned total pore volume
- the ratio of the pore volume to the total pore volume is the pore volume in the range of 0.4 to 0.7 nm / the total pore volume. Can be calculated by.
- the total pore volume and the pore volume of the carbonaceous material in the present embodiment are calculated by the carbon dioxide adsorption DFT method, that is, by analyzing the NLDFT method from the carbon dioxide adsorption / desorption isotherm. Can be done.
- the measurement of carbon dioxide adsorption and desorption isotherm and the calculation of total pore volume and pore volume refer to [Measurement of carbon dioxide adsorption and desorption isotherm] and [Measurement of total pore volume and pore volume by DFT method] described later. It can be carried out by the method described.
- the carbonaceous material of the present embodiment preferably has a BET specific surface area of 1000 m 2 / g or less calculated by the nitrogen adsorption method.
- BET specific surface area is in this range, there is an advantage that the density of the activated carbon particles is increased and the filling amount per volume is increased.
- a more preferable upper limit of the BET specific surface area is 980 m 2 / g or less, more preferably 970 m 2 / g or less, and particularly preferably 950 m 2 / g or less.
- BET specific surface area from the viewpoint contributes volume for the adsorption of chloroform as needed over a certain, preferably 750 meters 2 / g or more, more preferably 800 m 2 / g or more.
- the specific surface area of the carbonaceous material can be implemented by the same method as in the first embodiment.
- both the carbonaceous material of the first embodiment and the carbonaceous material of the second embodiment have the following characteristics in addition to the above-mentioned characteristics.
- the carbonaceous material of the present embodiment preferably has a total pore volume of 0.250 mL / g or more and 0.600 mL / g or less by the MP method. This has the advantage of forming optimal pores for the adsorption of chloroform.
- the more preferable upper limit of the total pore volume by the MP method is preferably 0.500 mL / g or less, and more preferably 0.450 mL / g or less. Further, a more preferable lower limit value is 0.300 mL / g or more, and preferably 0.350 mL / g or more.
- the carbonaceous material of the present embodiment has a pore volume of 0.6 nm or less by the MP method of 0.100 mL / g or more and 0.250 mL / g or less. This has the advantage of reducing pores that do not contribute to the adsorption of chloroform.
- the more preferable upper limit value of the pore volume of 0.6 nm or less by the MP method is preferably 0.200 mL / g or less, and more preferably 0.190 mL / g by weight or less. Further, a more preferable lower limit value is 0.150 mL / g or more, and preferably 0.160 mL / g or more.
- the ratio (%) of the pore volume in the range of 0.6 nm or less by the MP method to the total pore volume by the MP method is 35% or more and 55% or less.
- a more preferable upper limit of the ratio is 50% or less, and more preferably 48% or less.
- a more preferable lower limit value is preferably 40% or more, and more preferably 44% or more.
- the ratio (%) of the pore volume to the total pore volume is calculated by "pore volume in the range of 0.6 nm or less by the MP method" / "total pore volume by the MP method” x 100. Can be done.
- the total pore volume and the pore volume of the carbonaceous material by the MP method can be calculated from the nitrogen adsorption isotherm by using the MP (Micropore analysis) method.
- the specific calculation of the total pore volume / pore volume can be carried out by the method described in [Measurement of total pore volume / pore volume by MP method] described later.
- the carbonaceous material of the present embodiment preferably has a total pore volume in the range of 1 to 100 nm according to the DH method of 0.070 mL / g or more and 0.180 mL / g or less. This has the advantage of improving the molecular diffusivity in the pores that affects the adsorption of chloroform.
- the "total pore volume in the range of 1 to 100 nm” can be measured by the method described in [Measurement of total pore volume / pore volume by DH method] described later, and has a pore diameter of 1 nm to 0. The pore volume in the range of 100 nm is shown.
- the more preferable upper limit of the total pore volume is preferably 0.150 mL / g or less, more preferably 0.140 mL / g or less. Further, a more preferable lower limit value is 0.080 mL / g or more, and preferably 0.090 mL / g or more.
- the carbonaceous material of the present embodiment has a pore volume of 2 nm or less by the DH method of 0.040 mL / g or more and 0.120 mL / g or less.
- the more preferable upper limit of the pore volume of 2 nm or less by the DH method is preferably 0.100 mL / g or less, and more preferably 0.090 mL / g or less. Further, a more preferable lower limit value is 0.050 mL / g or more, and preferably 0.060 mL / g or more.
- the ratio (%) of the pore volume in the range of 2 nm or less by the DH method to the total pore volume in the range of 1 to 100 nm by the DH method is 30% or more and 90% or less. It is preferable to have.
- a more preferable upper limit value of the ratio is 80% or less, and more preferably 70% or less.
- a more preferable lower limit value is preferably 35% or more, and more preferably 40% or more.
- the ratio (%) of the pore volume to the total pore volume is "pore volume in the range of 2 nm or less by the DH method" / "total pore volume in the range of 1 to 100 nm by the DH method” ⁇ 100. Can be calculated by.
- the total pore volume and the pore volume of the carbonaceous material by the DH method can be calculated from the nitrogen adsorption isotherm by using the DH (Dollimore-Heal) method.
- the specific calculation of the total pore volume / pore volume can be carried out by the method described in [Measurement of total pore volume / pore volume by the DH method] described later.
- the shape of the carbonaceous material is not particularly limited, and for example, any of particles, fibrous (thread-like, woven cloth (cloth) -like, felt-like) and the like. It may be in the shape and can be appropriately selected according to the specific usage mode, but it is preferably in the form of particles because of its high adsorption performance per unit volume. In the case of a particulate carbonaceous material, its dimensions are not particularly limited, and the particle size and the like may be appropriately adjusted according to the specific usage mode.
- the raw material (carbonaceous precursor) of the carbonaceous material is not particularly limited.
- plant-based carbonaceous precursors eg, wood, shavings, coal, fruit husks such as coconut husks and walnut husks, fruit seeds, pulp production by-products, lignin, waste sugar honey and other plant-derived materials
- mineral-based Carbonaceous precursors eg, mineral-derived materials such as peat, subcarbon, brown charcoal, bituminous charcoal, smokeless coal, coke, coal tar, coal pitch, petroleum distillation residue, petroleum pitch
- synthetic resin-based carbonaceous precursors eg , Phenolic resin, polyvinylidene chloride, materials derived from synthetic resins such as acrylic resin
- natural fiber-based carbonaceous precursors for example, natural fibers such as cellulose, materials derived from natural fibers such as recycled fibers such as rayon), etc.
- a plant-based carbonaceous precursor is preferable because it is easy to use a carbonaceous material having excellent adsorption performance of the substance to be removed specified by the Household Goods Quality Labeling Law. Therefore, in one preferred embodiment, the carbonaceous material is derived from a plant-based carbonaceous precursor. From the viewpoint of realizing a carbonaceous material capable of removing chloroform more efficiently, it is preferable to use coconut shell as a raw material. Therefore, in one particularly preferred embodiment, palm husks are used as the plant-based carbonaceous precursor.
- the carbonaceous material of this embodiment can remove chloroform very efficiently. Therefore, the carbonaceous material of the present embodiment can be suitably used as a carbonaceous material for purifying water (carbonaceous material for water purification), and a carbonaceous material for purifying tap water (for purifying tap water). It can be more preferably used as a carbonaceous material).
- the carbonaceous material according to the present embodiment is produced by activating the carbonaceous precursor described above.
- carbonization is required prior to activation, it is usually sufficient to block oxygen or air and carbonize at, for example, 400 to 800 ° C (preferably 500 to 800 ° C, more preferably 550 to 750 ° C). ..
- the coking coal obtained by carbonizing the carbonaceous precursor is activated to produce a carbonaceous material.
- the specific production method for obtaining a carbonaceous material having a specific surface area, a ratio of pore volume, and an average pore diameter (if necessary, benzene adsorption amount, total pore volume, etc.) is in a specific range is not particularly limited. However, it can be obtained by a production method including, for example, alkaline cleaning of a raw material of a carbonaceous material and subsequent activation using a fluidizing furnace.
- the means for performing alkaline cleaning before activation is not particularly limited.
- the carbonaceous precursor is put into an aqueous solution containing alkali such as sodium hydroxide and potassium hydroxide and immersed for about 2 hours to 1 day. How to do it, etc. After soaking in alkali, before activating, it may be washed with water and / or immersed in an acidic solution for the purpose of removing metals that affect the activation reaction.
- alkali such as sodium hydroxide and potassium hydroxide
- the activation in the present embodiment is characterized in that a flow furnace (fluid activation furnace) is used as the activation furnace.
- a flow furnace fluid activation furnace
- a carbonaceous material having superior chloroform removal performance can be obtained as compared with the conventional method using a rotary kiln as an activation furnace.
- the conditions for activating the carbonaceous precursor are not particularly limited as long as the amount of benzene adsorbed on the obtained carbonaceous material is within the above range.
- the temperature at the time of activation is about 800 to 1000 ° C.
- the activation time may be any time at which the benzene adsorption amount (desired degree of progress of activation) is achieved.
- the production method of the present invention may include a step of cleaning the activated carbonaceous material.
- mineral acid or water is used for cleaning, and hydrochloric acid having high cleaning efficiency is preferable as the mineral acid.
- hydrochloric acid having high cleaning efficiency is preferable as the mineral acid.
- the obtained carbonaceous material can be dried, crushed and sieved as necessary to obtain a product of carbonaceous material.
- Water purification filter A filter for water purification can be manufactured using a carbonaceous material.
- the water purification filter according to the preferred embodiment will be described below.
- the water purification filter comprises the carbonaceous material and fibrous binder according to the present embodiment as described above.
- the fibrous binder is not particularly limited as long as it can be shaped by entwining carbonaceous materials by making it fibrillated, and can be widely used regardless of whether it is a synthetic product or a natural product.
- fibrous binders include acrylic fibers, polyethylene fibers, polypropylene fibers, polyacrylonitrile fibers, cellulose fibers, nylon fibers, aramid fibers, and pulps.
- the fiber length of the fibrous binder is preferably 4 mm or less.
- the fibrous binder may be used in combination of two or more. Particularly preferably, polyacrylonitrile fiber or pulp is used as a binder. Thereby, the density of the molded body and the strength of the molded body can be further increased, and the deterioration of the performance can be suppressed.
- the water permeability of the fibrous binder is about 10 to 150 mL in CSF value.
- the CSF value is a value measured according to JIS P8121 "Pulp drainage test method" Canadian standard freeness method.
- the CSF value can be adjusted, for example, by fibrilizing the fibrous binder. If the CSF value of the fibrous binder is less than 10 mL, water permeability may not be obtained, the strength of the molded body may be low, and the pressure loss may be high. On the other hand, when the CSF value exceeds 150 mL, the powdered activated carbon cannot be sufficiently retained, the strength of the molded body is lowered, and the adsorption performance may be inferior.
- the fibrous binder is preferably 4 to 10 parts by mass, more preferably 4.5 to 6 parts by mass with respect to 100 parts by mass of the carbonaceous material from the viewpoint of removal performance and moldability of the substance to be removed. Including part. Therefore, in one preferred embodiment, the water purification filter contains the carbonaceous material and the fibrous binder according to the present embodiment, and the CSF value of the fibrous binder is 10 to 150 mL, with respect to 100 parts by mass of the carbonaceous material. It contains 4 to 10 parts by mass of a fibrous binder.
- “for 100 parts by mass of carbonaceous material" in the filter composition is "to 100 parts by mass of carbonaceous material and other functional components in total". It should be read as "on the other hand" and applied.
- the water purification filter may contain other functional components as long as the effect of the present invention is not impaired.
- Other functional components include, for example, lead adsorbents such as titanosilicates and zeolite powders capable of adsorbing and removing soluble lead, ion exchange resins or chelating resins, or silver ions and / or to impart antibacterial properties. Examples thereof include various adsorbents containing a silver compound.
- the water purification filter according to the present embodiment contains the carbonaceous material according to the present embodiment, it is possible to remove chloroform very efficiently.
- the water flow condition is not particularly limited, but it is carried out at a space velocity (SV) of 300 to 6500 / hr so that the pressure loss does not become extremely large. Relationship between each removal rate calculated from the concentration of the substance to be removed in raw water and permeated water, and the ratio of the amount of water (L) flowing from the start of water flow to the volume (mL) of the water purification cartridge (cumulative permeated water amount L / mL). By plotting, the performance of the water purification filter can be confirmed.
- a water purifier can be manufactured using a carbonaceous material or a water purification filter.
- the water purifier comprises the carbonaceous material or water purification filter according to the present embodiment as described above.
- the water purifier comprises a water purification cartridge, wherein the water purification cartridge is configured using the carbonaceous material or the water purification filter according to the present embodiment.
- the carbonaceous material according to the present embodiment may be filled in the housing to form a water purification cartridge, or the water purification filter according to the present embodiment may be filled in the housing to form a water purification cartridge. good.
- the water purification cartridge may include a known non-woven fabric filter, various adsorbents, mineral additives, a ceramic filter material, a hollow fiber membrane, and the like in combination.
- the carbonaceous material according to one aspect of the present invention has a BET specific surface area of 750 m 2 / g or more and 1000 m 2 / g or less calculated by the BET method from the nitrogen adsorption isotherm, and is calculated by the HK method from the nitrogen adsorption isotherm.
- the ratio of the pore volume in the range of 0.3875 to 0.9125 nm calculated by the HK method to the total pore volume is 80% or more, and from the BET specific surface area and the nitrogen adsorption isotherm.
- the average pore diameter obtained by the following formula is 1.614 nm or less.
- D 4000 x V / S (In the formula, D: average pore diameter (nm), V: total pore volume (mL / g), S: specific surface area (m 2 / g))
- the amount of benzene adsorbed is 20% by weight or more and 28% by weight or less.
- the total pore volume calculated by the HK method is preferably 0.400 mL / g or less.
- the pore volume of the pores in the range of 0.3875 to 0.9125 nm calculated by the HK method is 0.250 mL / g or more and 0.350 mL / g or less.
- the carbonaceous material according to another aspect of the present invention has a benzene adsorption amount of 20% by weight or more and 28% by weight or less, and is calculated by the BET specific surface area calculated by the BET method from the nitrogen adsorption isotherm and the carbon dioxide gas adsorption DFT method.
- a carbonaceous material having an average pore diameter of 1.300 to 1.600 nm obtained by the following formula using the total pore volume obtained.
- D 4000 x V / S (In the formula, D: average pore diameter (nm), V: total pore volume (mL / g), S: specific surface area (m 2 / g))
- the total pore volume calculated by the carbon dioxide adsorption DFT method is 0.400 mL / g or less.
- the pore volume of the pores in the range of 0.4 to 0.7 nm calculated by the carbon dioxide adsorption DFT method is 0.140 to 0.175 mL / g. Is preferable.
- the ratio of the pore volume in the range of 0.4 to 0.7 nm to the total pore volume calculated by the carbon dioxide adsorption DFT method is 0.535. The following is preferable.
- the BET specific surface area is 1000 m 2 / g or less.
- all of the above-mentioned carbonaceous materials are derived from plant-based carbonaceous precursors. Further, it is preferable that the plant-based carbonaceous precursor is coconut shell.
- the method for producing a carbonaceous material according to still another aspect of the present invention is characterized by comprising alkaline cleaning of the raw material of the carbonaceous material and subsequent activation using a flow furnace. ..
- the water purification filter according to a further aspect of the present invention is a water purification filter containing the carbonaceous material and the fibrous binder, wherein the CSF value of the fibrous binder is 10 to 150 mL, and 100 parts by mass of the carbonaceous material. On the other hand, it is characterized by containing 4 to 10 parts by mass of a fibrous binder.
- the present invention also includes a water purifier containing the carbonaceous material and a water purifier including the water purification filter.
- Total pore volume (HK method) The nitrogen adsorption isotherm was analyzed by the HK method.
- the analysis conditions are 28.010 for the adsorbate molecular weight, 0.808 g / cm 3 for the adsorbate density, a straight line for the file data interpolation method, and N2-C (77K) for the parameter setting. It was HKS.
- Total pore volume (MP method)] Using BELSORP-MAX manufactured by Microtrac Bell Co., Ltd., the carbonaceous material is heated at 300 ° C. for 5 hours under reduced pressure (vacuum degree: 0.1 kPa or less), and then nitrogen adsorption of the carbonaceous material at 77K. The isotherm was measured. The MP method was applied to the nitrogen adsorption isotherm obtained by the above method, and the pore volume of the micropores was calculated. In the analysis by the MP method, the reference curve "NGCB-BEL.” Provided by Microtrack Bell Co., Ltd. t ”was used.
- Total pore volume in the range of 1 to 100 nm (DH method)] Using a gas adsorption measuring device (AUTOSORB-iQ MP-XR manufactured by Quantachrome), nitrogen adsorption / desorption at 77K is performed at a relative pressure (p / p0) from 1.0 ⁇ 10 ⁇ (-7) to 0.99. By measuring, an adsorption isotherm was obtained. For the obtained adsorption isotherm, (p / p0) was analyzed by the DH method using the data between 0.001 and 0.99, and the pore volume and pore diameter from 1 nm to 100 nm in diameter were performed. The distribution was calculated. The pore volume from 1 nm in diameter to 100 nm in diameter was defined as the total pore volume in the range of 1 to 100 nm.
- DH method [Ratio of pore volume of 2 nm or less to total pore volume (1 to 100 nm) (DH method)]
- the pore volume of 2 nm or less calculated by the DH method is divided by the total pore volume (1 to 100 nm) calculated by the DH method, and multiplied by 100 to obtain a pore volume of 2 nm or less with respect to the total pore volume. The percentage (%) was obtained.
- Examples 1 to 5 and Comparative Examples 1 to 2 The particle size of the coconut shell charcoal carbonized at 400 to 600 ° C. was adjusted from the JIS standard sieve 22 mesh (0.710 mm) to 50 mesh (0.300 mm). 500 g of this coconut shell charcoal was put into 1 L of a 0.1 N-NaOH aqueous solution, immersed overnight, dehydrated, further put into 1 L of a 0.1 N-HCl aqueous solution, and then immersed overnight. After that, it was dehydrated, washed with 1 L of water 5 times, and dried in the sun.
- the raw material (palm shell charcoal) thus obtained was used in a flow furnace in a propane combustion gas at 900 ° C. and a steam volume ratio of 40%, and the time was changed so that the amount of benzene adsorbed would be the values shown in Table 1. It was activated. Then, after washing with acid water using a 0.1N hydrochloric acid solution and drying, the particle size is adjusted from 30 mesh (0.500 mm) to 60 mesh (0.250 mm) with a JIS standard sieve to perform Examples 1 to 5 and Comparative Example 1. -2 activated carbons (carbonaceous materials) were obtained. The physical characteristics of the obtained carbonaceous material are shown in Table 1 below.
- chloroform concentration (mg / L) of the blank without activated carbon
- chloroform concentration C (mg / L) of the test water filtered with activated carbon
- activated carbon weight W (mg).
- Chloroform concentration was determined by the headspace method using ECD gas chromatography.
- A (Co-C) x 1000 x 0.1 / W
- a power approximation formula is calculated from the adsorption amounts A of each of the three points having different test water concentrations, and the adsorption amount at the test water concentration of 0.01 mg / L is calculated. The amount of adsorption was taken when stirring for 120 minutes.
- the adsorption amount at a concentration of 0.01 mg / L is 1.00 mg / g or more at the time of stirring for 120 minutes, and the adsorption amount at the time of stirring for 10 minutes is relative to the adsorption amount at 120 minutes. If the ratio was 0.82 or more, it was judged as acceptable.
- Total pore volume (DFT method)
- the NLDFT method was analyzed by applying "CO 2 at 273 K on carbon (NLDFT model)" as a calculation model to the carbon dioxide adsorption isotherm obtained by the above method, and the pore size distribution was obtained.
- the volume in the pore diameter range of 3 to 1.48 nm was calculated and used as the total pore volume.
- Table 2 shows the values of each of the above physical properties.
- the present invention has been appropriately and sufficiently described through the embodiments with reference to the specific examples described above, but it is easy for a person skilled in the art to change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modified or improved form implemented by a person skilled in the art is at a level that deviates from the scope of rights of the claims stated in the claims, the modified form or the improved form is the scope of rights of the claims. It is interpreted to be included in.
- the carbonaceous material of the present invention is particularly useful for removing substances to be removed in the Household Goods Quality Labeling Law. Therefore, the present invention has a wide range of industrial applicability in water purification technology such as water purification filters and water purifiers.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Geology (AREA)
- Nanotechnology (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す)
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す)
<第一実施形態>
本発明の第一実施形態に係る炭素質材料は、窒素吸着等温線からBET法で算出したBET比表面積が750m2/g以上1000m2/g以下であり、窒素吸着等温線からHK法により算出された全細孔容積に対する前記HK法により算出された0.3875~0.9125nmの範囲の細孔の細孔容積の割合が80%以上であり、且つ、前記BET比表面積と窒素吸着等温線からHK法により算出された全細孔容積とを用いて、下記式により得られる平均細孔直径が1.614nm以下であることを特徴とする。
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す)
本実施形態の炭素質材料は、窒素吸着法により算出されるBET比表面積が750m2/g以上1000m2/g以下である。BET比表面積がこの範囲にあることによって、活性炭粒子の密度が高くなり、容積当たりの充填量が上がるという利点がある。BET比表面積のより好ましい上限値は、980m2/g以下であり、さらに好ましくは、970m2/g以下、特に好ましくは950m2/g以下である。BET比表面積の下限値は、クロロホルムの吸着に寄与する容積が一定以上必要という観点から、750m2/g以上であり、好ましくは800m2/g以上である。
本実施形態の炭素質材料は、窒素吸着等温線からHK法により算出された全細孔容積に対する前記HK法により算出された0.3875~0.9125nmの範囲の細孔直径を有する細孔の細孔容積(単に、「0.3875~0.9125nmの細孔容積」とも言う)の割合(%)が80%以上である。このように、全細孔容積に対する前記範囲の細孔の細孔容積割合が80%以上であることによって、クロロホルムの動的吸着に優れる炭素質材料となる。
本実施形態の炭素質材料は、前記比表面積および前記孔容積から求められる平均細孔直径が1.614nm以下である。平均細孔直径がこの範囲にあることによって、クロロホルム除去性能に優れる炭素質材料となる。
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す)
ベンゼン吸着量は、炭素質材料の賦活の進行度合いを示す指標である。クロロホルムをより効率よく吸着するには、ミクロ孔が多い炭素質材料が適する傾向にある。よって、第一実施形態に係る炭素質材料では、ベンゼン吸着量が20重量%以上28重量%以下の範囲にあることが好ましく、それにより、さらに優れたクロロホルム吸着性能を発揮すると考えられる。
次に、本発明の第二実施形態に係る炭素質材料について説明する。本発明の第二実施形態に係る炭素質材料は、ベンゼン吸着量が20重量%以上28重量%以下であり、窒素吸着等温線からBET法で算出したBET比表面積と炭酸ガス吸着DFT法により算出された全細孔容積とを用いて、下記式:
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す)により得られる平均細孔直径が1.300~1.600nmであることを特徴とする。
本実施形態に係る炭素質材料は、ベンゼン吸着量が20重量%以上28重量%以下の範囲にあり、それにより優れたクロロホルム吸着性能を有する。
本実施形態の炭素質材料は、窒素吸着等温線からBET法で算出したBET比表面積および前記全細孔容積から求められる平均細孔直径が1.300~1.600nm未満である。平均細孔直径がこの範囲にあることによって、クロロホルム除去性能に優れる炭素質材料となる。
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す)という式によって得られる。
本実施形態の炭素質材料は、炭酸ガス吸着DFT法により算出された全細孔容積が0.400mL/g以下であることが好ましい。それにより、クロロホルムの動的吸着に優れる炭素質材料をより確実に得ることができると考えられる。
本実施形態の炭素質材料は、さらに、窒素吸着法により算出されるBET比表面積が1000m2/g以下であることが好ましい。BET比表面積がこの範囲にあることによって、活性炭粒子の密度が高くなり、容積当たりの充填量が上がるという利点がある。BET比表面積のより好ましい上限値は、980m2/g以下であり、さらに好ましくは、970m2/g以下であり、特に好ましくは950m2/g以下である。BET比表面積の下限値は特に限定はされないが、クロロホルムの吸着に寄与する容積が一定以上必要という観点から、好ましくは750m2/g以上、さらに好ましくは800m2/g以上である。
本実施形態の炭素質材料は、MP法による全細孔容積が0.250mL/g以上0.600mL/g以下であることが好ましい。それにより、クロロホルムの吸着に最適な細孔が形成されるという利点がある。
本実施形態の炭素質材料は、DH法による1~100nmの範囲の全細孔容積が0.070mL/g以上0.180mL/g以下であることが好ましい。それにより、クロロホルムの吸着に影響を与える細孔内の分子拡散性が良くなるという利点がある。なお、「1~100nmの範囲の全細孔容積」とは、後述する[DH法による全細孔容積・細孔容積の測定]に記載の方法により測定することができる、細孔直径1nm~100nmの範囲の細孔容積を示す。
本実施形態に係る炭素質材料は、先述の炭素質前駆体を賦活することによって製造される。なお、賦活に先立ち、炭化を必要とする場合、通常、酸素又は空気を遮断して、例えば、400~800℃(好ましくは500~800℃、さらに好ましくは550~750℃)で炭化すればよい。この場合、炭素質前駆体の炭化により得られた原料炭を賦活して炭素質材料を製造する。
炭素質材料を用いて浄水用フィルターを製造することができる。以下に、好適な実施形態に係る浄水用フィルターを説明する。
炭素質材料又は浄水用フィルターを用いて浄水器を製造することができる。好適な実施形態において、浄水器は、上述したような本実施形態に係る炭素質材料又は浄水用フィルターを含む。
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す)
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す)
実施例における各物性値は、以下に示す方法により測定した。
実施例及び比較例で調製した炭素質材料を、115℃の恒温乾燥器中で3時間乾燥した後、乾燥剤としてシリカゲルを使用したデシケーター中で室温まで放冷した。次いで、20℃の恒温槽内において、炭素質材料に、飽和濃度の1/10の濃度のベンゼンを含む乾燥空気を通した。吸着平衡に達した炭素質材料の重量と、吸着前の炭素質材料の重量(すなわち、乾燥・放冷後の炭素質材料の重量)から、次の式(1)に従いベンゼン吸着量(重量%)を求めた。
[式(1)]
ベンゼン吸着量(重量%)=[{(ベンゼン吸着後の試料重量)-(ベンゼン吸着前の試料重量)}/(ベンゼン吸着前の試料重量)]×100
マイクロトラック・ベル(株)製のBELSORP-MAXを使用し、炭素質材料を減圧下(真空度:0.1kPa以下)にて300℃で5時間加熱した後、77Kにおける炭素質材料の窒素吸着等温線を測定した。
上記方法により得られた窒素吸着等温線からBET式により多点法による解析を行い、得られた曲線の相対圧P/P0=0.01~0.1の領域での直線から比表面積を算出した。
前記窒素吸着等温線をHK法により解析した。解析条件は吸着質分子量を28.010、吸着質密度を0.808g/cm3、ファイルデータ補間方法を直線、パラメータ設定をN2-C(77K).HKSとした。
上記で得られた比表面積および全細孔容積を用いて、平均細孔直径を以下の式により算出した。
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す)。
上述の方法により得られた窒素吸着等温線から、HK法による解析を行い、P/P0が4.5902×10^(-8)~7.4189×10^(-3)の範囲(0.3875~0.9125nmの細孔に相当)の細孔容積を算出した。
前記HK法によって算出した0.3875~0.9125nmの細孔容積を、前記HK法によって算出した全細孔容積で割ることによって、全細孔容積に対する0.3875~0.9125nmの細孔容積の割合を得た。
マイクロトラック・ベル(株)製のBELSORP-MAXを使用し、炭素質材料を減圧下(真空度:0.1kPa以下)にて300℃で5時間加熱した後、77Kにおける炭素質材料の窒素吸着等温線を測定した。
上記方法により得られた窒素吸着等温線に対し、MP法を適用し、ミクロ孔の細孔容積を算出した。なお、MP法での解析にあたってはマイクロトラック・ベル(株)から提供された基準曲線『NGCB-BEL.t』を用いた。
上記MP法で解析した細孔径と積算細孔容積において、0.42nmまでの積算細孔容積V0.42と0.7nmまでの積算細孔容積V0.7より、次式によりV0.6を算出した。
a=(V0.7-V0.42)/0.28
b=V0.7-(V0.7-V0.42)×0.7/0.28
V0.6=0.6a+b
前記MP法によって算出した0.6nm以下の細孔容積を、前記MP法によって算出した全細孔容積で割り、100をかけることによって、全細孔容積に対する0.6mnm以下の細孔容積の割合(%)を得た。
ガス吸着測定装置(Quantachrome社製AUTOSORB-iQ MP-XR)を用い、77Kでの窒素の吸脱着を1.0×10^(-7)から0.99までの相対圧(p/p0)で測定する事により吸脱着等温線を得た。得られた吸着等温線に対し、(p/p0)が、0.001から0.99の間のデータを用いてDH法による解析を行い、直径1nmから直径100nmまでの細孔容積と細孔径分布を算出した。前記直径1nmから直径100nmまでの細孔容積を1~100nmの範囲の全細孔容積とした。
上述のDH法による細孔径分布のデータから、2nm以下の細孔容積を算出した。
前記DH法によって算出した2nm以下の細孔容積を、前記DH法によって算出した全細孔容積(1~100nm)で割り、100をかけることによって、全細孔容積に対する2mnm以下の細孔容積の割合(%)を得た。
400~600℃で炭化したヤシ殻炭を、JIS標準篩22mesh(0.710mm)から50mesh(0.300mm)に粒度調整した。このヤシ殻炭500gを0.1N-NaOH水溶液1Lに投入し、一晩浸漬後、脱水し、更に0.1N-HCl水溶液1Lに投入後一晩浸漬した。その後脱水し、1Lで5回の水洗を実施し、天日乾燥した。
400~600℃で炭化したヤシ殻炭を、JIS標準篩で3.5mesh(5.600mm)から5.5mesh(3.350mm)に粒度調整した。そして、900℃、水蒸気容積割合40%、ガス量5.5L/分の条件でロータリーキルンを用いて、ベンゼン吸着量がそれぞれ表1に示す値になるように時間を変えて賦活を行った。その後、0.1Nの塩酸溶液1Lに、得られた500gの賦活品を投入し、一晩静置後脱水し、1Lで5回の水洗を実施後乾燥し、更に破砕してJIS標準篩30mesh(0.500mm)から60mesh(0.250mm)に粒度調整して、比較例3~4の(炭素質材料)を得た。得られた炭素質材料の物性値を後述の表1に示す。
400~600℃で炭化したヤシ殻炭を、JIS標準篩で22mesh(0.710mm)から50mesh(0.300mm)に粒度調整した。そして、900℃、水蒸気容積割合40%、ガス量5.5L/分の条件でロータリーキルンを用いて、ベンゼン吸着量がそれぞれ表1に示す値になるように時間を変えて賦活を行った。その後、0.1Nの塩酸溶液1Lに、得られた500gの賦活品を投入し、一晩静置後脱水し、1Lで5回の水洗を実施後乾燥し、JIS標準篩30mesh(0.500mm)から60mesh(0.250mm)に粒度調整して、比較例5~6の(炭素質材料)を得た。得られた炭素質材料の物性値を後述の表1に示す。
(クロロホルム吸着性能および吸着速度)
初期濃度約0.100mg/Lに調整したクロロホルム溶液100mLに、粒径が約20μmとなるように粉砕した活性炭を任意の量投入後、約20℃で10分間及び120分間撹拌した。そして、それぞれをMF(シリンジフィルター)で加圧濾過して得られた各溶液中のクロロホルム濃度から吸着量を算出した。
A=(Co-C)×1000×0.1/W
実施例・比較例の活性炭を内径33mmφ×高さ70mmH、容積60mLの樹脂製カラムに充填し、NSF(National Science Foundation)濃度基準に準拠して、20±3℃、原水濃度0.300mg/L、ろ過流量0.3L/分(SV=300)、ダウンフローの条件で通水し、除去率95%の点を破過点とした時、600L以上を合格とした。本試験は浄水用途を想定しており、破過までの積算流量が多い方が、高寿命であり、高性能といえる。
表1の結果から明らかなように、本発明に関する実施例の炭素質材料はいずれも、非常に高いクロロホルム除去性能を示し、かつ高寿命であることがわかった。さらに、クロロホルムに対する吸着速度が速く、浄水用途において優れたクロロホルム除去性能を発揮できることが確認できた。
実施例1~5及び比較例1~6の炭素質材料について、以下の物性を、後述の方法により測定した。
試験1と同様にして求めた。
試験1と同様にして求めた。
試験1と同様にして求めた。
ガス吸着測定装置(Quantachrome社製、AUTOSORB-iQ MP-XR)を用い、273Kでの二酸化炭素の吸脱着を0.00075から0.030までの相対圧(p/p0)で測定することにより、吸脱着等温線を得た。
上述の方法により得られた二酸化炭素吸脱着等温線に対し、Calculation modelとして「CO2 at 273K on carbon(NLDFT model)」を適用してNLDFT法の解析を行い、細孔径分布を求め、0.3~1.48nmの細孔直径範囲における容積を算出し、全細孔容積とした。
上述の方法により得られた二酸化炭素吸脱着等温線に対し、Calculation modelとして「CO2 at 273K on carbon(NLDFT model)」を適用してNLDFT法の解析を行い、細孔径分布を求め、0.4~0.7nmの細孔直径範囲を有する細孔の細孔容積を算出した。
前記DFT法によって算出した0.4~0.7nmの細孔容積を、前記DFT法によって算出した全細孔容積で割ることによって、全細孔容積に対する0.4~0.7nmの細孔容積の割合を得た。
試験1と同様にして求めた。
試験1と同様にして求めた。
上記で得られた比表面積および全細孔容積を用いて、平均細孔直径を、以下の式:
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す)によって算出した。
Claims (15)
- 窒素吸着等温線からBET法で算出したBET比表面積が750m2/g以上1000m2/g以下であり、窒素吸着等温線からHK法により算出された全細孔容積に対する前記HK法により算出された0.3875~0.9125nmの範囲の細孔の細孔容積の割合が80%以上であり、且つ、前記BET比表面積と窒素吸着等温線からHK法により算出された全細孔容積とを用いて、下記式により得られる平均細孔直径が1.614nm以下である、炭素質材料。
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す) - ベンゼン吸着量が20重量%以上28重量%以下である、請求項1に記載の炭素質材料。
- 前記HK法により算出された全細孔容積が0.400mL/g以下である、請求項1または2に記載の炭素質材料。
- 前記HK法により算出された0.3875~0.9125nmの範囲の細孔の細孔容積が0.250mL/g以上0.350mL/g以下である、請求項1~3のいずれかに記載の炭素質材料。
- ベンゼン吸着量が20重量%以上28重量%以下であり、
窒素吸着等温線からBET法で算出したBET比表面積と炭酸ガス吸着DFT法により算出された全細孔容積とを用いて、下記式により得られる平均細孔直径が1.300~1.600nmである、炭素質材料。
D=4000×V/S
(式中、D:平均細孔直径(nm),V:全細孔容積(mL/g),S:比表面積(m2/g)を表す) - 炭酸ガス吸着DFT法により算出された全細孔容積が0.400mL/g以下である、請求項5に記載の炭素質材料。
- 炭酸ガス吸着DFT法により算出された0.4~0.7nmの範囲の細孔の細孔容積が0.140~0.175mL/gである、請求項5または6に記載の炭素質材料。
- 前記炭酸ガス吸着DFT法により算出された全細孔容積に対する0.4~0.7nmの範囲の細孔の細孔容積の割合が0.535以下である、請求項5~7のいずれかに記載の炭素質材料。
- 前記BET比表面積が1000m2/g以下である、請求項5~8のいずれかに記載の炭素質材料。
- 植物系の炭素質前駆体に由来する、請求項1~9のいずれかに記載の炭素質材料。
- 植物系の炭素質前駆体がヤシ殻である、請求項10に記載の炭素質材料。
- 請求項1~11のいずれかに記載の炭素質材料の製造方法であって、炭素質材料の原料をアルカリ洗浄すること、及び、その後に流動炉を用いた賦活を行うことを含む、炭素質材料の製造方法。
- 請求項1~11のいずれかに記載の炭素質材料と繊維状バインダーを含む浄水用フィルターであって、前記繊維状バインダーのCSF値が10~150mLであり、炭素質材料100質量部に対して、繊維状バインダーを4~10質量部含む、浄水用フィルター。
- 請求項1~11のいずれかに記載の炭素質材料を含む、浄水器。
- 請求項13に記載の浄水用フィルターを含む、浄水器。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022506767A JP7058379B1 (ja) | 2020-06-30 | 2021-06-25 | 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器 |
CN202180014349.9A CN115087498A (zh) | 2020-06-30 | 2021-06-25 | 碳质材料及其制造方法、净水用过滤器和净水器 |
US17/798,175 US11795066B2 (en) | 2020-06-30 | 2021-06-25 | Carbonaceous material and method for producing same, water purification filter, and water purifier |
KR1020227031549A KR102510598B1 (ko) | 2020-06-30 | 2021-06-25 | 탄소질 재료 및 그 제조 방법, 그리고 정수용 필터 및 정수기 |
JP2022064301A JP2022082773A (ja) | 2020-06-30 | 2022-04-08 | 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-112668 | 2020-06-30 | ||
JP2020112668 | 2020-06-30 | ||
JP2020-112667 | 2020-06-30 | ||
JP2020112667 | 2020-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022004594A1 true WO2022004594A1 (ja) | 2022-01-06 |
Family
ID=79315977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024149 WO2022004594A1 (ja) | 2020-06-30 | 2021-06-25 | 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11795066B2 (ja) |
JP (2) | JP7058379B1 (ja) |
KR (1) | KR102510598B1 (ja) |
CN (1) | CN115087498A (ja) |
TW (1) | TWI789802B (ja) |
WO (1) | WO2022004594A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022131126A1 (de) | 2022-11-24 | 2024-05-29 | Fornax Holding GmbH | Verfahren zur Herstellung von Aktivkohle, Aktivkohle und dessen Verwendung |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7523838B1 (ja) | 2024-02-08 | 2024-07-29 | 株式会社エム・イ-・ティ- | 活性炭およびその製造方法ならびに浄水器カートリッジおよび浄水器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006247527A (ja) * | 2005-03-10 | 2006-09-21 | Kansai Coke & Chem Co Ltd | 吸着剤 |
WO2015152391A1 (ja) * | 2014-04-03 | 2015-10-08 | 関西熱化学株式会社 | 浄水器用活性炭 |
JP2016030697A (ja) * | 2014-07-25 | 2016-03-07 | 関西熱化学株式会社 | 吸着性能に優れた活性炭、およびその製造方法 |
WO2016067881A1 (ja) * | 2014-10-29 | 2016-05-06 | 日産自動車株式会社 | 燃料電池用電極触媒、その製造方法、当該触媒を含む燃料電池用電極触媒層ならびに当該触媒または触媒層を用いる燃料電池用膜電極接合体および燃料電池 |
WO2017146044A1 (ja) * | 2016-02-23 | 2017-08-31 | ソニー株式会社 | 固形化された多孔質炭素材料及びその製造方法 |
WO2017199717A1 (ja) * | 2016-05-17 | 2017-11-23 | 株式会社クラレ | 活性炭、並びにそれを用いた吸着フィルターおよび浄水器 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5936423B2 (ja) | 1976-01-29 | 1984-09-04 | 株式会社東芝 | 半導体装置の製造方法 |
JP2000281325A (ja) | 1999-03-30 | 2000-10-10 | Kuraray Chem Corp | 活性炭の製法及び水処理方法 |
TW200409729A (en) | 2002-12-13 | 2004-06-16 | Chung Shan Inst Of Science | Fabrication method of high percentage of mesoporous activated carbon |
JP6275368B2 (ja) | 2009-08-06 | 2018-02-07 | 株式会社クラレ | 活性炭成型体およびそれを用いた浄水器 |
JP5936423B2 (ja) | 2012-04-19 | 2016-06-22 | フタムラ化学株式会社 | 浄水器用活性炭及びこれを用いた活性炭カートリッジ |
US11253839B2 (en) | 2014-04-29 | 2022-02-22 | Archer-Daniels-Midland Company | Shaped porous carbon products |
AU2015253175A1 (en) | 2014-04-29 | 2016-09-29 | Archer-Daniels-Midland Company | Carbon black based shaped porous products |
KR102571710B1 (ko) | 2017-03-31 | 2023-08-28 | 가부시키가이샤애드올 | 활성탄의 제조 방법 |
JP2019131305A (ja) * | 2018-01-29 | 2019-08-08 | 東レ株式会社 | ボール組込装置 |
EP3812348A4 (en) | 2018-06-19 | 2022-02-09 | Ad'All Co., Ltd. | CHARCOAL |
-
2021
- 2021-06-25 CN CN202180014349.9A patent/CN115087498A/zh active Pending
- 2021-06-25 US US17/798,175 patent/US11795066B2/en active Active
- 2021-06-25 KR KR1020227031549A patent/KR102510598B1/ko active IP Right Grant
- 2021-06-25 JP JP2022506767A patent/JP7058379B1/ja active Active
- 2021-06-25 WO PCT/JP2021/024149 patent/WO2022004594A1/ja active Application Filing
- 2021-06-28 TW TW110123528A patent/TWI789802B/zh active
-
2022
- 2022-04-08 JP JP2022064301A patent/JP2022082773A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006247527A (ja) * | 2005-03-10 | 2006-09-21 | Kansai Coke & Chem Co Ltd | 吸着剤 |
WO2015152391A1 (ja) * | 2014-04-03 | 2015-10-08 | 関西熱化学株式会社 | 浄水器用活性炭 |
JP2016030697A (ja) * | 2014-07-25 | 2016-03-07 | 関西熱化学株式会社 | 吸着性能に優れた活性炭、およびその製造方法 |
WO2016067881A1 (ja) * | 2014-10-29 | 2016-05-06 | 日産自動車株式会社 | 燃料電池用電極触媒、その製造方法、当該触媒を含む燃料電池用電極触媒層ならびに当該触媒または触媒層を用いる燃料電池用膜電極接合体および燃料電池 |
WO2017146044A1 (ja) * | 2016-02-23 | 2017-08-31 | ソニー株式会社 | 固形化された多孔質炭素材料及びその製造方法 |
WO2017199717A1 (ja) * | 2016-05-17 | 2017-11-23 | 株式会社クラレ | 活性炭、並びにそれを用いた吸着フィルターおよび浄水器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022131126A1 (de) | 2022-11-24 | 2024-05-29 | Fornax Holding GmbH | Verfahren zur Herstellung von Aktivkohle, Aktivkohle und dessen Verwendung |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022004594A1 (ja) | 2022-01-06 |
CN115087498A (zh) | 2022-09-20 |
TWI789802B (zh) | 2023-01-11 |
US11795066B2 (en) | 2023-10-24 |
JP7058379B1 (ja) | 2022-04-21 |
KR102510598B1 (ko) | 2023-03-15 |
KR20220129675A (ko) | 2022-09-23 |
TW202216607A (zh) | 2022-05-01 |
JP2022082773A (ja) | 2022-06-02 |
US20230122106A1 (en) | 2023-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6283435B2 (ja) | 活性炭成型体およびそれを用いた浄水器 | |
JP7058379B1 (ja) | 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器 | |
JP6902536B2 (ja) | 活性炭、並びにそれを用いた吸着フィルターおよび浄水器 | |
US10987650B2 (en) | Adsorption filter | |
JP7356458B2 (ja) | 浄水用フィルター及びそれを用いた浄水器 | |
JP6829796B1 (ja) | 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器 | |
JP2005013883A (ja) | 活性炭成型体及びそれを用いた浄水器 | |
JP7060772B1 (ja) | 炭素質材料及びその製造方法、並びに、含フッ素有機化合物除去材、浄水用フィルター及び浄水器 | |
JP2021147252A (ja) | 活性炭およびそれを用いたカビ臭を抑制する方法 | |
JP4876307B2 (ja) | 活性炭の製造方法 | |
JP7478163B2 (ja) | めっき液精製用吸着フィルター、並びに、それを用いためっき液精製装置及びめっき液精製方法 | |
WO2023008437A1 (ja) | 浄水フィルターおよび浄水器 | |
JP2024080893A (ja) | 活性炭及び活性炭フィルター体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022506767 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21834073 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227031549 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21834073 Country of ref document: EP Kind code of ref document: A1 |