WO2015151902A1 - 多結晶窒化ガリウム自立基板及びそれを用いた発光素子 - Google Patents

多結晶窒化ガリウム自立基板及びそれを用いた発光素子 Download PDF

Info

Publication number
WO2015151902A1
WO2015151902A1 PCT/JP2015/058752 JP2015058752W WO2015151902A1 WO 2015151902 A1 WO2015151902 A1 WO 2015151902A1 JP 2015058752 W JP2015058752 W JP 2015058752W WO 2015151902 A1 WO2015151902 A1 WO 2015151902A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
standing substrate
polycrystalline
single crystal
substrate
Prior art date
Application number
PCT/JP2015/058752
Other languages
English (en)
French (fr)
Inventor
守道 渡邊
吉川 潤
倉岡 義孝
七瀧 努
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2014/064388 external-priority patent/WO2014192911A1/ja
Priority claimed from US14/499,688 external-priority patent/US9312446B2/en
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201580001916.1A priority Critical patent/CN105556685B/zh
Priority to EP15773888.1A priority patent/EP3128562B1/en
Priority to JP2016511554A priority patent/JP6154066B2/ja
Priority to KR1020167007330A priority patent/KR101790458B1/ko
Priority to KR1020177030005A priority patent/KR102132313B1/ko
Publication of WO2015151902A1 publication Critical patent/WO2015151902A1/ja
Priority to US15/072,745 priority patent/US9543473B2/en
Priority to US15/359,813 priority patent/US9768352B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Definitions

  • the present invention relates to a polycrystalline gallium nitride free-standing substrate and a light-emitting element using the same.
  • GaN gallium nitride
  • MQW multi-quantum well layer
  • a gallium nitride crystal multilayer substrate including a sapphire base substrate and a gallium nitride crystal layer formed by crystal growth on the substrate. Yes.
  • GaN gallium nitride
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-1325566 discloses a self-supporting n-type gallium nitride single crystal substrate having a thickness of 200 ⁇ m or more.
  • single crystal substrates are generally small in area and expensive.
  • cost reduction of LED manufacturing using a large area substrate has been demanded, but it is not easy to mass-produce a large area single crystal substrate, and the manufacturing cost is further increased. Therefore, an inexpensive material that can be used as a substitute material for a single crystal substrate such as gallium nitride is desired.
  • the present inventors have succeeded in producing a polycrystalline gallium nitride free-standing substrate satisfying such requirements (this is not known and does not constitute a prior art), the crystallinity of the polycrystalline gallium nitride free-standing substrate is not known. Further improvement is desired.
  • the present inventors now orient the constituent particles of a polycrystalline gallium nitride free-standing substrate in a specific crystal orientation in a substantially normal direction, and incline the orientation orientation of the constituent particles with an average tilt angle within a predetermined range.
  • the knowledge that the defect density on the substrate surface can be reduced was obtained.
  • by constructing a light emitting device using such a polycrystalline gallium nitride free-standing substrate higher luminous efficiency than a light-emitting device using a polycrystalline gallium nitride free-standing substrate in which the orientation direction of the constituent particles is not inclined.
  • the knowledge that is obtained is also obtained.
  • a polycrystalline gallium nitride free-standing substrate composed of a plurality of gallium nitride-based single crystal particles oriented in a specific crystal orientation in a substantially normal direction, the electron beam backscatter diffraction on the substrate surface
  • the crystal orientation of each gallium nitride single crystal particle measured by reverse pole figure mapping of the method (EBSD) is distributed at various angles with respect to the specific crystal orientation, and the average inclination angle is 1 to 10 °.
  • EBSD reverse pole figure mapping of the method
  • a polycrystalline gallium nitride freestanding substrate according to the above aspect of the invention, A light emitting functional layer formed on the substrate and having at least one layer composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction; A light-emitting element is provided.
  • the gallium nitride substrate of the present invention can have the form of a freestanding substrate.
  • the “self-supporting substrate” means a substrate that can be handled as a solid material without being deformed or damaged by its own weight when handled.
  • the polycrystalline gallium nitride free-standing substrate of the present invention can be used as a substrate for various semiconductor devices such as light-emitting elements, but in addition to this, an electrode (which can be a p-type electrode or an n-type electrode), a p-type layer, n It can be used as a member or layer other than a substrate such as a mold layer.
  • the advantages of the present invention may be described by taking a light emitting element which is one of the main applications as an example. However, similar or similar advantages are not limited to the technical consistency. The same applies to semiconductor devices.
  • the polycrystalline gallium nitride free-standing substrate of the present invention is composed of a plurality of gallium nitride single crystal particles oriented in a specific crystal orientation in a substantially normal direction.
  • This polycrystalline gallium nitride free-standing substrate has a specific crystal orientation (the crystal orientation of each gallium nitride single crystal particle measured by reverse pole figure mapping of electron beam backscatter diffraction (EBSD) on the substrate surface (plate surface) ( For example, the inclination is distributed at various angles from the c-axis, a-axis, or the like), and the average inclination angle is 1 to 10 °.
  • EBSD electron beam backscatter diffraction
  • EBSD is a well-known example in which when a crystalline material is irradiated with an electron beam, a Kikuchi line diffraction pattern, that is, an EBSD pattern, is observed by electron backscatter diffraction generated on the surface of the sample, and information on the crystal system and crystal orientation of the sample is obtained. It is a technique, and in combination with a scanning electron microscope (SEM), information on the crystal system of a micro region and the distribution of crystal orientation can be obtained by measuring and analyzing an EBSD pattern while scanning an electron beam.
  • SEM scanning electron microscope
  • the constituent particles of the polycrystalline gallium nitride free-standing substrate are oriented in a specific crystal orientation in a substantially normal direction, and the orientation orientation of the constituent particles is inclined at an average inclination angle within a predetermined range.
  • the defect density on the substrate surface can be reduced.
  • the reason for reducing the defect density is not clear, but the orientation orientation of the gallium nitride single crystal particles is slightly inclined, so that the base substrate (typically oriented polycrystalline sintered body) used during production It is presumed that defects caused by the lattice mismatching of each other are associated with each other and easily disappear in the particles. In addition, it is considered that since the orientation azimuth is slightly inclined, the defects are also inclined from the normal direction and disappear at the grain boundary.
  • a polycrystalline gallium nitride free-standing substrate in which the orientation direction of the constituent particles is inclined a polycrystalline gallium nitride free-standing substrate in which the orientation direction of the constituent particles is not inclined is used.
  • High luminous efficiency can be obtained as compared with the light emitting element. The reason why high luminous efficiency can be obtained is not clear, but since the defect density of the substrate is low as described above, the light emitting functional layer grown thereon also has low defect density, and as a result, high luminous efficiency can be obtained. It is estimated that. Further, since the light emitting functional layer formed on the substrate also has a structure in which the orientation direction is inclined, it is estimated that the light extraction efficiency may be increased.
  • a plurality of gallium nitride-based single crystal particles constituting a polycrystalline gallium nitride free-standing substrate are oriented in a specific crystal orientation in a substantially normal direction.
  • the specific crystal orientation may be any crystal orientation (for example, c-plane, a-plane, etc.) that gallium nitride may have.
  • each constituent particle on the substrate surface has the c-axis directed in a substantially normal direction (that is, the c-plane is directed to the substrate surface). Will be placed).
  • the plurality of gallium nitride single crystal particles constituting the polycrystalline gallium nitride free-standing substrate are oriented in a specific crystal orientation in a substantially normal direction, but the individual constituent particles are slightly inclined at various angles. That is, the substrate surface as a whole exhibits an orientation in a predetermined normal crystal direction in a substantially normal direction, but the crystal orientation of each gallium nitride-based single crystal particle is distributed at various angles from the specific crystal orientation. .
  • this unique orientation state can be evaluated by reverse pole figure mapping (for example, see FIG. 2) of EBSD on the substrate surface (plate surface).
  • the crystal orientation of each gallium nitride-based single crystal particle measured by reverse pole figure mapping of EBSD on the substrate surface is distributed at various angles from the specific crystal orientation, and the average value of the tilt angles (average tilt) The angle) is 1 to 10 °, preferably 1 to 8 °, more preferably 1 to 5 °. Further, it is preferable that 80% or more of gallium nitride-based single crystal particles measured by reverse pole figure mapping of EBSD have an inclination angle in the range of 1 to 10 °, more preferably 90% or more, and still more preferably 95. % Or more, particularly preferably 99% or more has an inclination angle within the above range.
  • the inclination angle distribution is as described above, the defect density is significantly reduced.
  • the inclination angle of the gallium nitride-based single crystal particles is preferably distributed according to a Gaussian distribution (also referred to as a normal distribution), whereby the defect density is significantly reduced.
  • the polycrystalline gallium nitride free-standing substrate preferably has a reduced defect density because the constituent particles are inclined as described above.
  • the polycrystalline gallium nitride free-standing substrate is preferably 1 ⁇ 10 4 pieces / cm 2 or less, more preferably 1 ⁇ 10 3 pieces / cm 2 or less, further preferably 1 ⁇ 10 2 pieces / cm 2 or less, and particularly preferably Has a defect density of 1 ⁇ 10 1 / cm 2 or less, and most preferably is substantially free of defects (ie about 0 / cm 2 ).
  • the defect density can be calculated by counting the points that appear darker than the surroundings (dark spots) as dislocations appearing on the substrate surface by the cathodoluminescence (CL) method.
  • the CL method is a known method for detecting light emitted when a sample is irradiated with an electron beam, and the state of an arbitrary place can be analyzed while confirming the position with an SEM image.
  • the measurement by the CL method can be performed using, for example, an SEM (scanning electron microscope) equipped with a cathodoluminescence observation detector.
  • the polycrystalline gallium nitride free-standing substrate preferably has a single crystal structure in a substantially normal direction.
  • the polycrystalline gallium nitride free-standing substrate is composed of a plate composed of a plurality of gallium nitride-based single crystal particles having a single crystal structure in a substantially normal direction. That is, the polycrystalline gallium nitride free-standing substrate is composed of a plurality of semiconductor single crystal particles that are two-dimensionally connected in the horizontal plane direction, and therefore can have a single crystal structure in a substantially normal direction. Therefore, the polycrystalline gallium nitride free-standing substrate is not a single crystal as a whole, but has a single crystal structure in local domain units.
  • the plurality of gallium nitride-based single crystal particles constituting the free-standing substrate have a single crystal structure in a substantially normal direction.
  • High-resistance grain boundaries do not exist in the pass, and as a result, preferable luminous efficiency is expected.
  • the polycrystalline gallium nitride free-standing substrate of this embodiment can be preferably used for a vertical LED structure.
  • it since there is no grain boundary in the current path, it can be applied not only to such a light emitting device but also to a power device, a solar cell, and the like.
  • the plurality of gallium nitride single crystal particles constituting the self-supporting substrate have crystal orientations substantially aligned in a substantially normal direction.
  • Crystal orientation that is generally aligned in the normal direction is not necessarily a crystal orientation that is perfectly aligned in the normal direction, as long as a device such as a light-emitting element using a self-supporting substrate can ensure desired device characteristics. This means that the crystal orientation may be aligned to some extent in the normal or similar direction.
  • the gallium nitride single crystal particles have a structure that grows almost following the crystal orientation of the oriented polycrystalline sintered body used as the base material during the production of the polycrystalline gallium nitride free-standing substrate. It can be said that it has.
  • the “structure grown substantially following the crystal orientation of the oriented polycrystalline sintered body” means a structure brought about by crystal growth affected by the crystal orientation of the oriented polycrystalline sintered body, and is not necessarily oriented.
  • the crystal of the oriented polycrystalline sintered body is not necessarily a structure that has grown completely following the crystal orientation of the crystalline sintered body, as long as a device such as a light-emitting element using a self-supporting substrate can ensure the desired device characteristics.
  • this structure includes a structure that grows in a different crystal orientation from the oriented polycrystalline sintered body.
  • the expression “a structure grown substantially following the crystal orientation” can also be rephrased as “a structure grown substantially derived from the crystal orientation”. This paraphrase and the above meaning are similar to those in this specification. The same applies to expression. Therefore, although such crystal growth is preferably by epitaxial growth, it is not limited to this, and various forms of crystal growth similar thereto may be used. In any case, by growing in this way, the polycrystalline gallium nitride free-standing substrate can have a structure in which the crystal orientation is substantially uniform with respect to the substantially normal direction.
  • the gallium nitride-based single substrate constituting the free-standing substrate is measured. It can be confirmed that the crystal orientation of the crystal grains is oriented in a specific crystal orientation in a substantially normal direction. However, there is no orientation in the plate surface direction perpendicular to the substrate normal direction.
  • EBSD electron beam backscattering diffraction method
  • the gallium nitride single crystal particles have a structure in which the crystal orientation is oriented only in a substantially normal direction, and the twist (rotation of crystal axis) distribution of the gallium nitride single crystal particles about the normal direction is random. is there.
  • a device such as a light emitting function or a solar cell is manufactured using a polycrystalline gallium nitride free-standing substrate. The reason for this is not clear, but is considered to be due to the effect of reducing the defect density on the surface of the polycrystalline gallium nitride substrate and the effect of light extraction efficiency.
  • the reason why the defect density is reduced due to the random twist distribution is not clear, it is considered that the defects that have progressed with an inclination from the normal direction disappear at the grain boundaries. In other words, if the twist distribution of the gallium nitride single crystal particles in the horizontal direction of the gallium nitride single crystal particles is uniform, the defects will progress without disappearing at the grain boundary portion, and therefore the defect density on the substrate surface will increase. Conceivable.
  • the polycrystalline gallium nitride free-standing substrate according to the above aspect is a single-crystal gallium nitride-based single crystal that is observed as a single crystal when viewed in the normal direction and has a grain boundary when viewed in a cut surface in the horizontal direction. It can also be regarded as an aggregate of crystal grains.
  • the “columnar structure” does not mean only a typical vertically long column shape, but includes various shapes such as a horizontally long shape, a trapezoidal shape, and a shape in which the trapezoid is inverted. Defined as meaning.
  • the polycrystalline gallium nitride free-standing substrate may have a structure having a crystal orientation that is aligned to some extent in the normal or similar direction, and does not necessarily have a columnar structure in a strict sense.
  • the cause of the columnar structure is considered to be because the gallium nitride single crystal particles grow under the influence of the crystal orientation of the oriented polycrystalline sintered body used for the production of the polycrystalline gallium nitride free-standing substrate as described above.
  • the free-standing substrate surface on which the light emitting functional layer is formed and the free-standing substrate back surface on which the electrode is formed It is preferable that they communicate with each other without passing through grain boundaries. That is, it is preferable that the gallium nitride single crystal particles exposed on the surface of the polycrystalline gallium nitride free-standing substrate communicate with the back surface of the polycrystalline gallium nitride free-standing substrate without passing through the grain boundary. If there is a grain boundary, resistance is caused during energization, which causes a decrease in luminous efficiency.
  • the cross-sectional average diameter DT at the outermost surface of the gallium nitride single crystal particles exposed on the surface of the polycrystalline gallium nitride free-standing substrate is equal to the gallium nitride single crystal exposed on the back surface of the polycrystalline gallium nitride free-standing substrate. it is preferably different from the cross-sectional average diameter D B at the outermost surface of the particles. By doing so, the crystallinity of the free-standing substrate and its constituent particles is improved. For example, when a gallium nitride crystal is grown using epitaxial growth via a gas phase or a liquid phase, the growth occurs not only in the normal direction but also in the horizontal direction, depending on the film forming conditions.
  • the growth rates of the individual gallium nitride crystals are different, so that the fast growing particles cover the slow growing particles. May grow.
  • the particle size on the substrate surface side tends to be larger than that on the back surface side of the substrate.
  • the slow-growing crystal stops growing in the middle, and when observed in a certain section, grain boundaries can be observed in the normal direction.
  • the particles exposed on the surface of the substrate communicate with the back surface of the substrate without passing through the grain boundary, and there is no resistance phase in flowing current.
  • the grain size increases with growth, so that the front and back surfaces of the polycrystalline gallium nitride free-standing substrate have a smaller gallium nitride crystal grain size on the substrate surface side. In other words, it can also be called the back side of the substrate. That is, in the polycrystalline gallium nitride free-standing substrate, it is preferable that the light emitting functional layer is formed on the side where the grain size of the gallium nitride crystal is large (substrate surface side) from the viewpoint of increasing the light emission efficiency of the LED having a vertical structure.
  • the substrate surface side (the side opposite to the side that was in contact with the oriented polycrystalline alumina sintered body at the time of manufacture) is gallium.
  • the substrate back surface side (the side in contact with the oriented polycrystalline alumina sintered body which is the base substrate at the time of manufacture) is the nitrogen surface.
  • the gallium surface of the polycrystalline gallium nitride free-standing substrate is dominated by particles communicating with the back surface without passing through the grain boundary. For this reason, it is preferable to produce a light emitting functional layer on the gallium surface side (substrate surface side) from the viewpoint of increasing the light emission efficiency of the vertically structured LED.
  • cross-sectional average diameter of the outermost surface of the polycrystalline gallium nitride freestanding gallium nitride single crystal particles exposed on the back surface of the substrate (hereinafter, referred to as cross-sectional average diameter D B of the substrate back surface)
  • polycrystalline gallium nitride The ratio D T / D B of the cross-sectional average diameter (hereinafter referred to as the cross-sectional average diameter D T of the substrate surface) at the outermost surface of the gallium nitride single crystal particles exposed on the surface of the free-standing substrate is greater than 1.0.
  • the ratio D T / D B is 1.5 or more, More preferably, it is 2.0 or more, Especially preferably, it is 3.0 or more, Most preferably, it is 5.0 or more.
  • the ratio D T / D B is preferably 20 or less, and more preferably 10 or less.
  • CAUSE luminous efficiency changes is not clear, but the grain boundary area is high the ratio D T / D B does not contribute to light emission by large grain size is decreased, or the crystal defects by large grain size This is considered to be reduced.
  • the cause of the decrease in crystal defects is not clear, but it is also considered that particles containing defects grow slowly and particles with few defects grow at high speed.
  • the crystallinity of the interface between the columnar structures constituting the polycrystalline gallium nitride free-standing substrate is lowered, when used as a light emitting functional layer of a light emitting element, the light emission efficiency is lowered, the light emission wavelength varies, and the light emission wavelength is broad. There is a possibility. For this reason, it is better that the cross-sectional average diameter of the columnar structure is larger.
  • the average cross-sectional diameter of the gallium nitride single crystal particles on the outermost surface of the polycrystalline gallium nitride free-standing substrate is 0.3 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the upper limit of the cross-sectional average diameter of the gallium nitride single crystal particles on the outermost surface of the polycrystalline gallium nitride free-standing substrate is not particularly limited, but is practically 1000 ⁇ m or less, more realistically 500 ⁇ m or less, and more realistically. Is 200 ⁇ m or less.
  • the sintered grains on the plate surface of the particles constituting the oriented polycrystalline sintered body used for the production of a polycrystalline gallium nitride free-standing substrate are used.
  • the diameter is desirably 0.3 ⁇ m to 1000 ⁇ m, more desirably 3 ⁇ m to 1000 ⁇ m, still more desirably 10 ⁇ m to 800 ⁇ m, and particularly desirably 14 ⁇ m to 500 ⁇ m.
  • an oriented polycrystalline sintered body The sintered particle size on the plate surface of the particles constituting the particle is preferably 10 ⁇ m to 100 ⁇ m, more preferably 14 ⁇ m to 70 ⁇ m.
  • the gallium nitride single crystal particles constituting the polycrystalline gallium nitride free-standing substrate may not contain a dopant.
  • dopant means that an element added for the purpose of imparting some function or characteristic is not contained, and it is needless to say that inclusion of inevitable impurities is allowed.
  • the gallium nitride-based single crystal particles constituting the polycrystalline gallium nitride free-standing substrate may be doped with an n-type dopant or a p-type dopant, and in this case, the polycrystalline gallium nitride free-standing substrate is replaced with a p-type electrode, n It can be used as a member or layer other than a substrate such as a mold electrode, p-type layer, and n-type layer.
  • the p-type dopant include one or more selected from the group consisting of beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn), and cadmium (Cd). It is done.
  • the n-type dopant include one or more selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn), and oxygen (O).
  • the gallium nitride single crystal particles constituting the polycrystalline gallium nitride free-standing substrate may be mixed to control the band gap.
  • the gallium nitride single crystal particles may be composed of gallium nitride mixed with at least one crystal selected from the group consisting of AlN and InN, and may be p-type gallium nitride and / or n.
  • the mixed gallium nitride may be doped with a p-type dopant or an n-type dopant.
  • Al x Ga 1-x N which is a mixed crystal of gallium nitride and AlN, is used as a p-type substrate by doping Mg
  • Al x Ga 1-x N is used as an n-type substrate by doping Si. be able to.
  • the band gap is widened by mixing gallium nitride with AlN, and the emission wavelength can be shifted to a higher energy side.
  • gallium nitride may be mixed with InN, whereby the band gap is narrowed and the emission wavelength can be shifted to a lower energy side.
  • the polycrystalline gallium nitride free-standing substrate preferably has a diameter of 50.8 mm (2 inches) or more, more preferably has a diameter of 100 mm (4 inches) or more, and more preferably has a diameter of 200 mm (8 inches) or more. .
  • the polycrystalline gallium nitride free-standing substrate is preferably circular or substantially circular when viewed from above, but is not limited thereto.
  • the area is preferably at 2026Mm 2 or more, more preferably 7850mm 2 or more, further preferably 31400Mm 2 or more.
  • the area may be smaller than the above range, for example, a diameter of 50.8 mm (2 inches) or less, and 2026 mm 2 or less in terms of area.
  • the thickness of the polycrystalline gallium nitride free-standing substrate needs to be able to impart self-supporting property to the substrate, and is preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and further preferably 300 ⁇ m or more. An upper limit should not be defined for the thickness of the polycrystalline gallium nitride free-standing substrate, but 3000 ⁇ m or less is realistic from the viewpoint of manufacturing cost.
  • the aspect ratio T / which is defined as the ratio of the thickness T of the polycrystalline gallium nitride free-standing substrate to the average cross-sectional diameter DT at the outermost surface of the gallium nitride-based single crystal particles exposed on the surface of the polycrystalline gallium nitride free-standing substrate DT is preferably 0.7 or more, more preferably 1.0 or more, and further preferably 3.0 or more.
  • this aspect ratio is an LED, it is preferable from the viewpoint of increasing luminous efficiency.
  • the reason why the luminous efficiency is increased may be that the defect density in the gallium nitride is lower in the high aspect ratio particles and the light extraction efficiency is increased, but the details are not clear.
  • the light emitting functional layer is formed on the free-standing substrate surface side (the side opposite to the side in contact with the oriented polycrystalline sintered body that is the base substrate at the time of manufacture).
  • Write good (2) well of the ratio D T / D B sectional average diameter D T of the substrate surface takes an appropriate value for the free-standing substrate back surface of the cross-sectional average diameter D B, constitute a (3) self-supporting substrate good a larger cross-sectional average diameter of the substrate outermost surface of the particles, (4) the aspect ratio T / D T of the particles constituting the free-standing substrate is larger is better.
  • the cross-sectional average diameter is large and the aspect ratio is large.
  • a gallium nitride crystal having a large cross-sectional average diameter on the substrate surface side and a large thickness is preferable.
  • the thickness of the polycrystalline gallium nitride free-standing substrate is preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and further preferably 300 ⁇ m or more.
  • the thickness of the gallium nitride crystal is increased, it is not preferable from the viewpoint of cost, and it is preferable that the gallium nitride crystal is thin as long as it is independent.
  • the thickness of the polycrystalline gallium nitride free-standing substrate is practically 3000 ⁇ m or less, preferably 600 ⁇ m or less, and preferably 300 ⁇ m or less. Accordingly, the thickness that achieves both a self-supporting and high luminous efficiency and a cost viewpoint is preferably about 50 to 500 ⁇ m, and more preferably about 50 to 300 ⁇ m.
  • the polycrystalline gallium nitride free-standing substrate of the present invention is prepared by (1) preparing an oriented polycrystalline sintered body, and (2) arranging a seed crystal layer made of gallium nitride on the oriented polycrystalline sintered body. (3) A layer composed of a gallium nitride-based crystal having a thickness of 20 ⁇ m or more is formed on the seed crystal layer so as to have a crystal orientation substantially following the crystal orientation of the sintered body. And (4) by removing the oriented polycrystalline sintered body to obtain a polycrystalline gallium nitride free-standing substrate.
  • An oriented polycrystalline sintered body is prepared as a base substrate for producing a polycrystalline gallium nitride free-standing substrate.
  • the composition of the oriented polycrystalline sintered body is not particularly limited, but is preferably one selected from an oriented polycrystalline alumina sintered body, an oriented polycrystalline zinc oxide sintered body, and an oriented polycrystalline aluminum nitride sintered body.
  • An oriented polycrystalline sintered body can be efficiently manufactured through molding and firing using commercially available plate-like powder, so it can be manufactured at a low cost, but also because it is easy to mold, it can also increase the area. Suitable.
  • a polycrystalline gallium nitride free-standing substrate suitable for manufacturing a large-area light-emitting element at low cost by using an oriented polycrystalline sintered body as a base substrate and growing a plurality of semiconductor single crystal particles thereon Can be manufactured.
  • the polycrystalline gallium nitride free-standing substrate is extremely suitable for manufacturing a large-area light-emitting element at a low cost.
  • the oriented polycrystalline sintered body is composed of a sintered body including a large number of single crystal particles, and a large number of single crystal particles are oriented to some extent or highly in a certain direction.
  • a polycrystalline gallium nitride free-standing substrate having a crystal orientation substantially aligned in a substantially normal direction can be produced by using a polycrystalline sintered body oriented in this way, and a gallium nitride-based substrate is formed on the polycrystalline gallium nitride free-standing substrate.
  • the material is formed by epitaxial growth or similar crystal growth, a state in which crystal orientations are substantially aligned in a substantially normal direction is realized.
  • a highly oriented polycrystalline gallium nitride free-standing substrate is used as a substrate for a light emitting device, a light emitting functional layer can be formed in a state where crystal orientations are substantially aligned in a substantially normal direction, High luminous efficiency equivalent to that obtained when a single crystal substrate is used can be realized.
  • this highly oriented polycrystalline gallium nitride free-standing substrate is used as a light emitting functional layer of a light emitting element, high light emission efficiency equivalent to that when a single crystal substrate is used can be realized.
  • an oriented polycrystalline sintered body as a base substrate.
  • the oriented polycrystalline sintered body preferably has translucency, but is not limited thereto. In the case of translucency, a technique such as laser lift-off can be used when removing the oriented polycrystalline plate.
  • a hot isostatic pressing method HIP
  • HP hot press method
  • SPS spark plasma sintering
  • the oriented polycrystalline sintered body preferably has a diameter of 50.8 mm (2 inches) or more, more preferably has a diameter of 100 mm (4 inches) or more, and more preferably has a diameter of 200 mm (8 inches) or more. .
  • the larger the oriented polycrystalline sintered body the larger the area of the polycrystalline gallium nitride free-standing substrate that can be produced, thereby increasing the number of light-emitting elements that can be produced, which is preferable from the viewpoint of production cost. Also, from the viewpoint of the surface light emitting device, it is preferable from the viewpoint that the degree of freedom of the device area is increased and the application to surface light emitting lighting is widened, and the upper limit should not be defined for the area or size.
  • the polycrystalline gallium nitride free-standing substrate is preferably circular or substantially circular when viewed from above, but is not limited thereto. If not a circular or substantially circular shape, as the area is preferably at 2026Mm 2 or more, more preferably 7850mm 2 or more, further preferably 31400Mm 2 or more. However, for applications that do not require a large area, the area may be smaller than the above range, for example, a diameter of 50.8 mm (2 inches) or less, and 2026 mm 2 or less in terms of area.
  • the thickness of the oriented polycrystalline sintered body is not particularly limited as long as it is self-supporting, but if it is too thick, it is not preferable from the viewpoint of production cost.
  • the thickness is preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and further preferably 100 to 1000 ⁇ m.
  • the gallium nitride film is formed, the entire substrate is warped due to the stress caused by the difference in thermal expansion between alumina and gallium nitride, which may hinder subsequent processes.
  • the stress varies depending on the gallium nitride film forming method and conditions, the material of the oriented polycrystalline sintered body, the film thickness, the substrate diameter, etc.
  • the substrate is thickly oriented.
  • a polycrystalline sintered body may be used.
  • a polycrystalline gallium nitride free-standing substrate having a diameter of 50.8 mm (2 inches) and a thickness of 300 ⁇ m is produced using an oriented polycrystalline alumina sintered body as an oriented polycrystalline sintered body as a base, oriented polycrystalline alumina
  • the thickness of the sintered body may be 900 ⁇ m or more, or 1300 ⁇ m or more, or 2000 ⁇ m or more. In this way, the thickness of the oriented polycrystalline sintered body may be appropriately selected in consideration of the manufacturing cost viewpoint and the warp suppression viewpoint.
  • the average particle size on the plate surface of the particles constituting the oriented polycrystalline sintered body is preferably 0.3 to 1000 ⁇ m, more preferably 3 to 1000 ⁇ m, still more preferably 10 ⁇ m to 200 ⁇ m, and particularly preferably 14 ⁇ m to 200 ⁇ m. It is.
  • the sintered particle size on the plate surface of the particles constituting the aggregate is preferably 10 ⁇ m to 100 ⁇ m, more preferably 14 ⁇ m to 70 ⁇ m.
  • the average grain size of the entire oriented polycrystalline sintered body has a correlation with the average grain size of the plate surface, and within these ranges, the sintered body is excellent in mechanical strength and easy to handle.
  • the light emitting functional layer is also excellent in terms of luminous efficiency.
  • grains in this invention is measured with the following method. That is, the plate surface of the plate-like sintered body is polished and an image is taken with a scanning electron microscope.
  • the visual field range is a visual field range in which a straight line intersecting 10 to 30 particles can be drawn when a straight line is drawn on the diagonal line of the obtained image. Two straight lines are drawn on the diagonal line of the obtained image, and the value obtained by multiplying the average of the length of the inner line segment of each particle by 1.5 for all the particles that intersect the line.
  • the average particle size of is performed after performing a process of making the interface stand out by thermal etching (for example, 1550 ° C. for 45 minutes) or chemical etching. You may go.
  • a particularly preferred oriented polycrystalline sintered body is an oriented polycrystalline alumina sintered body.
  • Alumina is aluminum oxide (Al 2 O 3 ), which is typically ⁇ -alumina having the same corundum type structure as single crystal sapphire, and the oriented polycrystalline alumina sintered body has innumerable alumina crystal particles oriented. Solids that are bonded together by sintering.
  • the alumina crystal particles are particles composed of alumina, and may include a dopant and inevitable impurities as other elements, or may be composed of alumina and inevitable impurities.
  • the oriented polycrystalline alumina sintered body may contain an additive as a sintering aid as a grain boundary phase.
  • the oriented polycrystalline alumina sintered body may also contain other phases or other elements as described above in addition to the alumina crystal particles, but preferably comprises alumina crystal particles and inevitable impurities.
  • the orientation plane of the oriented polycrystalline alumina sintered body is not particularly limited, and may be a c-plane, a-plane, r-plane, m-plane, or the like.
  • the oriented crystal orientation of the oriented polycrystalline alumina sintered body is not particularly limited, and may be c-plane, a-plane, r-plane, m-plane, etc., and lattice constant matching with a polycrystalline gallium nitride free-standing substrate. From the viewpoint, it is preferably oriented in the c-plane.
  • the degree of orientation for example, the degree of orientation on the plate surface is preferably 50% or more, more preferably 65% or more, still more preferably 75% or more, particularly preferably 85%, and particularly preferably. 90% or more, and most preferably 95% or more.
  • This degree of orientation is calculated by the following formula by measuring the XRD profile when X-rays are irradiated to the plate surface of plate-like alumina using an XRD apparatus (for example, RINT-TTR III, manufactured by Rigaku Corporation). It is obtained by doing.
  • the crystallinity of the constituent particles of the polycrystalline gallium nitride free-standing substrate of the present invention tends to be high, and the density of defects such as dislocations can be kept low.
  • the polycrystalline gallium nitride free-standing substrate can be preferably used as compared with the gallium nitride single crystal substrate in certain applications such as a light emitting device.
  • the functional layer grows substantially following the underlying polycrystalline gallium nitride free-standing substrate and becomes an aggregate of columnar structures.
  • An oriented polycrystalline alumina sintered body can be produced by molding and sintering using a plate-like alumina powder as a raw material.
  • Plate-like alumina powder is commercially available and is commercially available.
  • the type and shape of the plate-like alumina powder are not particularly limited as long as a dense oriented polycrystalline alumina sintered body can be obtained, but the average particle diameter may be 0.4 to 15 ⁇ m and the thickness may be 0.05 to 1 ⁇ m. It is good also as what mixed 2 or more types of raw materials of different average particle diameter.
  • the plate-like alumina powder can be oriented by a technique using shearing force to obtain an oriented molded body.
  • the technique using shearing force include tape molding, extrusion molding, doctor blade method, and any combination thereof.
  • the orientation method using the shearing force is made into a slurry by appropriately adding additives such as a binder, a plasticizer, a dispersing agent, and a dispersion medium to the plate-like alumina powder. It is preferable to discharge and form the sheet on the substrate by passing through a thin discharge port.
  • the slit width of the discharge port is preferably 10 to 400 ⁇ m.
  • the amount of the dispersion medium is preferably such that the slurry viscosity is 5000 to 100,000 cP, more preferably 20000 to 60000 cP.
  • the thickness of the oriented molded body formed into a sheet is preferably 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m. It is preferable to stack a large number of oriented molded bodies formed in this sheet shape to form a precursor laminate having a desired thickness, and press-mold the precursor laminate.
  • This press molding can be preferably performed by isostatic pressing at a pressure of 10 to 2000 kgf / cm 2 in warm water at 50 to 95 ° C. by packaging the precursor laminate with a vacuum pack or the like.
  • the sheet-shaped molded body is integrated and laminated in the mold after passing through a narrow discharge port in the mold due to the design of the flow path in the mold.
  • the molded body may be discharged.
  • the obtained molded body is preferably degreased according to known conditions.
  • the oriented molded body obtained as described above is subjected to hot isostatic pressing (HIP), hot pressing (HP ), A pressure sintering method such as spark plasma sintering (SPS), and a combination thereof, and an alumina sintered body comprising oriented alumina crystal particles is formed.
  • the firing temperature and firing time in the firing vary depending on the firing method
  • the firing temperature is 1000 to 1950 ° C., preferably 1100 to 1900 ° C., more preferably 1500 to 1800 ° C.
  • the firing time is 1 minute to 10 hours, preferably 30 minutes to 5 hours.
  • a first firing step of firing at 1500 to 1800 ° C. for 2 to 5 hours under a surface pressure of 100 to 200 kgf / cm 2 in a hot press, More preferably, it is carried out through a second firing step in which firing is performed again at 1500 to 1800 ° C. for 30 minutes to 5 hours under a gas pressure of 1000 to 2000 kgf / cm 2 by an isotropic pressure method (HIP).
  • HIP isotropic pressure method
  • the firing time at the above-mentioned firing temperature is not particularly limited, but is preferably 1 to 10 hours, and more preferably 2 to 5 hours.
  • a method is used in which a high-purity plate-like alumina powder is used as a raw material and calcined at 1100 to 1800 ° C. for 1 minute to 10 hours in an air furnace, a hydrogen atmosphere furnace, a nitrogen atmosphere furnace or the like. Is preferably exemplified.
  • the obtained sintered body is again subjected to hot isostatic pressing (HIP) at 1200 to 1400 ° C. or 1400 to 1950 ° C. for 30 minutes to 5 hours under a gas pressure of 300 to 2000 kgf / cm 2.
  • a method of firing may be used.
  • the plate-like alumina powder is preferably highly pure, more preferably 98% or more, further preferably 99% or more, particularly preferably 99.9% or more, most preferably Preferably it is 99.99% or more.
  • the firing conditions are not limited to the above.
  • the second firing step by hot isostatic pressing (HIP) may be omitted as long as both densification and high orientation are possible.
  • a very small amount of additives may be added to the raw material as a sintering aid. Although the addition of the sintering aid goes against the reduction of the grain boundary phase, the purpose is to improve the translucency as a result by reducing pores, which is one of the light scattering factors.
  • oxides such as MgO, ZrO 2 , Y 2 O 3 , CaO, SiO 2 , TiO 2 , Fe 2 O 3 , Mn 2 O 3 , La 2 O 3 , AlF 3 , MgF 2 and at least one selected from fluorides such as YbF 3 .
  • MgO, CaO, SiO 2 and La 2 O 3 are preferred, and MgO is particularly preferred.
  • the amount of additive should be kept to a minimum, preferably 5000 ppm or less, more preferably 1000 ppm or less, and even more preferably 700 ppm or less.
  • An oriented polycrystalline alumina sintered body can also be produced by molding and sintering using a mixed powder obtained by appropriately adding a plate-like alumina powder to a fine alumina powder and / or a transition alumina powder. it can.
  • the plate-like alumina powder becomes a seed crystal (template)
  • the fine alumina powder and / or the transition alumina powder becomes a matrix
  • the template undergoes a so-called TGG (Tempered Grain Growth) process in which homoepitaxial growth is performed while incorporating the matrix. This causes crystal growth and densification.
  • TGG Tempored Grain Growth
  • the average particle size of the template is 0.5 to 15 ⁇ m
  • the average particle size of the matrix is 0.4 ⁇ m or less. Is preferably 0.2 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
  • the mixing ratio of the template and matrix varies depending on the particle size ratio, firing conditions, and the presence or absence of additives. For example, a plate-like alumina powder with an average particle size of 2 ⁇ m is used as the template, and a fine alumina powder with an average particle size of 0.1 ⁇ m is used as the matrix In such a case, the template / matrix ratio may be 50/50 to 1/99 wt%.
  • oxides such as MgO, ZrO 2 , Y 2 O 3 , CaO, SiO 2 , TiO 2 , Fe 2 O 3 , Mn 2 O 3 , and La 2 O 3 are used as sintering aids.
  • fluorides such as AlF 3 , MgF 2 and YbF 3 may be added, MgO, CaO, SiO 2 and La 2 O 3 are preferable, and MgO is particularly preferable.
  • a high-quality oriented polycrystalline alumina sintered body can be obtained by a pressure sintering method such as sintering (SPS) or a combination thereof.
  • a pressure sintering method such as sintering (SPS) or a combination thereof.
  • the alumina sintered body thus obtained becomes a polycrystalline alumina sintered body oriented in a desired plane such as the c-plane depending on the kind of the plate-like alumina powder used as the raw material. It is preferable that the oriented polycrystalline alumina sintered body thus obtained is ground with a grindstone to flatten the plate surface, and then the plate surface is smoothed by lapping using diamond abrasive grains to obtain an oriented alumina substrate.
  • a seed crystal layer made of gallium nitride is formed on the oriented polycrystalline sintered body so as to have a crystal orientation that substantially follows the crystal orientation of the oriented polycrystalline sintered body.
  • Forming so as to have a crystal orientation generally following the crystal orientation of the oriented polycrystalline sintered body means that the structure is brought about by crystal growth affected by the crystal orientation of the oriented polycrystalline sintered body. This means that the structure does not necessarily grow completely following the crystal orientation of the oriented polycrystalline sintered body, but also includes a structure that grows in a different crystal orientation from the oriented polycrystalline sintered body.
  • the method for producing the seed crystal layer is not particularly limited, but MOCVD (metal organic vapor phase epitaxy), MBE (molecular beam epitaxy), HVPE (halide vapor phase epitaxy), gas phase methods such as sputtering, Na flux method, Preferred examples include liquid phase methods such as ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof.
  • MOCVD metal organic vapor phase epitaxy
  • MBE molecular beam epitaxy
  • HVPE halide vapor phase epitaxy
  • gas phase methods such as sputtering, Na flux method
  • liquid phase methods such as ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof.
  • the formation of a seed crystal layer by MOCVD is performed by depositing a 20 to 50 nm low-temperature GaN layer at 450 to 550 ° C. and then laminating a GaN film having a
  • a layer composed of a gallium nitride-based crystal having a thickness of 20 ⁇ m or more is formed on the seed crystal layer so as to have a crystal orientation that substantially follows the crystal orientation of the seed crystal layer.
  • the method of forming a layer composed of gallium nitride-based crystals is not particularly limited as long as it has a crystal orientation that substantially follows the crystal orientation of the oriented polycrystalline sintered body and / or the seed crystal layer, and is a gas phase method such as MOCVD or HVPE.
  • Preferred examples include a liquid phase method such as Na flux method, ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof, but the Na flux method is used. Is particularly preferred.
  • a thick gallium nitride crystal layer with high crystallinity can be efficiently produced on the seed crystal layer.
  • the formation of the gallium nitride crystal layer by the Na flux method is performed by using a crucible provided with a seed crystal substrate and metal n-type such as metal Ga, metal Na, and optionally a dopant (eg, germanium (Ge), silicon (Si), oxygen (O)).
  • a melt composition containing a dopant or a p-type dopant such as beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn), cadmium (Cd), etc.
  • a nitrogen atmosphere Among them, it is preferable to carry out the heating and pressurizing to 830 to 910 ° C. and 3.5 to 4.5 MPa, and then rotating while maintaining the temperature and pressure.
  • the holding time varies depending on the target film thickness, but may be about 10 to 100 hours.
  • the gallium nitride crystal thus obtained by the Na flux method is ground with a grindstone to flatten the plate surface, and then the plate surface is smoothed by lapping using diamond abrasive grains.
  • the oriented polycrystalline sintered body can be removed to obtain a polycrystalline gallium nitride free-standing substrate.
  • the method for removing the oriented polycrystalline sintered body is not particularly limited, but is spontaneous, utilizing grinding, chemical etching, interfacial heating (laser lift-off) by laser irradiation from the oriented sintered body side, and thermal expansion difference during temperature rise Exfoliation and the like.
  • a high-quality light-emitting element can be manufactured using the above-described polycrystalline gallium nitride free-standing substrate according to the present invention.
  • the polycrystalline gallium nitride free-standing substrate in which the orientation direction of the constituent particles is inclined according to the present invention is used to form the light-emitting element, thereby using the polycrystalline gallium nitride free-standing substrate in which the orientation direction of the constituent particles is not inclined.
  • High luminous efficiency can be obtained as compared with the conventional light emitting element.
  • the structure of the light emitting element using the polycrystalline gallium nitride free-standing substrate of the present invention and the manufacturing method thereof are not particularly limited.
  • the light-emitting element is manufactured by providing a light-emitting functional layer on a polycrystalline gallium nitride free-standing substrate, and the formation of the light-emitting functional layer has a crystal orientation that substantially follows the crystal orientation of the gallium nitride substrate. It is preferable to form one or more layers composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction.
  • a polycrystalline gallium nitride free-standing substrate is used as a member or layer other than a substrate such as an electrode (which can be a p-type electrode or an n-type electrode), a p-type layer, an n-type layer, etc. Good.
  • the element size is not particularly limited, and may be a small element of 5 mm ⁇ 5 mm or less, or a surface light emitting element of 10 cm ⁇ 10 cm or more.
  • FIG. 1 schematically shows a layer structure of a light-emitting element according to one embodiment of the present invention.
  • a light-emitting element 10 shown in FIG. 1 includes a polycrystalline gallium nitride free-standing substrate 12 and a light-emitting functional layer 14 formed on the substrate.
  • the light emitting functional layer 14 has one or more layers composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction.
  • the light-emitting functional layer 14 emits light based on the principle of a light-emitting element such as an LED by appropriately providing electrodes and applying a voltage.
  • the polycrystalline gallium nitride free-standing substrate 12 of the present invention it can be expected to obtain a light-emitting element having a light emission efficiency equivalent to that when a gallium nitride single crystal substrate is used, and a significant cost reduction can be realized.
  • gallium nitride imparted with conductivity by introducing a p-type or n-type dopant as a substrate, a light-emitting element having a vertical structure can be realized, whereby luminance can be increased.
  • a large area surface light emitting device can be realized at low cost.
  • a light emitting functional layer 14 is formed on the substrate 12.
  • the light emitting functional layer 14 may be provided on the entire surface or a part of the substrate 12, or may be provided on the entire surface or a part of the buffer layer when a buffer layer described later is formed on the substrate 12. Good.
  • the light-emitting functional layer 14 has one or more layers composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction, and is appropriately provided with electrodes and / or phosphors to apply a voltage. Therefore, it is possible to adopt various known layer configurations that cause light emission based on the principle of a light emitting element typified by an LED. Therefore, the light emitting functional layer 14 may emit visible light such as blue and red, or may emit ultraviolet light without visible light or with visible light.
  • the light emitting functional layer 14 preferably constitutes at least a part of a light emitting element using a pn junction, and the pn junction includes a p-type layer 14a and an n-type layer 14c as shown in FIG.
  • the active layer 14b may be included in between.
  • a double heterojunction or a single heterojunction (hereinafter collectively referred to as a heterojunction) using a layer having a smaller band gap than the p-type layer and / or the n-type layer as the active layer may be used.
  • a quantum well structure in which the active layer is thin can be adopted as one form of the p-type layer-active layer-n-type layer.
  • the light emitting functional layer 14 preferably includes a pn junction and / or a heterojunction and / or a quantum well junction having a light emitting function.
  • At least one layer constituting the light emitting functional layer 14 is at least selected from the group consisting of an n-type layer doped with an n-type dopant, a p-type layer doped with a p-type dopant, and an active layer.
  • an n-type layer, the p-type layer, and the active layer may be composed of the same material as the main component, or may be composed of materials whose main components are different from each other.
  • each layer constituting the light emitting functional layer 14 is not particularly limited as long as it grows substantially following the crystal orientation of the polycrystalline gallium nitride free-standing substrate and has a light emitting function. It is preferably composed of a material mainly composed of at least one selected from a zinc (ZnO) -based material and an aluminum nitride (AlN) -based material, and appropriately includes a dopant for controlling p-type or n-type. It may be a thing.
  • a particularly preferable material is a gallium nitride (GaN) -based material which is the same material as the polycrystalline gallium nitride free-standing substrate.
  • the material constituting the light emitting functional layer 14 may be a mixed crystal in which, for example, AlN, InN or the like is dissolved in GaN in order to control the band gap.
  • the light emitting functional layer 14 may be a heterojunction made of a plurality of types of materials. For example, a gallium nitride (GaN) -based material may be used for the p-type layer, and a zinc oxide (ZnO) -based material may be used for the n-type layer.
  • GaN gallium nitride
  • ZnO zinc oxide
  • a zinc oxide (ZnO) -based material may be used for the p-type layer
  • a gallium nitride (GaN) -based material may be used for the active layer and the n-type layer, and the combination of materials is not particularly limited.
  • Each layer constituting the light emitting functional layer 14 is composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction. That is, each layer is composed of a plurality of semiconductor single crystal particles that are two-dimensionally connected in the horizontal plane direction, and therefore has a single crystal structure in a substantially normal direction. Therefore, each layer of the light emitting functional layer 14 is not a single crystal as a whole, but has a single crystal structure in a local domain unit, and thus can have high crystallinity sufficient to ensure a light emitting function. .
  • the semiconductor single crystal particles constituting each layer of the light emitting functional layer 14 have a structure grown substantially following the crystal orientation of the polycrystalline gallium nitride free-standing substrate which is the substrate 12.
  • the structure grown roughly following the crystal orientation of the polycrystalline gallium nitride free-standing substrate means a structure brought about by crystal growth affected by the crystal orientation of the polycrystalline gallium nitride free-standing substrate. It is not necessarily a structure grown completely following the crystal orientation of the gallium nitride free-standing substrate, but as long as the desired light emitting function can be secured, it is a structure grown to some extent according to the crystal orientation of the polycrystalline gallium nitride free-standing substrate. Good. That is, this structure includes a structure that grows in a different crystal orientation from the oriented polycrystalline sintered body. In that sense, the expression “a structure grown substantially following the crystal orientation” can be rephrased as “a structure grown substantially derived from the crystal orientation”.
  • crystal growth is preferably by epitaxial growth, it is not limited to this, and various forms of crystal growth similar thereto may be used.
  • the normal line also extends from the polycrystalline gallium nitride free-standing substrate to each layer of the light emitting functional layer. With respect to the direction, the crystal orientation is almost uniform, and good light emission characteristics can be obtained. That is, when the light emitting functional layer 14 also grows substantially following the crystal orientation of the polycrystalline gallium nitride free-standing substrate 12, the orientation is substantially constant in the vertical direction of the substrate.
  • the normal direction is the same as that of a single crystal, and when a polycrystalline gallium nitride free-standing substrate to which an n-type dopant is added is used, a light-emitting element having a vertical structure using the polycrystalline gallium nitride free-standing substrate as a cathode and when a polycrystalline gallium nitride free-standing substrate to which a p-type dopant is added is used, a light-emitting element having a vertical structure using the polycrystalline gallium nitride free-standing substrate as an anode can be obtained.
  • each layer of the light-emitting functional layer 14 is a single crystal when viewed in the normal direction. It can also be regarded as an aggregate of columnar-structured semiconductor single crystal particles that are observed and viewed from a cut surface in the horizontal plane direction.
  • the “columnar structure” does not mean only a typical vertically long column shape, but includes various shapes such as a horizontally long shape, a trapezoidal shape, and a shape in which the trapezoid is inverted. Defined as meaning.
  • each layer has only to have a structure grown to some extent along the crystal orientation of the polycrystalline gallium nitride free-standing substrate, and does not necessarily have a columnar structure in a strict sense.
  • the cause of the columnar structure is considered to be that the semiconductor single crystal particles grow under the influence of the crystal orientation of the polycrystalline gallium nitride free-standing substrate as the substrate 12 as described above.
  • the average particle diameter of the cross section of the semiconductor single crystal particles which can be said to be a columnar structure (hereinafter referred to as the average cross section diameter) depends not only on the film forming conditions but also on the average particle diameter of the plate surface of the polycrystalline gallium nitride free-standing substrate It is considered a thing.
  • the interface of the columnar structure constituting the light emitting functional layer affects the light emission efficiency and the light emission wavelength, but due to the presence of the grain boundary, the light transmittance in the cross-sectional direction is poor, and the light is scattered or reflected. For this reason, in the case of a structure in which light is extracted in the normal direction, an effect of increasing the luminance due to scattered light from the grain boundary is also expected.
  • the cross-sectional average diameter of the columnar structure is larger.
  • the cross-sectional average diameter of the semiconductor single crystal particles on the outermost surface of the light emitting functional layer 14 is 0.3 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 20 ⁇ m or more, particularly preferably 50 ⁇ m or more, and most preferably 70 ⁇ m or more. It is.
  • the upper limit of the average cross-sectional diameter is not particularly limited, but is practically 1000 ⁇ m or less, more realistically 500 ⁇ m or less, and more realistically 200 ⁇ m or less.
  • the average cross-sectional diameter of the outermost surface of the gallium nitride-based single crystal particles constituting the polycrystalline gallium nitride free-standing substrate is 0.3 ⁇ m to 1000 ⁇ m. It is desirable that the thickness is 3 ⁇ m or more.
  • a buffer layer for suppressing the reaction is provided between the polycrystalline gallium nitride free-standing substrate 12 and the light emitting functional layer 14. It may be provided.
  • the main component of such a buffer layer is not particularly limited, but it is preferably composed of a material mainly containing at least one selected from a zinc oxide (ZnO) -based material and an aluminum nitride (AlN) -based material. , A dopant for controlling p-type to n-type may be included as appropriate.
  • Each layer constituting the light emitting functional layer 14 is preferably made of a gallium nitride material.
  • a gallium nitride material For example, an n-type gallium nitride layer and a p-type gallium nitride layer may be grown in order on the polycrystalline gallium nitride free-standing substrate 12, and the stacking order of the p-type gallium nitride layer and the n-type gallium nitride layer may be reversed.
  • the p-type dopant used for the p-type gallium nitride layer include a group consisting of beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn), and cadmium (Cd).
  • n-type dopant used for the n-type gallium nitride layer at least one selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn), and oxygen (O) is used.
  • Si silicon
  • Ge germanium
  • Sn tin
  • O oxygen
  • the p-type gallium nitride layer and / or the n-type gallium nitride layer may be made of gallium nitride mixed with one or more kinds of crystals selected from the group consisting of AlN and InN.
  • the mixed gallium nitride may be doped with a p-type dopant or an n-type dopant.
  • a p-type dopant for example, Al x Ga 1-x N, which is a mixed crystal of gallium nitride and AlN, is used as a p-type layer by doping Mg, and Al x Ga 1-x N is used as an n-type layer by doping Si. be able to.
  • gallium nitride is mixed with AlN, the band gap is widened, and the emission wavelength can be shifted to a higher energy side.
  • gallium nitride may be mixed with InN, whereby the band gap is narrowed and the emission wavelength can be shifted to a lower energy side.
  • the p-type gallium nitride layer and the n-type gallium nitride layer it is composed of a mixed crystal of GaN with one or more selected from the group consisting of GaN or AlN and InN having a smaller band gap than both layers.
  • You may have an active layer at least.
  • the active layer has a double heterojunction structure with a p-type layer and an n-type layer, and the thinned structure of the active layer corresponds to a light emitting device having a quantum well structure which is an embodiment of a pn junction, and has a luminous efficiency.
  • the active layer may be made of a mixed crystal of GaN having one or more selected from the group consisting of GaN or AlN and InN having a smaller band gap than either one of the two layers. Even in such a single heterojunction, the luminous efficiency can be further increased.
  • the gallium nitride buffer layer may be made of non-doped GaN, n-type or p-type doped GaN, and selected from the group consisting of AlN, InN, or GaN, AlN, and InN having a close lattice constant. It may be mixed with one or more kinds of crystals.
  • the light emitting functional layer 14 may be composed of a plurality of material systems selected from gallium nitride (GaN) -based materials, zinc oxide (ZnO) -based materials, and aluminum nitride (AlN) -based materials.
  • GaN gallium nitride
  • ZnO zinc oxide
  • AlN aluminum nitride
  • a p-type gallium nitride layer and an n-type zinc oxide layer may be grown on the polycrystalline gallium nitride free-standing substrate 12, and the stacking order of the p-type gallium nitride layer and the n-type zinc oxide layer may be reversed.
  • an n-type or p-type zinc oxide layer may be formed.
  • the p-type dopant used for the p-type zinc oxide layer include nitrogen (N), phosphorus (P), arsenic (As), carbon (C), lithium (Li), sodium (Na), potassium ( K), one or more selected from the group consisting of silver (Ag) and copper (Cu).
  • n-type dopant used for the n-type zinc oxide layer include aluminum (Al), gallium (Ga), indium (In), boron (B), fluorine (F), chlorine (Cl), One or more selected from the group consisting of bromine (Br), iodine (I), and silicon (Si) may be mentioned.
  • the film formation method of the light emitting functional layer 14 and the buffer layer is not particularly limited as long as it is a method of growing substantially following the crystal orientation of the polycrystalline gallium nitride free-standing substrate, but a vapor phase method such as MOCVD, MBE, HVPE, sputtering, Preferred examples include a liquid phase method such as a Na flux method, an ammonothermal method, a hydrothermal method, and a sol-gel method, a powder method using solid phase growth of powder, and a combination thereof.
  • a vapor phase method such as MOCVD, MBE, HVPE, sputtering
  • Preferred examples include a liquid phase method such as a Na flux method, an ammonothermal method, a hydrothermal method, and a sol-gel method, a powder method using solid phase growth of powder, and a combination thereof.
  • a gas for example, ammonia
  • an organometallic gas for example, trimethyl gallium
  • gallium (Ga) and nitrogen (N) On the substrate as a raw material and grown in a temperature range of about 300 to 1200 ° C. in an atmosphere containing hydrogen, nitrogen, or both.
  • organometallic gases containing indium (In), aluminum (Al), silicon (Si) and magnesium (Mg) as n-type and p-type dopants for example, trimethylindium, trimethylaluminum, monosilane, disilane) Bis-cyclopentadienylmagnesium
  • n-type and p-type dopants for example, trimethylindium, trimethylaluminum, monosilane, disilane
  • Bis-cyclopentadienylmagnesium may be appropriately introduced to form a film.
  • a seed crystal layer may be formed on the polycrystalline gallium nitride free-standing substrate.
  • any method may be used as long as it promotes crystal growth substantially following the crystal orientation.
  • a zinc oxide-based material is used for a part or all of the light emitting functional layer 14
  • an ultrathin zinc oxide seed crystal is prepared by vapor phase growth methods such as MOCVD, MBE, HVPE, and sputtering. May be.
  • the electrode layer 16 and / or the phosphor layer may be further provided on the light emitting functional layer 14.
  • the electrode is also formed on the back surface of the polycrystalline gallium nitride free-standing substrate 12 as shown in FIG.
  • the layer 18 can be provided, the polycrystalline gallium nitride free-standing substrate 12 may be used as the electrode itself, and in that case, it is preferable that an n-type dopant is added to the polycrystalline gallium nitride free-standing substrate 12. .
  • the electrode layers 16 and 18 may be made of a known electrode material.
  • the electrode layer 16 on the light emitting functional layer 14 is a transparent conductive film such as ITO, or a metal electrode having a high aperture ratio such as a lattice structure, This is preferable in that the extraction efficiency of light generated in the light emitting functional layer 14 can be increased.
  • a phosphor layer for converting ultraviolet light into visible light may be provided outside the electrode layer.
  • the phosphor layer is not particularly limited as long as it includes a known fluorescent component capable of converting ultraviolet light into visible light.
  • a fluorescent component that emits blue light when excited by ultraviolet light, a fluorescent component that emits blue to green light when excited by ultraviolet light, and a fluorescent component that emits red light when excited by ultraviolet light are mixed. It is preferable that the white color is obtained as a mixed color.
  • Preferred combinations of such fluorescent components include (Ca, Sr) 5 (PO 4 ) 3 Cl: Eu, BaMgAl 10 O 17 : Eu, and Mn, Y 2 O 3 S: Eu, and these components Is preferably dispersed in a resin such as a silicone resin to form a phosphor layer.
  • a fluorescent component is not limited to the above-exemplified substances, but may be a combination of other ultraviolet light-excited phosphors such as yttrium aluminum garnet (YAG), silicate phosphors, and oxynitride phosphors. .
  • a phosphor layer for converting blue light into yellow light may be provided outside the electrode layer.
  • the phosphor layer is not particularly limited as long as it includes a known fluorescent component capable of converting blue light into yellow light. For example, it may be combined with a phosphor emitting yellow light such as YAG. By doing in this way, since blue light emission which permeate
  • the phosphor layer includes both a fluorescent component that converts blue light into yellow and a fluorescent component that converts ultraviolet light into visible light, thereby converting ultraviolet light into visible light and blue light yellow. It is good also as a structure which performs both conversion to light.
  • the polycrystalline gallium nitride free-standing substrate of the present invention can be preferably used for various applications such as various electronic devices, power devices, light receiving elements, solar cell wafers as well as the above-described light emitting elements.
  • Example A1 Ge-doped polycrystalline gallium nitride free-standing substrate (1) Production of c-plane oriented alumina sintered body As a raw material, a plate-like alumina powder (manufactured by Kinsei Matech Co., Ltd., grade 0700) was prepared.
  • the slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 20 ⁇ m.
  • the obtained tape was cut into a circular shape having a diameter of 50.8 mm (2 inches), 150 sheets were laminated, placed on an Al plate having a thickness of 10 mm, and then vacuum-packed. This vacuum pack was hydrostatically pressed in warm water at 85 ° C. at a pressure of 100 kgf / cm 2 to obtain a disk-shaped molded body.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. for 10 hours.
  • the obtained degreased body was fired in a nitrogen atmosphere at 1600 ° C. for 4 hours under a surface pressure of 200 kgf / cm 2 using a graphite mold.
  • the obtained sintered body was placed on a graphite setter and fired again by hot isostatic pressing (HIP) in argon at 1700 ° C. for 2 hours under a gas pressure of 1500 kgf / cm 2 .
  • HIP hot isostatic pressing
  • the sintered body thus obtained was fixed to a ceramic surface plate and ground to # 2000 using a grindstone to flatten the plate surface.
  • the surface of the plate was smoothed by lapping using diamond abrasive grains, and an oriented alumina sintered body having a diameter of 50.8 mm (2 inches) and a thickness of 1 m was obtained as an oriented alumina substrate.
  • the flatness was improved while gradually reducing the size of the abrasive grains from 3 ⁇ m to 0.5 ⁇ m.
  • the average roughness Ra after processing was 4 nm.
  • a seed crystal layer was formed on the processed oriented alumina substrate by MOCVD. Specifically, after depositing a low-temperature GaN layer of 40 nm at 530 ° C., a GaN film having a thickness of 3 ⁇ m was laminated at 1050 ° C. to obtain a seed crystal substrate.
  • the alumina crucible was placed on a table that can rotate the crystal growth furnace.
  • the gallium nitride crystal was grown with stirring by rotating the solution while maintaining the temperature for 30 hours after heating and pressurizing to 870 ° C. and 4.0 MPa in a nitrogen atmosphere. After completion of the crystal growth, it was gradually cooled to room temperature over 3 hours, and the growth vessel was taken out of the crystal growth furnace.
  • the melt composition remaining in the crucible was removed using ethanol, and the sample on which the gallium nitride crystal was grown was collected. In the obtained sample, a Ge-doped gallium nitride crystal was grown on the entire surface of a 50.8 mm (2 inch) seed crystal substrate, and the thickness of the crystal was about 0.3 mm. Cracks were not confirmed.
  • the oriented alumina substrate portion of the sample thus obtained was removed by grinding with a grindstone to obtain a Ge-doped gallium nitride simple substance.
  • the plate surface of the Ge-doped gallium nitride crystal was polished to flatten the plate surface. Furthermore, the surface of the plate was smoothed using lapping and CMP to obtain a Ge-doped polycrystalline gallium nitride free-standing substrate having a thickness of about 130 ⁇ m.
  • the average roughness Ra after processing of the surface of the polycrystalline gallium nitride free-standing substrate was 0.2 nm.
  • an n-type semiconductor was formed by doping germanium.
  • different elements may be doped or non-doped depending on the application and structure.
  • the cross-sectional average diameter of the GaN single crystal particles on the front and back surfaces of the polycrystalline gallium nitride free-standing substrate using the above method, the cross-sectional average diameter of the front surface is about 76 ⁇ m, and the cross-sectional average diameter of the back surface is about 51 ⁇ m. there were.
  • Sectional average diameter in this way it is larger than the back side of the surface the ratio D T / D B sectional average diameter D T of the substrate surface to its section average diameter D B of the substrate back surface was about 1.5.
  • the aspect ratio T / DT of the GaN single crystal particles calculated as the ratio of the thickness T of the GaN crystal to the average cross-sectional diameter DT of the surface was about 1.7.
  • the interface can be clearly discriminated by the scanning microscope image of the surface.
  • the above evaluation may be performed after performing a process for making the interface stand out by thermal etching or chemical etching. Moreover, you may perform said evaluation using the crystal grain mapping image of the EBSD measurement mentioned later.
  • FIG. 2 shows the reverse pole figure orientation mapping obtained. Moreover, the frequency of the inclination angle from the c-axis direction of the outermost surface constituent particles calculated from the reverse pole figure orientation mapping is shown in FIG. Note that the reverse pole figure orientation mapping is obtained by performing image cleanup by the Grain Dilation method using the analysis software OIM Analysis. Further, the frequency of the inclination angle was calculated after cleanup.
  • the conditions for cleanup are as follows. ⁇ Cleanup conditions for EBSD analysis> ⁇ Grain tolerance angle: 5 ° ⁇ Minimum Grain Size: 2 pixels
  • Each particle constituting the gallium nitride crystal was generally oriented in the normal direction on the c-plane.
  • the average inclination angle of the particles constituting the outermost surface was 5.0 °, which was a distribution state similar to a Gaussian distribution, and the frequency of particles inclined to 1 to 10 ° was 85%.
  • defect density evaluation by CL measurement By counting the number of dislocations appearing on the substrate surface by counting the points that appear darker than the surroundings (dark spots) by the cathodoluminescence (CL) method on the plate surface of the polycrystalline gallium nitride free-standing substrate. The defect density of the gallium free-standing substrate was calculated.
  • the defect density is measured by the CL method using a SEM (Hitachi High-Technologies, S-3400 NType E) equipped with a cathodoluminescence observation detector (manufactured by Gatan, MiniCL) under the condition of an acceleration voltage of 15 kV. I went there.
  • the defect density was about 0 / cm 2 .
  • Example A2 Preparation of Ge-doped polycrystalline gallium nitride free-standing substrate (1) Preparation of c-plane oriented alumina sintered body As raw materials, plate-like alumina powder (Kinsei Matec Co., Ltd., grade 02025) and fine alumina powder (Daimei Chemical Industry) Grade TM-DAR) was prepared, and 50 parts by weight of plate-like alumina powder and 50 parts by weight of fine alumina powder were mixed to obtain an alumina raw material.
  • plate-like alumina powder Karlinsei Matec Co., Ltd., grade 02025
  • fine alumina powder Daimei Chemical Industry
  • the slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 ⁇ m.
  • the obtained tape was cut into a circular shape having a diameter of 50.8 mm (2 inches), then laminated in 30 sheets, placed on an Al plate having a thickness of 10 mm, and then vacuum-packed.
  • This vacuum pack was hydrostatically pressed in warm water at 85 ° C. at a pressure of 100 kgf / cm 2 to obtain a disk-shaped molded body.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. for 10 hours.
  • the obtained degreased body was fired in a nitrogen atmosphere at 1700 ° C. for 4 hours under a surface pressure of 200 kgf / cm 2 using a graphite mold.
  • the sintered body thus obtained was fixed to a ceramic surface plate and ground to # 2000 using a grindstone to flatten the plate surface.
  • the surface of the plate was smoothed by lapping using diamond abrasive grains, and an oriented alumina sintered body having a diameter of 50.8 mm (2 inches) and a thickness of 1 m was obtained as an oriented alumina substrate.
  • the flatness was improved while gradually reducing the size of the abrasive grains from 3 ⁇ m to 0.5 ⁇ m.
  • the average roughness Ra after processing was 4 nm.
  • the oriented alumina substrate portion of the sample thus obtained was removed by grinding with a grindstone to obtain a Ge-doped gallium nitride simple substance.
  • the plate surface of the Ge-doped gallium nitride crystal was polished to flatten the plate surface. Further, the surface of the plate was smoothed by using lapping and CMP to obtain a Ge-doped polycrystalline gallium nitride free-standing substrate having a thickness of about 60 ⁇ m.
  • the average roughness Ra after processing of the surface of the polycrystalline gallium nitride free-standing substrate was 0.5 nm. *
  • the cross-sectional average diameter of the GaN single crystal particles on the front and back surfaces of the polycrystalline gallium nitride free-standing substrate using the same method as in Example A1
  • the cross-sectional average diameter of the front surface is about 20 ⁇ m
  • the cross-sectional average diameter of the back surface is about 9 ⁇ m. there were.
  • Sectional average diameter in this way it is larger than the back side of the surface the ratio D T / D B sectional average diameter D T of the substrate surface to its section average diameter D B of the substrate back surface was about 2.2.
  • the aspect ratio T / DT of the GaN single crystal particles calculated as the ratio of the thickness T of the GaN crystal to the average cross-sectional diameter DT of the surface was about 3.
  • the c-plane of each particle constituting the gallium nitride crystal was generally oriented in the normal direction, but the average inclination of the particles constituting the outermost surface The angle was 8.4 °, and the frequency of particles tilted 1-10 ° was 80%.
  • the defect density was 6 ⁇ 10 1 pieces / cm 2 .
  • Example A3 (Comparison): Production of Ge-doped polycrystalline gallium nitride free-standing substrate (1) Production of c-plane oriented alumina sintered body Fine alumina powder (grade TM-DAR, manufactured by Daimei Chemical Co., Ltd.) 99.8 parts by weight, 0.2 parts by weight of yttria powder (manufactured by Shin-Etsu Chemical Co., Ltd., grade UU) was mixed, added to 100 g of the mixed powder at a rate of 50 cc of water as a solvent, mixed and ground in a ball mill for 40 hours, and slurried. .
  • Fine alumina powder grade TM-DAR, manufactured by Daimei Chemical Co., Ltd.
  • yttria powder manufactured by Shin-Etsu Chemical Co., Ltd., grade UU
  • the obtained slurry was poured into a gypsum mold having an inner diameter of 50 mm and placed in a 12 T magnetic field for 3 hours for casting.
  • the molded body was demolded from gypsum, dried at room temperature, and then fired using a graphite mold in a hot press at 1400 ° C. for 4 hours under a surface pressure of 200 kgf / cm 2 .
  • the sintered body thus obtained was fixed to a ceramic surface plate and ground to # 2000 using a grindstone to flatten the plate surface.
  • the surface of the plate was smoothed by lapping using diamond abrasive grains, and an oriented alumina sintered body having a diameter of 50.8 mm (2 inches) and a thickness of 1 m was obtained as an oriented alumina substrate.
  • the flatness was improved while gradually reducing the size of the abrasive grains from 3 ⁇ m to 0.5 ⁇ m.
  • the average roughness Ra after processing was 4 nm.
  • the oriented alumina substrate portion of the sample thus obtained was removed by grinding with a grindstone to obtain a Ge-doped gallium nitride simple substance.
  • the plate surface of the Ge-doped gallium nitride crystal was polished to flatten the plate surface. Furthermore, the surface of the plate was smoothed using lapping and CMP to obtain a Ge-doped polycrystalline gallium nitride free-standing substrate having a thickness of about 70 ⁇ m.
  • the average roughness Ra after processing of the surface of the polycrystalline gallium nitride free-standing substrate was 0.5 nm. *
  • the cross-sectional average diameter of the GaN single crystal particles on the front and back surfaces of the polycrystalline gallium nitride free-standing substrate using the same method as Example A1
  • the cross-sectional average diameter of the front surface is about 9 ⁇ m
  • the cross-sectional average diameter of the back surface is about 8 ⁇ m.
  • the ratio D T / D B of the cross-sectional average diameter D T on the substrate surface to the cross-sectional average diameter D B on the back surface of the substrate was about 1.1.
  • the aspect ratio T / DT of the GaN single crystal particles calculated as the ratio of the thickness T of the GaN crystal to the average cross-sectional diameter DT of the surface was about 7.8.
  • the c-plane of each particle constituting the gallium nitride crystal is generally oriented in the normal direction, and the average inclination angle of the particles constituting the outermost surface was 0.8 °, and the frequency of particles inclined from 1 to 10 ° was 74%.
  • the defect density was 2 ⁇ 10 6 pieces / cm 2 .
  • Example B1 Light-emitting device using Ge-doped polycrystalline gallium nitride free-standing substrate (1) Production of light-emitting device An n-type layer was formed on each Ge-doped polycrystalline gallium nitride free-standing substrate produced in Examples A1 to A3 using MOCVD. As a result, an n-GaN layer doped to have a Si atom concentration of 5 ⁇ 10 18 / cm 3 at 1050 ° C. was deposited by 1 ⁇ m. Next, a multiple quantum well layer was deposited at 750 ° C. as a light emitting layer. Specifically, five 2.5 nm well layers made of InGaN and six 10 nm barrier layers made of GaN were alternately stacked.
  • a Ti / Al / Ni / Au film as a cathode electrode is formed on the surface of the polycrystalline gallium nitride free-standing substrate opposite to the n-GaN layer and the p-GaN layer. Patterning was performed with thicknesses of 15 nm, 70 nm, 12 nm, and 60 nm, respectively. Thereafter, a heat treatment at 700 ° C. in a nitrogen atmosphere was performed for 30 seconds in order to improve the ohmic contact characteristics.
  • a Ni / Au film was patterned on the p-type layer as a light-transmitting anode electrode to a thickness of 6 nm and 12 nm, respectively. Thereafter, a heat treatment at 500 ° C. was performed for 30 seconds in a nitrogen atmosphere in order to improve the ohmic contact characteristics. Further, by using a photolithography process and a vacuum deposition method, a Ni / Au film serving as an anode electrode pad is formed to a thickness of 5 nm and 60 nm on a partial region of the upper surface of the Ni / Au film serving as a light-transmitting anode electrode, respectively. Patterned. The wafer thus obtained was cut into chips and further mounted on a lead frame to obtain a light emitting device having a vertical structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

 略法線方向で特定結晶方位に配向した複数の窒化ガリウム系単結晶粒子で構成される多結晶窒化ガリウム自立基板が提供される。この自立基板は、基板表面の電子線後方散乱回折法(EBSD)の逆極点図マッピングによって測定した各窒化ガリウム系単結晶粒子の結晶方位が特定結晶方位から様々な角度で傾斜して分布し、その平均傾斜角が1~10°である。また、本発明の発光素子は、上記自立基板と、基板上に形成され、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一以上有する発光機能層とを備える。本発明によれば、基板表面の欠陥密度を低減可能な多結晶窒化ガリウム自立基板を提供することができる。また、本発明の多結晶窒化ガリウム自立基板を用いて高い発光効率が得られる発光素子を提供することもできる。

Description

多結晶窒化ガリウム自立基板及びそれを用いた発光素子
 本発明は、多結晶窒化ガリウム自立基板及びそれを用いた発光素子に関する。
 単結晶基板を用いた発光ダイオード(LED)等の発光素子として、サファイア(α-アルミナ単結晶)上に各種窒化ガリウム(GaN)層を形成したものが知られている。例えば、サファイア基板上に、n型GaN層、InGaN層からなる量子井戸層とGaN層からなる障壁層とが交互積層された多重量子井戸層(MQW)、及びp型GaN層が順に積層形成された構造を有するものが量産化されている。また、このような用途に適した積層基板も提案されている。例えば、特許文献1(特開2012-184144号公報)には、サファイア下地基板と、該基板上に結晶成長せしめて形成された窒化ガリウム結晶層とを含む、窒化ガリウム結晶積層基板が提案されている。
 もっとも、サファイア基板上にGaN層を形成する場合、GaN層は異種基板であるサファイアとの間で格子定数及び熱膨張率が一致しないため転位を生じやすい。また、サファイアは絶縁性材料であるため、その表面に電極を形成することができず、それ故、素子の表裏に電極を備えた縦型構造の発光素子を構成できない。そこで、窒化ガリウム(GaN)単結晶上に各種GaN層を形成したLEDが注目されている。GaN単結晶基板であれば、GaN層と同種の材質であることから、格子定数及び熱膨張率が整合しやすく、サファイア基板を用いる場合よりも性能向上が期待できる。例えば、特許文献2(特開2010-132556号公報)には、厚みが200μm以上の自立したn型窒化ガリウム単結晶基板が開示されている。
特開2012-184144号公報 特開2010-132556号公報
 しかしながら、単結晶基板は一般的に面積が小さく且つ高価なものである。特に、大面積基板を用いたLED製造の低コスト化が求められてきているが、大面積の単結晶基板を量産することは容易なことではなく、その製造コストはさらに高くなる。そこで、窒化ガリウム等の単結晶基板の代替材料となりうる安価な材料が望まれる。かかる要求を満たす多結晶窒化ガリウム自立基板の作製に本発明者らは先だって成功しているが(このことは公知ではなく従来技術を構成するものではない)、多結晶窒化ガリウム自立基板の結晶性の更なる改善が望まれる。
 本発明者らは、今般、多結晶窒化ガリウム自立基板の構成粒子を略法線方向で特定結晶方位に配向させ、なおかつ、それら構成粒子の配向方位を所定範囲内の平均傾斜角で傾斜させることにより、基板表面の欠陥密度を低減できるとの知見を得た。また、そのような多結晶窒化ガリウム自立基板を用いて発光素子を構成することにより、構成粒子の配向方位が傾斜していない多結晶窒化ガリウム自立基板を用いた発光素子と比較して高い発光効率が得られるとの知見も得た。
 したがって、本発明の目的は、基板表面の欠陥密度を低減可能な多結晶窒化ガリウム自立基板を提供することにある。また、本発明の他の目的は、多結晶窒化ガリウム自立基板を用いて高い発光効率が得られる発光素子を提供することにある。
 本発明の一態様によれば、略法線方向で特定結晶方位に配向した複数の窒化ガリウム系単結晶粒子で構成される多結晶窒化ガリウム自立基板であって、基板表面の電子線後方散乱回折法(EBSD)の逆極点図マッピングによって測定した各窒化ガリウム系単結晶粒子の結晶方位が特定結晶方位から様々な角度で傾斜して分布し、その平均傾斜角が1~10°である、多結晶窒化ガリウム自立基板が提供される。
 本発明の他の一態様によれば、本発明の上記態様による多結晶窒化ガリウム自立基板と、
 該基板上に形成され、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一以上有する発光機能層と、
を備えた、発光素子が提供される。
本発明の多結晶窒化ガリウム自立基板を用いて作製された縦型発光素子の一例を示す模式断面図である。 例A1において測定された多結晶窒化ガリウム自立基板の板面の逆極点図方位マッピングである。 例A1において逆極点図方位マッピングから算出した、最表面構成粒子のc軸方向からの傾斜角の頻度を示すグラフである。
 多結晶窒化ガリウム自立基板
 本発明の窒化ガリウム基板は自立基板の形態を有しうる。本発明において「自立基板」とは、取り扱う際に自重で変形又は破損せず、固形物として取り扱うことのできる基板を意味する。本発明の多結晶窒化ガリウム自立基板は発光素子等の各種半導体デバイスの基板として使用可能であるが、それ以外にも、電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として使用可能なものである。なお、以下の説明においては、主たる用途の一つである発光素子を例に本発明の利点を記述することがあるが、同様ないし類似の利点は技術的整合性を損なわない範囲内で他の半導体デバイスにも当てはまる。
 本発明の多結晶窒化ガリウム自立基板は、略法線方向で特定結晶方位に配向した複数の窒化ガリウム系単結晶粒子で構成される。そして、この多結晶窒化ガリウム自立基板は、基板表面(板面)の電子線後方散乱回折法(EBSD)の逆極点図マッピングによって測定した各窒化ガリウム系単結晶粒子の結晶方位が特定結晶方位(例えばc軸、a軸等の方位)から様々な角度で傾斜して分布し、その平均傾斜角が1~10°である。なお、EBSDは、結晶性材料に電子線を照射すると、試料表面で生じる電子線後方散乱回折により菊池線回折図形、すなわちEBSDパターンが観測され、試料の結晶系や結晶方位に関する情報を得る公知の手法であり、走査電子顕微鏡(SEM)と組み合わせて、電子線を走査しながらEBSDパターンを測定及び解析することで、微小領域の結晶系や結晶方位の分布に関する情報が得られるものである。そして、上記のように、多結晶窒化ガリウム自立基板の構成粒子を略法線方向で特定結晶方位に配向させ、なおかつ、それら構成粒子の配向方位を所定範囲内の平均傾斜角で傾斜させることにより、基板表面の欠陥密度を低減することができる。欠陥密度を低減する理由は定かではないが、窒化ガリウム系単結晶粒子の配向方位が若干傾斜していることにより、製造時に使用される下地基板(典型的には配向多結晶焼結体)との格子不整合で生じた欠陥同士が会合し、粒子内で消失し易いためではないかと推定される。また、配向方位が若干傾斜していることで欠陥も法線方向より傾斜して進展し、粒界部で消失するとも考えられる。
 その上、そのような構成粒子の配向方位が傾斜した多結晶窒化ガリウム自立基板を用いて発光素子を構成することにより、構成粒子の配向方位が傾斜していない多結晶窒化ガリウム自立基板を用いた発光素子と比較して高い発光効率を得ることができる。高い発光効率を得られる理由は定かではないが、上述のとおり基板の欠陥密度が低いため、その上に成長させた発光機能層も欠陥密度が低くなり、その結果、高い発光効率を得られるのではないかと推定される。また、基板上に形成する発光機能層も配向方位が傾斜した構造となるため、光取り出し効率が高まるのではないかとも推定される。
 多結晶窒化ガリウム自立基板を構成する複数の窒化ガリウム系単結晶粒子は、略法線方向で特定結晶方位に配向してなる。特定結晶方位は、窒化ガリウムの有しうるいかなる結晶方位(例えばc面、a面等)であってもよい。例えば、複数の窒化ガリウム系単結晶粒子が略法線方向でc面に配向している場合、基板表面の各構成粒子はc軸を略法線方向に向けて(すなわちc面を基板表面に露出させて)配置されることとなる。そして、多結晶窒化ガリウム自立基板を構成する複数の窒化ガリウム系単結晶粒子は略法線方向で特定結晶方位に配向しつつも、個々の構成粒子は様々な角度で若干傾斜してなる。つまり、基板表面は全体として略法線方向に所定の特定結晶方位への配向を呈するが、各窒化ガリウム系単結晶粒子の結晶方位は特定結晶方位から様々な角度で傾斜して分布してなる。この特有の配向状態は、前述のとおり、基板表面(板面)のEBSDの逆極点図マッピング(例えば図2を参照)によって評価することができる。すなわち、基板表面のEBSDの逆極点図マッピングによって測定した各窒化ガリウム系単結晶粒子の結晶方位が特定結晶方位から様々な角度で傾斜して分布してなり、その傾斜角の平均値(平均傾斜角)は1~10°であり、好ましくは1~8°、より好ましくは1~5°である。また、EBSDの逆極点図マッピングによって測定される窒化ガリウム系単結晶粒子の80%以上が1~10°の範囲内の傾斜角を有するのが好ましく、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは99%以上が上記範囲内の傾斜角を有する。上記のような傾斜角分布であると欠陥密度が有意に低減される。また、窒化ガリウム系単結晶粒子の傾斜角はガウス分布(正規分布とも称される)に従って分布してなるのが好ましく、それにより欠陥密度が有意に低減される。
 多結晶窒化ガリウム自立基板は、上述したように構成粒子が傾斜していることで、欠陥密度が低減されてなるのが好ましい。例えば、多結晶窒化ガリウム自立基板は、好ましくは1×10個/cm以下、より好ましくは1×10個/cm以下、さらに好ましくは1×10個/cm以下、特に好ましくは1×10個/cm以下の欠陥密度を有し、最も好ましくは欠陥を実質的に含まない(すなわち約0個/cm)。欠陥密度は、カソードルミネッセンス(CL)法にて発光が微弱のため周囲より暗く見える点(ダークスポット)を基板表面に現れた転位として計数することにより算出することができる。CL法は、試料に電子線を照射した際に放出される光を検出する公知の手法であり、SEM像で位置の確認を行いながら、任意の場所の状態分析を行うことができる。CL法による測定は、例えば、カソードルミネッセンス観察検出器を取り付けたSEM(走査型電子顕微鏡)を使用して行うことができる。
 多結晶窒化ガリウム自立基板は、略法線方向に単結晶構造を有するのが好ましい。この場合、多結晶窒化ガリウム自立基板は、略法線方向に単結晶構造を有する複数の窒化ガリウム系単結晶粒子で構成される板からなるということができる。すなわち、多結晶窒化ガリウム自立基板は、水平面方向に二次元的に連結されてなる複数の半導体単結晶粒子で構成されており、それ故、略法線方向には単結晶構造を有しうる。したがって、多結晶窒化ガリウム自立基板は、全体としては単結晶ではないものの、局所的なドメイン単位では単結晶構造を有する。このような構成とすることで、発光機能や太陽電池等のデバイスを作製した場合に十分な特性を得ることができる。この理由は定かではないが、多結晶窒化ガリウム基板の透光性や光の取り出し効率による効果と考えられる。また、p型ないしn型ドーパントの導入により導電性を持たせた窒化ガリウムを基板とすることで、縦型構造の発光素子を実現することができ、それにより輝度を高めることができる。その上、面発光照明等に用いられる大面積な面発光素子も低コストで実現可能となる。特に、本態様の多結晶窒化ガリウム自立基板を用いて縦型LED構造を作製する場合、自立基板を構成する複数の窒化ガリウム系単結晶粒子が略法線方向に単結晶構造を有するため、電流パス中に高抵抗な粒界が存在しなくなり、その結果、好ましい発光効率が見込まれる。この点、法線方向にも粒界が存在する配向多結晶基板の場合には、縦型構造としても電流パス上に高抵抗な粒界が存在するため、発光効率が低くなるおそれがある。これらの観点から、本態様の多結晶窒化ガリウム自立基板は縦型LED構造にも好ましく用いることができる。また、電流パス中に粒界が存在しないことから、このような発光デバイスだけでなく、パワーデバイスや太陽電池等にも適用できる。
 好ましくは、自立基板を構成する複数の窒化ガリウム系単結晶粒子は、略法線方向に概ね揃った結晶方位を有する。「略法線方向に概ね揃った結晶方位」とは、必ずしも法線方向に完全に揃った結晶方位とは限らず、自立基板を用いた発光素子等のデバイスが所望のデバイス特性を確保できるかぎり、法線ないしそれに類する方向にある程度揃った結晶方位であってよいことを意味する。製法由来の表現をすれば、窒化ガリウム系単結晶粒子は、多結晶窒化ガリウム自立基板の製造の際時に下地基材として使用した配向多結晶焼結体の結晶方位に概ね倣って成長した構造を有するともいえる。「配向多結晶焼結体の結晶方位に概ね倣って成長した構造」とは、配向多結晶焼結体の結晶方位の影響を受けた結晶成長によりもたらされた構造を意味し、必ずしも配向多結晶焼結体の結晶方位に完全に倣って成長した構造であるとは限らず、自立基板を用いた発光素子等のデバイスが所望のデバイス特性を確保できるかぎり、配向多結晶焼結体の結晶方位にある程度倣って成長した構造であってよい。すなわち、この構造は配向多結晶焼結体と異なる結晶方位に成長する構造も含む。その意味で、「結晶方位に概ね倣って成長した構造」との表現は「結晶方位に概ね由来して成長した構造」と言い換えることもでき、この言い換え及び上記意味は本明細書中の同種の表現に同様に当てはまる。したがって、そのような結晶成長はエピタキシャル成長によるものが好ましいが、これに限定されず、それに類する様々な結晶成長の形態であってもよい。いずれにしても、このように成長することで、多結晶窒化ガリウム自立基板は略法線方向に関しては結晶方位が概ね揃った構造とすることができる。
 なお、多結晶窒化ガリウム自立基板の基板表面(板面)と直行する断面の電子線後方散乱回折法(EBSD)の逆極点図マッピングを測定した場合においても、自立基板を構成する窒化ガリウム系単結晶粒子の結晶方位は略法線方向で特定結晶方位に配向していることが確認できる。しかし、基板法線方向と直行する板面方向では無配向である。即ち、窒化ガリウム系単結晶粒子は略法線方向にのみ結晶方位が配向した構造であり、略法線方向を軸とした窒化ガリウム系単結晶粒子のツイスト(結晶軸の回転)分布はランダムである。このような構造とすることで、多結晶窒化ガリウム自立基板を用いて発光機能や太陽電池等のデバイスを作製した場合に十分な特性を得ることができる。この理由は定かではないが、多結晶窒化ガリウム基板表面の欠陥密度が低減する効果や光の取り出し効率による効果と考えられる。ツイスト分布がランダムなことで欠陥密度が低減する理由は定かではないが、法線方向より傾斜して進展した欠陥が粒界部で消失するためと考えられる。言い換えると、窒化ガリウム系単結晶粒子の水平方向の窒化ガリウム系単結晶粒子のツイスト分布が揃っている場合は、欠陥が粒界部で消失せず進展するため、基板表面の欠陥密度が高くなると考えられる。
 したがって、上記態様による多結晶窒化ガリウム自立基板は、法線方向に見た場合に単結晶と観察され、水平面方向の切断面で見た場合に粒界が観察される柱状構造の窒化ガリウム系単結晶粒子の集合体であると捉えることも可能である。ここで、「柱状構造」とは、典型的な縦長の柱形状のみを意味するのではなく、横長の形状、台形の形状、及び台形を逆さにしたような形状等、種々の形状を包含する意味として定義される。もっとも、上述のとおり、多結晶窒化ガリウム自立基板は法線ないしそれに類する方向にある程度揃った結晶方位を有する構造であればよく、必ずしも厳密な意味で柱状構造である必要はない。柱状構造となる原因は、前述のとおり、多結晶窒化ガリウム自立基板の製造に用いられる配向多結晶焼結体の結晶方位の影響を受けて窒化ガリウム単結晶粒子が成長するためと考えられる。このため、柱状構造ともいえる窒化ガリウム単結晶粒子の断面の平均粒径(以下、断面平均径という)は成膜条件だけでなく、配向多結晶焼結体の板面の平均粒径にも依存するものと考えられる。多結晶窒化ガリウム自立基板を発光素子の発光機能層の一部として用いる場合、粒界があることにより断面方向の光の透過率が悪く、光が散乱ないし反射する。このため、法線方向に光を取り出す構造の発光素子の場合、粒界からの散乱光により輝度が高まる効果も期待される。
 上述したとおり、本発明の多結晶窒化ガリウム自立基板を用いて縦型LED構造とする場合、発光機能層が形成されることになる自立基板表面と、電極が形成されることになる自立基板裏面とは粒界を介さずに連通していることが好ましい。すなわち、多結晶窒化ガリウム自立基板の表面に露出している窒化ガリウム系単結晶粒子が、多結晶窒化ガリウム自立基板の裏面に粒界を介さずに連通してなるのが好ましい。粒界が存在すると通電時に抵抗をもたらすため、発光効率を低下させる要因となる。
 ところで、多結晶窒化ガリウム自立基板の表面に露出している窒化ガリウム系単結晶粒子の最表面における断面平均径Dは、多結晶窒化ガリウム自立基板の裏面に露出している窒化ガリウム系単結晶粒子の最表面における断面平均径Dと異なることが好ましい。こうすることで自立基板及びその構成粒子の結晶性が向上する。例えば、気相や液相を介したエピタキシャル成長を用いて窒化ガリウム結晶を成長させる場合、成膜条件にもよるが、法線方向だけでなく、水平方向にも成長が生じる。このとき、成長の起点となる粒子やその上に作製した種結晶の品質にばらつきがあると、個々の窒化ガリウム結晶の成長速度が異なり、高速成長する粒子が成長速度の遅い粒子を覆うようにして成長する場合がある。このような成長挙動をとる場合、基板裏面側よりも、基板表面側の粒子の方が大粒径化しやすくなる。この場合、成長が遅い結晶は成長が途中で停止しており、ある一断面で観察すると法線方向にも粒界が観測されうる。しかし、基板表面に露出した粒子は基板裏面と粒界を介さずに連通しており、電流を流す上での抵抗相はない。換言すれば、窒化ガリウム結晶を成膜後、基板表面側(製造時に下地基板である配向多結晶焼結体と接していた側と反対側)に露出した粒子は、粒界を介さずに裏面に連通している粒子が支配的になるため、縦型構造のLEDの発光効率を高める観点では基板表面側に発光機能層を作製することが好ましい。一方、基板裏面側(製造時に下地基板である配向多結晶焼結体と接していた側)は基板表面側と連通していない粒子も混在するため、基板裏面側に発光機能層を作製すると発光効率が低下するおそれがある。また、上述のとおり、このような成長挙動の場合は成長に伴って大粒径化するため、多結晶窒化ガリウム自立基板の表裏面は窒化ガリウム結晶の粒径が大きい方が基板表面側、小さい方が基板裏面側とも言い換えることができる。すなわち、多結晶窒化ガリウム自立基板において、縦型構造のLEDの発光効率を高める観点では、窒化ガリウム結晶の粒径が大きい側(基板表面側)に発光機能層を作製することが好ましい。なお、下地基板にc面等に配向した配向多結晶アルミナ焼結体を用いる場合、基板表面側(製造時に下地基板である配向多結晶アルミナ焼結体と接していた側と反対側)がガリウム面となり、基板裏面側(製造時に下地基板である配向多結晶アルミナ焼結体と接していた側)が窒素面となる。すなわち、多結晶窒化ガリウム自立基板のガリウム面は、粒界を介さずに裏面に連通している粒子が支配的となる。このため、縦型構造のLEDの発光効率を高める観点では、ガリウム面側(基板表面側)に発光機能層を作製することが好ましい。
 したがって、基板表面側の粒子が基板裏面側の粒子より大粒径化するような成長挙動をとる場合、すなわち基板表面に露出している窒化ガリウム系単結晶粒子の断面平均径が、基板裏面に露出している窒化ガリウム系単結晶粒子の断面平均径よりも大きいと、発光効率が高まるため好ましい(このことは、基板表面に露出している窒化ガリウム系単結晶粒子の個数が、基板裏面に露出している窒化ガリウム系単結晶粒子の個数よりも少ないことが好ましいと言い換えることもできる)。具体的には、多結晶窒化ガリウム自立基板の裏面に露出している窒化ガリウム系単結晶粒子の最表面における断面平均径(以下、基板裏面の断面平均径Dという)に対する、多結晶窒化ガリウム自立基板の表面に露出している窒化ガリウム系単結晶粒子の最表面における断面平均径(以下、基板表面の断面平均径Dという)の比D/Dが1.0よりも大きいのが好ましく、より好ましくは1.5以上、さらに好ましくは2.0以上、特に好ましくは3.0以上、最も好ましくは5.0以上である。ただし、上記比D/Dが高すぎると逆に発光効率が低下する場合があるため、20以下が好ましく、10以下がさらに好ましい。発光効率が変化する原因は定かではないが、上記比D/Dが高いと大粒径化によって発光に寄与しない粒界面積が減少すること、あるいは大粒径化することで結晶欠陥が低減するためと考えられる。結晶欠陥が減少する原因も定かではないが、欠陥を含む粒子は成長が遅く、欠陥が少ない粒子は高速成長するためではないかとも考えられる。一方、上記比D/Dが高すぎると、基板表面及び基板裏面間で連通する粒子(すなわち基板表面側に露出した粒子)は基板裏面側付近では断面径が小さくなる。この結果、十分な電流パスが得られず発光効率が低下する原因となり得るとも考えられるが、その詳細は定かではない。
 もっとも、多結晶窒化ガリウム自立基板を構成する柱状構造同士の界面は結晶性が低下するため、発光素子の発光機能層として用いる場合、発光効率が低下し、発光波長が変動し、発光波長がブロードになる可能性がある。このため、柱状構造の断面平均径は大きいほうが良い。好ましくは、多結晶窒化ガリウム自立基板の最表面における窒化ガリウム系単結晶粒子の断面平均径は0.3μm以上であり、より好ましくは3μm以上、さらに好ましくは10μm以上、さらにより好ましくは20μm以上、特に好ましくは50μm以上、特により好ましくは70μm以上、最も好ましくは100μm以上である。多結晶窒化ガリウム自立基板の最表面における窒化ガリウム系単結晶粒子の断面平均径の上限は特に限定されないが、1000μm以下が現実的であり、より現実的には500μm以下であり、さらに現実的には200μm以下である。また、このような断面平均径の窒化ガリウム系単結晶粒子を作製するには、多結晶窒化ガリウム自立基板の製造に用いられる、配向多結晶焼結体を構成する粒子の板面における焼結粒径を0.3μm~1000μmとするのが望ましく、より望ましくは3μm~1000μm、さらに望ましくは10μm~800μm、特に望ましくは14μm~500μmである。あるいは、多結晶窒化ガリウム自立基板の最表面における窒化ガリウム系単結晶粒子の断面平均径を自立基板の裏面の断面平均径よりも大きくすることを念頭に置く場合には、配向多結晶焼結体を構成する粒子の板面における焼結粒径を10μm~100μmとするのが望ましく、より望ましくは14μm~70μmである。
 多結晶窒化ガリウム自立基板を構成する窒化ガリウム系単結晶粒子は、ドーパントを含まないものであってもよい。ここで、「ドーパントを含まない」とは何らかの機能ないし特性の付与を意図して添加された元素を含まないことを意味し、不可避不純物の含有が許容されるのはいうまでもない。あるいは、多結晶窒化ガリウム自立基板を構成する窒化ガリウム系単結晶粒子は、n型ドーパント又はp型ドーパントでドープされていてもよく、この場合、多結晶窒化ガリウム自立基板を、p型電極、n型電極、p型層、n型層等の基材以外の部材又は層として使用することができる。p型ドーパントの好ましい例としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)及びカドミウム(Cd)からなる群から選択される1種以上が挙げられる。n型ドーパントの好ましい例としては、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)及び酸素(O)からなる群から選択される1種以上が挙げられる。
 多結晶窒化ガリウム自立基板を構成する窒化ガリウム系単結晶粒子は、バンドギャップの制御のため混晶化されていてもよい。好ましくは、窒化ガリウム単結晶粒子は、AlN及びInNからなる群から選択される1種以上の結晶と混晶化された窒化ガリウムからなるものであってもよく、p型窒化ガリウム及び/又はn型窒化ガリウム単結晶粒子はこの混晶化された窒化ガリウムにp型ドーパント又はn型ドーパントがドープされていてもよい。例えば、窒化ガリウムとAlNの混晶であるAlGa1-xNにMgをドーピングすることでp型基板、AlGa1-xNにSiをドーピングすることでとしてn型基板として使用することができる。自立基板を発光素子の発光機能層として用いる場合、窒化ガリウムをAlNと混晶化することでバンドギャップが広がり、発光波長を高エネルギー側にシフトさせることができる。また、窒化ガリウムをInNとの混晶としてもよく、これによりバンドギャップが狭まり、発光波長を低エネルギー側にシフトさせることができる。
 多結晶窒化ガリウム自立基板は直径50.8mm(2インチ)以上の大きさを有するのが好ましく、より好ましくは直径100mm(4インチ)以上であり、さらに好ましくは直径200mm(8インチ)以上である。多結晶窒化ガリウム自立基板は大きければ大きいほど作製可能な素子の個数が増えるため、製造コストの観点で好ましく、面発光素子用との観点でも素子面積の自由度が増え面発光照明等への用途が広がる点で好ましく、その面積ないし大きさに上限は規定されるべきではない。なお、多結晶窒化ガリウム自立基板は上面視で円形状あるいは実質的に円形状であることが好ましいが、これに限定されない。円形状あるいは実質的に円形状ではない場合、面積として、2026mm以上であることが好ましく、より好ましくは7850mm以上であり、さらに好ましくは31400mm以上である。もっとも、大面積を要しない用途については、上記範囲よりも小さい面積、例えば直径50.8mm(2インチ)以下、面積換算で2026mm以下としてもよい。多結晶窒化ガリウム自立基板の厚さは基板に自立性を付与できる必要があり、20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは300μm以上である。多結晶窒化ガリウム自立基板の厚さに上限は規定されるべきではないが、製造コストの観点では3000μm以下が現実的である。
 多結晶窒化ガリウム自立基板の表面に露出している窒化ガリウム系単結晶粒子の最表面における断面平均径Dに対する、多結晶窒化ガリウム自立基板の厚さTの比として規定されるアスペクト比T/Dが0.7以上であるのが好ましく、より好ましくは1.0以上であり、さらに好ましくは3.0以上である。このアスペクト比がLEDとする場合に発光効率を高める観点から好ましい。発光効率が高まる原因として、高アスペクト比粒子の方が窒化ガリウム中の欠陥密度が低いこと、及び光の取り出し効率が高まること等が考えられるが、その詳細は定かではない。
 これまでに述べたとおり、発光効率を高める観点では、(1)発光機能層は自立基板表面側(製造時に下地基板である配向多結晶焼結体に接していた側と反対側)に作製する方が良く、(2)自立基板裏面の断面平均径Dに対する基板表面の断面平均径Dの比D/Dが適度な値をとるのが良く、(3)自立基板を構成する粒子の基板最表面における断面平均径が大きい方が良く、(4)自立基板を構成する粒子のアスペクト比T/Dは大きい方が良い。上記(3)及び(4)の観点では断面平均径が大きく且つアスペクト比が大きい方が良く、言い換えると基板表面側の断面平均径が大きく且つ厚い窒化ガリウム結晶が好ましい。また、自立化の観点では多結晶窒化ガリウム自立基板の厚さは20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは300μm以上である。しかし、前述したとおり窒化ガリウム結晶の厚みが厚くなるとコスト的な観点では好ましくなく、自立する限り薄い方が好ましい。すなわち、多結晶窒化ガリウム自立基板の厚みとしては3000μm以下が現実的であり、600μm以下が好ましく、300μm以下が好ましい。したがって、自立化させ且つ発光効率を高める観点とコスト的な観点を両立する厚みとしては50~500μm程度が好ましく、50~300μm程度が更に好ましい。
 製造方法
 本発明の多結晶窒化ガリウム自立基板は、(1)配向多結晶焼結体を用意し、(2)配向多結晶焼結体上に、窒化ガリウムからなる種結晶層を、配向多結晶焼結体の結晶方位に概ね倣った結晶方位を有するように形成し、(3)種結晶層上に、厚さ20μm以上の窒化ガリウム系結晶から構成される層を、種結晶層の結晶方位に概ね倣った結晶方位を有するように形成し、(4)配向多結晶焼結体を除去して、多結晶窒化ガリウム自立基板を得ることにより製造することができる。
(1)配向多結晶焼結体
 多結晶窒化ガリウム自立基板を作製するための下地基板として、配向多結晶焼結体を用意する。配向多結晶焼結体の組成は特に限定されないが、配向多結晶アルミナ焼結体、配向多結晶酸化亜鉛焼結体、配向多結晶窒化アルミニウム焼結体から選ばれる1種であるのが好ましい。配向多結晶焼結体は、商業的に入手可能な板状粉末を用いて成形及び焼成を経て効率的に製造できるため、低コストで製造できるだけでなく、成形しやすいが故に大面積化にも適する。そして、配向多結晶焼結体を下地基板として用い、その上に複数の半導体単結晶粒子を成長させることで、大面積の発光素子を低コストで製造するのに適した多結晶窒化ガリウム自立基板を製造できる。その結果、多結晶窒化ガリウム自立基板は、大面積の発光素子を低コストで製造するのに極めて適するものとなる。
 配向多結晶焼結体は、多数の単結晶粒子を含んで構成される焼結体からなり、多数の単結晶粒子が一定の方向にある程度又は高度に配向したものである。このように配向された多結晶焼結体を用いることで略法線方向に概ね揃った結晶方位を有する多結晶窒化ガリウム自立基板を作製可能であり、多結晶窒化ガリウム自立基板上に窒化ガリウム系材料をエピタキシャル成長又はこれに類する結晶成長により形成した場合、略法線方向に結晶方位が概ね揃った状態が実現される。このため、そのような配向性の高い多結晶窒化ガリウム自立基板を発光素子用基板として用いれば、発光機能層を同様に略法線方向に結晶方位が概ね揃った状態で形成することができ、単結晶基板を用いた場合と同等の高い発光効率を実現できる。あるいは、この配向性の高い多結晶窒化ガリウム自立基板を発光素子の発光機能層として用いた場合であっても、単結晶基板を用いた場合と同等の高い発光効率を実現できる。いずれにしても、このような配向性が高い多結晶窒化ガリウム自立基板を作製するには配向多結晶焼結体を下地基板として用いる必要がある。配向多結晶焼結体は、透光性を有しているほうが好ましいが、この限りではない。透光性を有する場合、配向多結晶板を除去する際に、レーザーリフトオフ等の手法を用いることができる。配向多結晶焼結体を得る製法としては、大気炉、窒素雰囲気炉、水素雰囲気炉等を用いた通常の常圧焼結法に加え、熱間等方圧加圧法(HIP)、ホットプレス法(HP)、放電プラズマ焼結(SPS)等の加圧焼結法、及びこれらを組み合わせた方法を用いることができる。
 配向多結晶焼結体は直径50.8mm(2インチ)以上の大きさを有するのが好ましく、より好ましくは直径100mm(4インチ)以上であり、さらに好ましくは直径200mm(8インチ)以上である。配向多結晶焼結体は大きければ大きいほど作製可能な多結晶窒化ガリウム自立基板の面積が増え、それにより作製可能な発光素子の個数が増えるため、製造コストの観点で好ましい。また、面発光素子用との観点でも素子面積の自由度が増え面発光照明等への用途が広がる点で好ましく、その面積ないし大きさに上限は規定されるべきではない。なお、多結晶窒化ガリウム自立基板は上面視で円形状あるいは実質的に円形状であることが好ましいが、これに限定されない。円形状あるいは実質的に円形状ではない場合、面積として、2026mm以上であることが好ましく、より好ましくは7850mm以上であり、さらに好ましくは31400mm以上である。もっとも、大面積を要しない用途については、上記範囲よりも小さい面積、例えば例えば直径50.8mm(2インチ)以下、面積換算で2026mm以下としてもよい。配向多結晶焼結体の厚さは自立する限り特に限定はないが、厚すぎると製造コストの観点では好ましくない。従って、20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは100~1000μmである。一方、窒化ガリウムを成膜する際にアルミナと窒化ガリウムの熱膨張差に起因した応力によって基板全体に反りが生じ、その後のプロセスに支障を来す場合がある。応力は窒化ガリウムの成膜方法や成膜条件、配向多結晶焼結体の材質、膜厚、基板径等によって変化するが、応力による反りを抑制する方法の一つとして、下地基板として厚い配向多結晶焼結体を用いてもよい。例えば下地の配向多結晶焼結体として配向多結晶アルミナ焼結体を用いて、直径50.8mm(2インチ)、厚さ300μmの多結晶窒化ガリウム自立基板を作製する際に、配向多結晶アルミナ焼結体の厚みを900μm以上としてもよく、1300μm以上、あるいは2000μm以上としてもよい。このように製造コストの観点と反り抑制の観点などを勘案し、配向多結晶焼結体の厚みを適宜選定すればよい。
 配向多結晶焼結体を構成する粒子の板面における平均粒径は、0.3~1000μmであるのが好ましく、より好ましくは3~1000μm、さらに好ましくは10μm~200μm、特に好ましくは14μm~200μmである。あるいは、前述したように、多結晶窒化ガリウム自立基板の最表面における半導体単結晶粒子の断面平均径を自立基板の裏面の断面平均径よりも大きくすることを考慮する場合には、配向多結晶焼結体を構成する粒子の板面における焼結粒径を10μm~100μmとするのが好ましく、より好ましくは14μm~70μmである。配向多結晶焼結体全体の平均粒径は板面の平均粒径と相関があり、これらの範囲内であると焼結体の機械強度の点で優れ、ハンドリングが容易である。また、配向多結晶焼結体を用いて作製した多結晶窒化ガリウム自立基板の上部及び/又は内部に発光機能層を形成して発光素子を作製した場合、発光機能層の発光効率の点でも優れる。なお、本発明における焼結体粒子の板面における平均粒径は以下の方法により測定されるものである。すなわち、板状焼結体の板面を研磨し、走査電子顕微鏡にて画像を撮影する。視野範囲は、得られる画像の対角線に直線を引いた場合に、いずれの直線も10個から30個の粒子と交わるような直線が引けるような視野範囲とする。得られた画像の対角線に2本の直線を引いて、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値を板面の平均粒径とする。なお、板面の走査顕微鏡像で明瞭に焼結体粒子の界面を判別できない場合は、サーマルエッチング(例えば1550℃で45分間)やケミカルエッチングによって界面を際立たせる処理を施した後に上記の評価を行ってもよい。
 特に好ましい配向多結晶焼結体として、配向多結晶アルミナ焼結体が挙げられる。アルミナは酸化アルミニウム(Al)であり、典型的には単結晶サファイアと同じコランダム型構造を有するα-アルミナであり、配向多結晶アルミナ焼結体は無数のアルミナ結晶粒子が配向された状態で焼結により互いに結合されてなる固体である。アルミナ結晶粒子はアルミナを含んで構成される粒子であり、他の元素として、ドーパント及び不可避不純物を含んでいてもよいし、アルミナ及び不可避不純物からなるものであってもよい。配向多結晶アルミナ焼結体は焼結助剤としての添加物を粒界相として含んでいてもよい。また、配向多結晶アルミナ焼結体も、アルミナ結晶粒子以外に他の相又は上述したような他の元素を含んでいてもよいが、好ましくはアルミナ結晶粒子及び不可避不純物からなる。また、配向多結晶アルミナ焼結体の配向面は特に限定がなく、c面、a面、r面又はm面等であってもよい。
 配向多結晶アルミナ焼結体の配向結晶方位は特に限定されるものではなく、c面、a面、r面又はm面等であってもよく、多結晶窒化ガリウム自立基板との格子定数マッチングの観点でc面に配向しているのが好ましい。配向度については、例えば、板面における配向度が50%以上であるのが好ましく、より好ましくは65%以上、さらに好ましくは75%以上であり、特に好ましくは85%であり、特により好ましくは90%以上であり、最も好ましくは95%以上である。この配向度は、XRD装置(例えば、株式会社リガク製、RINT-TTR III)を用い、板状アルミナの板面に対してX線を照射したときのXRDプロファイルを測定し、以下の式により算出することにより得られるものである。
Figure JPOXMLDOC01-appb-M000001
 なお、前述のとおり、本発明の多結晶窒化ガリウム自立基板の構成粒子の結晶性は高くなる傾向があり、転位等の欠陥の密度を低く抑えることができる。このため、発光デバイス等のある種の用途においては、多結晶窒化ガリウム自立基板を窒化ガリウム単結晶基板に比べて好ましく用いることすら可能になるものと考えられる。例えば、エピタキシャル成長により多結晶窒化ガリウム自立基板上に機能層を作製する場合、機能層は下地の多結晶窒化ガリウム自立基板に概ね倣って成長し、柱状構造の集合体となる。エピタキシャル成長では下地の結晶品質を引き継ぐため、機能層を構成する柱状構造の各ドメイン単位では高い結晶品質を得ることができる。多結晶窒化ガリウム自立基板を構成する結晶粒子の欠陥密度が低い理由は定かではないが、多結晶窒化ガリウム自立基板の作製初期で生じた格子欠陥のうち水平方向に傾いて発展するものが成長に伴って粒界に吸収されて消滅するためと推測される。
 配向多結晶アルミナ焼結体は、板状アルミナ粉末を原料として用いて成形及び焼結を行うことにより製造することができる。板状アルミナ粉末は市販されており、商業的に入手可能である。板状アルミナ粉末の種類及び形状は緻密な配向多結晶アルミナ焼結体が得られる限り特に限定されないが、平均粒径が0.4~15μm、厚み0.05~1μmとしてもよく、この範囲内で異なる平均粒径の原料を2種類以上混ぜたものとしてもよい。好ましくは、板状アルミナ粉末を、せん断力を用いた手法により配向させ、配向成形体とすることができる。せん断力を用いた手法の好ましい例としては、テープ成形、押出し成形、ドクターブレード法、及びこれらの任意の組合せが挙げられる。せん断力を用いた配向手法は、上記例示したいずれの手法においても、板状アルミナ粉末にバインダー、可塑剤、分散剤、分散媒等の添加物を適宜加えてスラリー化し、このスラリーをスリット状の細い吐出口を通過させることにより、基板上にシート状に吐出及び成形するのが好ましい。吐出口のスリット幅は10~400μmとするのが好ましい。なお、分散媒の量はスラリー粘度が5000~100000cPとなるような量にするのが好ましく、より好ましくは20000~60000cPである。シート状に成形した配向成形体の厚さは5~500μmであるのが好ましく、より好ましくは10~200μmである。このシート状に成形した配向成形体を多数枚積み重ねて、所望の厚さを有する前駆積層体とし、この前駆積層体にプレス成形を施すのが好ましい。このプレス成形は前駆積層体を真空パック等で包装して、50~95℃の温水中で10~2000kgf/cmの圧力で静水圧プレスにより好ましく行うことができる。また、シート状に成形した配向成形体、もしくは前駆積層体をロールプレス法(例えば加熱ロールプレスやカレンダーロールなど)による処理を施してもよい。また、押出し成形を用いる場合には、金型内の流路の設計により、金型内で細い吐出口を通過した後、シート状の成形体が金型内で一体化され、積層された状態で成形体が排出されるようにしてもよい。得られた成形体には公知の条件に従い脱脂を施すのが好ましい。上記のようにして得られた配向成形体を大気炉、窒素雰囲気炉、水素雰囲気炉等を用いた通常の常圧焼成に加え、熱間等方圧加圧法(HIP)、ホットプレス法(HP)、放電プラズマ焼結(SPS)等の加圧焼結法、及びこれらを組み合わせた方法にて焼成し、アルミナ結晶粒子を配向して含んでなるアルミナ焼結体を形成する。上記焼成での焼成温度や焼成時間は焼成方法によって異なるが、焼成温度は1000~1950℃、好ましくは1100~1900℃、より好ましくは1500~1800℃、焼成時間は1分間~10時間、好ましくは30分間~5時間である。緻密化を促進する観点ではホットプレスにて1500~1800℃で2~5時間、面圧100~200kgf/cmの条件で焼成する第一の焼成工程と、得られた焼結体を熱間等方圧加圧法(HIP)にて1500~1800℃で30分間~5時間、ガス圧1000~2000kgf/cmの条件で再度焼成する第二の焼成工程を経て行われるのがより好ましい。上記焼成温度での焼成時間は特に限定されないが、好ましくは1~10時間であり、より好ましくは2~5時間である。なお、透光性を付与する場合は、高純度な板状アルミナ粉末を原料として使用し、大気炉、水素雰囲気炉、窒素雰囲気炉等にて1100~1800℃で1分間~10時間焼成する方法が好ましく例示される。得られた焼結体に対し、熱間等方圧加圧法(HIP)にて1200~1400℃又は1400~1950℃にて30分間~5時間、ガス圧300~2000kgf/cmの条件で再度焼成する方法を用いてもよい。粒界相は少ない方が良いため、板状アルミナ粉末は高純度である方が好ましく、より好ましくは純度98%以上であり、さらに好ましくは99%以上、特に好ましくは99.9%以上、最も好ましくは99.99%以上である。なお、焼成条件は上記に限定されるものではなく、緻密化と高配向の両立が可能であれば、例えば熱間等方圧加圧法(HIP)による第二の焼成工程は省略してもよい。また、極少量の添加物を焼結助剤として原料中に加えてもよい。焼結助剤の添加は粒界相の減量と逆行するが、光の散乱因子の一つである気孔を減らすことで、結果的に透光性が向上することを目的としたものである。このような焼結助剤として、MgO、ZrO、Y、CaO、SiO、TiO、Fe、Mn、La等の酸化物、AlF、MgF、YbF等のフッ化物などから選ばれる少なくとも1種以上が挙げられる。これらのうち、MgO、CaO、SiO、及びLaが好ましく、MgOが特に好ましい。しかし、透光性の観点では添加物の量は必要最小限に留めるべきであり、好ましくは5000ppm以下、より好ましくは1000ppm以下、さらに好ましくは700ppm以下である。
 また、配向多結晶アルミナ焼結体は、微細なアルミナ粉末及び/又は遷移アルミナ粉末に板状アルミナ粉末を適宜加えた混合粉末を原料として用いて成形及び焼結を行うことによっても製造することができる。この製法では板状アルミナ粉末が種結晶(テンプレート)となり、微細アルミナ粉末及び/又は遷移アルミナ粉末がマトリックスとなって、テンプレートがマトリックスを取り込みながらホモエピタキシャル成長する、所謂TGG(Templated Grain Growth)過程を経ることで結晶成長と緻密化が生じる。テンプレートとなる板状アルミナ粒子とマトリックスの粒径はその粒径比が大きい方が粒成長しやすく、例えばテンプレートの平均粒径が0.5~15μmのとき、マトリックスの平均粒径0.4μm以下が好ましく、より好ましくは0.2μm以下であり、さらに好ましくは0.1μm以下である。テンプレートとマトリックスの混合比は粒径比や焼成条件、添加物の有無によっても異なるが、例えばテンプレートに平均粒径2μmの板状アルミナ粉末、マトリックスに平均粒径0.1μmの微細アルミナ粉末を用いた場合、テンプレート/マトリックス比が50/50~1/99wt%となるようにしてもよい。また、緻密化を進める観点では焼結助剤として、MgO、ZrO、Y、CaO、SiO、TiO、Fe、Mn、La等の酸化物、AlF、MgF、YbF等のフッ化物などから選ばれる少なくとも1種を加えてもよく、MgO、CaO、SiO、及びLaが好ましく、MgOが特に好ましい。このような手法においても前述した大気炉、窒素雰囲気炉、水素雰囲気炉等を用いた通常の常圧焼成に加え、熱間等方圧加圧法(HIP)、ホットプレス法(HP)、放電プラズマ焼結(SPS)等の加圧焼結法、及びこれらを組み合わせた方法で良質な配向多結晶アルミナ焼結体を得ることができる。
 こうして得られたアルミナ焼結体は、前述した原料となる板状アルミナ粉末の種類によりc面等の所望の面に配向した多結晶アルミナ焼結体となる。こうして得られた配向多結晶アルミナ焼結体を砥石で研削して板面を平坦にした後、ダイヤモンド砥粒を用いたラップ加工により板面を平滑化して配向アルミナ基板とするのが好ましい。
(2)種結晶層の形成
 配向多結晶焼結体上に、窒化ガリウムからなる種結晶層を、配向多結晶焼結体の結晶方位に概ね倣った結晶方位を有するように形成する。なお、「配向多結晶焼結体の結晶方位に概ね倣った結晶方位を有するように形成する」とは、配向多結晶焼結体の結晶方位の影響を受けた結晶成長によりもたらされた構造を意味し、必ずしも配向多結晶焼結体の結晶方位に完全に倣って成長した構造であるとは限らず、配向多結晶焼結体と異なる結晶方位に成長する構造も含む。種結晶層の作製方法は特に限定されないが、MOCVD(有機金属気相成長法)、MBE(分子線エピタキシー法)、HVPE(ハライド気相成長法)、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。例えば、MOCVD法による種結晶層の形成は、450~550℃にて低温GaN層を20~50nm堆積させた後に、1000~1200℃にて厚さ2~4μmのGaN膜を積層させることにより行うのが好ましい。
(3)窒化ガリウム系結晶層の形成
 種結晶層上に、厚さ20μm以上の窒化ガリウム系結晶から構成される層を、種結晶層の結晶方位に概ね倣った結晶方位を有するように形成する。窒化ガリウム系結晶から構成される層の形成方法は配向多結晶焼結体及び/又は種結晶層の結晶方位に概ね倣った結晶方位を有する限り特に限定がなく、MOCVD、HVPE等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示されるが、Naフラックス法により行われるのが特に好ましい。Naフラックス法によれば結晶性の高い厚肉の窒化ガリウム結晶層を種結晶層上に効率良く作製できる。Naフラックス法による窒化ガリウム系結晶層の形成は、種結晶基板を設置した坩堝に金属Ga、金属Na及び所望によりドーパント(例えばゲルマニウム(Ge)、シリコン(Si)、酸素(O)等のn型ドーパント、又はベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)、カドミウム(Cd)等のp型ドーパント)を含む融液組成物を充填し、窒素雰囲気中で830~910℃、3.5~4.5MPaまで昇温加圧した後、温度及び圧力を保持しつつ回転することにより行うのが好ましい。保持時間は目的の膜厚によって異なるが、10~100時間程度としてもよい。また、こうしてNaフラックス法により得られた窒化ガリウム結晶を砥石で研削して板面を平坦にした後、ダイヤモンド砥粒を用いたラップ加工により板面を平滑化するのが好ましい。
(4)配向多結晶焼結体の除去
 配向多結晶焼結体を除去して、多結晶窒化ガリウム自立基板を得ることができる。配向多結晶焼結体を除去する方法は、特に限定されないが、研削加工、ケミカルエッチング、配向焼結体側からのレーザー照射による界面加熱(レーザーリフトオフ)、昇温時の熱膨張差を利用した自発剥離等が挙げられる。
 発光素子及びその製造方法
 上述した本発明による多結晶窒化ガリウム自立基板を用いて高品質の発光素子を作製することができる。前述のとおり、本発明による構成粒子の配向方位が傾斜した多結晶窒化ガリウム自立基板を用いて発光素子を構成することにより、構成粒子の配向方位が傾斜していない多結晶窒化ガリウム自立基板を用いた発光素子と比較して高い発光効率を得ることができる。本発明の多結晶窒化ガリウム自立基板を用いた発光素子の構造やその作製方法は特に限定されるものではない。典型的には、発光素子は、多結晶窒化ガリウム自立基板に発光機能層を設けることにより作製され、この発光機能層の形成は、窒化ガリウム基板の結晶方位に概ね倣った結晶方位を有するように、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一つ以上形成することに行われるのが好ましい。もっとも、多結晶窒化ガリウム自立基板を電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として利用して発光素子を作製してもよい。素子サイズに特に規定はなく、5mm×5mm以下の小素子としてもよいし、10cm×10cm以上の面発光素子としてもよい。
 図1に、本発明の一態様による発光素子の層構成を模式的に示す。図1に示される発光素子10は、多結晶窒化ガリウム自立基板12と、この基板上に形成される発光機能層14とを備えてなる。発光機能層14は、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一以上有してなる。この発光機能層14は、電極等を適宜設けて電圧を印加することによりLED等の発光素子の原理に基づき発光をもたらすものである。特に、本発明の多結晶窒化ガリウム自立基板12を用いることで、窒化ガリウム単結晶基板を用いた場合と同等の発光効率を有する発光素子を得ることも期待でき、大幅な低コスト化が実現できる。また、p型ないしn型ドーパントの導入により導電性を持たせた窒化ガリウムを基板とすることで、縦型構造の発光素子を実現することができ、それにより輝度を高めることができる。その上、大面積な面発光素子も低コストで実現可能となる。
 発光機能層14が基板12上に形成される。発光機能層14は、基板12上の全面又は一部に設けられてもよいし、後述するバッファ層が基板12上に形成される場合にはバッファ層上の全面又は一部に設けられてもよい。発光機能層14は、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一以上有してなり、電極及び/又は蛍光体を適宜設けて電圧を印加することによりLEDに代表される発光素子の原理に基づき発光をもたらす公知の様々な層構成を採りうる。したがって、発光機能層14は青色、赤色等の可視光を放出するものであってもよいし、可視光を伴わずに又は可視光と共に紫外光を発光するものであってもよい。発光機能層14は、p-n接合を利用した発光素子の少なくとも一部を構成するのが好ましく、このp-n接合は、図1に示されるように、p型層14aとn型層14cの間に活性層14bを含んでいてもよい。このとき、活性層としてp型層及び/又はn型層よりもバンドギャップが小さい層を用いたダブルへテロ接合又はシングルへテロ接合(以下、ヘテロ接合と総称する)としてもよい。また、p型層-活性層-n型層の一形態として、活性層の厚みを薄くした量子井戸構造を採りうる。量子井戸を得るためには活性層のバンドギャップがp型層及びn型層よりも小さくしたダブルへテロ接合が採用されるべきことは言うまでもない。また、これらの量子井戸構造を多数積層した多重量子井戸構造(MQW)としてもよい。これらの構造をとることで、p-n接合と比べて発光効率を高めることができる。このように、発光機能層14は、発光機能を有するp-n接合及び/又はへテロ接合及び/又は量子井戸接合を備えたものであるのが好ましい。
 したがって、発光機能層14を構成する一以上の層は、n型ドーパントがドープされているn型層、p型ドーパントがドープされているp型層、及び活性層からなる群から選択される少なくとも一以上を含むものであることができる。n型層、p型層及び(存在する場合には)活性層は、主成分が同じ材料で構成されてもよいし、互いに主成分が異なる材料で構成されてもよい。
 発光機能層14を構成する各層の材質は、多結晶窒化ガリウム自立基板の結晶方位に概ね倣って成長し且つ発光機能を有するものであれば特に限定されないが、窒化ガリウム(GaN)系材料、酸化亜鉛(ZnO)系材料及び窒化アルミニウム(AlN)系材料から選択される少なくとも1種以上を主成分とする材料で構成されるのが好ましく、p型ないしn型に制御するためのドーパントを適宜含むものであってよい。特に好ましい材料は、多結晶窒化ガリウム自立基板と同種の材料である、窒化ガリウム(GaN)系材料である。また、発光機能層14を構成する材料は、そのバンドギャップを制御するため、例えばGaNにAlN、InN等を固溶させた混晶としてもよい。また、直前の段落で述べたとおり、発光機能層14は複数種の材料系からなるヘテロ接合としてもよい。例えば、p型層に窒化ガリウム(GaN)系材料、n型層に酸化亜鉛(ZnO)系材料を用いてもよい。また、p型層に酸化亜鉛(ZnO)系材料、活性層とn型層に窒化ガリウム(GaN)系材料を用いてもよく、材料の組み合わせに特に限定はない。
 発光機能層14を構成する各層は、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される。すなわち、各層は、水平面方向に二次元的に連結されてなる複数の半導体単結晶粒子で構成されており、それ故、略法線方向には単結晶構造を有することになる。したがって、発光機能層14の各層は、層全体としては単結晶ではないものの、局所的なドメイン単位では単結晶構造を有するため、発光機能を確保するのに十分な高い結晶性を有することができる。好ましくは、発光機能層14の各層を構成する半導体単結晶粒子は、基板12である多結晶窒化ガリウム自立基板の結晶方位に概ね倣って成長した構造を有する。「多結晶窒化ガリウム自立基板の結晶方位に概ね倣って成長した構造」とは、多結晶窒化ガリウム自立基板の結晶方位の影響を受けた結晶成長によりもたらされた構造を意味し、必ずしも多結晶窒化ガリウム自立基板の結晶方位に完全に倣って成長した構造であるとは限らず、所望の発光機能を確保できるかぎり、多結晶窒化ガリウム自立基板の結晶方位にある程度倣って成長した構造であってよい。すなわち、この構造は配向多結晶焼結体と異なる結晶方位に成長する構造も含む。その意味で、「結晶方位に概ね倣って成長した構造」との表現は「結晶方位に概ね由来して成長した構造」と言い換えることもできる。したがって、そのような結晶成長はエピタキシャル成長によるものが好ましいが、これに限定されず、それに類する様々な結晶成長の形態であってもよい。特にn型層、活性層、p型層等を構成する各層が多結晶窒化ガリウム自立基板と同じ結晶方位に成長する場合は、多結晶窒化ガリウム自立基板から発光機能層の各層間でも略法線方向に関しては結晶方位が概ね揃った構造となり、良好な発光特性を得ることができる。すなわち、発光機能層14も多結晶窒化ガリウム自立基板12の結晶方位に概ね倣って成長する場合は、基板の垂直方向では方位が概ね一定になる。このため、法線方向は単結晶と同等の状態であり、n型ドーパントを添加した多結晶窒化ガリウム自立基板を用いた場合、多結晶窒化ガリウム自立基板をカソードとした縦型構造の発光素子とすることができ、p型ドーパントを添加した多結晶窒化ガリウム自立基板を用いた場合、多結晶窒化ガリウム自立基板をアノードとした縦型構造の発光素子とすることができる。
 少なくとも発光機能層14を構成するn型層、活性層、p型層等の各層が同じ結晶方位に成長する場合は、発光機能層14の各層は、法線方向に見た場合に単結晶と観察され、水平面方向の切断面で見た場合に粒界が観察される柱状構造の半導体単結晶粒子の集合体であると捉えることも可能である。ここで、「柱状構造」とは、典型的な縦長の柱形状のみを意味するのではなく、横長の形状、台形の形状、及び台形を逆さにしたような形状等、種々の形状を包含する意味として定義される。もっとも、上述のとおり、各層は多結晶窒化ガリウム自立基板の結晶方位にある程度倣って成長した構造であればよく、必ずしも厳密な意味で柱状構造である必要はない。柱状構造となる原因は、前述のとおり、基板12である多結晶窒化ガリウム自立基板の結晶方位の影響を受けて半導体単結晶粒子が成長するためと考えられる。このため、柱状構造ともいえる半導体単結晶粒子の断面の平均粒径(以下、断面平均径という)は成膜条件だけでなく、多結晶窒化ガリウム自立基板の板面の平均粒径にも依存するものと考えられる。発光機能層を構成する柱状構造の界面は発光効率や発光波長に影響を与えるが、粒界があることにより断面方向の光の透過率が悪く、光が散乱ないし反射する。このため、法線方向に光を取り出す構造の場合、粒界からの散乱光により輝度が高まる効果も期待される。
 もっとも、発光機能層14を構成する柱状構造同士の界面は結晶性が低下するため、発光効率が低下し、発光波長が変動し、発光波長がブロードになる可能性がある。このため、柱状構造の断面平均径は大きいほうが良い。好ましくは、発光機能層14の最表面における半導体単結晶粒子の断面平均径は0.3μm以上であり、より好ましくは3μm以上、さらに好ましくは20μm以上、特に好ましくは50μm以上、最も好ましくは70μm以上である。この断面平均径の上限は特に限定されないが、1000μm以下が現実的であり、より現実的には500μm以下であり、さらに現実的には200μm以下である。また、このような断面平均径の半導体単結晶粒子を作製するには、多結晶窒化ガリウム自立基板を構成する窒化ガリウム系単結晶粒子の基板の最表面における断面平均径を0.3μm~1000μmとするのが望ましく、より望ましくは3μm以上である。
 発光機能層14の一部又は全てに窒化ガリウム(GaN)系以外の材料が用いられる場合には、多結晶窒化ガリウム自立基板12と発光機能層14の間に反応を抑制するためのバッファ層を設けてもよい。このようなバッファ層の主成分は特に限定されないが、酸化亜鉛(ZnO)系材料及び窒化アルミニウム(AlN)系材料から選択される少なくとも1種以上を主成分とする材料で構成されるのが好ましく、p型ないしn型に制御するためのドーパントを適宜含むものであってよい。
 発光機能層14を構成する各層が窒化ガリウム系材料で構成されるのが好ましい。例えば、多結晶窒化ガリウム自立基板12上にn型窒化ガリウム層及びp型窒化ガリウム層を順に成長させてもよく、p型窒化ガリウム層とn型窒化ガリウム層の積層順序は逆であってもよい。p型窒化ガリウム層に使用されるp型ドーパントの好ましい例としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)及びカドミウム(Cd)からなる群から選択される1種以上が挙げられる。また、n型窒化ガリウム層に使用されるn型ドーパントの好ましい例としては、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)及び酸素(O)からなる群から選択される1種以上が挙げられる。また、p型窒化ガリウム層及び/又はn型窒化ガリウム層は、AlN及びInNからなる群から選択される1種以上の結晶と混晶化された窒化ガリウムからなるものであってもよく、p型層及び/又はn型層はこの混晶化された窒化ガリウムにp型ドーパント又はn型ドーパントがドープされていてもよい。例えば、窒化ガリウムとAlNの混晶であるAlGa1-xNにMgをドーピングすることでp型層、AlGa1-xNにSiをドーピングすることでとしてn型層として使用することができる。窒化ガリウムをAlNと混晶化することでバンドギャップが広がり、発光波長を高エネルギー側にシフトさせることができる。また、窒化ガリウムをInNとの混晶としてもよく、これによりバンドギャップが狭まり、発光波長を低エネルギー側にシフトさせることができる。p型窒化ガリウム層とn型窒化ガリウム層との間に、両層のいずれよりもバンドギャップが小さいGaN、又はAlN及びInNからなる群から選択される1種以上とGaNとの混晶からなる活性層を少なくとも有してもよい。活性層はp型層及びn型層とダブルへテロ接合された構造であり、この活性層を薄くした構成はp-n接合の一態様である量子井戸構造の発光素子に相当し、発光効率をより一層高めることができる。また、活性層は両層のいずれか一方よりもバンドギャップが小さくGaN、又はAlN及びInNからなる群から選択される1種以上とGaNとの混晶からなるものとしてもよい。このようなシングルヘテロ接合にても発光効率をより一層高めることができる。窒化ガリウム系バッファ層は、ノンドープのGaN、又はn型若しくはp型ドーピングされたGaNからなるものであってもよいし、格子定数が近いAlN、InN、或いはGaNとAlN及びInNからなる群から選択される1種以上の結晶と混晶化されたものであってもよい。
 もっとも、発光機能層14は窒化ガリウム(GaN)系材料、酸化亜鉛(ZnO)系材料、窒化アルミニウム(AlN)系材料から選ばれる複数の材料系で構成してもよい。例えば多結晶窒化ガリウム自立基板12上にp型窒化ガリウム層、n型酸化亜鉛層を成長させてもよく、p型窒化ガリウム層とn型酸化亜鉛層の積層順序は逆であってもよい。多結晶窒化ガリウム自立基板12を発光機能層14の一部として用いる場合は、n型又はp型の酸化亜鉛層を形成してもよい。p型酸化亜鉛層に使用されるp型ドーパントの好ましい例としては、窒素(N)、リン(P)、砒素(As)、カーボン(C)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、銀(Ag)及び銅(Cu)からなる群から選択される1種以上が挙げられる。また、n型酸化亜鉛層に使用されるn型ドーパントの好ましい例としては、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、硼素(B)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)及びシリコン(Si)からなる群から選択される1種以上が挙げられる。
 発光機能層14及びバッファ層の成膜方法は、多結晶窒化ガリウム自立基板の結晶方位に概ね倣って成長する方法であれば特に限定されないが、MOCVD、MBE、HVPE、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。例えばMOCVD法を用いて窒化ガリウム系材料からなる発光機能層14を作製する場合においては、少なくともガリウム(Ga)を含む有機金属ガス(例えばトリメチルガリウム)と窒素(N)を少なくとも含むガス(例えばアンモニア)を原料として基板上にフローさせ、水素、窒素又はその両方を含む雰囲気等において300~1200℃程度の温度範囲で成長させてもよい。この場合、バンドギャップ制御のためインジウム(In)、アルミニウム(Al)、n型及びp型ドーパントとしてシリコン(Si)及びマグネシウム(Mg)を含む有機金属ガス(例えばトリメチルインジウム、トリメチルアルミニウム、モノシラン、ジシラン、ビス-シクロペンタジエニルマグネシウム)を適宜導入して成膜を行ってもよい。
 また、発光機能層14及びバッファ層に窒化ガリウム系以外の材料を用いる場合は、多結晶窒化ガリウム自立基板上に種結晶層を成膜してもよい。種結晶層の成膜方法や材質に限定は無いが、結晶方位に概ね倣った結晶成長を促すものであればよい。例えば、酸化亜鉛系材料を発光機能層14の一部又は全てに用いる場合、MOCVD法、MBE法、HVPE法、スパッタリング法等の気相成長法を用いて極薄い酸化亜鉛の種結晶を作製してもよい。
 発光機能層14の上に電極層16及び/又は蛍光体層をさらに備えていてもよい。上述のとおり、導電性を有する多結晶窒化ガリウム自立基板12を用いた発光素子は縦型構造を採ることができるため、図1に示されるように多結晶窒化ガリウム自立基板12の裏面にも電極層18を設けることができるが、多結晶窒化ガリウム自立基板12を電極そのものとして使用してもよく、その場合には多結晶窒化ガリウム自立基板12にはn型ドーパントを添加されているのが好ましい。電極層16,18は公知の電極材料で構成すればよいが、発光機能層14上の電極層16は、ITO等の透明導電膜、又は格子構造等の開口率が高い金属電極とすれば、発光機能層14で発生した光の取り出し効率を上げられる点で好ましい。
 発光機能層14が紫外光を放出可能なものである場合には、紫外光を可視光に変換するための蛍光体層を電極層の外側に設けてもよい。蛍光体層は紫外線を可視光に変換可能な公知の蛍光成分を含む層であればよく特に限定されない。例えば、紫外光により励起されて青色光を発光する蛍光成分と、紫外光により励起されて青~緑色光を発光する蛍光成分と、紫外光により励起されて赤色光を発光する蛍光成分とを混在させて、混合色として白色光を得るような構成とするのが好ましい。そのような蛍光成分の好ましい組み合わせとしては、(Ca,Sr)(POCl:Eu、BaMgAl1017:Eu、及びMn、YS:Euが挙げられ、これらの成分をシリコーン樹脂等の樹脂中に分散させて蛍光体層を形成するのが好ましい。このような蛍光成分は上記例示物質に限定されるものではなく、他の紫外光励起蛍光体、例えばイットリウム・アルミニウム・ガーネット(YAG)やシリケート系蛍光体、酸窒化物系蛍光体等の組み合わせでもよい。
 一方、発光機能層14が青色光を放出可能なものである場合には、青色光を黄色光に変換するための蛍光体層を電極層の外側に設けてもよい。蛍光体層は青色光を黄色光に変換可能な公知の蛍光成分を含む層であればよく特に限定されない。例えばYAG等の黄色発光する蛍光体との組み合わせたものとしてもよい。このようにすることで、蛍光体層を透過した青色発光と蛍光体からの黄色発光は補色関係にあるため、擬似的な白色光源とすることができる。なお、蛍光体層は、青色を黄色に変換する蛍光成分と、紫外光を可視光に変換するための蛍光成分との両方を備えることで、紫外光の可視光への変換と青色光の黄色光への変換との両方を行う構成としてもよい。
 用途
 本発明の多結晶窒化ガリウム自立基板は、上述した発光素子のみならず、各種電子デバイス、パワーデバイス、受光素子、太陽電池用ウェハー等の種々の用途に好ましく利用することができる。
 本発明を以下の例によってさらに具体的に説明する。
 例A1:Geドープ多結晶窒化ガリウム自立基板
(1)c面配向アルミナ焼結体の作製
 原料として、板状アルミナ粉末(キンセイマテック株式会社製、グレード00610)を用意した。板状アルミナ粒子100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)7重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)3.5重量部と、分散剤(レオドールSP-O30、花王株式会社製)2重量部と、分散媒(2-エチルヘキサノール)を混合した。分散媒の量は、スラリー粘度が20000cPとなるように調整した。上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが20μmとなるように、シート状に成形した。得られたテープを口径50.8mm(2インチ)の円形に切断した後150枚積層し、厚さ10mmのAl板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cmの圧力にて静水圧プレスを行い、円盤状の成形体を得た。
 得られた成形体を脱脂炉中に配置し、600℃で10時間の条件で脱脂を行った。得られた脱脂体を黒鉛製の型を用い、ホットプレスにて窒素中1600℃で4時間、面圧200kgf/cmの条件で焼成した。得られた焼結体をグラファイト製セッター上に設置し、熱間等方圧加圧法(HIP)にてアルゴン中1700℃で2時間、ガス圧1500kgf/cmの条件で再度焼成した。
 このようにして得た焼結体をセラミックスの定盤に固定し、砥石を用いて#2000まで研削して板面を平坦にした。次いで、ダイヤモンド砥粒を用いたラップ加工により、板面を平滑化し、口径50.8mm(2インチ)、厚さ1mの配向アルミナ焼結体を配向アルミナ基板として得た。砥粒のサイズを3μmから0.5μmまで段階的に小さくしつつ、平坦性を高めた。加工後の平均粗さRaは4nmであった。
(2)Geドープ多結晶窒化ガリウム自立基板の作製
(2a)種結晶層の成膜
 次に、加工した配向アルミナ基板の上に、MOCVD法を用いて種結晶層を形成した。具体的には、530℃にて低温GaN層を40nm堆積させた後に、1050℃にて厚さ3μmのGaN膜を積層させて種結晶基板を得た。
(2b)Naフラックス法によるGeドープGaN層の成膜
 上記工程で作製した種結晶基板を、内径80mm、高さ45mmの円筒平底のアルミナ坩堝の底部分に設置し、次いで融液組成物をグローブボックス内で坩堝内に充填した。融液組成物の組成は以下のとおりである。
・金属Ga:60g
・金属Na:60g
・四塩化ゲルマニウム:1.85g
 このアルミナ坩堝を耐熱金属製の容器に入れて密閉した後、結晶育成炉の回転が可能な台上に設置した。窒素雰囲気中で870℃、4.0MPaまで昇温加圧後、30時間保持しつつ溶液を回転することで、撹拌しながら窒化ガリウム結晶を成長させた。結晶成長終了後、3時間かけて室温まで徐冷し、結晶育成炉から育成容器を取り出した。エタノールを用いて、坩堝内に残った融液組成物を除去し、窒化ガリウム結晶が成長した試料を回収した。得られた試料は、50.8mm(2インチ)の種結晶基板の全面上にGeドープ窒化ガリウム結晶が成長しており、結晶の厚さは約0.3mmであった。クラックは確認されなかった。
 こうして得られた試料の配向アルミナ基板部を砥石による研削加工により除去して、Geドープ窒化ガリウムの単体を得た。このGeドープ窒化ガリウム結晶の板面を研磨して板面を平坦にした。更に、ラップ加工とCMPを用いて板面を平滑化し、厚さ約130μmのGeドープ多結晶窒化ガリウム自立基板を得た。多結晶窒化ガリウム自立基板表面の加工後の平均粗さRaは0.2nmであった。
 なお、本例では、ゲルマニウムドーピングしてn型半導体としたものを作製したが、用途や構造によっては異なる元素をドーピングしてもよく、ノンドープとしてもよい。
(多結晶窒化ガリウム自立基板の断面平均径の評価)
 多結晶窒化ガリウム自立基板の最表面におけるGaN単結晶粒子の断面平均径を測定するため、自立基板の表面を走査電子顕微鏡にて画像を撮影した。視野範囲は、得られる画像の対角線に直線を引いた場合に、10個から30個の柱状組織と交わるような直線が引けるような視野範囲とした。得られた画像の対角線に2本の直線を任意に引き、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値を、多結晶窒化ガリウム自立基板の最表面におけるGaN単結晶粒子の断面平均径とした。
 上記のような方法を用いて多結晶窒化ガリウム自立基板の表面と裏面におけるGaN単結晶粒子の断面平均径を測定した結果、表面の断面平均径は約76μm、裏面の断面平均径は約51μmであった。このように断面平均径は表面の方が裏面よりも大きく、基板裏面の断面平均径Dに対する基板表面の断面平均径Dの比D/Dは約1.5となった。また、表面の断面平均径Dに対するGaN結晶の厚みTの比として算出されるGaN単結晶粒子のアスペクト比T/Dは約1.7であった。なお、本例では表面の走査顕微鏡像で明瞭に界面を判別できたが、サーマルエッチングやケミカルエッチングによって界面を際立たせる処理を施した後に上記の評価を行ってもよい。また、後述するEBSD測定の結晶粒マッピング像を用いて上記の評価を行ってもよい。
(窒化ガリウム結晶の断面EBSD測定)
 電子線後方散乱回折装置(EBSD)(TSLソリューションズ製、OIM)を取り付けたSEM(日本電子製、JSM-7000F)にて多結晶窒化ガリウム自立基板の板面の逆極点図方位マッピングを300μm×300μmの視野で実施した。このEBED測定の諸条件は以下のとおりとした。
<EBSD測定条件>
・加速電圧: 15kV
・照射電流: 2×10-8
・ワークディスタンス: 15mm
・ステップ幅: 2μm
・測定プログラム: OIM Data Collection
 図2に得られた逆極点図方位マッピングを示す。また、逆極点図方位マッピングから算出した、最表面構成粒子のc軸方向からの傾斜角の頻度を図3に示す。なお、逆極点図方位マッピングは解析ソフトOIM Analysisを用いてGrain Dilation法による像のクリーンアップを行ったものである。また、傾斜角の頻度はクリーンアップ後に算出した。クリーンアップの条件は下記のとおりである。
<EBSD解析時のクリーンアップ条件>
・Grain tolerance Angle:5°
・Minimum Grain Size:2ピクセル
 窒化ガリウム結晶を構成する各粒子は概ねc面が法線方向に配向していた。また、最表面を構成する粒子の平均傾斜角は5.0°でガウス分布に近似した分布状態であり、1~10°に傾斜した粒子の頻度は85%であった。
(CL測定による欠陥密度評価)
 多結晶窒化ガリウム自立基板の板面に対し、カソードルミネッセンス(CL)法にて発光が微弱のため周囲より暗く見える点(ダークスポット)を基板表面に現れた転位として計数することにより、多結晶窒化ガリウム自立基板の欠陥密度を算出した。なお、本発明では欠陥密度のCL法による測定にはカソードルミネッセンス観察検出器(ガタン社製、MiniCL)を取り付けたSEM(日立ハイテクノロジーズ製、S-3400NTypeE)を使用して、加速電圧15kVの条件で行った。
 CL法により80μm×100μmの範囲を200視野観察したが、窒化ガリウム結晶中に明瞭なダークスポットは認められなかった。すなわち、欠陥密度は約0個/cmであった。
 例A2:Geドープ多結晶窒化ガリウム自立基板の作製
(1)c面配向アルミナ焼結体の作製
 原料として、板状アルミナ粉末(キンセイマテック株式会社製、グレード02025)と微細アルミナ粉末(大明化学工業株式会社製、グレードTM-DAR)を用意し、板状アルミナ粉末50重量部、微細アルミナ粉末50重量部を混合してアルミナ原料を得た。次にアルミナ原料100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)8重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)4重量部と、分散剤(レオドールSP-O30、花王株式会社製)2重量部と、分散媒(キシレンと1-ブタノールを重量比1:1で混合したもの)を混合した。分散媒の量は、スラリー粘度が20000cPとなるように調整した。上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが100μmとなるように、シート状に成形した。得られたテープを口径50.8mm(2インチ)の円形に切断した後30枚積層し、厚さ10mmのAl板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cmの圧力にて静水圧プレスを行い、円盤状の成形体を得た。得られた成形体を脱脂炉中に配置し、600℃で10時間の条件で脱脂を行った。得られた脱脂体を黒鉛製の型を用い、ホットプレスにて窒素中1700℃で4時間、面圧200kgf/cmの条件で焼成した。
 このようにして得た焼結体をセラミックスの定盤に固定し、砥石を用いて#2000まで研削して板面を平坦にした。次いで、ダイヤモンド砥粒を用いたラップ加工により、板面を平滑化し、口径50.8mm(2インチ)、厚さ1mの配向アルミナ焼結体を配向アルミナ基板として得た。砥粒のサイズを3μmから0.5μmまで段階的に小さくしつつ、平坦性を高めた。加工後の平均粗さRaは4nmであった。
(2)Geドープ多結晶窒化ガリウム自立基板の作製
 例A1と同様の方法で配向アルミナ基板の上に厚さ約0.3mmのGeドープGaN膜を成膜した。得られた試料は、50.8mm(2インチ)の種結晶基板の全面上にGeドープ窒化ガリウム結晶が成長しており、結晶の厚さは約0.3mmであった。クラックは確認されなかった。
 こうして得られた試料の配向アルミナ基板部を砥石による研削加工により除去して、Geドープ窒化ガリウムの単体を得た。このGeドープ窒化ガリウム結晶の板面を研磨して板面を平坦にした。更に、ラップ加工とCMPを用いて板面を平滑化し、厚さ約60μmのGeドープ多結晶窒化ガリウム自立基板を得た。多結晶窒化ガリウム自立基板表面の加工後の平均粗さRaは0.5nmであった。 
 例A1と同じ方法を用いて多結晶窒化ガリウム自立基板の表面と裏面におけるGaN単結晶粒子の断面平均径を測定した結果、表面の断面平均径は約20μm、裏面の断面平均径は約9μmであった。このように断面平均径は表面の方が裏面よりも大きく、基板裏面の断面平均径Dに対する基板表面の断面平均径Dの比D/Dは約2.2となった。また、表面の断面平均径Dに対するGaN結晶の厚みTの比として算出されるGaN単結晶粒子のアスペクト比T/Dは約3であった。
 例A1と同じ方法を用いて板面のEBSD測定を実施した結果、窒化ガリウム結晶を構成する各粒子は概ねc面が法線方向に配向していたが、最表面を構成する粒子の平均傾斜角は8.4°であり、1~10°に傾斜した粒子の頻度は80%であった。また、例A1と同じ方法で欠陥密度を評価したところ、欠陥密度は6×10個/cmであった。
 例A3(比較):Geドープ多結晶窒化ガリウム自立基板の作製
(1)c面配向アルミナ焼結体の作製
 微細アルミナ粉末(大明化学工業株式会社製、グレードTM-DAR)99.8重量部、イットリア粉末(信越化学工業株式会社製、グレードUU)0.2重量部を混合し、混合粉末100gに対して溶媒として水50ccの割合で添加し、ボールミルにて40時間混合粉砕し、スラリー化した。得られたスラリーを内径50mmの石膏型に注ぎ、12Tの磁場中で3時間戴置し、鋳込み成形を行った。成形体は石膏から脱型し、室温での乾燥後、黒鉛製の型を用い、ホットプレスにて窒素中1400℃で4時間、面圧200kgf/cmの条件で焼成した。
 このようにして得た焼結体をセラミックスの定盤に固定し、砥石を用いて#2000まで研削して板面を平坦にした。次いで、ダイヤモンド砥粒を用いたラップ加工により、板面を平滑化し、口径50.8mm(2インチ)、厚さ1mの配向アルミナ焼結体を配向アルミナ基板として得た。砥粒のサイズを3μmから0.5μmまで段階的に小さくしつつ、平坦性を高めた。加工後の平均粗さRaは4nmであった。
(2)Geドープ多結晶窒化ガリウム自立基板の作製
 例A1と同様の方法で配向アルミナ基板の上に厚さ約0.3mmのGeドープGaN膜を成膜した。得られた試料は、50.8mm(2インチ)の種結晶基板の全面上にGeドープ窒化ガリウム結晶が成長しており、結晶の厚さは約0.3mmであった。クラックは確認されなかった。
 こうして得られた試料の配向アルミナ基板部を砥石による研削加工により除去して、Geドープ窒化ガリウムの単体を得た。このGeドープ窒化ガリウム結晶の板面を研磨して板面を平坦にした。更に、ラップ加工とCMPを用いて板面を平滑化し、厚さ約70μmのGeドープ多結晶窒化ガリウム自立基板を得た。多結晶窒化ガリウム自立基板表面の加工後の平均粗さRaは0.5nmであった。 
 例A1と同じ方法を用いて多結晶窒化ガリウム自立基板の表面と裏面におけるGaN単結晶粒子の断面平均径を測定した結果、表面の断面平均径は約9μm、裏面の断面平均径は約8μmであった。基板裏面の断面平均径Dに対する基板表面の断面平均径Dの比D/Dは約1.1となった。また、表面の断面平均径Dに対するGaN結晶の厚みTの比として算出されるGaN単結晶粒子のアスペクト比T/Dは約7.8であった。
 例A1と同じ方法を用いて板面のEBSD測定を実施した結果、窒化ガリウム結晶を構成する各粒子は概ねc面が法線方向に配向しており、最表面を構成する粒子の平均傾斜角は0.8°であり、1~10°に傾斜した粒子の頻度は74%であった。また、例A1と同じ方法で欠陥密度を評価したところ、欠陥密度は2×10個/cmであった。
 例B1:Geドープ多結晶窒化ガリウム自立基板を用いた発光素子
(1)発光素子の作製
 MOCVD法を用いて、例A1~A3で作製した各Geドープ多結晶窒化ガリウム自立基板上にn型層として1050℃でSi原子濃度が5×1018/cmになるようにドーピングしたn-GaN層を1μm堆積した。次に発光層として750℃で多重量子井戸層を堆積した。具体的にはInGaNによる2.5nmの井戸層を5層、GaNによる10nmの障壁層を6層にて交互に積層した。次にp型層として950℃でMg原子濃度が1×1019/cmになるようにドーピングしたp-GaNを200nm堆積した。その後、MOCVD装置から取り出し、p型層のMgイオンの活性化処理として、窒素雰囲気中で800℃の熱処理を10分間行った。
 次にフォトリソグラフィープロセスと真空蒸着法とを用いて、多結晶窒化ガリウム自立基板のn-GaN層及びp-GaN層とは反対側の面にカソード電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、p型層に透光性アノード電極としてNi/Au膜をそれぞれ6nm、12nmの厚みにパターニングした。その後、オーム性接触特性を良好なものとするために窒素雰囲気中で500℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、透光性アノード電極としてのNi/Au膜の上面の一部領域に、アノード電極パッドとなるNi/Au膜をそれぞれ5nm、60nmの厚みにパターニングした。こうして得られたウェハーを切断してチップ化し、さらにリードフレームに実装して、縦型構造の発光素子を得た。
(2)発光素子の評価
 カソード電極とアノード電極間に通電し、I-V測定を行ったところ、例A1~A3のいずれの基板を用いた素子でも整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。発光輝度は例A1の基板を用いた素子が最も高輝度であり、例A2の基板を用いた素子は例A1より輝度が下がるが、なお許容可能な輝度であり、例A3の基板を用いた素子は例A2によりも著しく輝度が低下した。

 

Claims (17)

  1.  略法線方向で特定結晶方位に配向した複数の窒化ガリウム系単結晶粒子で構成される多結晶窒化ガリウム自立基板であって、基板表面の電子線後方散乱回折法(EBSD)の逆極点図マッピングによって測定した各窒化ガリウム系単結晶粒子の結晶方位が特定結晶方位から様々な角度で傾斜して分布し、その平均傾斜角が1~10°である、多結晶窒化ガリウム自立基板。
  2.  前記電子線後方散乱回折法(EBSD)の逆極点図マッピングによって測定される窒化ガリウム系単結晶粒子の80%以上が、1~10°の範囲内の傾斜角を有する、請求項1に記載の多結晶窒化ガリウム自立基板。
  3.  前記窒化ガリウム系単結晶粒子の傾斜角がガウス分布に従って分布してなる、請求項1又は2に記載の多結晶窒化ガリウム自立基板。
  4.  1×10個/cm以下の欠陥密度を有する、請求項1~3のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  5.  1×10個/cm以下の欠陥密度を有する、請求項1~3のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  6.  前記多結晶窒化ガリウム自立基板が、略法線方向に単結晶構造を有する、請求項1~5のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  7.  前記多結晶窒化ガリウム自立基板の表面に露出している前記窒化ガリウム系単結晶粒子が、該多結晶窒化ガリウム自立基板の裏面に粒界を介さずに連通してなる、請求項1~6のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  8.  前記多結晶窒化ガリウム自立基板の表面に露出している窒化ガリウム系単結晶粒子の最表面における断面平均径Dが、多結晶窒化ガリウム自立基板の裏面に露出している窒化ガリウム系単結晶粒子の最表面における断面平均径Dと異なる、請求項1~7のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  9.  前記多結晶窒化ガリウム自立基板の裏面に露出している窒化ガリウム系単結晶粒子の最表面における断面平均径Dに対する、多結晶窒化ガリウム自立基板の表面に露出している窒化ガリウム系単結晶粒子の最表面における断面平均径Dの比D/Dが1.0よりも大きい、請求項1~8のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  10.  前記基板の最表面における前記窒化ガリウム系単結晶粒子の断面平均径が10μm以上である、請求項1~9のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  11.  20μm以上の厚さを有する、請求項1~10のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  12.  直径50.8mm以上の大きさを有する、請求項1~11のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  13.  前記窒化ガリウム系単結晶粒子がn型ドーパント又はp型ドーパントでドープされている、請求項1~12のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  14.  前記窒化ガリウム系単結晶粒子がドーパントを含まない、請求項1~13のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  15.  前記窒化ガリウム系単結晶粒子が混晶化されている、請求項1~14のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  16.  前記多結晶窒化ガリウム自立基板を構成する前記窒化ガリウム系単結晶粒子の結晶方位が、基板法線方向と直行する板面方向では無配向である、請求項1~15のいずれか一項に記載の多結晶窒化ガリウム自立基板。
  17.  請求項1~16のいずれか一項に記載の多結晶窒化ガリウム自立基板と、
     該基板上に形成され、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一以上有する発光機能層と、
    を備えた、発光素子。
PCT/JP2015/058752 2013-05-31 2015-03-23 多結晶窒化ガリウム自立基板及びそれを用いた発光素子 WO2015151902A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580001916.1A CN105556685B (zh) 2014-03-31 2015-03-23 多晶氮化镓自立基板和使用该多晶氮化镓自立基板的发光元件
EP15773888.1A EP3128562B1 (en) 2014-03-31 2015-03-23 Polycrystalline gallium-nitride self-supporting substrate and light-emitting element using same
JP2016511554A JP6154066B2 (ja) 2014-03-31 2015-03-23 多結晶窒化ガリウム自立基板及びそれを用いた発光素子
KR1020167007330A KR101790458B1 (ko) 2014-03-31 2015-03-23 다결정 질화갈륨 자립 기판 및 그것을 이용한 발광 소자
KR1020177030005A KR102132313B1 (ko) 2014-03-31 2015-03-23 다결정 질화갈륨 자립 기판 및 그것을 이용한 발광 소자
US15/072,745 US9543473B2 (en) 2013-05-31 2016-03-17 Polycrystalline gallium-nitride self-supporting substrate and light-emitting element using same
US15/359,813 US9768352B2 (en) 2013-12-18 2016-11-23 Polycrystalline gallium-nitride self-supporting substrate and light-emitting element using same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014-071342 2014-03-31
JP2014071342 2014-03-31
PCT/JP2014/064388 WO2014192911A1 (ja) 2013-05-31 2014-05-30 窒化ガリウム自立基板、発光素子及びそれらの製造方法
JPPCT/JP2014/064388 2014-05-30
US14/499,688 2014-09-29
US14/499,688 US9312446B2 (en) 2013-05-31 2014-09-29 Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor
JP2014241013 2014-11-28
JP2014-241013 2014-11-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/499,688 Continuation US9312446B2 (en) 2013-05-31 2014-09-29 Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/072,745 Continuation US9543473B2 (en) 2013-05-31 2016-03-17 Polycrystalline gallium-nitride self-supporting substrate and light-emitting element using same

Publications (1)

Publication Number Publication Date
WO2015151902A1 true WO2015151902A1 (ja) 2015-10-08

Family

ID=54240230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058752 WO2015151902A1 (ja) 2013-05-31 2015-03-23 多結晶窒化ガリウム自立基板及びそれを用いた発光素子

Country Status (5)

Country Link
EP (1) EP3128562B1 (ja)
JP (2) JP6154066B2 (ja)
KR (2) KR101790458B1 (ja)
CN (2) CN105556685B (ja)
WO (1) WO2015151902A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145802A1 (ja) 2016-02-25 2017-08-31 日本碍子株式会社 多結晶窒化ガリウム自立基板及びそれを用いた発光素子
WO2017145803A1 (ja) * 2016-02-25 2017-08-31 日本碍子株式会社 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
WO2017169622A1 (ja) * 2016-03-29 2017-10-05 日本碍子株式会社 自立基板および積層体
JP2018078232A (ja) * 2016-11-11 2018-05-17 日本碍子株式会社 広波長域発光素子および広波長域発光素子の作製方法
US10541514B2 (en) 2016-02-25 2020-01-21 Ngk Insulators, Ltd. Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121853A1 (ja) * 2015-01-29 2016-08-04 日本碍子株式会社 自立基板、機能素子およびその製造方法
CN108666337B (zh) * 2017-03-27 2021-12-14 英属开曼群岛商錼创科技股份有限公司 微型发光二极管及显示面板
CN111052414B (zh) * 2017-08-24 2023-07-21 日本碍子株式会社 13族元素氮化物层、自立基板以及功能元件
US11309455B2 (en) 2017-08-24 2022-04-19 Ngk Insulators, Ltd. Group 13 element nitride layer, free-standing substrate and functional element
CN111052415B (zh) 2017-08-24 2023-02-28 日本碍子株式会社 13族元素氮化物层、自立基板以及功能元件
WO2019038892A1 (ja) 2017-08-24 2019-02-28 日本碍子株式会社 13族元素窒化物層、自立基板および機能素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927636A (ja) * 1995-07-12 1997-01-28 Toshiba Corp 化合物半導体装置及び化合物半導体発光装置
WO2009044638A1 (ja) * 2007-10-04 2009-04-09 Sumitomo Electric Industries, Ltd. GaNエピタキシャル基板、半導体デバイス、GaNエピタキシャル基板及び半導体デバイスの製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW428331B (en) 1998-05-28 2001-04-01 Sumitomo Electric Industries Gallium nitride single crystal substrate and method of producing the same
ATE528421T1 (de) * 2000-11-30 2011-10-15 Univ North Carolina State Verfahren zur herstellung von gruppe-iii- metallnitrid-materialien
JP4396649B2 (ja) * 2006-02-17 2010-01-13 住友電気工業株式会社 GaN結晶基板およびその製造方法
CN100362672C (zh) * 2001-09-19 2008-01-16 住友电气工业株式会社 单晶氮化镓基板及其生长方法与制造方法
JP3864870B2 (ja) * 2001-09-19 2007-01-10 住友電気工業株式会社 単結晶窒化ガリウム基板およびその成長方法並びにその製造方法
JP4397695B2 (ja) * 2003-01-20 2010-01-13 パナソニック株式会社 Iii族窒化物基板の製造方法
US7221037B2 (en) * 2003-01-20 2007-05-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing group III nitride substrate and semiconductor device
JP4803958B2 (ja) * 2003-05-12 2011-10-26 株式会社イトーキ 物品管理装置、物品管理システム及び物品管理方法
JP2004359495A (ja) * 2003-06-04 2004-12-24 Ngk Insulators Ltd エピタキシャル膜用アルミナ基板
JP5024722B2 (ja) * 2005-06-06 2012-09-12 住友電気工業株式会社 窒化物半導体基板とその製造方法
US7935382B2 (en) * 2005-12-20 2011-05-03 Momentive Performance Materials, Inc. Method for making crystalline composition
KR101351498B1 (ko) * 2005-12-20 2014-01-15 모멘티브 퍼포먼스 머티리얼즈 인크. 결정성 조성물, 소자 및 관련 방법
JP5116316B2 (ja) * 2007-02-21 2013-01-09 三菱鉛筆株式会社 油性マーキングペン用インキ組成物
JP4981602B2 (ja) * 2007-09-25 2012-07-25 パナソニック株式会社 窒化ガリウム基板の製造方法
JP2011521477A (ja) * 2008-05-21 2011-07-21 ルーメンズ, インコーポレイテッド 酸化亜鉛系エピタキシャルの層およびデバイス
US20120000415A1 (en) * 2010-06-18 2012-01-05 Soraa, Inc. Large Area Nitride Crystal and Method for Making It
JP2011057474A (ja) * 2009-09-07 2011-03-24 Univ Of Tokyo 半導体基板、半導体基板の製造方法、半導体成長用基板、半導体成長用基板の製造方法、半導体素子、発光素子、表示パネル、電子素子、太陽電池素子及び電子機器
EP2562789A4 (en) * 2010-04-20 2015-03-04 Sumitomo Electric Industries PROCESS FOR PRODUCING COMPOSITE SUBSTRATE
JP4772918B1 (ja) * 2010-12-21 2011-09-14 エー・イー・テック株式会社 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
JP2012184144A (ja) 2011-03-07 2012-09-27 Tokuyama Corp 窒化ガリウム結晶積層基板及びその製造方法
US9312446B2 (en) * 2013-05-31 2016-04-12 Ngk Insulators, Ltd. Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927636A (ja) * 1995-07-12 1997-01-28 Toshiba Corp 化合物半導体装置及び化合物半導体発光装置
WO2009044638A1 (ja) * 2007-10-04 2009-04-09 Sumitomo Electric Industries, Ltd. GaNエピタキシャル基板、半導体デバイス、GaNエピタキシャル基板及び半導体デバイスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3128562A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541514B2 (en) 2016-02-25 2020-01-21 Ngk Insulators, Ltd. Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device
EP3421648B1 (en) * 2016-02-25 2023-01-25 NGK Insulators, Ltd. Polycrystalline gallium nitride self-supported substrate and light emitting element using the same
JPWO2017145810A1 (ja) * 2016-02-25 2018-12-20 日本碍子株式会社 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
JPWO2017145802A1 (ja) * 2016-02-25 2019-01-17 日本碍子株式会社 多結晶窒化ガリウム自立基板及びそれを用いた発光素子
CN108699727B (zh) * 2016-02-25 2021-06-11 日本碍子株式会社 多晶氮化镓自立基板和使用该多晶氮化镓自立基板的发光元件
CN108699727A (zh) * 2016-02-25 2018-10-23 日本碍子株式会社 多晶氮化镓自立基板和使用该多晶氮化镓自立基板的发光元件
CN108699728A (zh) * 2016-02-25 2018-10-23 日本碍子株式会社 包含多晶第13族元素氮化物的自立基板和使用该自立基板的发光元件
JPWO2017145803A1 (ja) * 2016-02-25 2018-12-20 日本碍子株式会社 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
WO2017145810A1 (ja) * 2016-02-25 2017-08-31 日本碍子株式会社 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
WO2017145803A1 (ja) * 2016-02-25 2017-08-31 日本碍子株式会社 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
EP3421648A4 (en) * 2016-02-25 2019-10-02 NGK Insulators, Ltd. RIGID POLYCRYSTALLINE GALLIUM NITRIDE SUBSTRATE AND LIGHT EMITTING ELEMENT USING THE SAME
CN108699728B (zh) * 2016-02-25 2020-12-29 日本碍子株式会社 包含多晶第13族元素氮化物的自立基板和使用该自立基板的发光元件
WO2017145802A1 (ja) 2016-02-25 2017-08-31 日本碍子株式会社 多結晶窒化ガリウム自立基板及びそれを用いた発光素子
US10707373B2 (en) 2016-02-25 2020-07-07 Ngk Insulators, Ltd. Polycrystalline gallium nitride self-supported substrate and light emitting element using same
US10734548B2 (en) 2016-02-25 2020-08-04 Ngk Insulators, Ltd. Free-standing substrate comprising polycrystalline group 13 element nitride and light-emitting element using same
US10804432B2 (en) 2016-02-25 2020-10-13 Ngk Insulators, Ltd. Free-standing substrate comprising polycrystalline group 13 element nitride and light-emitting element using same
JPWO2017169622A1 (ja) * 2016-03-29 2019-02-07 日本碍子株式会社 自立基板および積層体
WO2017169622A1 (ja) * 2016-03-29 2017-10-05 日本碍子株式会社 自立基板および積層体
JP2018078232A (ja) * 2016-11-11 2018-05-17 日本碍子株式会社 広波長域発光素子および広波長域発光素子の作製方法

Also Published As

Publication number Publication date
KR20160047502A (ko) 2016-05-02
EP3128562A4 (en) 2017-11-08
EP3128562A1 (en) 2017-02-08
EP3128562B1 (en) 2023-01-25
JP6154066B2 (ja) 2017-06-28
KR20170119739A (ko) 2017-10-27
JP6480398B2 (ja) 2019-03-06
CN105556685A (zh) 2016-05-04
CN108305923B (zh) 2020-09-15
JP2017057141A (ja) 2017-03-23
CN105556685B (zh) 2018-05-18
KR102132313B1 (ko) 2020-07-09
CN108305923A (zh) 2018-07-20
KR101790458B1 (ko) 2017-10-25
JPWO2015151902A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6480398B2 (ja) 多結晶窒化ガリウム自立基板及びそれを用いた発光素子
JP5770905B1 (ja) 窒化ガリウム自立基板、発光素子及びそれらの製造方法
US9768352B2 (en) Polycrystalline gallium-nitride self-supporting substrate and light-emitting element using same
JP6474734B2 (ja) 発光素子用複合基板及びその製造方法
WO2014192911A1 (ja) 窒化ガリウム自立基板、発光素子及びそれらの製造方法
JP6890117B2 (ja) 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
US10707373B2 (en) Polycrystalline gallium nitride self-supported substrate and light emitting element using same
KR102172356B1 (ko) 질화갈륨 자립 기판, 발광 소자 및 이들의 제조 방법
WO2017057271A1 (ja) エピタキシャル成長用配向アルミナ基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001916.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511554

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015773888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015773888

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167007330

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE