WO2015151751A1 - 表面処理アルミニウム材及び亜鉛添加アルミニウム合金 - Google Patents

表面処理アルミニウム材及び亜鉛添加アルミニウム合金 Download PDF

Info

Publication number
WO2015151751A1
WO2015151751A1 PCT/JP2015/057289 JP2015057289W WO2015151751A1 WO 2015151751 A1 WO2015151751 A1 WO 2015151751A1 JP 2015057289 W JP2015057289 W JP 2015057289W WO 2015151751 A1 WO2015151751 A1 WO 2015151751A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
aluminum alloy
zinc
mass
treatment
Prior art date
Application number
PCT/JP2015/057289
Other languages
English (en)
French (fr)
Inventor
雄輔 関
海老原 健
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to JP2016511498A priority Critical patent/JP6237885B2/ja
Priority to US15/127,533 priority patent/US20170137956A1/en
Priority to KR1020167029928A priority patent/KR20160140796A/ko
Priority to CN201580017924.5A priority patent/CN106133205A/zh
Publication of WO2015151751A1 publication Critical patent/WO2015151751A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting

Definitions

  • the present invention relates to a surface-treated aluminum material having an anodized film on the surface and a zinc-added aluminum alloy for producing the surface-treated aluminum material, and in particular, the manifestation of crystal grain patterns due to anodization is suppressed. It relates to a surface-treated aluminum material.
  • An aluminum material made of aluminum or an aluminum alloy is easily corroded by acid, alkali, etc., so that the aluminum material is an anode in an electrolyte solution in order to provide corrosion resistance, wear resistance, aesthetics, functionality, etc.
  • anodization treatment is generally performed in which an aluminum oxide (Al 2 O 3 ) film (anodized film) is formed on the surface thereof.
  • an anodic oxidation treatment using an aqueous acid solution such as oxalic acid, sulfuric acid, phosphoric acid or the like as an electrolyte
  • an anodic oxidation film called a porous film is formed by this anodic oxidation treatment.
  • a barrier layer corresponding to the treatment voltage is first generated, and then a large number of holes are generated in the barrier layer, and the large number of holes grow to form a porous layer.
  • Al-Cu 2000 series
  • Al-Mn 3000 series
  • Al-Si 4000 series
  • Al-Mg series Aluminum alloys such as 5000 series
  • Al purity high-purity aluminum materials with high aluminum purity
  • chemical dissolution treatment electropolishing treatment
  • anodic oxidation treatment etc. performed after processing such as extrusion and cutting
  • housing members such as door knobs and fences, handles and cranks, etc.
  • This high-purity aluminum material is used in applications such as bicycle members such as bicycles, vehicle members such as passenger door frames and inner panels, decorative members such as accessories and watches, optical product members such as reflectors and cameras, and printing rolls. Development of products that have been processed has become active.
  • an aluminum material has a pattern (crystal grain pattern) due to crystal grains present in the material, and this crystal grain pattern is not visible to the naked eye before anodizing treatment, When the anodizing treatment is performed, it becomes apparent mainly due to the difference in crystal grain orientation. And about an aluminum material, there exists a tendency for a crystal grain size to become large, so that the Al purity is high, and it becomes more obvious by an anodizing process.
  • the size of crystal grains may be several hundred ⁇ m or more, and may be several mm depending on the heat treatment.
  • the cooling rate is adjusted at the time of casting the aluminum material before the anodizing treatment, or processing such as cold forging is performed. It is conceivable to make the crystal grain size in the aluminum material smaller than the size (about 100 ⁇ m) that can be visually confirmed, thereby making the crystal grain pattern apparently inconspicuous. However, even if the crystal grain size in the aluminum material is less than 100 ⁇ m, if the crystal grains are aggregated and become 100 ⁇ m or more, there is a problem that the crystal grains become apparent during the anodic oxidation treatment.
  • the processing method of aluminum is limited, so there is a limit to reducing the size of crystal grains, especially when the aluminum material is a material with high Al purity, or heat treatment is required during production In this case, it is technically difficult to reduce the size of the crystal grains to 100 ⁇ m or less, and even if the size of the crystal grains can be reduced, the crystal grains in the aluminum material When the agglomerates are aggregated, they appear to be similar to one large crystal grain in appearance, and it is difficult to obtain a uniform appearance.
  • the present inventors first investigated in detail the cause of the appearance of crystal grain patterns due to the anodizing treatment, and in the aluminum material after the anodizing treatment, the aluminum metal (Al) / barrier layer (Al 2 O It was found that the shape at the interface of 3 ) was different for each crystal grain with different orientation.
  • a barrier layer is first formed at the initial stage of film formation, and then holes begin to open in the formed film, but if there is a difference in orientation of crystal grains, this difference in crystal grain orientation Due to this, a difference occurs at the time of the generation of holes, and due to this, fine differences in the shape and unevenness are formed in many holes generated at the interface of aluminum metal (Al) / barrier layer (Al 2 O 3 ). The fine difference in the formed many holes is reflected in the porous layer formed by growing many holes thereafter. And even if the difference is very slight, the fine difference in the numerous holes of the anodic oxide film formed in this way is emphasized when light is applied to the surface, and is manifested as a crystal grain pattern. It becomes a cause that a uniform external appearance is not formed in the aluminum material after the anodizing treatment.
  • the present inventors made as many pores as possible generated at the interface of the aluminum metal (Al) / barrier layer (Al 2 O 3 ) as uniform as possible regardless of the crystal orientation.
  • the zinc component as an aluminum material: 0.05 to 1% by mass, inevitable impurities: 0.02% by mass or less, and the balance: a specific zinc addition having an alloy composition of aluminum
  • the porous layer has holes that have a uniform shape in the subsequent anodic oxidation treatment, regardless of the crystal grain orientation. It is possible to prevent the occurrence of crystal grain patterns in the aluminum material after anodization as much as possible and to form a uniform anodic oxide film with few defects.
  • the present invention has been completed.
  • an object of the present invention to provide a surface-treated aluminum material having a uniform porous porous anodized film in which the crystal grain pattern after the anodizing treatment is not visually recognized.
  • Another object of the present invention is to provide a novel zinc-added aluminum alloy suitable for producing a surface-treated aluminum material having a uniform porous type porous anodic oxide film in which the crystal grain pattern after anodizing treatment is not visually recognized. Is to provide.
  • the present invention is a surface-treated aluminum material having an aluminum alloy base material and an anodized film formed on the surface of the aluminum alloy base material.
  • the aluminum alloy base material has a Zn component of 0.05 to 1% by mass, unavoidable impurities.
  • the present invention is an aluminum alloy obtained by adding Zn to high-purity aluminum, the Zn component being 0.05 to 1% by mass, inevitable impurities being 0.02% by mass or less, and the balance being aluminum.
  • a zinc-added aluminum alloy characterized by
  • the surface-treated aluminum material of the present invention is obtained by anodizing an aluminum alloy substrate made of a zinc-added aluminum alloy.
  • the zinc-added aluminum alloy has a Zn component of 0.05% by mass to 1% by mass, preferably 0.25% by mass or more and 0.8% by mass or less, and inevitable impurities other than Zn component such as Si, Fe, Cu, Mn, Mg, Ti, Mg, Ni are 0.02% by mass or less, preferably Is 0.01% by mass or less, and the balance is aluminum.
  • the Zn component when the Zn component is less than 0.05% by mass, a difference occurs when holes are generated due to the orientation of crystal grains, and the effect of suppressing the manifestation of crystal grain patterns
  • the Zn component exceeds 1% by mass, the anodized film may be locally dissolved and defects may occur on the surface.
  • the inevitable impurities other than this Zn component exceed 0.02 mass%, the local dissolution of the film caused by the second phase particles, the occurrence of a part where the film is not formed, and the like as compared with the material having a high Al purity. As a result, a uniform anodic oxide film cannot be formed over a wide area.
  • inevitable impurities for example, Fe, Si, Cu, Ni, Ti
  • whose potential is noble with respect to Al there is a possibility of causing local dissolution in the film by anodizing treatment. It is desirable that it is less than mass%.
  • the surface of the aluminum alloy substrate may be planarized by cutting, buffing, electrolytic polishing, chemical polishing, or the like, and the shape thereof is not particularly limited.
  • a wrought material such as a cast material, an extruded material, a plate material, and a roll material can be exemplified.
  • the present invention is effective because the crystal grain pattern is easily revealed by anodizing.
  • the method for producing the zinc-added aluminum alloy used in the present invention is not particularly limited as long as the alloy composition of the zinc-added aluminum alloy described above can be achieved.
  • a gravity casting method for producing a cast material using a mold such as a book mold / boat shape, for example, a DC casting method for producing a cylindrical billet, a rectangular parallelepiped slab, etc., for example, a plate-shaped ingot, etc.
  • a zinc-added aluminum alloy having a predetermined alloy composition may be prepared by adding Zn.
  • the shape of a rod, a roll, etc. using the cylindrical billet obtained by the gravity casting method which manufactures the above-mentioned casting material, or the above-mentioned DC casting method is preferably mentioned.
  • Extrusion method for obtaining an aluminum alloy wrought material, hot or cold rolling method for obtaining a plate material using a rectangular parallelepiped slab obtained by the above-mentioned DC casting method, and plate shape obtained by the above-mentioned continuous casting method The cold rolling method etc. which obtain a board and foil using an ingot can be mentioned.
  • an anodized film is formed on the surface of the aluminum alloy substrate made of the above zinc-added aluminum alloy by anodizing treatment.
  • the anodic oxidation treatment at this time is not particularly limited. However, since the present invention is particularly effective for a porous anodic oxide film in which a crystal grain pattern is easily revealed, this porous oxidization treatment is preferably used.
  • This is an anodizing treatment in which a polybasic acid aqueous solution that produces a type anodized film is used as a treatment bath.
  • the polybasic acid aqueous solution used as a treatment bath in the anodizing treatment for forming the porous anodic oxide film is not particularly limited, and examples of the polybasic acid constituting the treatment bath include sulfuric acid and phosphoric acid. , Mineral acids such as chromic acid, and organic acids such as oxalic acid, tartaric acid, malonic acid, and the concentration of the polybasic acid in the treatment bath using these polybasic acids (polybasic acid aqueous solution)
  • sulfuric acid it is 10% by weight or more and 20% by weight or less, preferably 14% by weight or more and 18% by weight or less.
  • the anodizing treatment conditions using the polybasic acid aqueous solution as the treatment bath are not particularly limited, and the normal anodizing treatment, particularly the porous anodizing using the polybasic acid aqueous solution as the treatment bath.
  • the treatment bath temperature is 18 ° C.
  • the treatment voltage is 10 to 15 V
  • the film thickness is about 1 to 20 ⁇ m.
  • an anodized film is formed on the surface of an aluminum alloy substrate formed of a zinc-added aluminum alloy having a specific alloy composition, and the appearance of the crystal grain pattern is not manifested. It is excellent in uniformity, and can be easily manufactured industrially. Particularly, it is a housing member, bicycle member, vehicle member, decorative member, optical product member, architecture, where the appearance uniformity is important. It is preferably used in applications such as product members, product members for anodization such as plates and rolls, and rolls for printing.
  • Example 1 A book mold mold in which 3.25 g of 99.9999% Zn was added to 6.5 kg of high-purity aluminum having a purity of 99.99%, dissolved in an experimental crucible at 720 ° C., and preheated to 150 ° C.
  • the aluminum alloy base material made of the zinc-added aluminum alloy of Example 1 was obtained by casting into a mold 30 t ⁇ 150 w ⁇ 190 l using a weight casting method.
  • Example 2 16.25 g of 99.9999% Zn was added to 6.5 kg of high-purity aluminum having a purity of 99.99%, and an aluminum alloy substrate made of the zinc-added aluminum alloy of Example 2 in the same manner as in Example 1. Then, the alloy composition was examined. The results are shown in Table 1.
  • Example 3 Aluminum alloy base material comprising the zinc-added aluminum alloy of Example 3 in the same manner as in Example 1 by adding 32.50 g of 99.9999% Zn to 6.5 kg of high-purity aluminum having a purity of 99.99% Then, the alloy composition was examined. The results are shown in Table 1.
  • Example 4 Aluminum alloy base material comprising the zinc-added aluminum alloy of Example 4 by adding 65.00 g of 99.9999% Zn to 6.5 kg of high-purity aluminum having a purity of 99.99% Then, the alloy composition was examined. The results are shown in Table 1.
  • Example 5 Aluminum alloy base material comprising the zinc-added aluminum alloy of Example 5 in the same manner as in Example 1 by adding 65.00 g of 99.5% Zn to 6.5 kg of high-purity aluminum having a purity of 99.99% Then, the alloy composition was examined. The results are shown in Table 1.
  • Comparative Example 1 A book mold mold in which 0.65 g of 99.9999% Zn was added to 6.5 kg of high-purity aluminum having a purity of 99.99%, dissolved in a laboratory crucible at 720 ° C., and preheated to 150 ° C.
  • the aluminum alloy base material made of the zinc-added aluminum alloy of Comparative Example 1 was obtained by casting into a mold 30 t ⁇ 150 w ⁇ 190 l using a weight casting method.
  • Comparative Example 2 130 g of 99.9999% Zn was added to 6.5 kg of high-purity aluminum having a purity of 99.99%, and an aluminum alloy substrate made of the zinc-added aluminum alloy of Comparative Example 2 was obtained in the same manner as Comparative Example 1. After that, the alloy composition was examined. The results are shown in Table 1.
  • Example 6 to 26 An aluminum piece having a size of 50 mm ⁇ 50 mm ⁇ 10 mm is cut out from the aluminum alloy base material of each of Examples 1 to 5 shown in Table 2 and flattened to a surface roughness Rt ⁇ 200 nm by buffing, and has a specular gloss. An aluminum piece (aluminum alloy base material) was obtained. The aluminum pieces having a specular gloss thus obtained were anodized with the polybasic acid aqueous solution and the treatment conditions shown in Table 2, and then washed with water and dried to perform the anodizing treatment of Examples 6 to 26. A later aluminum piece (test piece: surface-treated aluminum material) was obtained.
  • Anodized film is uniform and free of defects
  • 1-10 defects of anodized film with a size of 5 ⁇ m or less are observed in the field of view, but defects of 5 ⁇ m or more are not observed
  • Field of view 10 or more defects of an anodized film having a size of 5 ⁇ m or less are observed in the inside, or one or more defects having a size of 5 ⁇ m or more are observed, or a uniform anodized film is formed. None. The results are shown in Table 2.
  • Comparative Examples 8 to 14 Using the aluminum alloy substrates of Comparative Examples 1 to 7 shown in Table 3, comparative aluminum pieces (aluminum alloy substrates) of Comparative Examples 8 to 14 were prepared in the same manner as in Examples 6 to 26, Next, the obtained comparative aluminum pieces of Comparative Examples 8 to 14 were anodized in a treatment bath of 2 wt% -oxalic acid (20 ° C.) under a treatment condition of a voltage of 40 V and an electric quantity of 20 C / cm 2 , After washing with water and drying, comparative aluminum pieces (comparative test pieces: surface-treated aluminum material) after anodizing treatment of Comparative Examples 8 to 14 were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

 アルミニウム又はアルミニウム合金からなるアルミニウム材に対して、陽極酸化処理後の結晶粒模様が視認されず、均一なポーラス型の多孔性陽極酸化皮膜を有する表面処理アルミニウム材及びこの表面処理アルミニウム材を製造するのに適した新規な亜鉛添加アルミニウム合金を提供する。 アルミニウム合金基材とその表面に形成された陽極酸化皮膜とを有する表面処理アルミニウム材であって、前記アルミニウム合金基材が、Zn成分:0.05~1質量%、不可避不純物:0.02質量%以下、及び残部:アルミニウムの合金組成を有する亜鉛添加アルミニウム合金で形成されていることを特徴とする表面処理アルミニウム材である。

Description

表面処理アルミニウム材及び亜鉛添加アルミニウム合金
 この発明は、表面に陽極酸化皮膜を有する表面処理アルミニウム材及びこの表面処理アルミニウム材を製造するための亜鉛添加アルミニウム合金に関するものであり、特に、陽極酸化処理による結晶粒模様の顕在化が抑制された表面処理アルミニウム材に関する。
 アルミニウム又はアルミニウム合金からなるアルミニウム材は、アルミニウム自体が酸やアルカリ等に侵され易いことから、耐食性、耐摩耗性、美観性、機能性等を付与するために、電解質溶液中でアルミニウム材を陽極として通電し、その表面に酸化アルミニウム(Al2O3)の皮膜(陽極酸化皮膜)を形成する陽極酸化処理が広く一般的に行われている。そして、例えば電解質としてシュウ酸、硫酸、リン酸等の酸水溶液を用いる陽極酸化処理においては、この陽極酸化処理によりポーラス型皮膜と呼ばれる陽極酸化皮膜が形成されるが、このポーラス型皮膜は、バリア層と称される内側(アルミニウム側)の緻密な皮膜と、その外側に形成されて多数の孔を有し、ポーラス層と称される多孔性の皮膜とで構成されており、陽極酸化処理の初期に先ず処理電圧に応じたバリア層が生成し、その後にバリア層に多数の孔が発生し、これら多数の孔が成長してポーラス層が形成される。
 ところで、アルミニウム材としては、純アルミ系(1000系)のほか、例えばAl-Cu系(2000系)、Al-Mn系(3000系)、Al-Si系(4000系)、Al-Mg系(5000系)等のアルミニウム合金が挙げられるが、工業的にはアルミニウムに他の金属を添加して強度や加工性を向上させたアルミニウム合金が広く使われている。しかしながら、アルミニウム純度(Al純度)の高い高純度アルミニウム材には、汎用のアルミニウム合金に比べて、押出し加工、切削加工等の加工後に行われる、化学的溶解処理、電解研磨処理、陽極酸化処理等の各種の処理において、表面の欠陥となる第2相化合物や介在物等の影響を大幅に低減することができるという利点があり、最近では、例えばドアノブやフェンス等の住宅用部材、ハンドルやクランク等の自転車用部材、乗車ドア枠やインナーパネル等の車両用部材、アクセサリーや時計等の装飾部材、反射鏡やカメラ等の光学製品用部材、印刷用ロール等の用途において、この高純度アルミニウム材を加工した製品の開発が活発に行われるようになってきた。
 しかるに、アルミニウム材には、一般に、その材料中に存在する結晶粒に起因する模様(結晶粒模様)が存在し、また、この結晶粒模様は、陽極酸化処理前には肉眼では視認できないが、陽極酸化処理を行うと、主として結晶粒の方位の違いにより顕在化する。そして、アルミニウム材については、そのAl純度が高ければ高い程、結晶粒サイズが大きくなる傾向があり、陽極酸化処理によってより顕在化する。特に、高純度アルミニウム材においては、結晶粒の大きさが数百μm以上にもなることがあり、熱処理によっては数mmとなる場合もある。
 また、このような結晶粒模様が顕在化する問題は、アルミニウム材の表面がバフ研磨、電解研磨、化学研磨、及び切削加工等によって平坦化処理されている場合においても発生し、陽極酸化処理前に目視で視認できなかった結晶粒模様が陽極酸化処理により顕在化して一様な外観が得られず、用途によっては外観の均一性が重視される場合があり、外観不良と判断される場合がある。
 そこで、この陽極酸化処理により結晶粒模様が顕在化する問題を解決するための方法として、陽極酸化処理前のアルミニウム材の鋳造時に、その冷却速度を調節したり、あるいは、冷間鍛造等の加工を施すことにより、アルミニウム材中に存在する結晶粒の大きさを目視で確認できるサイズ(凡そ100μm)より小さくし、これによって見掛け上結晶粒模様を目立たなくする方法が考えられる。しかしながら、アルミニウム材中の結晶粒サイズを100μm未満にしても、結晶粒が凝集して100μm以上になると陽極酸化処理の際の結晶粒の顕在化の問題が発生する。
 また、製品によってはアルミニウムの加工方法が限定されることから結晶粒の大きさを小さくすることには限界があり、特に、アルミニウム材がAl純度の高い材料である場合や、製造時に熱処理が必要となる場合には、結晶粒の大きさを100μm以下に小さくすることは技術的に困難であり、また、仮に結晶粒の大きさを小さくすることができても、アルミニウム材の中で結晶粒が凝集した場合には、外観では一つの大きな結晶粒と同様に見えてしまうことから、均一な外観を得ることには困難が伴う。
 ところで、陽極酸化処理により顕在化する結晶粒模様を意匠的に優れた外観であると認識し、陽極酸化処理後のアルミニウム材に敢えて結晶粒模様を顕在化させる技術はこれまでに提案されているが(例えば、特許文献1参照)、陽極酸化処理後に結晶粒模様が顕在化し難い材料の開発例はみあたらない。
特開平6-287773号公報
 そこで、本発明者らは、先ず、陽極酸化処理によって結晶粒模様が顕在化する原因について詳細に調査検討を行い、陽極酸化処理後のアルミニウム材においてアルミニウム金属(Al)/バリア層(Al2O3)の界面での形状が方位の異なる結晶粒毎に異なることを突き止めた。すなわち、陽極酸化処理において、皮膜形成の初期に先ずバリア層が形成され、その後に形成された皮膜に孔が開き始めるが、結晶粒に方位の違いが存在すると、この結晶粒の方位の違いに起因して孔の発生時に差異が生じ、これに起因してアルミニウム金属(Al)/バリア層(Al2O3)の界面で生成した多数の孔に形状や凹凸等において微細な違いが形成され、この形成された多数の孔における微細な違いが、その後に多数の孔が成長して形成されるポーラス層においても反映される。そして、このようにして形成された陽極酸化皮膜の多数の孔における微細な違いは、その差が極めて僅かではあっても、表面に光を当てた際に強調され、結晶粒模様として顕在化し、陽極酸化処理後のアルミニウム材において均一な外観が形成されない原因となる。
 そして、本発明者らは、この検討結果を踏まえ、結晶粒の方位に関係なくアルミニウム金属(Al)/バリア層(Al2O3)の界面で発生する多数の孔を可及的に一様にするための方法について更に検討を重ねた結果、アルミニウム材としてZn成分:0.05~1質量%、不可避不純物:0.02質量%以下、及び残部:アルミニウムの合金組成を有する特定の亜鉛添加アルミニウム合金を用いることにより、皮膜形成の初期において孔が開き易くなり、また、結晶粒の方位によらず一様に孔が開き始め、その後の陽極酸化処理において均一な形状の孔を有するポーラス層を形成することができ、陽極酸化処理後のアルミニウム材において結晶粒模様が顕在化するのを可及的に防止できると共に、欠陥の少ない均一な陽極酸化皮膜を形成できることを見出し、本発明を完成した。
 従って、本発明の目的は、陽極酸化処理後の結晶粒模様が視認されず、均一なポーラス型の多孔性陽極酸化皮膜を有する表面処理アルミニウム材を提供することにある。
 また、本発明の目的は、陽極酸化処理後の結晶粒模様が視認されず、均一なポーラス型の多孔性陽極酸化皮膜を有する表面処理アルミニウム材を製造するのに適した新規な亜鉛添加アルミニウム合金を提供することにある。
 すなわち、本発明は、アルミニウム合金基材とその表面に形成された陽極酸化皮膜とを有する表面処理アルミニウム材であり、前記アルミニウム合金基材が、Zn成分:0.05~1質量%、不可避不純物:0.02質量%以下、及び残部:アルミニウムの合金組成を有する亜鉛添加アルミニウム合金で形成されていることを特徴とする表面処理アルミニウム材である。
 また、本発明は、高純度アルミニウムにZnを添加してなるアルミニウム合金であって、Zn成分が0.05~1質量%、不可避不純物が0.02質量%以下、及び残部がアルミニウムであることを特徴とする亜鉛添加アルミニウム合金である。
 本発明の表面処理アルミニウム材は、亜鉛添加アルミニウム合金からなるアルミニウム合金基材の陽極酸化処理によって得られ、この亜鉛添加アルミニウム合金は、Zn成分が0.05質量%以上1質量%以下、好ましくは0.25質量%以上0.8質量%以下であって、Zn成分以外の、例えばSi、Fe、Cu、Mn、Mg、Ti、Mg、Ni等の不可避不純物が0.02質量%以下、好ましくは0.01質量%以下であって、残部がアルミニウムである。
 ここで、亜鉛添加アルミニウム合金については、Zn成分が0.05質量%に満たない場合は、結晶粒の方位に起因して孔の発生時に差異が生じ、結晶粒模様の顕在化を抑制する効果が現れ難く、反対に、Zn成分が1質量%を超えると、陽極酸化皮膜が局所的に溶解し、表面に欠陥が生じる恐れがある。また、このZn成分以外の不可避不純物が0.02質量%を超えると、Al純度の高い材料と比較して第2相粒子に起因する皮膜の局所的な溶解や皮膜が形成されない箇所の発生等が生じ、広範囲に一様な陽極酸化皮膜を形成できなくなる。特に、Alに対して電位が貴となる不可避不純物(例えば、Fe、Si、Cu、Ni、Ti)については、陽極酸化処理により皮膜に局所的な溶解を引き起こす可能性があるため、0.01質量%以下であることが望ましい。
 本発明において、前記アルミニウム合金基材は、その表面が切削加工、バフ研磨、電解研磨、及び化学研磨等により平坦化処理されていてもよく、また、その形状についても、特に制限されるものではなく、例えば、鋳造材や押出し材、板材、ロール材等の展伸材等を例示することができる。特に、平坦化処理されたアルミニウム合金基材については、陽極酸化処理により結晶粒模様が顕在化し易いので、本発明は効果的である。
 本発明で用いる亜鉛添加アルミニウム合金の製造方法については、上述した亜鉛添加アルミニウム合金の合金組成を達成できれば特に制限されるものではなく、これまで一般的に行われてきたアルミニウム合金の製造方法を適用することができ、例えばブックモールド・舟形などの鋳型を用いて鋳造材等を製造する重力鋳造法、例えば円柱状ビレット、直方体形状のスラブ等を製造するDC鋳造法、例えば板状鋳塊等を製造する連続鋳造法等を例示することができるほか、後述するように、アルミニウム合金基材の製造工程中にアルミニウム合金の溶融工程が含まれる場合には、この溶融工程で高純度アルミニウム中に必要なZnを添加し、所定の合金組成を有する亜鉛添加アルミニウム合金を調製するようにしてもよい。
 また、本発明で用いるアルミニウム合金基材の製造方法については、上述の鋳造材を製造する重力鋳造法や、上述のDC鋳造法で得られた円柱状ビレットを用いて棒やロール等の形状のアルミニウム合金展伸材を得る押出し法や、上述のDC鋳造法で得られた直方体形状のスラブを用いて板材を得る熱間又は冷間圧延法や、上述の連続鋳造法で得られた板状鋳塊を用いて板や箔を得る冷間圧延法等を挙げることができる。
 本発明においては、上記の亜鉛添加アルミニウム合金からなるアルミニウム合金基材の表面に、陽極酸化処理により陽極酸化皮膜を形成する。そして、この際の陽極酸化処理については、特に制限されるものではないが、本発明が結晶粒模様の顕在化し易いポーラス型の陽極酸化皮膜に対して特に有効であることから、好ましくはこのポーラス型の陽極酸化皮膜が生成する多塩基酸水溶液を処理浴とする陽極酸化処理である。
 上記ポーラス型の陽極酸化皮膜を形成する陽極酸化処理で処理浴として使用する多塩基酸水溶液についても特に制限されるものではなく、処理浴を構成する多塩基酸としては、例えば、硫酸、リン酸、クロム酸等の鉱酸や、シュウ酸、酒石酸、マロン酸等の有機酸を挙げることができ、これらの多塩基酸を用いた処理浴(多塩基酸水溶液)の多塩基酸濃度としては、通常の陽極酸化処理で用いられている場合と同様でよく、例えば硫酸の場合には、10重量%以上20重量%以下、好ましくは14重量%以上18重量%以下である。
 また、多塩基酸水溶液を処理浴として用いる陽極酸化処理の処理条件についても、特に制限されるものではなく、通常の陽極酸化処理、特に処理浴として多塩基酸水溶液を用いてポーラス型の陽極酸化皮膜を形成する陽極酸化処理で採用されている場合と同様でよく、例えば硫酸を処理浴として用いる場合は、処理浴温度18℃、処理電圧10~15V、皮膜厚さ1~20μm程度である。
 本発明の表面処理アルミニウム材は、特定の合金組成を有する亜鉛添加アルミニウム合金で形成されたアルミニウム合金基材の表面に陽極酸化皮膜が形成されており、結晶粒模様が顕在化されずに外観の均一性に優れており、また、工業的に容易に製造することができ、特に外観の均一性が重視される住宅用部材、自転車用部材、車両用部材、装飾部材、光学製品用部材、建築製品用部材、板やロール等の陽極酸化用製品部材、印刷用ロール等の用途において好適に使用される。
 以下、実施例及び比較例に基づいて、本発明の好適な実施の形態をより具体的に説明する。
〔実施例1〕
 純度99.99%の高純度アルミニウム6.5kgに、純度99.9999%のZnを3.25g添加し、720℃の実験用るつぼ中で溶解させた後、150℃に予熱させたブックモールド型の金型30t×150w×190lに重量鋳造法を用いて鋳込み、実施例1の亜鉛添加アルミニウム合金からなるアルミニウム合金基材を得た。得られたアルミニウム合金基材について、グロー放電質量分析法(GD-MS法;装置:VG ELEMENTAL社製 VG9000型)によって合金組成を調べたところ、Zn:0.05%、Si:0.003%、Fe:0.001%、Cu:<0.001%、Mn:0.001%、Mg:0.003%、その他:0.002%、Al:残部であった。結果を表1に示す。
〔実施例2〕
 純度99.99%の高純度アルミニウム6.5kgに、純度99.9999%のZnを16.25g添加し、実施例1と同様の方法で実施例2の亜鉛添加アルミニウム合金からなるアルミニウム合金基材を得た後、その合金組成を調べた。結果を表1に示す。
〔実施例3〕
 純度99.99%の高純度アルミニウム6.5kgに、純度99.9999%のZnを32.50g添加し、実施例1と同様の方法で実施例3の亜鉛添加アルミニウム合金からなるアルミニウム合金基材を得た後、その合金組成を調べた。結果を表1に示す。
〔実施例4〕
 純度99.99%の高純度アルミニウム6.5kgに、純度99.9999%のZnを65.00g添加し、実施例1と同様の方法で実施例4の亜鉛添加アルミニウム合金からなるアルミニウム合金基材を得た後、その合金組成を調べた。結果を表1に示す。
〔実施例5〕
 純度99.99%の高純度アルミニウム6.5kgに、純度99.5%のZnを65.00g添加し、実施例1と同様の方法で実施例5の亜鉛添加アルミニウム合金からなるアルミニウム合金基材を得た後、その合金組成を調べた。結果を表1に示す。
〔比較例1〕
 純度99.99%の高純度アルミニウム6.5kgに、純度99.9999%のZnを0.65g添加し、720℃の実験用るつぼ中で溶解させた後、150℃に予熱させたブックモールド型の金型30t×150w×190lに重量鋳造法を用いて鋳込み、比較例1の亜鉛添加アルミニウム合金からなるアルミニウム合金基材を得た。得られたアルミニウム合金基材について、グロー放電質量分析法(GD-MS法;装置:VG ELEMENTAL社製 VG9000型)によって合金組成を調べたところ、Zn:0.01%、Si:0.003%、Fe:0.001%、Cu:<0.001%、Mn:0.001%、Mg:0.003%、その他:0.002%、Al:残部であった。結果を表1に示す。
〔比較例2〕
 純度99.99%の高純度アルミニウム6.5kgに、純度99.9999%のZnを130g添加し、比較例1と同様の方法で比較例2の亜鉛添加アルミニウム合金からなるアルミニウム合金基材を得た後、その合金組成を調べた。結果を表1に示す。
〔比較例3〕
 純度99.95%の高純度アルミニウム6.5kgに、純度99.9999%のZnを32.5g添加し、比較例1と同様の方法で比較例3の亜鉛添加アルミニウム合金からなるアルミニウム合金基材を得た後、その合金組成を調べた。結果を表1に示す。
〔比較例4~7〕
 アルミニウム合金基材を形成するアルミニウム合金について、比較例4ではJIS A2024合金(Zn:0.25、Si:0.5、Fe:0.5、Cu:4、Mn:0.35、Mg:1.5、その他:0.1、残部:Al)を使用し、比較例5ではJIS A3003合金(Zn:0.1、Si:0.6、Fe:0.7、Cu:0.1、Mn:1.2、Mg:<0.001、その他:0.1、残部:Al)を使用し、比較例6ではJIS A5052合金(Zn:0.1、Si:0.25、Fe:0.4、Cu:0.1、Mn:0.1、Mg:2.5、その他:0.006、残部:Al)を使用し、また、比較例7ではJIS A6061合金(Zn:0.25、Si:0.5、Fe:0.7、Cu:0.2、Mn:0.15、Mg:0.2、その他:0.45、残部:Al)を使用した。
〔実施例6~26〕
 表2に示す各実施例1~5のアルミニウム合金基材から50mm×50mm×10mmの大きさのアルミ片を切り出し、バフ研磨処理で表面粗さRt<200nmまで平坦化処理し、鏡面光沢を有するアルミ片(アルミニウム合金基材)を得た。
 このようにして得られた鏡面光沢を有するアルミ片について、表2に示す多塩基酸水溶液及び処理条件で陽極酸化処理を行い、更に、水洗し乾燥して各実施例6~26の陽極酸化処理後のアルミ片(試験片:表面処理アルミニウム材)を得た。
〔表面観察による結晶粒模様の評価〕
 各実施例6~26で得られた試験片について、照度1,500Lux以上2,500Lux以下の蛍光灯下で目視観察をしたときに結晶粒模様が見えるものを×とし、また、照度1,500Lux以上2,500Lux以下の蛍光灯下で目視観察をしたときに結晶粒模様が見えないものを○とし、更に、照度15,000Lux以上20,000Lux以下のビデオライト下で目視観察をしたときに結晶粒模様が見えないものを◎とする表面観察を行い、各試験片における結晶粒模様の評価を行った。
 結果を表2に示す。
〔SEM観察による陽極酸化皮膜の評価〕
 各実施例6~26で得られた試験片について、およそ25μm×25μmの範囲(5000倍程度の視野に相当)を走査型電子顕微鏡(SEM)で観察し、以下に示す評価基準で陽極酸化皮膜の評価を行った。◎:陽極酸化皮膜が一様で欠陥が無いもの、○:視野中に大きさ5μm以下の陽極酸化皮膜の欠陥が1~10個観察されるが5μm以上の欠陥は観察されないもの、×:視野中に大きさ5μm以下の陽極酸化皮膜の欠陥が10個以上観察されるか、又は大きさが5μm以上の欠陥が1個以上観察されるもの、あるいは、一様な陽極酸化皮膜が形成されていないもの。
 結果を表2に示す。
〔総合評価〕
 各実施例6~26で得られた試験片について、以下に示す評価基準で総合評価を行った。○:「表面観察評価」及び「SEM観察評価」のどちらも◎又は○なもの、×:「表面観察評価」及び「SEM観察評価」のどちらかが△又は×なもの。
〔比較例8~14〕
 表3に示す各比較例1~7のアルミニウム合金基材を用い、上記実施例6~26の場合と同様にして各比較例8~14の比較アルミ片(アルミニウム合金基材)を調製し、次いで、得られた各比較例8~14の比較アルミ片について、2wt%-シュウ酸(20℃)の処理浴中、電圧40V及び電気量20C/cm2の処理条件で陽極酸化処理を行い、水洗し乾燥して各比較例8~14の陽極酸化処理後の比較アルミ片(比較試験片:表面処理アルミニウム材)を得た。
 得られた各比較例8~14の比較試験片について、上記各実施例の場合と同様にして、表面観察による結晶粒模様の評価、SEM観察による陽極酸化皮膜の評価、及び総合評価を行った。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (4)

  1.  アルミニウム合金基材とその表面に形成された陽極酸化皮膜とを有する表面処理アルミニウム材であって、
     前記アルミニウム合金基材が、Zn成分:0.05~1質量%、不可避不純物:0.02質量%以下、及び残部:アルミニウムの合金組成を有する亜鉛添加アルミニウム合金で形成されていることを特徴とする表面処理アルミニウム材。
  2.  前記陽極酸化皮膜が、多塩基酸水溶液を処理浴とする陽極酸化処理により形成される請求項1に記載の表面処理アルミニウム材。
  3.  前記アルミニウム合金基材は、前記陽極酸化処理に先駆けて、切削加工、バフ研磨、電解研磨、及び化学研磨から選ばれたいずれかの方法で平坦化処理されている請求項1又は2に記載の表面処理アルミニウム材。
  4.  高純度アルミニウムにZnを添加してなるアルミニウム合金であって、Zn成分が0.05~1質量%、不可避不純物が0.02質量%以下、及び残部がアルミニウムであることを特徴とする亜鉛添加アルミニウム合金。
PCT/JP2015/057289 2014-04-02 2015-03-12 表面処理アルミニウム材及び亜鉛添加アルミニウム合金 WO2015151751A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016511498A JP6237885B2 (ja) 2014-04-02 2015-03-12 表面処理アルミニウム材及び亜鉛添加アルミニウム合金
US15/127,533 US20170137956A1 (en) 2014-04-02 2015-03-12 Surface-treated aluminum material and zinc-supplemented aluminum alloy
KR1020167029928A KR20160140796A (ko) 2014-04-02 2015-03-12 표면 처리 알루미늄재 및 아연 첨가 알루미늄 합금
CN201580017924.5A CN106133205A (zh) 2014-04-02 2015-03-12 表面处理铝材和锌添加铝合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014076227 2014-04-02
JP2014-076227 2014-04-02

Publications (1)

Publication Number Publication Date
WO2015151751A1 true WO2015151751A1 (ja) 2015-10-08

Family

ID=54240083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057289 WO2015151751A1 (ja) 2014-04-02 2015-03-12 表面処理アルミニウム材及び亜鉛添加アルミニウム合金

Country Status (6)

Country Link
US (1) US20170137956A1 (ja)
JP (1) JP6237885B2 (ja)
KR (1) KR20160140796A (ja)
CN (1) CN106133205A (ja)
TW (1) TW201542883A (ja)
WO (1) WO2015151751A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298065A (zh) * 2018-11-07 2019-02-01 新疆众和股份有限公司 一种铝合金粉末中杂质元素含量的检测方法
JP6585863B1 (ja) * 2019-01-23 2019-10-02 株式会社Uacj アルミニウム部材及びその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134737A1 (ja) * 2005-06-17 2006-12-21 Tohoku University 金属酸化物膜、積層体、金属部材並びにその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204856A (ja) * 1984-03-28 1985-10-16 Sumitomo Light Metal Ind Ltd 耐孔食性のすぐれたアルミニウム合金管
JP3314312B2 (ja) 1993-03-31 2002-08-12 立山アルミニウム工業株式会社 アルミニウム合金材の結晶模様製造方法
JP2012033853A (ja) * 2010-04-28 2012-02-16 Fujifilm Corp 絶縁性光反射基板
US20120055590A1 (en) * 2010-09-08 2012-03-08 Alcoa Inc. Aluminum-lithium alloys, and methods for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134737A1 (ja) * 2005-06-17 2006-12-21 Tohoku University 金属酸化物膜、積層体、金属部材並びにその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BROCK A J ET AL.: "The kinetics of the oxidation of aluminum-zinc alloys in oxygen at high temperature", OXIDATION OF METALS, vol. 15, no. 1/2, February 1981 (1981-02-01), pages 77 - 100, XP055229325 *
GENCER YUCEL ET AL.: "The effect of Zn on the microarc oxidation coating behavior of synthetic Al-Zn binary alloys", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 525, pages 159 - 165, XP055229319 *
ZHOU X ET AL.: "Enrichment-dependent anodic oxidation of zinc in Al-Zn alloys", CORROSION SCIENCE, vol. 38, no. 9, September 1996 (1996-09-01), pages 1563 - 1577, XP055229318 *

Also Published As

Publication number Publication date
TW201542883A (zh) 2015-11-16
US20170137956A1 (en) 2017-05-18
CN106133205A (zh) 2016-11-16
JPWO2015151751A1 (ja) 2017-04-13
KR20160140796A (ko) 2016-12-07
JP6237885B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
KR101773695B1 (ko) 전자기기 하우징용 고강도 알루마이트 피막이 부착된 알루미늄 합금판 및 그 제조 방법
WO2015025706A1 (ja) 高強度アルミニウム合金及びその製造方法
WO2012176345A1 (ja) 高強度アルミニウム合金材およびその製造方法
KR101794583B1 (ko) 강도가 향상된 아노다이징용 알루미늄 합금 및 개선된 아노다이징 방법
KR102213570B1 (ko) 양극산화된-품질 알루미늄 합금 및 관련된 제품 및 방법
WO2017006490A1 (ja) 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
JP2013237926A (ja) 陽極酸化処理後の表面品質に優れたアルミニウム合金板およびその製造方法
Lutz et al. Effect of Zn on the grain boundary precipitates and resulting alkaline etching of recycled Al-Mg-Si-Cu alloys
JP6237885B2 (ja) 表面処理アルミニウム材及び亜鉛添加アルミニウム合金
JP2000017412A (ja) アルミニウム合金板の製造方法
WO2017006816A1 (ja) 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
RU2717622C1 (ru) Анодированный алюминий темно-серого цвета
TWI521067B (zh) Aluminum alloy sheet and manufacturing method thereof
JP5745364B2 (ja) 缶胴用アルミニウム合金板及びその製造方法、ならびに、缶胴用樹脂被覆アルミニウム合金板及びその製造方法
TWI565809B (zh) 鋁合金之製造方法
KR20180038965A (ko) 알루미늄 합금판, 및 양극산화 처리 알루미늄 합금판
JP2017025365A (ja) 通信端末機器ケースボディ用アルミニウム合金材
JP5924585B2 (ja) 高強度アルマイト処理用アルミニウム合金板及びその製造方法、並びに高強度陽極酸化皮膜付きアルミニウム合金板
JP2020527648A (ja) 高強度耐食性アルミニウム合金およびその製造方法
JPH05132731A (ja) 陽極酸化処理後の色調が黄金色のアルミニウム合金およびその製造方法
JPH03100145A (ja) 陽極酸化処理後の色調が白色のアルミニウム合金板の製造方法
JPH05331582A (ja) 粗面化用アルミニウム合金展伸材およびその製造方法
JP2005248213A (ja) グレー発色アルミニウム合金
WO2015029681A1 (ja) アルミニウム材の陽極酸化処理方法
JP2008231518A (ja) 曲げ加工性及び陽極酸化処理後の光輝性に優れたアルミニウム合金ならびにその押出形材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511498

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15127533

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167029928

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15773351

Country of ref document: EP

Kind code of ref document: A1