WO2017145810A1 - 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子 - Google Patents

多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子 Download PDF

Info

Publication number
WO2017145810A1
WO2017145810A1 PCT/JP2017/004926 JP2017004926W WO2017145810A1 WO 2017145810 A1 WO2017145810 A1 WO 2017145810A1 JP 2017004926 W JP2017004926 W JP 2017004926W WO 2017145810 A1 WO2017145810 A1 WO 2017145810A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
substrate
layer
crystal
supporting substrate
Prior art date
Application number
PCT/JP2017/004926
Other languages
English (en)
French (fr)
Inventor
克宏 今井
倉岡 義孝
幹也 市村
崇行 平尾
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201780011093.XA priority Critical patent/CN108779578B/zh
Priority to JP2018501580A priority patent/JP6868606B2/ja
Publication of WO2017145810A1 publication Critical patent/WO2017145810A1/ja
Priority to US16/059,751 priority patent/US10804432B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a free-standing substrate made of polycrystalline group 13 element nitride and a light emitting device using the same.
  • GaN gallium nitride
  • MQW multi-quantum well layer
  • Patent Document 1 proposes a gallium nitride crystal multilayer substrate including a sapphire base substrate and a gallium nitride crystal layer formed by crystal growth on the substrate.
  • GaN gallium nitride
  • Patent Document 2 discloses a self-supporting n-type gallium nitride single crystal substrate having a thickness of 200 ⁇ m or more.
  • Patent Document 4 discloses a polycrystalline gallium nitride free-standing substrate composed of a plurality of gallium nitride single crystal particles oriented in a specific crystal orientation in a substantially normal direction.
  • Patent Document 3 discloses a polycrystalline gallium nitride free-standing substrate composed of a plurality of gallium nitride single crystal particles oriented in a specific crystal orientation in a substantially normal direction, and an electron beam backscatter diffraction method ( It is described that the crystal orientation of each gallium nitride single crystal particle measured by reverse pole figure mapping (EBSD) is distributed at various angles from the specific crystal orientation, and the average tilt angle is 1 to 10 °. ing.
  • EBSD reverse pole figure mapping
  • Patent Document 3 provides an oriented GaN free-standing substrate and a light emitting device in which the tilt angle (tilt angle) of the polycrystalline particles constituting the substrate is controlled to 1 ° to 10 °.
  • the present invention provides a polycrystalline gallium nitride free-standing substrate capable of reducing the defect density on the substrate surface, and provides a light-emitting element capable of obtaining high light emission efficiency using the polycrystalline gallium nitride free-standing substrate.
  • Patent Document 5 provides a Zn-doped GaN crystal having high resistance and low defects, and a method for producing the same.
  • the Na flux method is used as the crystal growth method, and Zn is added to the flux to grow a GaN single crystal.
  • Patent Document 6 provides a method for producing a gallium nitride single crystal.
  • a gallium nitride single crystal is produced by reacting gallium and nitrogen in a mixed flux of Na and an alkali or alkaline earth metal.
  • Patent Documents 5 and 6 are for the purpose of growing a single crystal.
  • a gap is likely to be formed between adjacent polycrystalline particles. If there is such a gap, a hole (pit) is generated on the surface of the processed wafer, and when a device such as an LED is produced on a gallium nitride crystal, it causes a defect such as a current leak and causes a decrease in yield. If a device is manufactured with no gap, no problem occurs. However, as the device size increases, it becomes difficult to completely avoid the gap, which causes a reduction in device yield.
  • An object of the present invention is to reduce pits on the upper surface of a free-standing substrate in a polycrystalline group 13 element nitride free-standing substrate composed of a plurality of single crystal grains oriented in a specific crystal orientation in a substantially normal direction.
  • the present invention is a self-supporting substrate made of a polycrystalline group 13 element nitride composed of a plurality of single crystal grains oriented in a specific crystal orientation in a substantially normal direction
  • the polycrystalline group 13 element nitride is made of gallium nitride, aluminum nitride, indium nitride or a mixed crystal thereof
  • the self-supporting substrate has a top surface and a bottom surface, and contains at least one of zinc and calcium.
  • the root mean square roughness Rms is 3.0 nm or less.
  • the present invention includes the self-supporting substrate, and a light emitting functional layer that is formed on the self-supporting substrate and has one or more layers composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction. This relates to a light emitting element.
  • the oriented group 13 element nitride crystal contains at least one of zinc and calcium, the density of the crystal is improved, pits on the surface are reduced, and the root mean square roughness Rms is reduced. found.
  • the mechanism by which pits are reduced when zinc or calcium is contained in an oriented group 13 element nitride crystal is not clear.
  • the crystal grain size of the oriented group 13 element nitride is larger than when nothing is added or when other elements (lithium, germanium, etc.) are contained. It has become. From this, it is considered that the crystal growth in the lateral direction of the crystal grains is promoted and the gaps between the crystal grains are filled.
  • the number of pits on the upper surface of a free-standing substrate made of oriented group 13 element nitride crystal is reduced, so that defects in semiconductor devices (such as LEDs and power devices) using this as a base substrate are suppressed, and the yield is improved. To do. Moreover, since the space
  • FIG. 4 is a scanning electron micrograph showing the state of the upper surface of polycrystalline group 13 element nitride in Reference Example 1.
  • FIG. 2 is a scanning electron micrograph showing the state of the upper surface of polycrystalline group 13 element nitride in Example 1.
  • FIG. 6 is a scanning electron micrograph showing the state of the top surface of polycrystalline group 13 element nitride in Example 2.
  • FIG. 4 is a scanning electron micrograph showing the state of the upper surface of polycrystalline group 13 element nitride in Reference Example 2.
  • FIG. 6 is a scanning electron micrograph showing the state of the upper surface of polycrystalline group 13 element nitride in Reference Example 3.
  • the group 13 element nitride substrate of the present invention may have the form of a free-standing substrate.
  • the “self-supporting substrate” means a substrate that can be handled as a solid material without being deformed or damaged by its own weight when handled.
  • the self-supporting substrate of the present invention can be used as a substrate for various semiconductor devices such as light-emitting elements, but in addition to this, an electrode (which may be a p-type electrode or an n-type electrode), a p-type layer, an n-type layer, etc. It can be used as a member or layer other than the substrate.
  • the advantages of the present invention may be described by taking a light emitting element which is one of the main applications as an example. However, similar or similar advantages are not limited to the technical consistency. The same applies to semiconductor devices.
  • the self-standing substrate of the present invention is composed of a plurality of group 13 element nitride single crystal grains oriented in a specific crystal orientation in a substantially normal direction, and has a top surface and a bottom surface.
  • the average cross-sectional diameter DT of the outermost surface of the single crystal particles exposed on the upper surface of the freestanding substrate is 10 ⁇ m or more.
  • the plurality of single crystal particles constituting the self-standing substrate are oriented in a specific crystal orientation in a substantially normal direction.
  • the specific crystal orientation may be any crystal orientation (for example, c-plane, a-plane, etc.) that the group 13 element nitride crystal can have.
  • each constituent particle on the upper surface of the substrate has its c-axis oriented in a substantially normal direction (ie, the c-plane is exposed on the upper surface of the substrate). ) Will be placed.
  • the self-supporting substrate preferably has a single crystal structure in a substantially normal direction.
  • the self-standing substrate is composed of a plate composed of a plurality of single crystal particles having a single crystal structure in a substantially normal direction. That is, the self-supporting substrate is composed of a plurality of single crystal particles that are two-dimensionally connected in the horizontal plane direction, and therefore can have a single crystal structure in a substantially normal direction. Therefore, the self-standing substrate is not a single crystal as a whole, but has a single crystal structure in a local domain unit. With such a configuration, sufficient characteristics can be obtained when a device such as a light emitting function or a solar battery is manufactured. The reason for this is not clear, but it is considered to be an effect of the translucency of the polycrystalline gallium nitride substrate and the light extraction efficiency.
  • a light-emitting element having a vertical structure can be realized, thereby increasing luminance.
  • a large-area surface light-emitting element used for surface-emitting illumination or the like can be realized at low cost.
  • the self-supporting substrate of this aspect when a vertical LED structure is manufactured using the self-supporting substrate of this aspect, since the plurality of single crystal particles constituting the self-supporting substrate have a single crystal structure in a substantially normal direction, a high-resistance particle is present in the current path. There are no boundaries and, as a result, favorable luminous efficiency is expected. In this regard, in the case of an oriented polycrystalline substrate in which grain boundaries also exist in the normal direction, there is a possibility that the light emission efficiency may be lowered because high-resistance grain boundaries exist on the current path even in the vertical structure. From these viewpoints, the self-supporting substrate of this embodiment can be preferably used for a vertical LED structure. In addition, since there is no grain boundary in the current path, it can be applied not only to such a light emitting device but also to a power device, a solar cell, and the like.
  • the plurality of single crystal particles constituting the self-supporting substrate have crystal orientations substantially aligned in a substantially normal direction.
  • Crystal orientation that is generally aligned in the normal direction is not necessarily a crystal orientation that is perfectly aligned in the normal direction, as long as a device such as a light-emitting element using a self-supporting substrate can ensure desired device characteristics. This means that the crystal orientation may be aligned to some extent in the normal or similar direction.
  • the single crystal particles have a structure grown substantially following the crystal orientation of the oriented polycrystalline sintered body used as the base material in the production of the self-supporting substrate.
  • the “structure grown substantially following the crystal orientation of the oriented polycrystalline sintered body” means a structure brought about by crystal growth affected by the crystal orientation of the oriented polycrystalline sintered body, and is not necessarily oriented.
  • the crystal of the oriented polycrystalline sintered body is not necessarily a structure that has grown completely following the crystal orientation of the crystalline sintered body, as long as a device such as a light-emitting element using a self-supporting substrate can ensure the desired device characteristics. It may be a structure grown to some extent along the direction. That is, this structure includes a structure that grows in a different crystal orientation from the oriented polycrystalline sintered body.
  • the expression “a structure grown substantially following the crystal orientation” can also be rephrased as “a structure grown substantially derived from the crystal orientation”. This paraphrase and the above meaning are similar to those in this specification. The same applies to expression. Therefore, although such crystal growth is preferably by epitaxial growth, it is not limited to this, and various forms of crystal growth similar thereto may be used. In any case, by growing in this way, the free-standing substrate can have a structure in which the crystal orientations are substantially uniform with respect to the substantially normal direction.
  • the self-supporting substrate has a top surface and a bottom surface, and the crystal orientation of each gallium nitride-based single crystal particle measured by reverse pole figure mapping of electron beam backscatter diffraction (EBSD) on the top surface is a specific crystal orientation (for example, c).
  • EBSD electron beam backscatter diffraction
  • the distribution is inclined at various angles from the orientation of the axis, the a-axis, etc., and the average inclination angle is 0.1 ° or more and 10 ° or less.
  • the crystal orientation of the single crystal particles constituting the self-supporting substrate is approximately It can be confirmed that the crystal is oriented in a specific crystal orientation in the normal direction. However, there is no orientation in the plate surface direction orthogonal to the substrate normal direction. That is, the single crystal particles have a structure in which the crystal orientation is oriented only in the substantially normal direction, and the twist (rotation of crystal axis) distribution of the single crystal particles with the substantially normal direction as an axis is random. With such a structure, sufficient characteristics can be obtained when a device such as a light emitting function or a solar cell is manufactured using a self-supporting substrate. The reason for this is not clear, but is considered to be an effect of light extraction efficiency.
  • EBSD electron beam backscattering diffraction
  • the self-supporting substrate according to the above aspect is an aggregate of columnar-structured single crystal particles that are observed as a single crystal when viewed in the normal direction and a grain boundary is observed when viewed in a cut surface in the horizontal plane direction. It is also possible to grasp.
  • the “columnar structure” does not mean only a typical vertically long column shape, but includes various shapes such as a horizontally long shape, a trapezoidal shape, and a shape in which the trapezoid is inverted. Defined as meaning.
  • the free-standing substrate may be a structure having a crystal orientation aligned to some extent in a normal line or a similar direction, and does not necessarily have a columnar structure in a strict sense.
  • the cause of the columnar structure is considered to be that single crystal grains grow under the influence of the crystal orientation of the oriented polycrystalline sintered body used for the production of the self-supporting substrate.
  • the average grain size of the cross section of single crystal particles which can be said to be a columnar structure (hereinafter referred to as the average cross section diameter) depends not only on the film forming conditions but also on the average grain size of the plate surface of the oriented polycrystalline sintered body. it is conceivable that.
  • the average cross section diameter depends not only on the film forming conditions but also on the average grain size of the plate surface of the oriented polycrystalline sintered body. it is conceivable that.
  • the light transmittance in the cross-sectional direction is poor due to the presence of grain boundaries, and light is scattered or reflected.
  • an effect of increasing luminance due to scattered light from the grain boundary is also expected.
  • the self-supporting substrate top surface on which the light emitting functional layer is formed and the self-supporting substrate bottom surface on which the electrode is formed are grain boundaries. It is preferable to communicate without passing through. That is, it is preferable that the single crystal particles exposed on the upper surface of the freestanding substrate communicate with the bottom surface of the freestanding substrate without passing through the grain boundary. If there is a grain boundary, resistance is caused during energization, which causes a decrease in luminous efficiency.
  • the cross-sectional average diameter DT on the outermost surface of the single crystal particles exposed on the upper surface of the freestanding substrate is different from the cross-sectional average diameter DB on the outermost surface of the single crystal particles exposed on the bottom surface of the freestanding substrate.
  • the crystallinity of the free-standing substrate and its constituent particles is improved. For example, when a group 13 element nitride crystal is grown using epitaxial growth via a gas phase or a liquid phase, growth occurs not only in the normal direction but also in the horizontal direction, depending on the film forming conditions.
  • the growth rate of each single crystal is different, so that the fast growing particles cover the slow growing particles. May grow.
  • the particles on the top surface side of the substrate are more likely to have a larger particle size than the bottom surface side of the substrate.
  • the slow-growing crystal stops growing in the middle, and when observed in a certain section, grain boundaries can be observed in the normal direction.
  • the particles exposed on the top surface of the substrate communicate with the bottom surface of the substrate without passing through the grain boundary, and there is no resistance phase in flowing current.
  • the particles exposed on the top surface side of the substrate (the side opposite to the side in contact with the oriented polycrystalline sintered body that is the base substrate at the time of manufacture) Therefore, it is preferable to form a light emitting functional layer on the upper surface side of the substrate from the viewpoint of increasing the light emission efficiency of the LED having a vertical structure.
  • the bottom side of the substrate (the side in contact with the oriented polycrystalline sintered body that is the base substrate at the time of manufacture) contains particles that do not communicate with the top side of the substrate. Efficiency may be reduced.
  • the grain size increases with growth, so that the front and bottom surfaces of the freestanding substrate have a larger gallium nitride crystal grain size on the substrate upper surface side and a smaller one on the substrate bottom surface.
  • it can be paraphrased. That is, from the viewpoint of increasing the light emission efficiency of the LED having a vertical structure, it is preferable to form a light emitting functional layer on the side where the grain size of the group 13 element nitride crystal is large (the substrate upper surface side).
  • the substrate upper surface side (the side opposite to the side in contact with the oriented polycrystalline alumina sintered body that is the base substrate at the time of manufacture) is 13 It becomes a group element surface, and the substrate bottom surface side (the side in contact with the oriented polycrystalline alumina sintered body which is the base substrate at the time of manufacture) is the nitrogen surface. That is, the group 13 element surface of the self-supporting substrate is dominated by particles communicating with the bottom surface without passing through the grain boundary. For this reason, it is preferable to produce a light emitting functional layer on the group 13 element surface side (substrate upper surface side) from the viewpoint of increasing the light emission efficiency of the LED having a vertical structure.
  • the cross-sectional average diameter of the single crystal particles exposed on the upper surface of the substrate is exposed on the bottom surface of the substrate.
  • the luminous efficiency increases (this is the number of single crystal particles exposed on the substrate top surface is the number of single crystal particles exposed on the substrate bottom surface). It can also be said that less is preferable).
  • the single crystal particles exposed on the upper surface of the free-standing substrate with respect to the cross-sectional average diameter at the outermost surface of the single crystal particles exposed on the bottom surface of the free-standing substrate (hereinafter referred to as the cross-sectional average diameter DB of the substrate bottom surface).
  • the ratio DT / DB of the cross-sectional average diameter at the outermost surface (hereinafter referred to as the cross-sectional average diameter DT of the substrate upper surface) is preferably larger than 1.0, preferably 1.1 or more, more preferably 1. It is 5 or more, more preferably 2.0 or more, particularly preferably 3.0 or more, and most preferably 5.0 or more. However, if the ratio DT / DB is too high, the light emission efficiency may be reduced.
  • the ratio DT / DB is high, the grain boundary area that does not contribute to light emission decreases due to the increase in particle size, or the crystal defects are reduced by increasing the particle size. This is probably because of this.
  • the cause of the decrease in crystal defects is not clear, but it is also considered that particles containing defects grow slowly and particles with few defects grow at high speed.
  • the ratio DT / DB is too high, particles communicating between the substrate top surface and the substrate bottom surface (that is, particles exposed on the substrate top surface side) have a small cross-sectional diameter in the vicinity of the substrate bottom surface side. As a result, it is considered that a sufficient current path cannot be obtained and the light emission efficiency may be reduced, but the details are not clear.
  • the cross-sectional average diameter of the columnar structure is larger.
  • the cross-sectional average diameter DT at the outermost surface of the single crystal particles exposed on the upper surface of the free-standing substrate is 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more, particularly preferably 70 ⁇ m or more, and most preferably 100 ⁇ m. That's it.
  • the upper limit of the average cross-sectional diameter of the single crystal particles on the outermost surface (upper surface) of the self-standing substrate is not particularly limited, but is practically 1000 ⁇ m or less, more realistically 500 ⁇ m or less, and more realistically 200 ⁇ m or less. is there.
  • the sintered particle size on the plate surface of the particles constituting the oriented polycrystalline sintered body used for the production of the self-supporting substrate is set to 10 ⁇ m or more. More preferably, the thickness is 10 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 800 ⁇ m, and particularly preferably 14 ⁇ m to 500 ⁇ m.
  • the cross-sectional average diameter of the single crystal particles on the outermost surface (upper surface) of the free-standing substrate is larger than the cross-sectional average diameter of the bottom surface of the free-standing substrate, the particles constituting the oriented polycrystalline sintered body
  • the sintered grain size on the plate surface is preferably 10 ⁇ m to 100 ⁇ m, more preferably 14 ⁇ m to 70 ⁇ m.
  • the group 13 element nitride constituting the self-supporting substrate contains at least one of zinc and calcium. This can reduce the size and number of surface holes (pits) on the upper surface of each single crystal. Then, it was found that the size and number of pits on the surface can be evaluated by measuring the root mean square roughness Rms.
  • Rms is a numerical value indicating the root mean square roughness, and corresponds to the square root of a value obtained by averaging the squares of deviations from the average line on the upper surface of the free-standing substrate to the measurement curve, and is calculated by the following formula. .
  • the inventor observed and counted the size and number of pits on the upper surface of a free-standing substrate with a microscope, and measured and compared the root mean square roughness Rms on the same upper surface. As a result, it was found that the root mean square roughness Rms increases as the pit size increases and the frequency of pits increases. That is, in the case of an oriented group 13 element nitride crystal, the root mean square roughness Rms is appropriate as an index reflecting the pit size and number.
  • the root mean square roughness Rms of the upper surface of the obtained free-standing substrate was variously examined, by including at least one of zinc and calcium in the polycrystalline group 13 element nitride constituting the free-standing substrate, It has been found that the pit size and number on the top surface can be significantly reduced. Specifically, it has been found that the root mean square roughness Rms of the upper surface of the freestanding substrate can be 3.0 nm or less.
  • the pits have a small size and a low frequency.
  • the root mean square roughness Rms is preferably small.
  • the polycrystalline group 13 element nitride contains at least one of zinc and calcium.
  • the content of zinc is preferably 1 ⁇ 10 17 atoms / cm 3 or more from the viewpoint of the effect of the present invention, and 1 ⁇ 10 18 atoms / cm 3. The above is particularly preferable.
  • the zinc content is preferably 1 ⁇ 10 20 atoms / cm 3 or less, more preferably 5 ⁇ 10 19 atoms / cm 3 or less.
  • the content of calcium is preferably 5 ⁇ 10 15 atoms / cm 3 or more, and preferably 1 ⁇ 10 16 atoms / cm 3 or more. Is particularly preferred. Further, from the viewpoint of suppressing the generation of natural nuclei in the melt composition, the calcium content is preferably 1 ⁇ 10 19 atoms / cm 3 or less, and more preferably 5 ⁇ 10 18 atoms / cm 3 or less.
  • the specific resistance in the thickness direction and the in-plane direction of the self-supporting substrate can be increased, so that it is possible to provide a self-supporting substrate suitable for applications that require high electrical resistance.
  • the specific resistance in the in-plane direction of the free-standing substrate can be set to 50 ⁇ ⁇ cm or more and 1 ⁇ 10 7 ⁇ ⁇ cm or less.
  • This resistivity is further It can be 500 ⁇ ⁇ cm or more, and can be 1 ⁇ 10 5 ⁇ ⁇ cm or less.
  • the specific resistance in the thickness direction of the free-standing substrate can be 5 ⁇ ⁇ cm or more and 1 ⁇ 10 7 ⁇ ⁇ cm or less. This specific resistance can be further set to 100 ⁇ ⁇ cm or more, or 5 ⁇ 10 4 ⁇ ⁇ cm or less.
  • the resistivity of the free-standing substrate can be increased as a whole, and the ratio of the specific resistance in the in-plane direction of the free-standing substrate to the specific resistance in the thickness direction of the free-standing substrate (in the in-plane direction) (Specific resistance / specific resistance in the thickness direction) can be reduced.
  • the ratio can be 1.3 or more and 15 or less.
  • the polycrystalline group 13 element nitride constituting the self-supporting substrate may be further doped with an n-type dopant or a p-type dopant. It can be used as a member or layer other than a substrate such as a mold electrode, an n-type electrode, a p-type layer, and an n-type layer.
  • a p-type dopant include one or more selected from the group consisting of beryllium (Be), magnesium (Mg), strontium (Sr), and cadmium (Cd).
  • the n-type dopant include one or more selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn), and oxygen (O).
  • the single crystal particles constituting the self-supporting substrate may be mixed to control the band gap.
  • the polycrystalline group 13 element nitride constituting the freestanding substrate may be composed of gallium nitride mixed with one or more kinds of crystals selected from the group consisting of AlN and InN, and p A type dopant or an n-type dopant may be doped.
  • AlxGa1-xN which is a mixed crystal of gallium nitride and AlN
  • AlxGa1-xN can be used as an n-type substrate by doping Si.
  • the band gap is widened by mixing gallium nitride with AlN, and the emission wavelength can be shifted to a higher energy side.
  • gallium nitride may be a mixed crystal with InN (InxGa1-xN), whereby the band gap is narrowed and the emission wavelength can be shifted to a lower energy side.
  • the group 13 element nitride constituting the free-standing substrate is preferably a gallium nitride crystal or a gallium nitride mixed crystal.
  • the gallium nitride mixed crystal is represented by AlxGa1-xN and InxGa1-xN.
  • x is preferably 0.5 or less, and more preferably 0.2 or less. .
  • the free-standing substrate preferably has a diameter of 50.8 mm (2 inches) or more, more preferably has a diameter of 100 mm (4 inches) or more, and more preferably has a diameter of 200 mm (8 inches) or more.
  • the larger the polycrystalline freestanding substrate the larger the number of devices that can be manufactured, which is preferable from the viewpoint of manufacturing cost, and also from the viewpoint of surface light emitting devices, the degree of freedom of the device area is increased and the use for surface light emitting lighting and the like is expanded.
  • the upper limit should not be prescribed
  • the self-supporting substrate is preferably circular or substantially circular when viewed from above, but is not limited thereto.
  • the area is preferably at 2026Mm 2 or more, more preferably 7850mm 2 or more, further preferably 31400Mm 2 or more.
  • the area may be smaller than the above range, for example, a diameter of 50.8 mm (2 inches) or less, and 2026 mm 2 or less in terms of area.
  • the thickness of the self-supporting substrate needs to be capable of imparting self-supporting property to the substrate, and is preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and further preferably 300 ⁇ m or more.
  • the upper limit of the thickness of the free-standing substrate should not be specified, but 3000 ⁇ m or less is realistic from the viewpoint of manufacturing cost.
  • the aspect ratio T / DT defined as the ratio of the thickness T of the free-standing substrate to the average cross-sectional diameter DT at the outermost surface of the single crystal particles exposed on the upper surface of the free-standing substrate is 0.7 or more, More preferably, it is 1.0 or more, More preferably, it is 3.0 or more.
  • this aspect ratio is an LED, it is preferable from the viewpoint of increasing luminous efficiency.
  • the reason why the luminous efficiency is increased may be that the defect density in the gallium nitride is lower in the high aspect ratio particles and the light extraction efficiency is increased, but the details are not clear.
  • the light emitting functional layer is formed on the upper surface side of the self-supporting substrate (the side opposite to the side in contact with the oriented polycrystalline sintered body which is the base substrate at the time of manufacture).
  • the ratio DT / DB of the average cross-sectional diameter DT of the top surface of the substrate to the average cross-sectional diameter DB of the bottom surface of the self-supporting substrate should be an appropriate value. It is better that the average cross-sectional diameter on the surface is larger, and (4) it is better that the aspect ratio T / DT of the particles constituting the self-supporting substrate is larger.
  • the cross-sectional average diameter is larger and the aspect ratio is larger.
  • a polycrystalline group 13 element nitride having a large cross-sectional average diameter on the upper surface side of the substrate and a large thickness is preferable.
  • the thickness of the self-supporting substrate is preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and further preferably 300 ⁇ m or more.
  • the thinner one is preferable.
  • the thickness of the self-supporting substrate is realistically 3000 ⁇ m or less, preferably 600 ⁇ m or less, and preferably 300 ⁇ m or less. Accordingly, the thickness that achieves both a self-supporting and high luminous efficiency viewpoint and a cost viewpoint is preferably about 50 to 500 ⁇ m, and more preferably about 300 to 500 ⁇ m.
  • the gallium nitride free-standing substrate of the present invention has (1) an oriented polycrystalline sintered body, and (2) a seed crystal layer made of gallium nitride on the oriented polycrystalline sintered body. (3) A layer composed of a gallium nitride-based crystal having a thickness of 20 ⁇ m or more is substantially imitated on the crystal orientation of the seed crystal layer on the seed crystal layer. It can be manufactured by forming it to have a crystal orientation and (4) removing the oriented polycrystalline sintered body to obtain a gallium nitride free-standing substrate.
  • the oriented polycrystalline sintered body used as a base material for the production of the self-supporting substrate of the present invention may be produced by any production method and is not particularly limited. For example, it may be produced based on the method described in Patent Document 3 (WO2015 / 151902A1).
  • the method for producing an oriented polycrystalline sintered body includes (a) a fine raw material powder layer and a plate surface of plate-like raw material particles, the fine raw material powder layer, as specifically described below. It includes a step of producing a laminate in which plate-like raw material powder layers arranged along the surface are alternately laminated, and (b) a step of firing the laminate.
  • the fine raw material powder layer used in step (a) is a layer of aggregates of fine raw material particles.
  • the fine raw material powder is a powder having an average particle size smaller than that of the plate-like raw material powder.
  • the fine raw material powder layer may be a layer obtained by molding the fine raw material powder itself, or may be a layer obtained by shaping the fine raw material powder added with an additive.
  • the additive include a sintering aid, graphite, a binder, a plasticizer, a dispersant, and a dispersion medium.
  • the molding method is not particularly limited, and examples thereof include tape molding, extrusion molding, casting molding, injection molding, and uniaxial press molding.
  • the thickness of the fine raw material powder layer is preferably 5 to 100 ⁇ m, and more preferably 20 to 60 ⁇ m.
  • the plate-like raw material powder layer used in the step (a) is a layer of aggregates of plate-like raw material particles.
  • the plate-like raw material powder preferably has an aspect ratio of 3 or more.
  • the aspect ratio is average particle size / average thickness.
  • the average particle diameter is the average value of the major axis lengths of the particle plate surfaces
  • the average thickness is the average value of the minor axis lengths of the particles.
  • the average particle size of the plate-like raw material powder is preferably larger from the viewpoint of high orientation of the oriented sintered body, preferably 1.5 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, and particularly preferably 15 ⁇ m or more. preferable. However, the smaller one is preferable from the viewpoint of densification, and 30 ⁇ m or less is preferable. Therefore, the average particle size is preferably 1.5 ⁇ m to 30 ⁇ m in order to achieve both high orientation and densification.
  • the plate-like raw material powder layer may be a layer of the plate-like raw material powder itself or a layer obtained by adding an additive to the plate-like raw material powder.
  • the additive examples include a sintering aid, graphite, a binder, a plasticizer, a dispersant, and a dispersion medium.
  • the plate-like raw material powder layer is arranged so that the plate surfaces of the plate-like raw material particles constituting the plate-like raw material powder are along the surface of the fine raw material powder layer.
  • the plate-like raw material powder is preferably single particles. When the particles are not single particles, the degree of orientation and the tilt angle may be deteriorated.
  • at least one of a classification process, a crushing process, and a water tank process may be employed, but it is preferable to employ all the processes.
  • the classification process and the crushing process are preferably employed when there is aggregation or the like.
  • Examples of the classification treatment include air classification.
  • Examples of the crushing treatment include pot crushing and wet atomization.
  • the varicella treatment is preferably employed when fine powder is mixed.
  • the laminate produced in the step (a) is obtained by alternately laminating fine raw material powder layers and plate-like raw material powder layers.
  • a laminated body a single-side processed body in which one side of a molded body of fine raw material powder is entirely or partially covered with a plate-like raw material powder layer is manufactured, and a laminated body is manufactured using the single-side processed body May be.
  • a double-sided processed body in which both surfaces of a molded body of fine raw material powder are entirely or partially covered with a plate-like raw material powder layer is produced, and a laminate using the double-sided processed body and an unprocessed molded body May be produced.
  • the single-sided processed body or the double-sided processed body may be produced by laminating a molded body of plate-shaped raw material powder having a thickness smaller than that of the molded body on one side or both sides of the molded body of fine raw material powder.
  • the molded body of the plate-shaped raw material powder may be formed by applying a shearing force by tape molding or printing so that the plate surface of the plate-shaped raw material particles is along the surface of the molded body.
  • the single-sided processed body or the double-sided processed body may be produced by printing, spray-coating, spin-coating, or dip-coating a dispersion of the plate-shaped raw material powder on one or both surfaces of the compact of the raw material powder.
  • the plate surfaces of the plate-like raw material particles are arranged so as to be along the surface of the molded body without forcing a shearing force.
  • the plate-like raw material particles arranged on the surface of the molded body may overlap several plate-like raw material particles, but preferably do not overlap other plate-like raw material particles.
  • the single-sided processed body When using a single-sided processed body, the single-sided processed body may be stacked so that fine raw material powder layers and plate-shaped raw material powder layers are alternately stacked. When the double-sided processed body is used, the double-sided processed body and the green processed raw material powder compact may be alternately laminated.
  • a laminated body may be produced using both a single-sided processed body and a double-sided processed body, or a laminated body may be produced using a single-sided processed body, a double-sided processed body, and an unprocessed molded body. Good.
  • the laminate is fired.
  • the firing method is not particularly limited, but pressure firing and hydrogen firing are preferable.
  • pressure firing include hot press firing and HIP firing.
  • a capsule method can also be used.
  • Pressure when the hot-press firing is preferably 50 kgf / cm 2 or more, 200 kgf / cm 2 or more is more preferable.
  • Pressure when the HIP sintering is preferably 1000 kgf / cm 2 or more, 2,000 kgf / cm 2 or more is more preferable.
  • the firing atmosphere is not particularly limited, but any one of air, an inert gas such as nitrogen and Ar, and a vacuum atmosphere is preferable, nitrogen and Ar atmosphere are particularly preferable, and nitrogen atmosphere is most preferable.
  • a fine raw material powder layer that is a layer of an aggregate of fine raw material particles and a plate-like raw material powder layer in which plate surfaces of the plate-like raw material particles are arranged along the surface of the fine raw material powder layer are alternately arranged. It is a laminated one. When the laminate is fired, the plate-like raw material particles become seed crystals (template), the fine raw material particles become a matrix, and the template grows homoepitaxially while taking in the matrix.
  • the obtained sintered body is an oriented sintered body having a high degree of orientation and a small inclination angle.
  • the degree of orientation and the inclination angle depend on the coverage with which the plate-like raw material powder covers the surface of the fine raw material powder layer. When the coverage is 1 to 60% (preferably 1 to 20%, more preferably 3 to 20%), the degree of orientation is high and the inclination angle is small. Further, the degree of orientation and the inclination angle depend on the thickness of the fine raw material powder layer. When the thickness of the fine raw material powder layer is 10 to 100 ⁇ m (more preferably 10 to 100 ⁇ m, still more preferably 20 to 60 ⁇ m), the degree of orientation is high and the inclination angle is small.
  • the degree of orientation refers to the degree of c-plane orientation obtained by the Lotgering method using an X-ray diffraction profile, and the XRC half-value width (XRC ⁇ FWHM) is used as the inclination angle.
  • the composition of the oriented polycrystalline sintered body is not particularly limited, but it is one type selected from an oriented polycrystalline alumina sintered body, an oriented polycrystalline zinc oxide sintered body, and an oriented polycrystalline aluminum nitride sintered body. preferable. Therefore, examples of the main component of the fine raw material powder and the plate-like raw material powder include alumina, ZnO, and AlN. Among these, alumina is preferable. When the main component is alumina, the firing temperature (maximum temperature reached) is preferably 1850 to 2050 ° C., more preferably 1900 to 2000 ° C.
  • the “main component” refers to a component having a mass ratio of 50% (preferably 60%, more preferably 70%, still more preferably 80%) or more in the entire powder.
  • the oriented sintered body obtained by the manufacturing method of this embodiment has a high c-plane orientation and a small tilt angle.
  • a c-plane orientation degree of 80% or more preferably 90% or more, more preferably 96% or more
  • XRC ⁇ FWHM measured using the X-ray rocking curve method is 5 ° or less (preferably 2.5 ° or less, more preferably 1.5 ° or less, and further preferably 1.0 °. The following) can be obtained.
  • a seed crystal layer made of gallium nitride is formed on the oriented polycrystalline sintered body so as to have a crystal orientation that substantially follows the crystal orientation of the oriented polycrystalline sintered body.
  • Forming so as to have a crystal orientation generally following the crystal orientation of the oriented polycrystalline sintered body means that the structure is brought about by crystal growth affected by the crystal orientation of the oriented polycrystalline sintered body. This means that the structure does not necessarily grow completely following the crystal orientation of the oriented polycrystalline sintered body, but also includes a structure that grows in a different crystal orientation from the oriented polycrystalline sintered body.
  • the method for producing the seed crystal layer is not particularly limited, but MOCVD (metal organic vapor phase epitaxy), MBE (molecular beam epitaxy), HVPE (halide vapor phase epitaxy), gas phase methods such as sputtering, Na flux method, Preferred examples include liquid phase methods such as ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof.
  • MOCVD metal organic vapor phase epitaxy
  • MBE molecular beam epitaxy
  • HVPE halide vapor phase epitaxy
  • gas phase methods such as sputtering, Na flux method
  • liquid phase methods such as ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof.
  • the formation of a seed crystal layer by MOCVD is performed by depositing a 20 to 50 nm low-temperature GaN layer at 450 to 550 ° C. and then laminating a GaN film having a
  • a layer composed of a gallium nitride-based crystal having a thickness of 20 ⁇ m or more is formed on the seed crystal layer so as to have a crystal orientation that substantially follows the crystal orientation of the seed crystal layer.
  • the method of forming a layer composed of gallium nitride-based crystals is not particularly limited as long as it has a crystal orientation that substantially follows the crystal orientation of the oriented polycrystalline sintered body and / or the seed crystal layer, and is a gas phase method such as MOCVD or HVPE.
  • Preferred examples include a liquid phase method such as Na flux method, ammonothermal method, hydrothermal method, sol-gel method, powder method utilizing solid phase growth of powder, and combinations thereof, but the Na flux method is used. Is particularly preferred.
  • a thick gallium nitride crystal layer with high crystallinity can be efficiently produced on the seed crystal layer.
  • the formation of the gallium nitride based crystal layer by the Na flux method is performed by filling a crucible provided with a seed crystal substrate with a melt composition containing metal Ga, metal Na, and optionally a dopant, and at 830 to 910 ° C. in a nitrogen atmosphere.
  • the gallium nitride crystal thus obtained by the Na flux method is ground with a grindstone to flatten the plate surface, and then the plate surface is smoothed by lapping using diamond abrasive grains.
  • a gallium nitride free-standing substrate By removing the oriented polycrystalline sintered body, a gallium nitride free-standing substrate can be obtained.
  • the method for removing the oriented polycrystalline sintered body is not particularly limited, but is spontaneous, utilizing grinding, chemical etching, interfacial heating (laser lift-off) by laser irradiation from the oriented sintered body side, and thermal expansion difference during temperature rise Exfoliation and the like.
  • a high-quality light-emitting element can be manufactured using the above-described free-standing substrate according to the present invention. As described above, high luminous efficiency can be obtained by configuring a light emitting element using the self-supporting substrate according to the present invention.
  • a light-emitting element is manufactured by providing a light-emitting functional layer on a free-standing substrate, and the formation of the light-emitting functional layer has a substantially normal direction so as to have a crystal orientation that substantially follows the crystal orientation of the free-standing substrate.
  • a light-emitting element may be manufactured by using a polycrystalline free-standing substrate as a member or layer other than a substrate such as an electrode (which may be a p-type electrode or an n-type electrode), a p-type layer, or an n-type layer.
  • the element size is not particularly limited, and may be a small element of 5 mm ⁇ 5 mm or less, or a surface light emitting element of 10 cm ⁇ 10 cm or more.
  • FIG. 1 schematically shows a layer structure of a light-emitting element according to one embodiment of the present invention.
  • a light emitting device 10 shown in FIG. 1 includes a self-supporting substrate 12 and a light emitting functional layer 14 formed on the substrate.
  • the light emitting functional layer 14 has one or more layers composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction.
  • the light-emitting functional layer 14 emits light based on the principle of a light-emitting element such as an LED by appropriately providing electrodes and applying a voltage.
  • the polycrystalline gallium nitride free-standing substrate 12 of the present invention it can be expected to obtain a light-emitting element having a light emission efficiency equivalent to that when a single-crystal substrate is used, and a significant cost reduction can be realized.
  • a group 13 element nitride imparted with conductivity by introducing a p-type or n-type dopant as a self-supporting substrate a light-emitting element having a vertical structure can be realized, thereby improving luminance. it can.
  • a large area surface light emitting device can be realized at low cost.
  • a light emitting functional layer 14 is formed on the substrate 12.
  • the light emitting functional layer 14 may be provided on the entire surface or a part of the substrate 12, or may be provided on the entire surface or a part of the buffer layer when a buffer layer described later is formed on the substrate 12. Good.
  • the light-emitting functional layer 14 has one or more layers composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction, and is appropriately provided with electrodes and / or phosphors to apply a voltage. Therefore, it is possible to adopt various known layer configurations that cause light emission based on the principle of a light emitting element typified by an LED. Therefore, the light emitting functional layer 14 may emit visible light such as blue and red, or may emit ultraviolet light without visible light or with visible light.
  • the light emitting functional layer 14 preferably constitutes at least a part of a light emitting element using a pn junction, and the pn junction includes a p-type layer 14a and an n-type layer 14c as shown in FIG.
  • the active layer 14b may be included in between.
  • a double heterojunction or a single heterojunction (hereinafter collectively referred to as a heterojunction) using a layer having a smaller band gap than the p-type layer and / or the n-type layer as the active layer may be used.
  • a quantum well structure in which the active layer is thin can be adopted as one form of the p-type layer-active layer-n-type layer.
  • the light emitting functional layer 14 preferably includes a pn junction and / or a heterojunction and / or a quantum well junction having a light emitting function.
  • At least one layer constituting the light emitting functional layer 14 is at least selected from the group consisting of an n-type layer doped with an n-type dopant, a p-type layer doped with a p-type dopant, and an active layer.
  • an n-type layer, the p-type layer, and the active layer may be composed of the same material as the main component, or may be composed of materials whose main components are different from each other.
  • each layer constituting the light emitting functional layer 14 is not particularly limited as long as it grows substantially following the crystal orientation of the free-standing substrate and has a light emitting function, but gallium nitride (GaN) -based material, zinc oxide (ZnO) It is preferably composed of a material mainly composed of at least one selected from a system material and an aluminum nitride (AlN) system material, and appropriately contains a dopant for controlling p-type or n-type. Good.
  • a particularly preferable material is a gallium nitride (GaN) -based material, which is the same kind of material as a free-standing substrate.
  • the material constituting the light emitting functional layer 14 may be a mixed crystal in which, for example, AlN, InN or the like is dissolved in GaN in order to control the band gap.
  • the light emitting functional layer 14 may be a heterojunction made of a plurality of types of materials. For example, a gallium nitride (GaN) -based material may be used for the p-type layer, and a zinc oxide (ZnO) -based material may be used for the n-type layer.
  • GaN gallium nitride
  • ZnO zinc oxide
  • a zinc oxide (ZnO) -based material may be used for the p-type layer
  • a gallium nitride (GaN) -based material may be used for the active layer and the n-type layer, and the combination of materials is not particularly limited.
  • Each layer constituting the light emitting functional layer 14 is composed of a plurality of semiconductor single crystal particles having a single crystal structure in a substantially normal direction. That is, each layer is composed of a plurality of semiconductor single crystal particles that are two-dimensionally connected in the horizontal plane direction, and therefore has a single crystal structure in a substantially normal direction. Therefore, each layer of the light emitting functional layer 14 is not a single crystal as a whole, but has a single crystal structure in a local domain unit, and thus can have high crystallinity sufficient to ensure a light emitting function. .
  • the semiconductor single crystal particles constituting each layer of the light emitting functional layer 14 have a structure grown substantially following the crystal orientation of the free-standing substrate which is the substrate 12. “The structure grown roughly following the crystal orientation of a freestanding substrate made of polycrystalline group 13 element nitride” was brought about by the crystal growth affected by the crystal orientation of the polycrystalline group 13 element nitride freestanding substrate. This means that the structure does not necessarily grow completely following the crystal orientation of the free-standing substrate, and as long as the desired light-emitting function can be ensured, the structure grows to some extent according to the crystal orientation of the free-standing substrate. Good. That is, this structure includes a structure that grows in a different crystal orientation from the oriented polycrystalline sintered body.
  • the expression “a structure grown substantially following the crystal orientation” can be rephrased as “a structure grown substantially derived from the crystal orientation”. Therefore, although such crystal growth is preferably by epitaxial growth, it is not limited to this, and various forms of crystal growth similar thereto may be used.
  • the crystal orientation is substantially uniform with respect to the normal direction from the self-supporting substrate to each layer of the light emitting functional layer. Thus, good light emission characteristics can be obtained. That is, when the light emitting functional layer 14 also grows substantially following the crystal orientation of the freestanding substrate 12, the orientation is substantially constant in the vertical direction of the substrate.
  • the normal direction is the same as that of a single crystal, and when a self-supporting substrate to which an n-type dopant is added is used, a light-emitting element having a vertical structure using the self-supporting substrate as a cathode can be obtained.
  • a polycrystalline gallium nitride free-standing substrate to which is added is used, a light-emitting element having a vertical structure using the free-standing substrate as an anode can be obtained.
  • each layer of the light-emitting functional layer 14 is a single crystal when viewed in the normal direction. It can also be regarded as an aggregate of columnar-structured semiconductor single crystal particles that are observed and viewed from a cut surface in the horizontal plane direction.
  • the “columnar structure” does not mean only a typical vertically long column shape, but includes various shapes such as a horizontally long shape, a trapezoidal shape, and a shape in which the trapezoid is inverted. Defined as meaning.
  • each layer has only to have a structure grown to some extent along the crystal orientation of the free-standing substrate, and does not necessarily have a columnar structure in a strict sense.
  • the cause of the columnar structure is considered to be that the semiconductor single crystal particles grow under the influence of the crystal orientation of the freestanding substrate 12 as described above.
  • the average particle diameter of the cross section of the semiconductor single crystal particles which can be said to be a columnar structure (hereinafter referred to as the average diameter of the cross section) depends not only on the film forming conditions but also on the average particle diameter of the plate surface of the self-standing substrate. .
  • the interface of the columnar structure constituting the light emitting functional layer affects the light emission efficiency and the light emission wavelength, but due to the presence of the grain boundary, the light transmittance in the cross-sectional direction is poor, and the light is scattered or reflected. For this reason, in the case of a structure in which light is extracted in the normal direction, an effect of increasing the luminance by scattered light from the grain boundary is also expected.
  • the cross-sectional average diameter of the columnar structure is larger.
  • the cross-sectional average diameter of the semiconductor single crystal particles on the outermost surface of the light emitting functional layer 14 is 10 ⁇ m or more, more preferably 15 ⁇ m or more, further preferably 20 ⁇ m or more, particularly preferably 50 ⁇ m or more, and most preferably 70 ⁇ m or more.
  • the upper limit of the average cross-sectional diameter is not particularly limited, but is practically 1000 ⁇ m or less, more realistically 500 ⁇ m or less, and more realistically 200 ⁇ m or less.
  • the average cross-sectional diameter of the single crystal particles constituting the self-supporting substrate is preferably 10 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m. That's it.
  • a buffer layer for suppressing the reaction may be provided between the free-standing substrate 12 and the light emitting functional layer 14.
  • the main component of such a buffer layer is not particularly limited, but it is preferably composed of a material mainly containing at least one selected from a zinc oxide (ZnO) -based material and an aluminum nitride (AlN) -based material.
  • ZnO zinc oxide
  • AlN aluminum nitride
  • a dopant for controlling p-type to n-type may be included as appropriate.
  • each layer constituting the light emitting functional layer 14 is composed of a group 13 element nitride.
  • an n-type gallium nitride layer and a p-type gallium nitride layer may be grown in order on the free-standing substrate 12, and the stacking order of the p-type gallium nitride layer and the n-type gallium nitride layer may be reversed.
  • the p-type dopant used for the p-type gallium nitride layer include a group consisting of beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn), and cadmium (Cd).
  • n-type dopant used for the n-type gallium nitride layer at least one selected from the group consisting of silicon (Si), germanium (Ge), tin (Sn), and oxygen (O) is used.
  • Si silicon
  • Ge germanium
  • Sn tin
  • O oxygen
  • the p-type gallium nitride layer and / or the n-type gallium nitride layer may be made of gallium nitride mixed with one or more kinds of crystals selected from the group consisting of AlN and InN.
  • the mixed gallium nitride may be doped with a p-type dopant or an n-type dopant.
  • a p-type dopant or an n-type dopant.
  • AlxGa1-xN which is a mixed crystal of gallium nitride and AlN, can be used as a p-type layer by doping Mg, and AlxGa1-xN can be used as an n-type layer by doping Si.
  • gallium nitride is mixed with AlN, the band gap is widened, and the emission wavelength can be shifted to a higher energy side.
  • gallium nitride may be mixed with InN, whereby the band gap is narrowed and the emission wavelength can be shifted to a lower energy side.
  • the p-type gallium nitride layer and the n-type gallium nitride layer it is composed of a mixed crystal of GaN with one or more selected from the group consisting of GaN or AlN and InN having a smaller band gap than both layers.
  • You may have an active layer at least.
  • the active layer has a double heterojunction structure with a p-type layer and an n-type layer, and the thinned structure of the active layer corresponds to a light emitting device having a quantum well structure which is an embodiment of a pn junction, and has a luminous efficiency.
  • the active layer may be made of a mixed crystal of GaN having one or more selected from the group consisting of GaN or AlN and InN having a smaller band gap than either one of the two layers. Even in such a single heterojunction, the luminous efficiency can be further increased.
  • the gallium nitride buffer layer may be made of non-doped GaN, n-type or p-type doped GaN, and selected from the group consisting of AlN, InN, or GaN, AlN, and InN having a close lattice constant. It may be mixed with one or more kinds of crystals.
  • the light emitting functional layer 14 may be composed of a plurality of material systems selected from gallium nitride (GaN) -based materials, zinc oxide (ZnO) -based materials, and aluminum nitride (AlN) -based materials.
  • GaN gallium nitride
  • ZnO zinc oxide
  • AlN aluminum nitride
  • a p-type gallium nitride layer and an n-type zinc oxide layer may be grown on the polycrystalline gallium nitride free-standing substrate 12, and the stacking order of the p-type gallium nitride layer and the n-type zinc oxide layer may be reversed.
  • an n-type or p-type zinc oxide layer may be formed.
  • the p-type dopant used for the p-type zinc oxide layer include nitrogen (N), phosphorus (P), arsenic (As), carbon (C), lithium (Li), sodium (Na), potassium ( K), one or more selected from the group consisting of silver (Ag) and copper (Cu).
  • n-type dopant used for the n-type zinc oxide layer include aluminum (Al), gallium (Ga), indium (In), boron (B), fluorine (F), chlorine (Cl), One or more selected from the group consisting of bromine (Br), iodine (I), and silicon (Si) may be mentioned.
  • the film formation method of the light emitting functional layer 14 and the buffer layer is not particularly limited as long as it is a method of growing substantially following the crystal orientation of the polycrystalline gallium nitride free-standing substrate, but a vapor phase method such as MOCVD, MBE, HVPE, sputtering, Preferred examples include a liquid phase method such as a Na flux method, an ammonothermal method, a hydrothermal method, and a sol-gel method, a powder method using solid phase growth of powder, and a combination thereof.
  • a vapor phase method such as MOCVD, MBE, HVPE, sputtering
  • Preferred examples include a liquid phase method such as a Na flux method, an ammonothermal method, a hydrothermal method, and a sol-gel method, a powder method using solid phase growth of powder, and a combination thereof.
  • a gas for example, ammonia
  • an organometallic gas for example, trimethyl gallium
  • gallium (Ga) and nitrogen (N) On the substrate as a raw material and grown in a temperature range of about 300 to 1200 ° C. in an atmosphere containing hydrogen, nitrogen, or both.
  • organometallic gases containing indium (In), aluminum (Al), silicon (Si) and magnesium (Mg) as n-type and p-type dopants for example, trimethylindium, trimethylaluminum, monosilane, disilane) Bis-cyclopentadienylmagnesium
  • n-type and p-type dopants for example, trimethylindium, trimethylaluminum, monosilane, disilane
  • Bis-cyclopentadienylmagnesium may be appropriately introduced to form a film.
  • a seed crystal layer may be formed on a free-standing substrate.
  • any method may be used as long as it promotes crystal growth substantially following the crystal orientation.
  • a zinc oxide-based material is used for a part or all of the light emitting functional layer 14
  • an ultrathin zinc oxide seed crystal is prepared by vapor phase growth methods such as MOCVD, MBE, HVPE, and sputtering. May be.
  • the electrode layer 16 and / or the phosphor layer may be further provided on the light emitting functional layer 14.
  • the electrode layer 18 is also provided on the bottom surface of the free-standing substrate 12 as shown in FIG.
  • the free-standing substrate 12 may be used as the electrode itself. In that case, it is preferable that an n-type dopant is added to the free-standing substrate 12.
  • the electrode layers 16 and 18 may be made of a known electrode material.
  • the electrode layer 16 on the light emitting functional layer 14 is a transparent conductive film such as ITO, or a metal electrode having a high aperture ratio such as a lattice structure, This is preferable in that the extraction efficiency of light generated in the light emitting functional layer 14 can be increased.
  • a phosphor layer for converting ultraviolet light into visible light may be provided outside the electrode layer.
  • the phosphor layer is not particularly limited as long as it includes a known fluorescent component capable of converting ultraviolet light into visible light.
  • a fluorescent component that emits blue light when excited by ultraviolet light a fluorescent component that emits blue to green fluorescence when excited by ultraviolet light, and a fluorescent component that emits red light when excited by ultraviolet light are mixed. It is preferable that the white color is obtained as a mixed color.
  • Preferred combinations of such fluorescent components include (Ca, Sr) 5 (PO 4 ) 3 Cl: Eu, BaMgAl 10 O 17 : Eu, and Mn, Y 2 O 3 S: Eu.
  • the phosphor layer is preferably formed by dispersing in a resin such as a resin.
  • a fluorescent component is not limited to the above-exemplified substances, but may be a combination of other ultraviolet light-excited phosphors such as yttrium aluminum garnet (YAG), silicate phosphors, and oxynitride phosphors. .
  • a phosphor layer for converting blue light into yellow light may be provided outside the electrode layer.
  • the phosphor layer is not particularly limited as long as it includes a known fluorescent component capable of converting blue light into yellow light. For example, it may be combined with a phosphor emitting yellow light such as YAG. By doing in this way, since blue light emission which permeate
  • the phosphor layer includes both a fluorescent component that converts blue light into yellow and a fluorescent component that converts ultraviolet light into visible light, thereby converting ultraviolet light into visible light and blue light yellow. It is good also as a structure which performs both conversion to light.
  • the self-supporting substrate of the present invention can be preferably used for various applications such as various electronic devices, power devices, light receiving elements, solar cell wafers as well as the above-described light emitting elements.
  • the Rms value increases as the pit size increases and the frequency of pits increases. That is, from the viewpoint of improving the yield of devices manufactured on a gallium nitride free-standing substrate, it is preferable that the pits have a small size and a low frequency. In other words, the Rms value is preferably small from the viewpoint of improving the yield of devices manufactured on a gallium nitride free-standing substrate. As a result of the study by the present inventors, it was found that when Rms is 3.0 nm or less, a semiconductor device can be manufactured with a good yield.
  • the concentration of Ca and Zn contained in the gallium nitride free-standing substrate was measured by SIMS (secondary ion mass spectrometry). Specifically, using an IMS-7f apparatus manufactured by CAMECA, using O 2 + or Cs + as a primary ion species, and accelerating voltage 5 kV to 15 kV, a depth of 3 ⁇ m from the surface in a region of 20 ⁇ 20 ⁇ m or ⁇ 30 ⁇ m. The SIMS measurement was performed, and the concentrations of Ca and Zn contained in the gallium nitride crystal were measured.
  • SIMS secondary ion mass spectrometry
  • the specific resistance was measured by the Hall measurement method or the two-terminal method.
  • a sample for measuring specific resistance was polished to a size of 6 mm ⁇ 6 mm ⁇ 0.35 mm, and then an ohmic electrode (Ti / Al) for measuring electrical characteristics was formed by a vacuum deposition method.
  • an ohmic electrode Ti / Al
  • electrodes were formed at the four corners of the surface, and in the case of the two-terminal method, electrodes were formed on both the front and back surfaces, and measurement was performed at room temperature.
  • the amount of the dispersion medium was adjusted so that the slurry viscosity was 20000 cP.
  • the slurry thus prepared was molded into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 40 ⁇ m, and a fine alumina powder layer was formed.
  • a commercially available plate-like alumina powder (manufactured by Kinsei Matech, grade YFA10030) was classified with an airflow classifier (TC-15N, manufactured by Nisshin Engineering) at a classification point of 3 ⁇ m.
  • the plate-like alumina powder from which coarse particles were removed in this way was crushed with a cobblestone having a diameter of 0.3 mm for 20 hours with a pot crusher, and finally the fine powder was removed with a water tank.
  • 500 parts by mass of isopropyl alcohol was added as a dispersion medium.
  • the obtained dispersion (plate-like alumina slurry) was dispersed with an ultrasonic disperser for 5 minutes, and then sprayed with a spray gun (Tamiya Spray Work HG Airbrush Wide) at a spray pressure of 0.2 MPa and a spray distance of 20 cm.
  • the fine alumina powder layer was sprayed on one side to obtain a single-side processed body. At this time, the coverage of the surface of the fine alumina powder layer covered with the plate-like alumina powder was 1%.
  • the coverage of the single-sided processed body was calculated as follows. That is, the surface of the fine alumina powder layer is observed with an optical microscope, and this observation photograph is separated into a plate-like alumina powder portion and the other by image processing, and the plate-like alumina powder with respect to the area of the fine alumina powder layer surface in the observation photograph The area ratio was defined as the coverage
  • the obtained single-sided processed body was cut into a circle with a diameter of 60 mm, then peeled off from the PET film, laminated in 65 layers so that the sprayed processed surfaces do not overlap, and placed on an Al plate having a thickness of 10 mm, and then packaged. It was made into a vacuum pack by putting the inside into a vacuum and making the inside vacuum. This vacuum pack was hydrostatically pressed at a pressure of 100 kgf / cm 2 in 85 ° C. warm water to obtain a laminate.
  • the obtained laminate was placed in a degreasing furnace and degreased at 600 ° C. for 10 hours.
  • the obtained degreased body was fired in a nitrogen mold using a graphite mold at a firing temperature (maximum temperature) of 1975 ° C. for 4 hours under a surface pressure of 200 kgf / cm 2 to obtain an alumina sintered body. Obtained.
  • the press pressure was maintained up to 1200 ° C., and the press pressure was released to zero in the temperature range below 1200 ° C.
  • the sintered body thus obtained was fixed to a ceramic surface plate and ground to # 2000 using a grindstone to flatten the plate surface.
  • the surface of the plate was smoothed by lapping using diamond abrasive grains, and an oriented alumina sintered body having a diameter of 60 mm and a thickness of 0.5 mm was obtained as an oriented alumina substrate.
  • the flatness was improved while gradually reducing the size of the abrasive grains from 3 ⁇ m to 0.5 ⁇ m.
  • the average roughness Ra after processing was 4 nm.
  • a seed crystal layer was formed on the processed oriented alumina substrate by using the MOCVD method. More specifically, after depositing a low-temperature GaN layer of 30 nm in a hydrogen atmosphere as a buffer layer at a susceptor temperature of 530 ° C., the temperature is raised to a susceptor temperature of 1050 ° C. in a nitrogen / hydrogen atmosphere, and GaN having a thickness of 3 ⁇ m. A film was laminated to obtain a seed crystal substrate.
  • the alumina crucible was placed on a table that can rotate the crystal growth furnace.
  • a gallium nitride crystal was grown while stirring by rotating the solution while maintaining the temperature at 870 ° C. and 3.5 MPa in a nitrogen atmosphere for 100 hours.
  • After completion of the crystal growth it was gradually cooled to room temperature over 3 hours, and the growth vessel was taken out of the crystal growth furnace.
  • the melt composition remaining in the crucible was removed using ethanol, and the sample on which the gallium nitride crystal was grown was collected. In the obtained sample, a Ge-doped gallium nitride crystal was grown on the entire surface of a 60 mm seed crystal substrate, and the thickness of the crystal was about 1.4 mm. Cracks were not confirmed.
  • the oriented alumina substrate portion of the sample thus obtained was removed by grinding with a grindstone to obtain a Ge-doped gallium nitride simple substance.
  • the plate surface of the Ge-doped gallium nitride crystal is ground with a # 600 and # 2000 grindstone to flatten the plate surface, and then smoothed by lapping using diamond abrasive grains to form a Ge surface having a thickness of about 300 ⁇ m.
  • a doped gallium nitride free-standing substrate was obtained.
  • the flatness was improved while gradually reducing the size of the abrasive grains from 3 ⁇ m to 0.1 ⁇ m.
  • the average roughness Ra after processing of the surface of the gallium nitride free-standing substrate was 0.2 nm.
  • the average cross-sectional diameter of the GaN single crystal particles on the outermost surface of the gallium nitride free-standing substrate was used. As a result, the average cross-sectional diameter was about 140 ⁇ m.
  • a Ni / Au film was patterned on the p-type layer as a light-transmitting anode electrode to a thickness of 6 nm and 12 nm, respectively. Thereafter, a heat treatment at 500 ° C. was performed for 30 seconds in a nitrogen atmosphere in order to improve the ohmic contact characteristics. Further, by using a photolithography process and a vacuum deposition method, a Ni / Au film serving as an anode electrode pad is formed to a thickness of 5 nm and 60 nm on a partial region of the upper surface of the Ni / Au film serving as a light-transmitting anode electrode, respectively. Patterned. The wafer thus obtained was cut into chips and mounted on a lead frame to obtain a light emitting device having a vertical structure.
  • Example 1 Ge-doped gallium nitride free-standing substrate containing Ca
  • Example 2 Zn-containing gallium nitride free-standing substrate
  • Rms was calculated in an observation field of view of 1.4 mm ⁇ 1.05 mm, and was 23 nm.
  • the cross-sectional average diameter was calculated from the image of a scanning electron microscope, it was about 130 ⁇ m.
  • Example 3 Ca-containing gallium nitride free-standing substrate
  • An oriented alumina substrate was produced in the same manner as in Reference Example 1, and a seed crystal layer was formed using MOCVD.
  • Table 1 shows the Ca concentration, Zn concentration, Ca concentration, and Zn concentration in the crystal.
  • Table 2 shows the presence / absence of cracks, cross-sectional average diameter, pits, Rms, rectification of elements, and specific resistance.
  • Example 2 (Examples 4, 5, and 6)
  • concentration of Zn added to the melt was variously changed as shown in Table 3.
  • Table 3 shows the Zn concentration in the melt, the Zn concentration in the crystal, the presence or absence of cracks, the cross-sectional average diameter, pits, Rms, and specific resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】略法線方向で特定結晶方位に配向した複数の単結晶粒子で構成される多結晶13族元素窒化物自立基板において、自立基板の上面におけるピットを低減する。 【解決手段】自立基板12は、略法線方向で特定結晶方位に配向した複数の単結晶粒子で構成される。多結晶13族元素窒化物が窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶からなり、前記自立基板が上面及び底面を有しており、亜鉛とカルシウムとの少なくとも一方を含有しており、自立基板の上面の二乗平均粗さRmsが3.0nm以下である。

Description

多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
 本発明は、多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子に関する。
 単結晶基板を用いた発光ダイオード(LED)等の発光素子として、サファイア(α-アルミナ単結晶)上に各種窒化ガリウム(GaN)層を形成したものが知られている。例えば、サファイア基板上に、n型GaN層、InGaN層からなる量子井戸層とGaN層からなる障壁層とが交互積層された多重量子井戸層(MQW)、及びp型GaN層が順に積層形成された構造を有するものが量産化されている。また、このような用途に適した積層基板も提案されている。例えば、特許文献1には、サファイア下地基板と、該基板上に結晶成長せしめて形成された窒化ガリウム結晶層とを含む、窒化ガリウム結晶積層基板が提案されている。
 もっとも、サファイア基板上にGaN層を形成する場合、GaN層は異種基板であるサファイアとの間で格子定数及び熱膨張率が一致しないため転位を生じやすい。また、サファイアは絶縁性材料であるため、その表面に電極を形成することができず、それ故、素子の表裏に電極を備えた縦型構造の発光素子を構成できない。そこで、窒化ガリウム(GaN)単結晶上に各種GaN層を形成したLEDが注目されている。GaN単結晶基板であれば、GaN層と同種の材質であることから、格子定数及び熱膨張率が整合しやすく、サファイア基板を用いる場合よりも性能向上が期待できる。例えば、特許文献2には、厚みが200μm以上の自立したn型窒化ガリウム単結晶基板が開示されている。
 しかしながら、単結晶基板は一般的に面積が小さく且つ高価なものである。特に、大面積基板を用いたLED製造の低コスト化が求められてきているが、大面積の単結晶基板を量産することは容易なことではなく、その製造コストはさらに高くなる。そこで、窒化ガリウム等の単結晶基板の代替材料となりうる安価な材料が望まれる。かかる要求を満たす多結晶窒化ガリウム自立基板が提案されている。例えば、特許文献4には、略法線方向で特定結晶方位に配向した複数の窒化ガリウム系単結晶粒子で構成される多結晶窒化ガリウム自立基板が開示されている。また、特許文献3には略法線方向で特定結晶方位に配向した複数の窒化ガリウム系単結晶粒子で構成される多結晶窒化ガリウム自立基板であって、基板表面の電子線後方散乱回折法(EBSD)の逆極点図マッピングによって測定した各窒化ガリウム系単結晶粒子の結晶方位が特定結晶方位から様々な角度で傾斜して分布し、その平均傾斜角が1~10°であることが記載されている。
 特許文献3は、基板を構成する多結晶粒子の傾き角度(チルト角)を1°~10°に制御した配向GaN自立基板および発光素子を提供する。この発明は、基板表面の欠陥密度を低減可能な多結晶窒化ガリウム自立基板を提供し、多結晶窒化ガリウム自立基板を用いて高い発光効率が得られる発光素子を提供する。
 特許文献5は、高抵抗かつ低欠陥であるZnドープGaN結晶およびその製法を提供する。結晶成長方法としてNaフラックス法を用い、フラックス中にZnを添加してGaN単結晶を結晶成長させる。
 特許文献6は、窒化ガリウム単結晶の製造方法を提供する。Naと、アルカリまたはアルカリ土類金属からなる混合フラックス中で、ガリウムと窒素を反応させて窒化ガリウム単結晶を製造する。ただし、特許文献5、6は単結晶の育成を目的とするものである。
特開2012-184144 特開2010-132556 WO 2015/151902A1 特許5770905 特許5039813 特許4001170
 配向多結晶焼結体上に例えばフラックス法で窒化ガリウム結晶をエピタキシャル成長させる場合、隣接する多結晶粒子の間に隙間を生じやすい。こうした隙間があると、加工後のウエハー表面に穴(ピット)が発生し、窒化ガリウム結晶上にLEDなどのデバイスを作製すると、電流リークなどの不良原因となり、歩留まり低下の原因になる。隙間のない部分でデバイスを作製すれば問題は起きないが、デバイスサイズが大きくなるにつれて、隙間を完全に避けるのが困難になり、デバイスの歩留まり低下の原因となる。
 本発明の課題は、略法線方向で特定結晶方位に配向した複数の単結晶粒子で構成される多結晶13族元素窒化物自立基板において、自立基板の上面におけるピットを低減することである。
 本発明は、略法線方向で特定結晶方位に配向した複数の単結晶粒子で構成される多結晶13族元素窒化物からなる自立基板であって、
 前記多結晶13族元素窒化物が窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶からなり、前記自立基板が上面及び底面を有しており、亜鉛とカルシウムとの少なくとも一方を含有しており、前記上面の二乗平均粗さRmsが3.0nm以下であることを特徴とする。
 また、本発明は、前記自立基板、および
 自立基板上に形成され、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一以上有する発光機能層を備えた、発光素子に係るものである。
 例えばフラックス法で13族元素窒化物を液相エピタキシャル成長させるのに際して、フラックス中に種々の元素を添加して、成長した配向13族元素窒化物結晶の緻密度を評価してみた。評価方法としては、配向13族元素窒化物の上面を研磨加工し、最表面に開口したピットの頻度およびサイズを光学顕微鏡で観測すると共に、上面の二乗平均粗さRmsを計測した。
 この結果、配向13族元素窒化物結晶に亜鉛とカルシウムとの少なくとも一方を含有させた場合に、結晶の緻密度が向上し、表面のピットが少なくなり、二乗平均粗さRmsが低下することが判明した。配向13族元素窒化物結晶に亜鉛やカルシウムを含有させた場合にピットが低減されるメカニズムは明確ではない。しかし、亜鉛やカルシウムを含有させた場合は、配向13族元素窒化物の結晶粒径が、何も添加しない場合や、他の元素(リチウム、ゲルマニウムなど)を含有させた場合と比較して大きくなっている。このことから、結晶粒子の側面方向への結晶成長が促進され、結晶粒子間の隙間が埋められている可能性も考えられる。
 そして、本発明によって、配向13族元素窒化物結晶からなる自立基板の上面のピット数が減るため、これを下地基板にした半導体デバイス(LEDやパワーデバイスなど)の不良が抑制され、歩留まりが向上する。また、自立基板内の空隙が減少するため、光散乱が抑制され、光デバイスなどのデバイスを作製する場合の性能が向上する。
本発明の自立基板を用いて作製された縦型発光素子の一例を示す模式断面図である。 参考例1での多結晶13族元素窒化物の上面の状態を示す走査型電子顕微鏡写真である。 実施例1での多結晶13族元素窒化物の上面の状態を示す走査型電子顕微鏡写真である。 実施例2での多結晶13族元素窒化物の上面の状態を示す走査型電子顕微鏡写真である。 参考例2での多結晶13族元素窒化物の上面の状態を示す走査型電子顕微鏡写真である。 参考例3での多結晶13族元素窒化物の上面の状態を示す走査型電子顕微鏡写真である。
(多結晶13族元素窒化物からなる自立基板)
 本発明の13族元素窒化物基板は自立基板の形態を有しうる。本発明において「自立基板」とは、取り扱う際に自重で変形又は破損せず、固形物として取り扱うことのできる基板を意味する。本発明の自立基板は発光素子等の各種半導体デバイスの基板として使用可能であるが、それ以外にも、電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として使用可能なものである。なお、以下の説明においては、主たる用途の一つである発光素子を例に本発明の利点を記述することがあるが、同様ないし類似の利点は技術的整合性を損なわない範囲内で他の半導体デバイスにも当てはまる。
 本発明の自立基板は、略法線方向で特定結晶方位に配向した複数の13族元素窒化物の単結晶粒子で構成されており、上面及び底面を有する。
 好ましくは、自立基板の上面に露出している単結晶粒子の最表面における断面平均径DTが10μm以上である。
 自立基板を構成する複数の単結晶粒子は、略法線方向で特定結晶方位に配向してなる。特定結晶方位は、13族元素窒化物結晶の有しうるいかなる結晶方位(例えばc面、a面等)であってもよい。例えば、複数の単結晶粒子が略法線方向でc面に配向している場合、基板上面の各構成粒子はc軸を略法線方向に向けて(すなわちc面を基板上面に露出させて)配置されることとなる。
 自立基板は、略法線方向に単結晶構造を有するのが好ましい。この場合、自立基板は、略法線方向に単結晶構造を有する複数の単結晶粒子で構成される板からなるということができる。すなわち、自立基板は、水平面方向に二次元的に連結されてなる複数の単結晶粒子で構成されており、それ故、略法線方向には単結晶構造を有しうる。したがって、自立基板は、全体としては単結晶ではないものの、局所的なドメイン単位では単結晶構造を有する。このような構成とすることで、発光機能や太陽電池等のデバイスを作製した場合に十分な特性を得ることができる。この理由は定かではないが、多結晶窒化ガリウム基板の透光性や光の取り出し効率による効果と考えられる。
 また、p型ないしn型ドーパントの導入により導電性を持たせた窒化ガリウムを基板とすることで、縦型構造の発光素子を実現することができ、それにより輝度を高めることができる。その上、面発光照明等に用いられる大面積な面発光素子も低コストで実現可能となる。
 特に、本態様の自立基板を用いて縦型LED構造を作製する場合、自立基板を構成する複数の単結晶粒子が略法線方向に単結晶構造を有するため、電流パス中に高抵抗な粒界が存在しなくなり、その結果、好ましい発光効率が見込まれる。この点、法線方向にも粒界が存在する配向多結晶基板の場合には、縦型構造としても電流パス上に高抵抗な粒界が存在するため、発光効率が低くなるおそれがある。これらの観点から、本態様の自立基板は縦型LED構造にも好ましく用いることができる。また、電流パス中に粒界が存在しないことから、このような発光デバイスだけでなく、パワーデバイスや太陽電池等にも適用できる。
 好ましくは、自立基板を構成する複数の単結晶粒子は、略法線方向に概ね揃った結晶方位を有する。「略法線方向に概ね揃った結晶方位」とは、必ずしも法線方向に完全に揃った結晶方位とは限らず、自立基板を用いた発光素子等のデバイスが所望のデバイス特性を確保できるかぎり、法線ないしそれに類する方向にある程度揃った結晶方位であってよいことを意味する。製法由来の表現をすれば、単結晶粒子は、自立基板の製造の際に下地基材として使用した配向多結晶焼結体の結晶方位に概ね倣って成長した構造を有するともいえる。「配向多結晶焼結体の結晶方位に概ね倣って成長した構造」とは、配向多結晶焼結体の結晶方位の影響を受けた結晶成長によりもたらされた構造を意味し、必ずしも配向多結晶焼結体の結晶方位に完全に倣って成長した構造であるとは限らず、自立基板を用いた発光素子等のデバイスが所望のデバイス特性を確保できるかぎり、配向多結晶焼結体の結晶方位にある程度倣って成長した構造であってよい。すなわち、この構造は配向多結晶焼結体と異なる結晶方位に成長する構造も含む。
 その意味で、「結晶方位に概ね倣って成長した構造」との表現は「結晶方位に概ね由来して成長した構造」と言い換えることもでき、この言い換え及び上記意味は本明細書中の同種の表現に同様に当てはまる。したがって、そのような結晶成長はエピタキシャル成長によるものが好ましいが、これに限定されず、それに類する様々な結晶成長の形態であってもよい。いずれにしても、このように成長することで、自立基板は略法線方向に関しては結晶方位が概ね揃った構造とすることができる。
 好ましくは、自立基板は、上面及び底面を有し、上面の電子線後方散乱回折法(EBSD)の逆極点図マッピングによって測定した各窒化ガリウム系単結晶粒子の結晶方位が特定結晶方位(例えばc軸、a軸等の方位)から様々な角度で傾斜して分布し、その平均傾斜角が0.1°以上であり、また10°以下である。
 なお、自立基板の基板上面(板面)と直交する断面の電子線後方散乱回折法(EBSD)の逆極点図マッピングを測定した場合においても、自立基板を構成する単結晶粒子の結晶方位は略法線方向で特定結晶方位に配向していることが確認可能である。しかし、基板法線方向と直交する板面方向では無配向である。即ち、単結晶粒子は略法線方向にのみ結晶方位が配向した構造であり、略法線方向を軸とした単結晶粒子のツイスト(結晶軸の回転)分布はランダムである。このような構造とすることで、自立基板を用いて発光機能や太陽電池等のデバイスを作製した場合に十分な特性を得ることができる。この理由は定かではないが、光の取り出し効率による効果と考えられる。
 したがって、上記態様による自立基板は、法線方向に見た場合に単結晶と観察され、水平面方向の切断面で見た場合に粒界が観察される柱状構造の単結晶粒子の集合体であると捉えることも可能である。ここで、「柱状構造」とは、典型的な縦長の柱形状のみを意味するのではなく、横長の形状、台形の形状、及び台形を逆さにしたような形状等、種々の形状を包含する意味として定義される。もっとも、上述のとおり、自立基板は法線ないしそれに類する方向にある程度揃った結晶方位を有する構造であればよく、必ずしも厳密な意味で柱状構造である必要はない。柱状構造となる原因は、前述のとおり、自立基板の製造に用いられる配向多結晶焼結体の結晶方位の影響を受けて単結晶粒子が成長するためと考えられる。このため、柱状構造ともいえる単結晶粒子の断面の平均粒径(以下、断面平均径という)は成膜条件だけでなく、配向多結晶焼結体の板面の平均粒径にも依存するものと考えられる。自立基板を発光素子の発光機能層の一部として用いる場合、粒界があることにより断面方向の光の透過率が悪く、光が散乱ないし反射する。このため、法線方向に光を取り出す構造の発光素子の場合、粒界からの散乱光により輝度が高まる効果も期待される。
 上述したとおり、本発明の自立基板を用いて縦型LED構造とする場合、発光機能層が形成されることになる自立基板上面と、電極が形成されることになる自立基板底面とは粒界を介さずに連通していることが好ましい。すなわち、自立基板の上面に露出している単結晶粒子が、自立基板の底面に粒界を介さずに連通してなるのが好ましい。粒界が存在すると通電時に抵抗をもたらすため、発光効率を低下させる要因となる。
 ところで、自立基板の上面に露出している単結晶粒子の最表面における断面平均径DTは、自立基板の底面に露出している単結晶粒子の最表面における断面平均径DBと異なることが好ましい。こうすることで自立基板及びその構成粒子の結晶性が向上する。例えば、気相や液相を介したエピタキシャル成長を用いて13族元素窒化物結晶を成長させる場合、成膜条件にもよるが、法線方向だけでなく、水平方向にも成長が生じる。このとき、成長の起点となる粒子やその上に作製した種結晶の品質にばらつきがあると、個々の単結晶の成長速度が異なり、高速成長する粒子が成長速度の遅い粒子を覆うようにして成長する場合がある。このような成長挙動をとる場合、基板底面側よりも、基板上面側の粒子の方が大粒径化しやすくなる。この場合、成長が遅い結晶は成長が途中で停止しており、ある一断面で観察すると法線方向にも粒界が観測されうる。しかし、基板上面に露出した粒子は基板底面と粒界を介さずに連通しており、電流を流す上での抵抗相はない。換言すれば、窒化ガリウム結晶を成膜後、基板上面側(製造時に下地基板である配向多結晶焼結体と接していた側と反対側)に露出した粒子は、粒界を介さずに底面に連通している粒子が支配的になるため、縦型構造のLEDの発光効率を高める観点では基板上面側に発光機能層を作製することが好ましい。一方、基板底面側(製造時に下地基板である配向多結晶焼結体と接していた側)は基板上面側と連通していない粒子も混在するため、基板底面側に発光機能層を作製すると発光効率が低下するおそれがある。また、上述のとおり、このような成長挙動の場合は成長に伴って大粒径化するため、自立基板の表底面は窒化ガリウム結晶の粒径が大きい方が基板上面側、小さい方が基板底面側とも言い換えることができる。すなわち、自立基板において、縦型構造のLEDの発光効率を高める観点では、13族元素窒化物結晶の粒径が大きい側(基板上面側)に発光機能層を作製することが好ましい。なお、下地基板にc面等に配向した配向多結晶アルミナ焼結体を用いる場合、基板上面側(製造時に下地基板である配向多結晶アルミナ焼結体と接していた側と反対側)が13族元素面となり、基板底面側(製造時に下地基板である配向多結晶アルミナ焼結体と接していた側)が窒素面となる。すなわち、自立基板の13族元素面は、粒界を介さずに底面に連通している粒子が支配的となる。このため、縦型構造のLEDの発光効率を高める観点では、13族元素面側(基板上面側)に発光機能層を作製することが好ましい。
 したがって、基板上面側の粒子が基板底面側の粒子より大粒径化するような成長挙動をとる場合、すなわち基板上面に露出している単結晶粒子の断面平均径が、基板底面に露出している単結晶粒子の断面平均径よりも大きいと、発光効率が高まるため好ましい(このことは、基板上面に露出している単結晶粒子の個数が、基板底面に露出している単結晶粒子の個数よりも少ないことが好ましいと言い換えることもできる)。
 具体的には、自立基板の底面に露出している単結晶粒子の最表面における断面平均径(以下、基板底面の断面平均径DBという)に対する、自立基板の上面に露出している単結晶粒子の最表面における断面平均径(以下、基板上面の断面平均径DTという)の比DT/DBが1.0よりも大きいのが好ましく、1.1以上であることが好ましく、より好ましくは1.5以上、さらに好ましくは2.0以上、特に好ましくは3.0以上、最も好ましくは5.0以上である。ただし、上記比DT/DBが高すぎると逆に発光効率が低下する場合があるため、20以下が好ましく、10以下がさらに好ましい。発光効率が変化する原因は定かではないが、上記比DT/DBが高いと大粒径化によって発光に寄与しない粒界面積が減少すること、あるいは大粒径化することで結晶欠陥が低減するためと考えられる。結晶欠陥が減少する原因も定かではないが、欠陥を含む粒子は成長が遅く、欠陥が少ない粒子は高速成長するためではないかとも考えられる。一方、上記比DT/DBが高すぎると、基板上面及び基板底面間で連通する粒子(すなわち基板上面側に露出した粒子)は基板底面側付近では断面径が小さくなる。この結果、十分な電流パスが得られず発光効率が低下する原因となり得るとも考えられるが、その詳細は定かではない。
 もっとも、自立基板を構成する柱状構造同士の界面は結晶性が低下するため、発光素子の発光機能層として用いる場合、発光効率が低下し、発光波長が変動し、発光波長がブロードになる可能性がある。このため、柱状構造の断面平均径は大きいほうが良い。具体的には、自立基板の上面に露出している単結晶粒子の最表面における断面平均径DTは10μm以上、好ましくは20μm以上、より好ましくは50μm以上、特に好ましくは70μm以上、最も好ましくは100μm以上である。自立基板の最表面(上面)における単結晶粒子の断面平均径の上限は特に限定されないが、1000μm以下が現実的であり、より現実的には500μm以下であり、さらに現実的には200μm以下である。また、このような断面平均径の単結晶粒子を作製するには、自立基板の製造に用いられる、配向多結晶焼結体を構成する粒子の板面における焼結粒径を10μm以上とするのが望ましく、より望ましくは10μm~1000μm、さらに望ましくは10μm~800μm、特に望ましくは14μm~500μmである。あるいは、自立基板の最表面(上面)における単結晶粒子の断面平均径を自立基板の底面の断面平均径よりも大きくすることを念頭に置く場合には、配向多結晶焼結体を構成する粒子の板面における焼結粒径を10μm~100μmとするのが望ましく、より望ましくは14μm~70μmである。
 本発明においては、自立基板を構成する13族元素窒化物が、亜鉛とカルシウムとの少なくとも一方を含有する。これによって、各単結晶の上面における表面穴(ピット)のサイズと数を低減することができる。そして、表面におけるピットのサイズおよび数は、二乗平均粗さRmsを測定することによって評価することができることを見いだした。
 すなわち、Rmsとは、二乗平均粗さを指す数値であり、自立基板上面の平均線から測定曲線までの偏差の二乗を平均した値の平方根に相当し、下記の式で算出されるものである。
Figure JPOXMLDOC01-appb-M000001
 本発明者は、自立基板上面のピットの大きさと数を顕微鏡で観測して計数すると共に、同じ上面の二乗平均粗さRmsを測定し、対比してみた。この結果、ピットサイズが大きく、ピットの頻度が高いほど、二乗平均粗さRmsが大きくなることを見いだした。すなわち、配向13族元素窒化物結晶の場合には、表面の二乗平均粗さRmsがピットサイズおよび数を反映する指標として適切である。
 こうした観点から、得られた自立基板の上面の二乗平均粗さRmsを種々検討したところ、自立基板を構成する多結晶13族元素窒化物中に亜鉛とカルシウムとの少なくとも一方を含有させることによって、上面のピットサイズおよび数を著しく低減できることを見いだした。具体的には、自立基板の上面の二乗平均粗さRmsを3.0nm以下とできることを見いだした。
 この理由は明確ではないが、以下のように考えることができる。すなわち、配向多結晶13族元素窒化物に亜鉛とカルシウムとの一方または双方を添加すると、一部の単結晶粒子の成長が促進され、上面に近づくにつれて(単結晶粒子の成長が進むのにつれて)、結晶径が大きくなる傾向がある。この結果、得られた多結晶13族元素窒化物の上面では隙間が生じにくくなり、表面穴(ピット)が著しく抑制されたものと考えられる。
 特に、自立基板上に作製したデバイスの歩留まり向上の観点からは、ピットはサイズが小さく、また頻度が少ないことが好ましい。言い換えれば、窒化ガリウム自立基板上に作製したデバイスの歩留まり向上の観点からは、二乗平均粗さRmsは小さいことが好ましい。本発明者らの検討の結果、自立基板の上面のRmsが3.0nm以下である場合に、良好な歩留まりで半導体デバイスが作製できることがわかった。この観点からは、自立基板の上面のRmsは2.0nm以下であることが更に好ましい。
 本発明においては、多結晶13族元素窒化物に、亜鉛とカルシウムとの少なくとも一方を含有させる。
 ここで、多結晶13族元素窒化物に亜鉛を含有させる場合には、本発明の効果の観点からは、亜鉛の含有量は、1x1017atoms/cm以上が好ましく、1x1018atoms/cm以上が特に好ましい。また、結晶成長速度の低下を防ぐためには、亜鉛の含有量は、1x1020atoms/cm以下が好ましく、5x1019atoms/cm以下が更に好ましい。
 また、多結晶13族元素窒化物にカルシウムを含有させる場合には、本発明の効果の観点からは、カルシウムの含有量は、5x1015atoms/cm以上が好ましく、1x1016atoms/cm以上が特に好ましい。また、融液組成物中の自然核発生抑制の観点からは、カルシウムの含有量は、1x1019atoms/cm以下が好ましく、5x1018atoms/cm以下が更に好ましい。
 自立基板に亜鉛を含有させることによって、自立基板の厚さ方向および面内方向の比抵抗を上昇させることができるので、高電気抵抗が必要な用途に適した自立基板を提供可能となる。
 例えば、自立基板の面内方向の比抵抗を50Ω・cm以上、1×10Ω・cm以下とすることが可能である。この比抵抗は、更に、
500Ω・cm以上とすることができ、また1×10Ω・cm以下とすることができる。
 また、自立基板の厚さ方向の比抵抗は、5Ω・cm以上、1×10Ω・cm以下とすることができる。この比抵抗は、更に、100Ω・cm以上とすることができ、また5×10Ω・cm以下とすることができる。
 自立基板に亜鉛を含有させることによって、自立基板の比抵抗を全体的に高くできるのとともに、自立基板の面内方向の比抵抗の自立基板の厚さ方向の比抵抗に対する比率(面内方向の比抵抗/厚さ方向の比抵抗)を低くすることができる。この比率は、具体的には、1.3以上、15以下とすることが可能である。
 自立基板を構成する多結晶13族元素窒化物は、亜鉛およびカルシウム以外に、更に、n型ドーパント又はp型ドーパントでドープされていてもよく、この場合、多結晶13族元素窒化物を、p型電極、n型電極、p型層、n型層等の基材以外の部材又は層として使用することができる。p型ドーパントの好ましい例としては、ベリリウム(Be)、マグネシウム(Mg)、ストロンチウム(Sr)、及びカドミウム(Cd)からなる群から選択される1種以上が挙げられる。n型ドーパントの好ましい例としては、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)及び酸素(O)からなる群から選択される1種以上が挙げられる。
 自立基板を構成する単結晶粒子は、バンドギャップの制御のため混晶化されていてもよい。好ましくは、自立基板を構成する多結晶13族元素窒化物は、AlN及びInNからなる群から選択される1種以上の結晶と混晶化された窒化ガリウムからなるものであってもよく、p型ドーパント又はn型ドーパントがドープされていてもよい。
 例えば、窒化ガリウムとAlNの混晶であるAlxGa1-xNにMgをドーピングすることでp型基板、AlxGa1-xNにSiをドーピングすることでn型基板として使用することができる。自立基板を発光素子の発光機能層として用いる場合、窒化ガリウムをAlNと混晶化することでバンドギャップが広がり、発光波長を高エネルギー側にシフトさせることができる。また、窒化ガリウムをInNとの混晶(InxGa1-xN)としてもよく、これによりバンドギャップが狭まり、発光波長を低エネルギー側にシフトさせることができる。
 なお、自立基板を構成する13族元素窒化物は、窒化ガリウム結晶または窒化ガリウム系混晶であることが好ましい。窒化ガリウム系混晶は、上述のように、AlxGa1-xN、InxGa1-xNで表されるが、この場合にxは0.5以下であることが好ましく、0.2以下であることが更に好ましい。
 自立基板は、直径50.8mm(2インチ)以上の大きさを有するのが好ましく、より好ましくは直径100mm(4インチ)以上であり、さらに好ましくは直径200mm(8インチ)以上である。多結晶自立基板は大きければ大きいほど作製可能な素子の個数が増えるため、製造コストの観点で好ましく、面発光素子用との観点でも素子面積の自由度が増え面発光照明等への用途が広がる点で好ましく、その面積ないし大きさに上限は規定されるべきではない。なお、自立基板は上面視で円形状あるいは実質的に円形状であることが好ましいが、これに限定されない。円形状あるいは実質的に円形状ではない場合、面積として、2026mm以上であることが好ましく、より好ましくは7850mm以上であり、さらに好ましくは31400mm以上である。もっとも、大面積を要しない用途については、上記範囲よりも小さい面積、例えば直径50.8mm(2インチ)以下、面積換算で2026mm以下としてもよい。
 自立基板の厚さは基板に自立性を付与できる必要があり、20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは300μm以上である。自立基板の厚さに上限は規定されるべきではないが、製造コストの観点では3000μm以下が現実的である。
 自立基板の上面に露出している単結晶粒子の最表面における断面平均径DTに対する、自立基板の厚さTの比として規定されるアスペクト比T/DTが0.7以上であるのが好ましく、より好ましくは1.0以上であり、さらに好ましくは3.0以上である。このアスペクト比がLEDとする場合に発光効率を高める観点から好ましい。発光効率が高まる原因として、高アスペクト比粒子の方が窒化ガリウム中の欠陥密度が低いこと、及び光の取り出し効率が高まること等が考えられるが、その詳細は定かではない。
 これまでに述べたとおり、発光効率を高める観点では、(1)発光機能層は自立基板上面側(製造時に下地基板である配向多結晶焼結体に接していた側と反対側)に作製する方が良く、(2)自立基板底面の断面平均径DBに対する基板上面の断面平均径DTの比DT/DBが適度な値をとるのが良く、(3)自立基板を構成する粒子の基板最表面における断面平均径が大きい方が良く、(4)自立基板を構成する粒子のアスペクト比T/DTは大きい方が良い。上記(3)及び(4)の観点では断面平均径が大きく且つアスペクト比が大きい方が良く、言い換えると基板上面側の断面平均径が大きく且つ厚い多結晶13族元素窒化物が好ましい。また、自立化の観点では自立基板の厚さは20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは300μm以上である。しかし、前述したとおり、多結晶13族元素窒化物の厚みが厚くなるとコスト的な観点では好ましくなく、自立する限り薄い方が好ましい。すなわち、自立基板の厚みとしては3000μm以下が現実的であり、600μm以下が好ましく、300μm以下が好ましい。したがって、自立化させ且つ発光効率を高める観点とコスト的な観点を両立する厚みとしては50~500μm程度が好ましく、300~500μm程度が更に好ましい。
(製造方法)
 本発明の窒化ガリウム自立基板は、(1)配向多結晶焼結体を用意し、(2)配向多結晶焼結体上に、窒化ガリウムからなる種結晶層を、配向多結晶焼結体の結晶方位に概ね倣った結晶方位を有するように形成し、(3)種結晶層上に、厚さ20μm以上の窒化ガリウム系結晶から構成される層を、種結晶層の結晶方位に概ね倣った結晶方位を有するように形成し、(4)配向多結晶焼結体を除去して、窒化ガリウム自立基板を得ることにより製造することができる。
(配向多結晶焼結体の製造方法)
 本発明の自立基板の製造に下地基材として用いる配向多結晶焼結体は、いかなる製造方法によって製造されたものであってもよく、特に限定されない。例えば特許文献3(WO2015/151902A1)に記載される方法に基づいて作製されたものであってもよい。
 本発明の好ましい態様による配向多結晶焼結体の製造方法は、以下に具体的に説明するように、(a)微細原料粉末層と、板状原料粒子の板面が前記微細原料粉末層の表面に沿うように配列された板状原料粉末層とが、交互に積層された積層体を作製する工程と、(b)上記積層体を焼成する工程とを含むものである。
 工程(a)で用いる微細原料粉末層は、微細原料粒子の集合体の層である。微細原料粉末は、平均粒径が板状原料粉末よりも小さい粉末である。微細原料粉末層は、微細原料粉末そのものを成形した層であってもよいし微細原料粉末に添加剤を加えたものを成形した層であってもよい。添加剤としては、例えば焼結助剤やグラファイト、バインダー、可塑剤、分散剤、分散媒などが挙げられる。成形方法は特に限定するものではないが、例えば、テープ成形、押出成形、鋳込み成形、射出成形、一軸プレス成形等が挙げられる。微細原料粉末層の厚みは、5~100μmであることが好ましく、20~60μmであることがより好ましい。
 工程(a)で用いる板状原料粉末層は、板状原料粒子の集合体の層である。板状原料粉末は、アスペクト比が3以上のものが好ましい。アスペクト比は、平均粒径/平均厚さである。ここで、平均粒径は、粒子板面の長軸長の平均値であり、平均厚さは、粒子の短軸長の平均値である。これらの値は、走査型電子顕微鏡(SEM)で板状原料粉末中の任意の粒子100個を観察して決定する。板状原料粉末の平均粒径は、配向焼結体の高配向化の観点からは大きい方が好ましく、1.5μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましく、15μm以上が特に好ましい。但し、緻密化の観点からは小さい方が好ましく、30μm以下が好ましい。こうしたことから、高配向と緻密化を両立するには平均粒径が1.5μm~30μmであることが好ましい。板状原料粉末層は、板状原料粉末そのものの層であってもよいし板状原料粉末に添加剤を加えたものの層であってもよい。添加剤としては、例えば焼結助剤やグラファイト、バインダー、可塑剤、分散剤、分散媒などが挙げられる。板状原料粉末層は、板状原料粉末を構成する板状原料粒子の板面が微細原料粉末層の表面に沿うように配列されている。板状原料粉末は、単一粒子になっていることが好ましい。単一粒子になっていない場合には、配向度や傾斜角を悪化させることがある。粒子を単一にするには、分級処理、解砕処理及び水簸処理の少なくとも1つの処理を採用すればよいが、すべての処理を採用するのが好ましい。分級処理や解砕処理は、凝集等がある際に採用するのが好ましい。分級処理としては、気流分級等が挙げられる。解砕処理としては、ポット解砕、湿式微粒化方式等が挙げられる。水簸処理は、微粒粉が混入している際に採用するのが好ましい。
 工程(a)で作製される積層体は、微細原料粉末層と板状原料粉末層とが交互に積層されたものである。積層体を作製する際、微細原料粉末の成形体の片面を板状原料粉末層で全面的に又は部分的に被覆した片面加工体を作製し、該片面加工体を利用して積層体を作製してもよい。あるいは、微細原料粉末の成形体の両面を板状原料粉末層で全面的に又は部分的に被覆した両面加工体を作製し、該両面加工体と未加工の成形体とを利用して積層体を作製してもよい。
 片面加工体又は両面加工体は、微細原料粉末の成形体の片面又は両面に該成形体よりも厚みの薄い板状原料粉末の成形体を積層することにより作製してもよい。この場合、板状原料粉末の成形体は、板状原料粒子の板面がその成形体の表面に沿うようにテープ成形や印刷などによってせん断力を与えて成形したものを用いてもよい。あるいは、片面加工体又は両面加工体は、微細原料粉末の成形体の片面又は両面に板状原料粉末の分散液を印刷、スプレーコート、スピンコート又はディップコートすることにより作製してもよい。スプレーコート、スピンコート、ディップコートでは、強制的にせん断力を与えずとも、板状原料粒子の板面がその成形体の表面に沿うように配列する。成形体の表面に配列した板状原料粒子は、数個の板状原料粒子が重なっていてもよいが、他の板状原料粒子と重なっていないことが好ましい。
 片面加工体を利用する場合、微細原料粉末層と板状原料粉末層とが交互に積層されるように片面加工体を積み重ねていけばよい。両面加工体を利用する場合、両面加工体と未加工の微細原料粉末の成形体とを交互に積層すればよい。なお、片面加工体と両面加工体の両方を利用して積層体を作製してもよいし、片面加工体と両面加工体と未加工の成形体とを利用して積層体を作製してもよい。
 工程(b)では、積層体を焼成する。この場合、焼成方法は特に限定されないが、加圧焼成や水素焼成が好ましい。加圧焼成としては、例えばホットプレス焼成やHIP焼成などが挙げられる。なお、加圧焼成前に常圧予備焼成を行ってもよい。HIP焼成を行うときにはカプセル法を用いることもできる。ホットプレス焼成の場合の圧力は、50kgf/cm以上が好ましく、200kgf/cm以上がより好ましい。HIP焼成の場合の圧力は、1000kgf/cm以上が好ましく、2000kgf/cm以上がより好ましい。焼成雰囲気は特に限定はないが、大気、窒素、Ar等の不活性ガス、真空雰囲気下のいずれかが好ましく、窒素、Ar雰囲気下が特に好ましく、窒素雰囲気が最も好ましい。
 積層体は、微細原料粒子の集合体の層である微細原料粉末層と、板状原料粒子の板面が微細原料粉末層の表面に沿って配列された板状原料粉末層とが、交互に積層されたものである。積層体を焼成すると、板状原料粒子が種結晶(テンプレート)となり、微細原料粒子がマトリックスとなって、テンプレートがマトリックスを取り込みながらホモエピタキシャル成長する。そのため、得られる焼結体は配向度が高く、かつ、傾斜角が小さい配向焼結体となる。配向度と傾斜角は、板状原料粉末が微細原料粉末層の表面を覆う被覆率に依存する。この被覆率が1~60%(好ましくは1~20%、さらに好ましくは3~20%)のときに配向度が高く、傾斜角が小さくなる。また、配向度と傾斜角は、微細原料粉末層の厚みに依存する。微細原料粉末層の厚みが10~100μm(より好ましくは10~100μm、更に好ましくは20~60μm)のときに配向度が高く、傾斜角は小さくなる。ここで、配向度は、X線回折プロファイルを用いてロットゲーリング法により求めたc面配向度を指し、傾斜角は、XRC半値幅(XRC・FWHM)を用いる。
 配向多結晶焼結体の組成は特に限定されないが、配向多結晶アルミナ焼結体、配向多結晶酸化亜鉛焼結体、及び配向多結晶窒化アルミニウム焼結体から選択される1種であるのが好ましい。したがって、微細原料粉末及び板状原料粉末の主成分としては、例えば、アルミナ、ZnO、AlNなどが挙げられるが、このうちアルミナが好ましい。主成分がアルミナの場合、焼成温度(最高到達温度)は1850~2050℃が好ましく、1900~2000℃がより好まい。なお、「主成分」とは、粉末全体に占める質量割合が50%(好ましくは60%、より好ましくは70%、更に好ましくは80%)以上の成分のことをいう。
 本態様の製造方法によって得られる配向焼結体は、c面配向度が高く、傾斜角が小さいものである。例えば、X線回折プロファイルを用いてロットゲーリング法により求めたc面配向度が80%以上(好ましくは90%以上、より好ましくは96%以上)のものを得ることが可能となる。また、傾斜角についていえば、X線ロッキングカーブ法を用いて測定したXRC・FWHMは5°以下(好ましくは2.5°以下、より好ましくは1.5°以下、さらに好ましくは1.0°以下)のものを得ることが可能となる。
(種結晶層の形成)
 配向多結晶焼結体上に、窒化ガリウムからなる種結晶層を、配向多結晶焼結体の結晶方位に概ね倣った結晶方位を有するように形成する。なお、「配向多結晶焼結体の結晶方位に概ね倣った結晶方位を有するように形成する」とは、配向多結晶焼結体の結晶方位の影響を受けた結晶成長によりもたらされた構造を意味し、必ずしも配向多結晶焼結体の結晶方位に完全に倣って成長した構造であるとは限らず、配向多結晶焼結体と異なる結晶方位に成長する構造も含む。種結晶層の作製方法は特に限定されないが、MOCVD(有機金属気相成長法)、MBE(分子線エピタキシー法)、HVPE(ハライド気相成長法)、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。例えば、MOCVD法による種結晶層の形成は、450~550℃にて低温GaN層を20~50nm堆積させた後に、1000~1200℃にて厚さ2~4μmのGaN膜を積層させることにより行うのが好ましい。
(窒化ガリウム系結晶層の形成)
 種結晶層上に、厚さ20μm以上の窒化ガリウム系結晶から構成される層を、種結晶層の結晶方位に概ね倣った結晶方位を有するように形成する。窒化ガリウム系結晶から構成される層の形成方法は配向多結晶焼結体及び/又は種結晶層の結晶方位に概ね倣った結晶方位を有する限り特に限定がなく、MOCVD、HVPE等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示されるが、Naフラックス法により行われるのが特に好ましい。Naフラックス法によれば結晶性の高い厚肉の窒化ガリウム結晶層を種結晶層上に効率良く作製できる。Naフラックス法による窒化ガリウム系結晶層の形成は、種結晶基板を設置した坩堝に金属Ga、金属Na及び所望によりドーパントを含む融液組成物を充填し、窒素雰囲気中で830~910℃、3.5~4.5MPaまで昇温加圧した後、温度及び圧力を保持しつつ回転することにより行うのが好ましい。保持時間は目的の膜厚によって異なるが、10~100時間程度としてもよい。また、こうしてNaフラックス法により得られた窒化ガリウム結晶を砥石で研削して板面を平坦にした後、ダイヤモンド砥粒を用いたラップ加工により板面を平滑化するのが好ましい。
(配向多結晶焼結体の除去)
 配向多結晶焼結体を除去して、窒化ガリウム自立基板を得ることができる。配向多結晶焼結体を除去する方法は、特に限定されないが、研削加工、ケミカルエッチング、配向焼結体側からのレーザー照射による界面加熱(レーザーリフトオフ)、昇温時の熱膨張差を利用した自発剥離等が挙げられる。
(発光素子及びその製造方法)
 上述した本発明による自立基板を用いて高品質の発光素子を作製することができる。前述のとおり、本発明による自立基板を用いて発光素子を構成することにより、高い発光効率を得ることができる。本発明の自立基板を用いた発光素子の構造やその作製方法は特に限定されるものではない。典型的には、発光素子は、自立基板に発光機能層を設けることにより作製され、この発光機能層の形成は、自立基板の結晶方位に概ね倣った結晶方位を有するように、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一つ以上形成することに行われるのが好ましい。もっとも、多結晶自立基板を電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として利用して発光素子を作製してもよい。素子サイズに特に規定はなく、5mm×5mm以下の小素子としてもよいし、10cm×10cm以上の面発光素子としてもよい。
 図1に、本発明の一態様による発光素子の層構成を模式的に示す。図1に示される発光素子10は、自立基板12と、この基板上に形成される発光機能層14とを備えてなる。発光機能層14は、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一以上有してなる。この発光機能層14は、電極等を適宜設けて電圧を印加することによりLED等の発光素子の原理に基づき発光をもたらすものである。特に、本発明の多結晶窒化ガリウム自立基板12を用いることで、単結晶基板を用いた場合と同等の発光効率を有する発光素子を得ることも期待でき、大幅な低コスト化が実現できる。また、p型ないしn型ドーパントの導入により導電性を持たせた13族元素窒化物を自立基板とすることで、縦型構造の発光素子を実現することができ、それにより輝度を高めることができる。その上、大面積な面発光素子も低コストで実現可能となる。
 発光機能層14が基板12上に形成される。発光機能層14は、基板12上の全面又は一部に設けられてもよいし、後述するバッファ層が基板12上に形成される場合にはバッファ層上の全面又は一部に設けられてもよい。発光機能層14は、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一以上有してなり、電極及び/又は蛍光体を適宜設けて電圧を印加することによりLEDに代表される発光素子の原理に基づき発光をもたらす公知の様々な層構成を採りうる。したがって、発光機能層14は青色、赤色等の可視光を放出するものであってもよいし、可視光を伴わずに又は可視光と共に紫外光を発光するものであってもよい。発光機能層14は、p-n接合を利用した発光素子の少なくとも一部を構成するのが好ましく、このp-n接合は、図1に示されるように、p型層14aとn型層14cの間に活性層14bを含んでいてもよい。このとき、活性層としてp型層及び/又はn型層よりもバンドギャップが小さい層を用いたダブルへテロ接合又はシングルへテロ接合(以下、ヘテロ接合と総称する)としてもよい。また、p型層-活性層-n型層の一形態として、活性層の厚みを薄くした量子井戸構造を採りうる。
 量子井戸を得るためには活性層のバンドギャップがp型層及びn型層よりも小さくしたダブルへテロ接合が採用されるべきことは言うまでもない。また、これらの量子井戸構造を多数積層した多重量子井戸構造(MQW)としてもよい。これらの構造をとることで、p-n接合と比べて発光効率を高めることができる。このように、発光機能層14は、発光機能を有するp-n接合及び/又はへテロ接合及び/又は量子井戸接合を備えたものであるのが好ましい。
 したがって、発光機能層14を構成する一以上の層は、n型ドーパントがドープされているn型層、p型ドーパントがドープされているp型層、及び活性層からなる群から選択される少なくとも一以上を含むものであることができる。n型層、p型層及び(存在する場合には)活性層は、主成分が同じ材料で構成されてもよいし、互いに主成分が異なる材料で構成されてもよい。
 発光機能層14を構成する各層の材質は、自立基板の結晶方位に概ね倣って成長し且つ発光機能を有するものであれば特に限定されないが、窒化ガリウム(GaN)系材料、酸化亜鉛(ZnO)系材料及び窒化アルミニウム(AlN)系材料から選択される少なくとも1種以上を主成分とする材料で構成されるのが好ましく、p型ないしn型に制御するためのドーパントを適宜含むものであってよい。特に好ましい材料は、自立基板と同種の材料である、窒化ガリウム(GaN)系材料である。また、発光機能層14を構成する材料は、そのバンドギャップを制御するため、例えばGaNにAlN、InN等を固溶させた混晶としてもよい。また、直前の段落で述べたとおり、発光機能層14は複数種の材料系からなるヘテロ接合としてもよい。例えば、p型層に窒化ガリウム(GaN)系材料、n型層に酸化亜鉛(ZnO)系材料を用いてもよい。また、p型層に酸化亜鉛(ZnO)系材料、活性層とn型層に窒化ガリウム(GaN)系材料を用いてもよく、材料の組み合わせに特に限定はない。
 発光機能層14を構成する各層は、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される。すなわち、各層は、水平面方向に二次元的に連結されてなる複数の半導体単結晶粒子で構成されており、それ故、略法線方向には単結晶構造を有することになる。したがって、発光機能層14の各層は、層全体としては単結晶ではないものの、局所的なドメイン単位では単結晶構造を有するため、発光機能を確保するのに十分な高い結晶性を有することができる。
 好ましくは、発光機能層14の各層を構成する半導体単結晶粒子は、基板12である自立基板の結晶方位に概ね倣って成長した構造を有する。「多結晶13族元素窒化物からなる自立基板の結晶方位に概ね倣って成長した構造」とは、多結晶13族元素窒化物自立基板の結晶方位の影響を受けた結晶成長によりもたらされた構造を意味し、必ずしも自立基板の結晶方位に完全に倣って成長した構造であるとは限らず、所望の発光機能を確保できるかぎり、自立基板の結晶方位にある程度倣って成長した構造であってよい。すなわち、この構造は配向多結晶焼結体と異なる結晶方位に成長する構造も含む。その意味で、「結晶方位に概ね倣って成長した構造」との表現は「結晶方位に概ね由来して成長した構造」と言い換えることもできる。したがって、そのような結晶成長はエピタキシャル成長によるものが好ましいが、これに限定されず、それに類する様々な結晶成長の形態であってもよい。特にn型層、活性層、p型層等を構成する各層が自立基板と同じ結晶方位に成長する場合は、自立基板から発光機能層の各層間でも略法線方向に関しては結晶方位が概ね揃った構造となり、良好な発光特性を得ることができる。すなわち、発光機能層14も自立基板12の結晶方位に概ね倣って成長する場合は、基板の垂直方向では方位が概ね一定になる。このため、法線方向は単結晶と同等の状態であり、n型ドーパントを添加した自立基板を用いた場合、自立基板をカソードとした縦型構造の発光素子とすることができ、p型ドーパントを添加した多結晶窒化ガリウム自立基板を用いた場合、自立基板をアノードとした縦型構造の発光素子とすることができる。
 少なくとも発光機能層14を構成するn型層、活性層、p型層等の各層が同じ結晶方位に成長する場合は、発光機能層14の各層は、法線方向に見た場合に単結晶と観察され、水平面方向の切断面で見た場合に粒界が観察される柱状構造の半導体単結晶粒子の集合体であると捉えることも可能である。ここで、「柱状構造」とは、典型的な縦長の柱形状のみを意味するのではなく、横長の形状、台形の形状、及び台形を逆さにしたような形状等、種々の形状を包含する意味として定義される。もっとも、上述のとおり、各層は自立基板の結晶方位にある程度倣って成長した構造であればよく、必ずしも厳密な意味で柱状構造である必要はない。柱状構造となる原因は、前述のとおり、自立基板12の結晶方位の影響を受けて半導体単結晶粒子が成長するためと考えられる。このため、柱状構造ともいえる半導体単結晶粒子の断面の平均粒径(以下、断面平均径という)は成膜条件だけでなく、自立基板の板面の平均粒径にも依存するものと考えられる。発光機能層を構成する柱状構造の界面は発光効率や発光波長に影響を与えるが、粒界があることにより断面方向の光の透過率が悪く、光が散乱ないし反射する。このため、法線方向に光を取り出す構造の場合、粒界からの散乱光により輝度が高まる効果も期待される。
 もっとも、発光機能層14を構成する柱状構造同士の界面は結晶性が低下するため、発光効率が低下し、発光波長が変動し、発光波長がブロードになる可能性がある。このため、柱状構造の断面平均径は大きいほうが良い。好ましくは、発光機能層14の最表面における半導体単結晶粒子の断面平均径は10μm以上であり、より好ましくは15μm以上、さらに好ましくは20μm以上、特に好ましくは50μm以上、最も好ましくは70μm以上である。この断面平均径の上限は特に限定されないが、1000μm以下が現実的であり、より現実的には500μm以下であり、さらに現実的には200μm以下である。また、このような断面平均径の半導体単結晶粒子を作製するには、自立基板を構成する単結晶粒子の基板の最表面における断面平均径を10μm~1000μmとするのが望ましく、より望ましくは10μm以上である。
 発光機能層14の一部又は全てに窒化ガリウム(GaN)系以外の材料が用いられる場合には、自立基板12と発光機能層14の間に反応を抑制するためのバッファ層を設けてもよい。このようなバッファ層の主成分は特に限定されないが、酸化亜鉛(ZnO)系材料及び窒化アルミニウム(AlN)系材料から選択される少なくとも1種以上を主成分とする材料で構成されるのが好ましく、p型ないしn型に制御するためのドーパントを適宜含むものであってよい。
 発光機能層14を構成する各層が13族元素窒化物で構成されるのが好ましい。例えば、自立基板12上にn型窒化ガリウム層及びp型窒化ガリウム層を順に成長させてもよく、p型窒化ガリウム層とn型窒化ガリウム層の積層順序は逆であってもよい。p型窒化ガリウム層に使用されるp型ドーパントの好ましい例としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)及びカドミウム(Cd)からなる群から選択される1種以上が挙げられる。また、n型窒化ガリウム層に使用されるn型ドーパントの好ましい例としては、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)及び酸素(O)からなる群から選択される1種以上が挙げられる。また、p型窒化ガリウム層及び/又はn型窒化ガリウム層は、AlN及びInNからなる群から選択される1種以上の結晶と混晶化された窒化ガリウムからなるものであってもよく、p型層及び/又はn型層はこの混晶化された窒化ガリウムにp型ドーパント又はn型ドーパントがドープされていてもよい。例えば、窒化ガリウムとAlNの混晶であるAlxGa1-xNにMgをドーピングすることでp型層、AlxGa1-xNにSiをドーピングすることでとしてn型層として使用することができる。窒化ガリウムをAlNと混晶化することでバンドギャップが広がり、発光波長を高エネルギー側にシフトさせることができる。また、窒化ガリウムをInNとの混晶としてもよく、これによりバンドギャップが狭まり、発光波長を低エネルギー側にシフトさせることができる。p型窒化ガリウム層とn型窒化ガリウム層との間に、両層のいずれよりもバンドギャップが小さいGaN、又はAlN及びInNからなる群から選択される1種以上とGaNとの混晶からなる活性層を少なくとも有してもよい。活性層はp型層及びn型層とダブルへテロ接合された構造であり、この活性層を薄くした構成はp-n接合の一態様である量子井戸構造の発光素子に相当し、発光効率をより一層高めることができる。また、活性層は両層のいずれか一方よりもバンドギャップが小さくGaN、又はAlN及びInNからなる群から選択される1種以上とGaNとの混晶からなるものとしてもよい。このようなシングルヘテロ接合にても発光効率をより一層高めることができる。窒化ガリウム系バッファ層は、ノンドープのGaN、又はn型若しくはp型ドーピングされたGaNからなるものであってもよいし、格子定数が近いAlN、InN、或いはGaNとAlN及びInNからなる群から選択される1種以上の結晶と混晶化されたものであってもよい。
 もっとも、発光機能層14は窒化ガリウム(GaN)系材料、酸化亜鉛(ZnO)系材料、窒化アルミニウム(AlN)系材料から選ばれる複数の材料系で構成してもよい。例えば多結晶窒化ガリウム自立基板12上にp型窒化ガリウム層、n型酸化亜鉛層を成長させてもよく、p型窒化ガリウム層とn型酸化亜鉛層の積層順序は逆であってもよい。多結晶窒化ガリウム自立基板12を発光機能層14の一部として用いる場合は、n型又はp型の酸化亜鉛層を形成してもよい。p型酸化亜鉛層に使用されるp型ドーパントの好ましい例としては、窒素(N)、リン(P)、砒素(As)、カーボン(C)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、銀(Ag)及び銅(Cu)からなる群から選択される1種以上が挙げられる。また、n型酸化亜鉛層に使用されるn型ドーパントの好ましい例としては、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、硼素(B)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)及びシリコン(Si)からなる群から選択される1種以上が挙げられる。
 発光機能層14及びバッファ層の成膜方法は、多結晶窒化ガリウム自立基板の結晶方位に概ね倣って成長する方法であれば特に限定されないが、MOCVD、MBE、HVPE、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。例えばMOCVD法を用いて窒化ガリウム系材料からなる発光機能層14を作製する場合においては、少なくともガリウム(Ga)を含む有機金属ガス(例えばトリメチルガリウム)と窒素(N)を少なくとも含むガス(例えばアンモニア)を原料として基板上にフローさせ、水素、窒素又はその両方を含む雰囲気等において300~1200℃程度の温度範囲で成長させてもよい。この場合、バンドギャップ制御のためインジウム(In)、アルミニウム(Al)、n型及びp型ドーパントとしてシリコン(Si)及びマグネシウム(Mg)を含む有機金属ガス(例えばトリメチルインジウム、トリメチルアルミニウム、モノシラン、ジシラン、ビス-シクロペンタジエニルマグネシウム)を適宜導入して成膜を行ってもよい。
 また、発光機能層14及びバッファ層に窒化ガリウム系以外の材料を用いる場合は、自立基板上に種結晶層を成膜してもよい。種結晶層の成膜方法や材質に限定は無いが、結晶方位に概ね倣った結晶成長を促すものであればよい。例えば、酸化亜鉛系材料を発光機能層14の一部又は全てに用いる場合、MOCVD法、MBE法、HVPE法、スパッタリング法等の気相成長法を用いて極薄い酸化亜鉛の種結晶を作製してもよい。
 発光機能層14の上に電極層16及び/又は蛍光体層をさらに備えていてもよい。上述のとおり、導電性を有する多結晶窒化ガリウム自立基板12を用いた発光素子は縦型構造を採ることができるため、図1に示されるように自立基板12の底面にも電極層18を設けることができるが、自立基板12を電極そのものとして使用してもよく、その場合には自立基板12にはn型ドーパントを添加されているのが好ましい。電極層16,18は公知の電極材料で構成すればよいが、発光機能層14上の電極層16は、ITO等の透明導電膜、又は格子構造等の開口率が高い金属電極とすれば、発光機能層14で発生した光の取り出し効率を上げられる点で好ましい。
 発光機能層14が紫外光を放出可能なものである場合には、紫外光を可視光に変換するための蛍光体層を電極層の外側に設けてもよい。蛍光体層は紫外線を可視光に変換可能な公知の蛍光成分を含む層であればよく特に限定されない。例えば、紫外光により励起されて青色光を発光する蛍光成分と、紫外光により励起されて青~緑蛍光を発光する蛍光成分と、紫外光により励起されて赤色光を発光する蛍光成分とを混在させて、混合色として白色光を得るような構成とするのが好ましい。そのような蛍光成分の好ましい組み合わせとしては、(Ca,Sr)(POCl:Eu、BaMgAl10O17:Eu、及びMn、YS:Euが挙げられ、これらの成分をシリコーン樹脂等の樹脂中に分散させて蛍光体層を形成するのが好ましい。このような蛍光成分は上記例示物質に限定されるものではなく、他の紫外光励起蛍光体、例えばイットリウム・アルミニウム・ガーネット(YAG)やシリケート系蛍光体、酸窒化物系蛍光体等の組み合わせでもよい。
 一方、発光機能層14が青色光を放出可能なものである場合には、青色光を黄色光に変換するための蛍光体層を電極層の外側に設けてもよい。蛍光体層は青色光を黄色光に変換可能な公知の蛍光成分を含む層であればよく特に限定されない。例えばYAG等の黄色発光する蛍光体との組み合わせたものとしてもよい。このようにすることで、蛍光体層を透過した青色発光と蛍光体からの黄色発光は補色関係にあるため、擬似的な白色光源とすることができる。なお、蛍光体層は、青色を黄色に変換する蛍光成分と、紫外光を可視光に変換するための蛍光成分との両方を備えることで、紫外光の可視光への変換と青色光の黄色光への変換との両方を行う構成としてもよい。
(用途)
 本発明の自立基板は、上述した発光素子のみならず、各種電子デバイス、パワーデバイス、受光素子、太陽電池用ウェハー等の種々の用途に好ましく利用することができる。
(ピット評価方法)
 研磨加工し、さらに洗浄を行った各例の窒化ガリウム自立基板の表面を、走査型電子顕微鏡(日立ハイテクノロジーズ社製S-3400N)を用いて50倍の倍率で観察し、ピットの大きさと頻度を計測した。また、窒化ガリウム自立基板の表面を、非接触表面形状測定機(Zygo社製New View 7000、対物レンズ×5倍、ソフトウエアMetroPro9.0.10)を用い、1.4mm×1.05mmの観察視野でRmsを算出した。ここで、Rmsとは、二乗平均粗さを指す数値であり、基板表面の平均線から測定曲線までの偏差の二乗を平均した値の平方根に相当し、下記の式で算出される。
Figure JPOXMLDOC01-appb-M000002
 これらの結果を比較検討したところ、ピットサイズが大きく、ピットの頻度が高いほど、Rms値が大きくなることがわかった。すなわち、窒化ガリウム自立基板上に作製したデバイスの歩留まり向上の観点からは、ピットはサイズが小さく、また頻度が少ないことが好ましい。言い換えれば、窒化ガリウム自立基板上に作製したデバイスの歩留まり向上の観点からは、Rms値は小さいことが好ましい。本発明者らの検討の結果、Rmsが3.0nm以下である場合に、良好な歩留まりで半導体デバイスが作製できることがわかった。
(結晶中のCa、Zn濃度)
 窒化ガリウム自立基板に含まれるCaおよびZnの濃度測定はSIMS(二次イオン質量分析法)によって行った。具体的には、CAMECA社製IMS-7f装置を使用し、一次イオン種としてO またはCsを用い、加速電圧5kV~15kVにて、20×20μmあるいはφ30μmの領域における表面から深さ3μmまでのSIMS測定を行って、窒化ガリウム結晶中に含まれるCaおよびZnの濃度を測定した。
(比抵抗)
 比抵抗はホール測定法または2端子法により測定した。比抵抗測定用のサンプルを6mm×6mm×0.35mmのサイズに研磨加工した後、電気特性測定用のオーミック電極(Ti/Al)を真空蒸着法で形成した。ホール測定を行う場合は表面の4隅に電極を形成し、2端子法の場合は表裏両面に電極を形成して、室温で測定を行った。
 以下、各例の自立基板の製造例と評価例とを示す。
(参考例1)
(1)c面配向アルミナ焼結体の作製
 微細アルミナ粉末(TM-DAR(平均粒径0.1μm)、大明化学製)100質量部に対し、酸化マグネシウム(500A、宇部マテリアルズ製)0.0125質量部(125質量ppm)と、バインダーとしてポリビニルブチラール(品番BM-2、積水化学工業製)7.8質量部と、可塑剤としてジ(2-エチルヘキシル)フタレート(黒金化成製)3.9質量部と、分散剤としてトリオレイン酸ソルビタン(レオドールSP-O30、花王製)2質量部と、分散媒として2-エチルヘキサノールとを加えて混合した。分散媒の量は、スラリー粘度が20000cPとなるように調整した。このようにして調製されたスラリーを、ドクターブレード法によってPETフィルムの上に乾燥後の厚みが40μmとなるようにシート状に成形し、微細アルミナ粉末層とした。
 次に、市販の板状アルミナ粉末(キンセイマテック製、グレードYFA10030)を気流分級機(日清エンジニアリング製TC-15N)にて分級点を3μmに設定して分級した。こうして粗大粒子が除去された板状アルミナ粉末をポット解砕機にて直径0.3mmの玉石で20時間解砕し、最後に水簸にて微粒粉末を除去した。得られた板状アルミナ粉末100質量部に対し、分散媒としてイソプロピルアルコール500質量部を加えた。得られた分散液(板状アルミナスラリー)を超音波分散機で5分間分散させた後、スプレーガン(タミヤ製スプレーワークーHG エアーブラシワイド)にて、噴霧圧0.2MPa、噴射距離20cmにて上記微細アルミナ粉末層の片面に、噴霧し、片面加工体を得た。このとき、微細アルミナ粉末層の表面を板状アルミナ粉末が被覆する被覆率は1%であった。
 なお、片面加工体の被覆率は、以下のようにして算出した。すなわち、微細アルミナ粉末層表面を光学顕微鏡で観察し、この観察写真を画像処理にて、板状アルミナ粉末の部分とそれ以外に切り分け、観察写真における微細アルミナ粉末層表面の面積に対する板状アルミナ粉末の面積の割合を、被覆率とした
 得られた片面加工体を口径60mmの円形に切断した後、PETフィルムから剥がし、噴霧した加工面が重ならないように65層積層し、厚さ10mmのAl板の上に載置した後、パッケージに入れて内部を真空にすることで真空パックとした。この真空パックを85℃の温水中で100kgf/cmの圧力にて静水圧プレスを行い、積層体を得た。
 得られた積層体を脱脂炉中に配置し、600℃で10時間の条件で脱脂を行った。得られた脱脂体を黒鉛製の型を用い、ホットプレスにて窒素中、焼成温度(最高到達温度)1975℃で4時間、面圧200kgf/cmの条件で焼成し、アルミナ焼結体を得た。なお、焼成温度から降温する際に1200℃までプレス圧を維持し、1200℃未満の温度域ではプレス圧をゼロに開放した。
 このようにして得た焼結体をセラミックスの定盤に固定し、砥石を用いて#2000まで研削して板面を平坦にした。次いで、ダイヤモンド砥粒を用いたラップ加工により、板面を平滑化し、口径60mm、厚さ0.5mmの配向アルミナ焼結体を配向アルミナ基板として得た。砥粒のサイズを3μmから0.5μmまで段階的に小さくしつつ、平坦性を高めた。加工後の平均粗さRaは4nmであった。
(2)Geドープ窒化ガリウム自立基板の作製
(2a)種結晶層の成膜
 次に、加工した配向アルミナ基板の上に、MOCVD法を用いて種結晶層を形成した。具体的には、バッファ層としてサセプタ(susceptor)温度530℃、水素雰囲気中にて低温GaN層を30nm堆積させた後に、窒素・水素雰囲気にてサセプタ温度1050℃まで昇温し厚さ3μmのGaN膜を積層させて種結晶基板を得た。
(2b)Naフラックス法によるGeドープGaN層の成膜
 上記工程で作製した種結晶基板を、内径80mm、高さ45mmの円筒平底のアルミナ坩堝の底部分に設置し、次いで融液組成物をグローブボックス内で坩堝内に充填した。融液組成物の組成は以下のとおりである。
・金属Ga:60g
・金属Na:60g
・四塩化ゲルマニウム:1.85g
 このアルミナ坩堝を耐熱金属製の容器に入れて密閉した後、結晶育成炉の回転が可能な台上に設置した。窒素雰囲気中で870℃、3.5MPaまで昇温加圧後、100時間保持しつつ溶液を回転することで、撹拌しながら窒化ガリウム結晶を成長させた。結晶成長終了後、3時間かけて室温まで徐冷し、結晶育成炉から育成容器を取り出した。エタノールを用いて、坩堝内に残った融液組成物を除去し、窒化ガリウム結晶が成長した試料を回収した。得られた試料は、60mmの種結晶基板の全面上にGeドープ窒化ガリウム結晶が成長しており、結晶の厚さは約1.4mmであった。クラックは確認されなかった。
 こうして得られた試料の配向アルミナ基板部を砥石による研削加工により除去して、Geドープ窒化ガリウムの単体を得た。このGeドープ窒化ガリウム結晶の板面を#600及び#2000の砥石によって研削して板面を平坦にし、次いでダイヤモンド砥粒を用いたラップ加工により、板面を平滑化し、厚さ約300μmのGeドープ窒化ガリウム自立基板を得た。なお、平滑化加工においては、砥粒のサイズを3μmから0.1μmまで段階的に小さくしつつ、平坦性を高めた。窒化ガリウム自立基板表面の加工後の平均粗さRaは0.2nmであった。
(窒化ガリウム自立基板の断面平均径の評価)
 窒化ガリウム自立基板の最表面におけるGaN単結晶粒子の断面平均径を測定するため、自立基板の表面を走査電子顕微鏡にて画像を撮影した。視野範囲は、得られる画像の対角線に直線を引いた場合に、10個から30個の柱状組織と交わるような直線が引けるような視野範囲とした。得られた画像の対角線に2本の直線を任意に引き、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値を、窒化ガリウム自立基板の最表面におけるGaN単結晶粒子の断面平均径とした。この結果、断面平均径は約140μmであった。
(Geドープ窒化ガリウム自立基板のピット評価)
 Geドープ窒化ガリウム自立基板の上面(最表面)走査型電子顕微鏡で観察したところ、一辺が50μmから200μm程度の不定形のピットが散見された(図2参照)。非接触表面形状測定機(Zygo社製New View 7000)を用い、1.4mm×1.05mmの観察視野でRmsを算出したところ、15.0nmであった。
(3)Geドープ窒化ガリウム自立基板を用いた発光素子の作製
(3a)MOCVD法による発光機能層の成膜
 MOCVD法を用いて、窒化ガリウム自立基板上にn型層として1050℃でSi原子濃度が5×1018/cmになるようにドーピングしたn-GaN層を1μm堆積した。次に発光層として750℃で多重量子井戸層を堆積した。具体的にはInGaNによる2.5nmの井戸層を5層、GaNによる10nmの障壁層を6層にて交互に積層した。次にp型層として950℃でMg原子濃度が1×1019/cmになるようにドーピングしたp-GaNを200nm堆積した。その後、MOCVD装置から取り出し、p型層のMgイオンの活性化処理として、窒素雰囲気中で800℃の熱処理を10分間行った。
(3b)発光素子の作製
 フォトリソグラフィープロセスと真空蒸着法とを用いて、窒化ガリウム自立基板のn-GaN層及びp-GaN層とは反対側の面にカソード電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、p型層に透光性アノード電極としてNi/Au膜をそれぞれ6nm、12nmの厚みにパターニングした。その後、オーム性接触特性を良好なものとするために窒素雰囲気中で500℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、透光性アノード電極としてのNi/Au膜の上面の一部領域に、アノード電極パッドとなるNi/Au膜をそれぞれ5nm、60nmの厚みにパターニングした。こうして得られたウエハーを切断してチップ化し、さらにリードフレームに実装して、縦型構造の発光素子を得た。
(3c)発光素子の評価
 作製した素子から任意に選んだ20個の個体について、カソード電極とアノード電極間に通電し、I-V測定を行ったところ、10個について整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。
(実施例1:Caを含有させたGeドープ窒化ガリウム自立基板)
(1)Geドープ窒化ガリウム自立基板の作製
(1a)種結晶層の成膜
 参考例1と同様の方法で配向アルミナ基板を作製し、MOCVD法を用いて種結晶層を形成した。
(1b)Ca含有Naフラックス法によるGeドープGaN層の成膜
 金属Caを0.1g添加した以外は参考例1と同様の方法でGeドープGaN層を成膜した。得られた試料は、60mmの種結晶基板の全面上にGeドープ窒化ガリウム結晶が成長しており、結晶の厚さは約1.2mmであった。クラックは確認されなかった。
 参考例1と同じ方法を用いて研磨加工したGeドープ窒化ガリウム自立基板の表面を走査型電子顕微鏡で観察したところ、一辺が20μmから100μm程度の不定形のピットがわずかに見られた(図3参照)。
 非接触表面形状測定機(Zygo社製New View 7000)を用い、1.4mm×1.05mmの観察視野でRmsを算出したところ、2.0nmであった。走査型電子顕微鏡の画像から断面断面平均径を算出したところ、約160μmであった。
 参考例1と同様に作製した素子から任意に選んだ20個の個体について、カソード電極とアノード電極間に通電し、I-V測定を行ったところ、16個について整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。
(実施例2:Zn含有窒化ガリウム自立基板)
(1)Zn含有多結晶窒化ガリウム自立基板の作製
(1a)種結晶層の成膜
 参考例1と同様の方法で配向アルミナ基板を作製し、MOCVD法を用いて種結晶層を形成した。
(1b)Naフラックス法によるZnドープGaN層の成膜
 四塩化ゲルマニウムの代わりに金属Znを0.5g添加した以外は参考例1と同様の方法でZnドープGaN層を成膜した。得られた試料は、60mmの種結晶基板の全面上にZnドープ窒化ガリウム結晶が成長しており、結晶の厚さは約1.0mmであった。クラックは確認されなかった。
 参考例1と同じ方法を用いて研磨加工したZnドープ窒化ガリウム自立基板の表面を走査型電子顕微鏡で観察したところ、一辺が20μmを越えるピットは見られなかった(図4参照)。
 非接触表面形状測定機(Zygo社製New View 7000)を用い、1.4mm×1.05mmの観察視野でRmsを算出したところ、0.6nmであった。走査型電子顕微鏡の画像から断面断面平均径を算出したところ、約200μmであった。
(参考例2:Li含有Geドープ窒化ガリウム自立基板)
(1)Geドープ多結晶窒化ガリウム自立基板の作製
(1a)種結晶層の成膜
 参考例1と同様の方法で配向アルミナ基板を作製し、MOCVD法を用いて種結晶層を形成した。
(1b)Li添加Naフラックス法によるGeドープGaN層の成膜
 金属Liを0.1g添加した以外は参考例1と同様の方法でGeドープGaN層を成膜した。得られた試料は、60mmの種結晶基板の全面上にGeドープ窒化ガリウム結晶が成長しており、結晶の厚さは約0.8mmであった。ウエハー内部に2本のクラックが確認された。
 参考例1と同じ方法を用いて研磨加工したGeドープ窒化ガリウム自立基板の表面を走査型電子顕微鏡で観察したところ、一辺が200μmを超える不定形のピットが多数見られた(図5参照)。
 非接触表面形状測定機(Zygo社製New View 7000)を用い、1.4mm×1.05mmの観察視野でRmsを算出したところ、80nmであった。走査型電子顕微鏡の画像から断面断面平均径を算出したところ、約70μmであった。
 参考例1と同様に作製した素子から任意に選んだ20個の個体について、カソード電極とアノード電極間に通電し、I-V測定を行ったところ、整流性が確認されたのは4素子のみであった。順方向の電流を流したところ、波長450nmの発光が確認された。
(参考例3:添加元素無しで育成した窒化ガリウム自立基板)
(1)アンドープ窒化ガリウム自立基板の作製
(1a)種結晶層の成膜
 参考例1と同様の方法で配向アルミナ基板を作製し、MOCVD法を用いて種結晶層を形成した。
(1b)Naフラックス法によるGaN層の成膜
 金属Gaと金属Na以外の添加元素を用いず、参考例1と同様の方法でアンドープGaN層を成膜した。得られた試料は、60mmの種結晶基板の全面上に窒化ガリウム結晶が成長しており、結晶の厚さは約1.6mmであった。クラックは確認されなかった。
 参考例1と同じ方法を用いて研磨加工したアンドープ窒化ガリウム自立基板の表面を走査型電子顕微鏡で観察したところ、一辺が50μmから100μm程度の不定形のピットが散見された(図6参照)。
 非接触表面形状測定機(Zygo社製New View 7000)を用い、1.4mm×1.05mmの観察視野でRmsを算出したところ、23nmであった。査型電子顕微鏡の画像から断面断面平均径を算出したところ、約130μmであった。
 参考例1と同様に作製した素子から任意に選んだ20個の個体について、カソード電極とアノード電極間に通電し、I-V測定を行ったところ、8個について整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。
(実施例3:Ca含有窒化ガリウム自立基板)
(1)窒化ガリウム自立基板の作製
(1a)種結晶層の成膜
 参考例1と同様の方法で配向アルミナ基板を作製し、MOCVD法を用いて種結晶層を形成した。
(1b)Naフラックス法によるGaN層の成膜
 金属Caを0.1g添加した以外は参考例3と同様の方法でアンドープGaN層を成膜した。得られた試料は、60mmの種結晶基板の全面上に窒化ガリウム結晶が成長しており、結晶の厚さは約1.3mmであった。クラックは確認されなかった。
 参考例1と同じ方法を用いて研磨加工したアンドープ窒化ガリウム自立基板の表面を走査型電子顕微鏡で観察したところ、一辺が30μmから100μm程度の不定形のピットがわずかに見られた。非接触表面形状測定機(Zygo社製New View 7000)を用い、1.4mm×1.05mmの観察視野でRmsを算出したところ、2.6nmであった。査型電子顕微鏡の画像から断面断面平均径を算出したところ、約150μmであった。
 参考例1と同様に作製した素子から任意に選んだ20個の個体について、カソード電極とアノード電極間に通電し、I-V測定を行ったところ、15個について整流性が確認された。また、順方向の電流を流したところ、波長450nmの発光が確認された。
 なお、上述の各例について、融液中のCa濃度、Zn濃度、結晶中のCa濃度、Zn濃度を表1に示す。また、クラックの有無、断面平均径、ピット、Rms、素子の整流性、比抵抗を表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(実施例4、5、6)
 実施例2において、融液中に添加するZnの濃度を、表3に示すように種々変更した。そして、各例について、融液中のZn濃度、結晶中のZn濃度、クラックの有無、断面平均径、ピット、Rms、比抵抗を表3に示す。
Figure JPOXMLDOC01-appb-T000005

Claims (11)

  1.  略法線方向で特定結晶方位に配向した複数の単結晶粒子で構成される多結晶13族元素窒化物からなる自立基板であって、
     前記多結晶13族元素窒化物が窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶からなり、前記自立基板が上面及び底面を有しており、亜鉛とカルシウムとの少なくとも一方を含有しており、前記上面の二乗平均粗さRmsが3.0nm以下であることを特徴とする、自立基板。
  2.  更にゲルマニウムを含有することを特徴とする、請求項1記載の自立基板。
  3.  前記上面に露出している前記単結晶粒子の最表面における断面平均径DTが10μm以上であることを特徴とする、請求項1または2記載の自立基板。
  4.  前記底面に露出している前記単結晶粒子の最表面における断面平均径DBに対する、前記上面に露出している前記単結晶粒子の最表面における断面平均径DTの比DT/DBが1.0を超えることを特徴とする、請求項3記載の自立基板。
  5.  前記上面に露出している前記単結晶粒子が、前記底面に粒界を介さずに連通してなる、請求項1~4のいずれか一項に記載の自立基板。
  6.  前記13族元素窒化物が窒化ガリウム系窒化物である、請求項1~5のいずれか一項に記載の自立基板。
  7.  亜鉛を含有することを特徴とする、請求項1~6のいずれか一つの請求項に記載の自立基板。
  8.  前記自立基板の面内方向の比抵抗が50Ω・cm以上、1×10Ω・cm以下であることを特徴とする、請求項7記載の自立基板。
  9.  前記自立基板の厚さ方向の比抵抗が5Ω・cm以上、1×10Ω・cm以下であることを特徴とする、請求項7または8記載の自立基板。
  10.  前記自立基板の面内方向の比抵抗の前記自立基板の厚さ方向の比抵抗に対する比率(前記面内方向の比抵抗/前記厚さ方向の比抵抗)が1.3以上、15以下であることを特徴とする、請求項7~9のいずれか一つの請求項に記載の自立基板。
  11.  請求項1~10のいずれか一項に記載の自立基板、および
     前記自立基板上に形成され、略法線方向に単結晶構造を有する複数の半導体単結晶粒子で構成される層を一以上有する発光機能層
    を備えた、発光素子。
PCT/JP2017/004926 2016-02-25 2017-02-10 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子 WO2017145810A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780011093.XA CN108779578B (zh) 2016-02-25 2017-02-10 包含多晶第13族元素氮化物的自立基板和使用该自立基板的发光元件
JP2018501580A JP6868606B2 (ja) 2016-02-25 2017-02-10 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
US16/059,751 US10804432B2 (en) 2016-02-25 2018-08-09 Free-standing substrate comprising polycrystalline group 13 element nitride and light-emitting element using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016034005 2016-02-25
JP2016-034005 2016-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/059,751 Continuation US10804432B2 (en) 2016-02-25 2018-08-09 Free-standing substrate comprising polycrystalline group 13 element nitride and light-emitting element using same

Publications (1)

Publication Number Publication Date
WO2017145810A1 true WO2017145810A1 (ja) 2017-08-31

Family

ID=59685462

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/004896 WO2017145803A1 (ja) 2016-02-25 2017-02-10 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
PCT/JP2017/004926 WO2017145810A1 (ja) 2016-02-25 2017-02-10 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004896 WO2017145803A1 (ja) 2016-02-25 2017-02-10 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子

Country Status (4)

Country Link
US (2) US10804432B2 (ja)
JP (3) JP6688109B2 (ja)
CN (2) CN108699728B (ja)
WO (2) WO2017145803A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049653A1 (ja) * 2017-09-11 2019-03-14 Tdk株式会社 基板及び発光素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043891A (ja) * 2016-09-12 2018-03-22 デクセリアルズ株式会社 窒化ガリウム積層体の製造方法
CN111201208B (zh) 2017-10-05 2023-05-23 阔斯泰公司 氧化铝质烧结体及其制造方法
WO2019187737A1 (ja) * 2018-03-29 2019-10-03 日本碍子株式会社 13族元素窒化物層、自立基板、機能素子および13族元素窒化物層の製造方法
WO2022209170A1 (ja) 2021-03-30 2022-10-06 日本碍子株式会社 スパッタリングターゲット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003414A1 (ja) * 2003-06-30 2005-01-13 Kenichiro Miyahara 薄膜形成用基板、薄膜基板、及び発光素子
WO2015151902A1 (ja) * 2014-03-31 2015-10-08 日本碍子株式会社 多結晶窒化ガリウム自立基板及びそれを用いた発光素子

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW428331B (en) 1998-05-28 2001-04-01 Sumitomo Electric Industries Gallium nitride single crystal substrate and method of producing the same
JP3803696B2 (ja) * 2000-11-21 2006-08-02 日亜化学工業株式会社 窒化物半導体素子
US6488767B1 (en) * 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
AU2003246272A1 (en) 2002-07-09 2004-01-23 Kenichiro Miyahara Substrate for forming thin film, thin film substrate, optical wave guide, luminescent element and substrate for carrying luminescent element
EP1548160A4 (en) 2002-07-31 2009-04-29 Osaka Ind Promotion Org METHOD FOR PRODUCING A CRYSTAL FROM A NITRIDE OF A GROUP III ELEMENT AND A TRANSPARENT CRYSTAL MADE FROM A NITRIDE OF AN ELEMENT OF GROUP III
US7323256B2 (en) * 2003-11-13 2008-01-29 Cree, Inc. Large area, uniformly low dislocation density GaN substrate and process for making the same
KR20050086042A (ko) * 2004-02-24 2005-08-30 엘지전자 주식회사 광 펌핑 반도체 칩 및 그를 이용한 수직 외부 공동 표면방출 레이저 시스템
TWI442456B (zh) * 2004-08-31 2014-06-21 Sophia School Corp 發光元件
US20090026488A1 (en) * 2005-02-21 2009-01-29 Mitsubishi Chemical Corporation Nitride semiconductor material and production process of nitride semiconductor crystal
JP4802314B2 (ja) * 2006-01-24 2011-10-26 シャープ株式会社 窒化物半導体発光素子とその製造方法
JP2008066591A (ja) * 2006-09-08 2008-03-21 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
US7501305B2 (en) * 2006-10-23 2009-03-10 Canon Kabushiki Kaisha Method for forming deposited film and photovoltaic element
JP2009123718A (ja) * 2007-01-16 2009-06-04 Showa Denko Kk Iii族窒化物化合物半導体素子及びその製造方法、iii族窒化物化合物半導体発光素子及びその製造方法、並びにランプ
JP5391588B2 (ja) * 2007-07-06 2014-01-15 日亜化学工業株式会社 窒化物半導体レーザ素子
US7701995B2 (en) * 2007-07-06 2010-04-20 Nichia Corporation Nitride semiconductor laser element
JP5018423B2 (ja) * 2007-11-20 2012-09-05 住友電気工業株式会社 Iii族窒化物半導体結晶基板および半導体デバイス
JP5039813B2 (ja) * 2009-08-31 2012-10-03 日本碍子株式会社 Znがドープされた3B族窒化物結晶、その製法及び電子デバイス
JP2012184144A (ja) 2011-03-07 2012-09-27 Tokuyama Corp 窒化ガリウム結晶積層基板及びその製造方法
JP2012250868A (ja) * 2011-06-01 2012-12-20 Sumitomo Electric Ind Ltd Iii族窒化物層の成長方法およびiii族窒化物基板
JP2013006762A (ja) * 2011-06-23 2013-01-10 Tohoku Univ 窒化物結晶の製造方法及び窒化物結晶
US9112331B2 (en) * 2012-03-22 2015-08-18 Palo Alto Research Center Incorporated Surface emitting laser incorporating third reflector
GR1008013B (el) * 2012-04-25 2013-10-22 Ιδρυμα Τεχνολογιας Και Ερευνας (Ιτε), Μεθοδος ετεροεπιταξιακης αναπτυξης ιιι-νιτριδιων, πολικοτητας μετωπου-μεταλλου ιιι, πανω σε υποστρωματα αδαμαντα
EP2933847B1 (en) 2012-12-14 2019-05-22 NGK Insulators, Ltd. Surface light-emission element using zinc oxide substrate
JP2014183120A (ja) * 2013-03-18 2014-09-29 Renesas Electronics Corp 半導体装置およびその製造方法並びに半導体ウェハ
WO2014192911A1 (ja) * 2013-05-31 2014-12-04 日本碍子株式会社 窒化ガリウム自立基板、発光素子及びそれらの製造方法
US9312446B2 (en) * 2013-05-31 2016-04-12 Ngk Insulators, Ltd. Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor
JP5770905B1 (ja) * 2013-12-18 2015-08-26 日本碍子株式会社 窒化ガリウム自立基板、発光素子及びそれらの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003414A1 (ja) * 2003-06-30 2005-01-13 Kenichiro Miyahara 薄膜形成用基板、薄膜基板、及び発光素子
WO2015151902A1 (ja) * 2014-03-31 2015-10-08 日本碍子株式会社 多結晶窒化ガリウム自立基板及びそれを用いた発光素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049653A1 (ja) * 2017-09-11 2019-03-14 Tdk株式会社 基板及び発光素子
JPWO2019049653A1 (ja) * 2017-09-11 2020-08-20 Tdk株式会社 基板及び発光素子
JP7078050B2 (ja) 2017-09-11 2022-05-31 Tdk株式会社 基板、発光素子及び基板の製造方法

Also Published As

Publication number Publication date
JP6868606B2 (ja) 2021-05-12
JPWO2017145803A1 (ja) 2018-12-20
US20180351041A1 (en) 2018-12-06
CN108779578A (zh) 2018-11-09
JP6890117B2 (ja) 2021-06-18
JP2017152665A (ja) 2017-08-31
WO2017145803A1 (ja) 2017-08-31
JPWO2017145810A1 (ja) 2018-12-20
US20180350918A1 (en) 2018-12-06
US10734548B2 (en) 2020-08-04
CN108779578B (zh) 2020-12-08
US10804432B2 (en) 2020-10-13
CN108699728B (zh) 2020-12-29
CN108699728A (zh) 2018-10-23
JP6688109B2 (ja) 2020-04-28

Similar Documents

Publication Publication Date Title
JP5770905B1 (ja) 窒化ガリウム自立基板、発光素子及びそれらの製造方法
JP6474734B2 (ja) 発光素子用複合基板及びその製造方法
JP6480398B2 (ja) 多結晶窒化ガリウム自立基板及びそれを用いた発光素子
US9548418B2 (en) Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor
JP6868606B2 (ja) 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
WO2014192911A1 (ja) 窒化ガリウム自立基板、発光素子及びそれらの製造方法
US10707373B2 (en) Polycrystalline gallium nitride self-supported substrate and light emitting element using same
KR101758548B1 (ko) 질화갈륨 자립 기판, 발광 소자 및 이들의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756251

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756251

Country of ref document: EP

Kind code of ref document: A1