WO2012176345A1 - 高強度アルミニウム合金材およびその製造方法 - Google Patents

高強度アルミニウム合金材およびその製造方法 Download PDF

Info

Publication number
WO2012176345A1
WO2012176345A1 PCT/JP2011/068675 JP2011068675W WO2012176345A1 WO 2012176345 A1 WO2012176345 A1 WO 2012176345A1 JP 2011068675 W JP2011068675 W JP 2011068675W WO 2012176345 A1 WO2012176345 A1 WO 2012176345A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
aluminum alloy
strength
alloy material
temperature
Prior art date
Application number
PCT/JP2011/068675
Other languages
English (en)
French (fr)
Inventor
八太 秀周
Original Assignee
住友軽金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友軽金属工業株式会社 filed Critical 住友軽金属工業株式会社
Priority to KR1020147001906A priority Critical patent/KR101624111B1/ko
Priority to US14/128,435 priority patent/US9353431B2/en
Priority to CN201180071859.6A priority patent/CN103732773B/zh
Publication of WO2012176345A1 publication Critical patent/WO2012176345A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the present invention relates to a high-strength aluminum alloy material used in parts where both strength characteristics and appearance characteristics are regarded as important, such as transportation equipment, sports equipment, machine parts, and the like.
  • High-strength and lightweight aluminum alloys are increasingly used as materials used in applications where both strength and appearance characteristics are important, such as transportation equipment, sports equipment, and machine parts. Since durability is required for these uses, an aluminum alloy having a yield strength of 350 MPa or more is desired.
  • a 7000 series aluminum alloy in which Zn and Mg are added to aluminum is known.
  • the 7000 series aluminum alloy exhibits high strength because Al—Mg—Zn series precipitates age. Further, among 7000 series aluminum alloys, those in which Cu is added in addition to Zn and Mg exhibit the highest strength among the aluminum alloys.
  • 7000 series aluminum alloys are manufactured by, for example, hot extrusion and the like, and are used in transportation equipment such as aircraft and vehicles, sports equipment, machine parts, and the like that require high strength. Properties required for use in these applications include stress corrosion cracking resistance, impact absorption, and extensibility in addition to strength.
  • an aluminum alloy extruded material described in Patent Document 1 has been proposed.
  • the present invention has been made in view of such a background, and intends to provide a high-strength aluminum alloy material excellent in surface quality and a method for producing the same.
  • One embodiment of the present invention includes Zn: 7.2% (mass%, the same applies below) to 8.7% or less, Mg: 1.3% to 2.1%, Cu: less than 0.50%, Fe : 0.30% or less, Si: 0.30% or less, Mn: less than 0.05%, Cr: 0.20% or less, Zr: less than 0.05%, Ti: 0.001% or more and 0.05% Containing the following, with the remainder having chemical components consisting of Al and inevitable impurities, Yield strength is 350 MPa or more,
  • the high-strength aluminum alloy material is characterized in that the metal structure is a recrystallized structure.
  • Other aspects of the present invention include Zn: 7.2% (mass%, the same applies hereinafter) to 8.7% or less, Mg: 1.3% or more and 2.1% or less, Cu: less than 0.50%, Fe: 0.30% or less, Si: 0.30% or less, Mn: less than 0.05%, Cr: 0.20% or less, Zr: less than 0.05%, Ti: 0.001% or more and 0.05 Ingots having a chemical component containing the balance of Al and unavoidable impurities.
  • the above ingot is subjected to a homogenization treatment in which the temperature is higher than 540 ° C. and lower than 580 ° C. for 1 to 24 hours, Thereafter, the ingot at the start of processing is 440 ° C.
  • a rapid cooling process for cooling to a temperature of 150 ° C. or lower is performed. Cooling the temperature of the wrought material to room temperature by the rapid cooling treatment or subsequent cooling; Thereafter, an artificial aging treatment is performed by heating at a temperature of 100 ° C. to 170 ° C. for 5 to 30 hours.
  • the high-strength aluminum alloy material has the specific chemical component. Therefore, it has a yield strength equivalent to that of the conventional 7000 series aluminum alloy material, and can suppress a change in color tone that occurs after the surface treatment, thereby obtaining a good surface quality.
  • the high-strength aluminum alloy material has a yield strength of 350 MPa or more. Therefore, it is possible to satisfy the requirements in terms of strength as a material used for applications in which both strength characteristics and appearance characteristics are regarded as important.
  • the metal structure of the high-strength aluminum alloy material is a recrystallized structure. Therefore, generation
  • the high-strength aluminum alloy material is produced by the specific treatment temperature, treatment time and treatment procedure. Therefore, the high-strength aluminum alloy material can be easily obtained.
  • Sample No. according to Example 1 Recrystallized structure photograph. Sample No. according to Example 1 18 fibrous tissue photographs.
  • the high-strength aluminum alloy material contains more than 7.2% and 8.7% or less of Zn, and 1.3% or more and 2.1% or less of Mg. Zn and Mg coexist in the aluminum alloy to precipitate the ⁇ 'phase. Therefore, the strength of the high-strength aluminum alloy material containing both of them is improved by precipitation strengthening.
  • the Zn content is 7.2% or less, the precipitation amount of the ⁇ ′ phase is reduced, so that the effect of improving the strength is lowered. Therefore, the Zn content is better than 7.2%, preferably 7.5% or more.
  • the Zn content exceeds 8.7%, the hot workability is lowered, and thus the productivity is lowered. Therefore, the Zn content is preferably 8.7% or less, and preferably 8.5% or less.
  • the Mg content is less than 1.3%, the precipitation amount of the ⁇ ′ phase is reduced, so that the strength improvement effect is lowered.
  • the Mg content exceeds 2.1%, the hot workability is lowered, and thus the productivity is lowered.
  • the Cu content is restricted to less than 0.50%.
  • Cu may be mixed when a recycled material is used as a raw material for the high-strength aluminum alloy material.
  • the strength is increased due to the effect, but on the other hand, it causes a decrease in surface quality such as a decrease in gloss after chemical polishing and a color change to yellow due to anodization. .
  • Such a decrease in gloss or a decrease in surface quality due to a change in color tone can be suppressed by regulating the Cu content to less than 0.50%, preferably to less than 0.20%.
  • Fe is 0.30% or less
  • Si is 0.30% or less
  • Mn is less than 0.05%
  • Cr is 0.20% or less
  • Zr is less than 0.05%.
  • Fe and Si are mixed as impurities in the aluminum metal
  • Mn, Cr and Zr are components that may be mixed when using recycled materials.
  • Fe, Si and Mn have an action of suppressing recrystallization by forming an AlMn-based, AlMnFe-based or AlMnFeSi-based intermetallic compound with Al.
  • Cr and Zr each have an action of suppressing recrystallization by forming an AlCr-based or AlZr-based intermetallic compound with Al. Therefore, when the five components are excessively mixed in the high-strength aluminum alloy material, the generation of a recrystallized structure is suppressed, and a fibrous structure is easily generated instead.
  • the surface quality degradation due to such streak patterns is as follows: Fe is 0.30% or less, Si is 0.30% or less, Mn is less than 0.05%, Cr is 0.20% or less, Zr Can be suppressed by restricting each to less than 0.05%.
  • the high-strength aluminum alloy material contains 0.001% to 0.05% Ti.
  • Ti has the effect
  • the ingot structure is not sufficiently refined, and there is a possibility that the gloss of the high-strength aluminum alloy material is uneven.
  • the Ti content is more than 0.05%, the surface quality deteriorates due to AlTi intermetallic compounds formed with Al and the like, which easily causes point-like defects. There is a risk.
  • the high-strength aluminum alloy material has a proof stress of 350 MPa or more as defined in JIS Z2241 (ISO 6892-1). As a result, it is possible to relatively easily obtain strength characteristics that can cope with the reduction in thickness for weight reduction.
  • the high-strength aluminum alloy material is composed of a granular recrystallized structure.
  • an aluminum alloy material produced by hot working has a metal structure composed of a fibrous structure, so that a streak pattern is generated on the surface gloss and the like, and as a result, the surface quality may be lowered.
  • the metal structure is composed of a recrystallized structure, no streak pattern is generated on the surface and the surface quality is good.
  • the metal structure can be confirmed by, for example, electrolytic polishing the surface of an aluminum alloy material and observing the obtained surface with a polarizing microscope.
  • the recrystallized structure has an average grain size of 500 ⁇ m or less and a crystal length in a direction parallel to the hot working direction with respect to a crystal length in a direction perpendicular to the hot working direction. It can be 0.5 times or more and 4 times or less.
  • the average grain size of the crystal grains exceeds 500 ⁇ m, the crystal grains become excessively coarse, so that after surface treatment such as anodic oxidation treatment, spots are likely to occur and the surface quality may be deteriorated. . Therefore, the smaller the average grain size of the crystal grains, the better.
  • the average particle size is less than 50 ⁇ m, a fibrous structure may remain between the crystal grains. Therefore, in order to obtain good surface quality, the average grain size of the crystal grains is preferably 500 ⁇ m or less, and preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the aspect ratio of the crystal grains exceeds 4, for example, anodizing A streak pattern may appear on the surface after the surface treatment.
  • crystal grains having an aspect ratio of less than 0.5 are difficult to obtain with substantial manufacturing equipment.
  • the recrystallized structure can be classified into a dynamic recrystallized structure and a static recrystallized structure depending on the production process, and what is generated during hot working as described above is called a dynamic recrystallized structure.
  • a static recrystallized structure refers to a structure generated by adding a heat treatment step such as solution treatment or annealing treatment after hot working or cold working.
  • the ingot having the chemical component is subjected to a homogenization treatment in which heating is performed at a temperature exceeding 540 ° C. and not more than 580 ° C. for 1 hour to 24 hours.
  • the heating temperature for the homogenization treatment is 540 ° C. or less, the ingot segregation layer is not sufficiently homogenized. As a result, coarsening of crystal grains, formation of a non-uniform crystal structure, and the like occur, so that the surface quality of the finally obtained alloy material is deteriorated.
  • the heating temperature is higher than 580 ° C., the ingot is likely to be locally melted, which makes it difficult to manufacture. Accordingly, the temperature of the homogenization treatment is preferably more than 540 ° C. and not more than 580 ° C.
  • the homogenization time is preferably 1 hour or more and 24 hours or less.
  • the ingot that has been subjected to the homogenization treatment is subjected to hot working to obtain a wrought material.
  • the temperature of the ingot at the start of hot working is 440 ° C. or higher and 560 ° C. or lower.
  • the heating temperature of the ingot before hot working is lower than 440 ° C.
  • deformation resistance is high, and it becomes difficult to work with substantial manufacturing equipment.
  • the temperature of the ingot before hot working is preferably 440 ° C. or higher and 560 ° C. or lower.
  • an extrusion process, a rolling process, etc. are employable.
  • the rapid cooling process which cools to the temperature of 150 degrees C or less from the state where the temperature of the said extending
  • the temperature of the wrought material before the quenching treatment is less than 400 ° C., quenching becomes insufficient, and the resulting wrought material may have a yield strength of less than 350 MPa.
  • the temperature of the wrought material after the rapid cooling treatment exceeds 150 ° C., quenching becomes insufficient, and the proof stress of the resulting wrought material may be less than 350 MPa.
  • the said rapid cooling process means the process which cools the said wrought material by a forced means.
  • methods such as fan air cooling, mist cooling, shower cooling or water cooling can be employed.
  • the cooling rate of the said rapid cooling process can be 5 to 1000 degreeC / second.
  • the cooling rate exceeds 1000 ° C./second, the equipment becomes excessive and an effect commensurate with it cannot be obtained.
  • the cooling rate is less than 5 ° C./second, quenching becomes insufficient, and thus the yield strength of the obtained wrought material may be less than 350 MPa.
  • the cooling rate should be fast, and is 5 ° C./second or more and 1000 ° C./second or less, preferably 100 ° C./second or more and 1000 ° C./second or less.
  • the temperature of the wrought material is allowed to reach room temperature. This may reach room temperature by the quenching process or may be reached by performing an additional cooling process after the quenching process. By causing the temperature of the wrought material to reach room temperature, an effect of room temperature aging appears, so that the strength of the wrought material is improved.
  • a method such as fan air cooling, mist cooling, shower cooling, or water cooling can be adopted as in the rapid cooling process.
  • the strength of the wrought material is further improved by the aging effect at room temperature.
  • the strength is improved as the time is long in the initial stage, but when the room temperature aging time is 24 hours or more, the effect of room temperature aging becomes saturated.
  • the wrought material cooled to room temperature as described above is subjected to artificial aging treatment in which heating is performed at a temperature of 100 ° C. to 170 ° C. for 5 hours to 30 hours.
  • the yield strength of the obtained stretched material may be less than 350 MPa, and it becomes difficult to obtain a stretched material having sufficient strength characteristics.
  • Example 1 Examples relating to the high-strength aluminum alloy material will be described with reference to Tables 1 and 2.
  • samples No. 1 to No. 24
  • the chemical composition of the aluminum alloy material was changed were prepared under the same manufacturing conditions, and the strength measurement and metal structure observation of each sample were performed. went. Furthermore, after surface-treating each sample, the surface quality was evaluated.
  • the manufacturing conditions, strength measurement method, metal structure observation method, surface treatment method, and surface quality evaluation method for each sample will be described below.
  • Example manufacturing conditions An ingot having a diameter of 90 mm having the chemical components described in Table 1 is cast by semi-continuous casting. Then, the ingot is heated for 12 hours at a temperature of 550 ° C. Thereafter, in the state where the temperature of the ingot is 520 ° C., the ingot is hot-extruded to form a stretched material having a width of 150 mm and a thickness of 10 mm. Thereafter, in the state where the temperature of the stretched material is 505 ° C., a rapid cooling process is performed in which the stretched material is cooled to 100 ° C. at a cooling rate of 600 ° C./second.
  • the wrought material that has been subjected to the rapid cooling treatment is cooled to room temperature, subjected to room temperature aging at room temperature for 24 hours, and then subjected to artificial aging treatment in which heating is performed at a temperature of 150 ° C. for 12 hours.
  • ⁇ Strength measurement method> A test piece is collected from the sample by a method in accordance with JIS Z2241 (ISO 6892-1), and the tensile strength, proof stress, and elongation are measured. As a result, those showing a yield strength of 350 MPa or more are determined to be acceptable.
  • ⁇ Metallic structure observation method After the sample is electropolished, a microscope image of the sample surface is obtained with a polarizing microscope having a magnification of 50 to 100 times. Image analysis is performed on the microscopic image to determine the average grain size and aspect ratio of the crystal grains constituting the metal structure of the sample. As a result, those having an average particle size of 500 ⁇ m or less and those having an aspect ratio in the range of 0.5 to 4.0 are determined as preferable results.
  • ⁇ Surface treatment method The surface of the sample subjected to the artificial aging treatment is buffed, etched with an aqueous sodium hydroxide solution, and then desmutted.
  • the sample subjected to the desmut treatment is subjected to chemical polishing for 1 minute at a temperature of 90 ° C. using a phosphoric acid-nitric acid method.
  • the chemically polished sample is anodized at a current density of 150 A / m 2 in a 15% sulfuric acid bath to form a 10 ⁇ m anodic oxide film.
  • the sample after the anodizing treatment is immersed in boiling water, and the sealing treatment of the anodized film is performed.
  • ⁇ Surface quality evaluation method The surface of the sample subjected to the surface treatment is visually observed. In visual observation, what does not appear a streak pattern, a spot-like pattern, or a point defect on the surface is determined to be acceptable. Next, the color tone of the surface of the sample is measured with a color difference meter, and the value of each coordinate in the L * a * b * color system described in JIS Z8729 (ISO 7724-1) is obtained. As a result, L * value (lightness): 85 to 95, a * value (green to red chromaticity): -2.0 to 0, b * value (blue to yellow chromaticity): -0.5 to The thing in the range of 2.5 is determined as a pass.
  • Table 2 shows the evaluation results of each sample prepared as described above. In addition, about what was not determined to be acceptable or not preferable in each evaluation result, the evaluation result in Table 2 is underlined.
  • sample no. 1-No. No. 12 passed all the evaluation items and showed excellent properties in both strength and surface quality.
  • FIG. 1 The metal structure observation result of 1 is shown.
  • the sample having an excellent surface quality has a metal structure composed of a granular recrystallized structure, and at the same time, no streak pattern is observed in visual confirmation, and there is no spots and high gloss.
  • Sample No. 15 since the Mg content was too low, a sufficient strength improvement effect was not obtained, and the proof stress was determined to be unacceptable. Sample No. No. 16 had an excessively high Mg content, so the hot workability was poor, and hot extrusion was impossible with substantial equipment.
  • Sample No. No. 17 was judged to be unacceptable because the Cu content was too high and the surface tone was yellowish.
  • FIG. 18 shows the observation results of the metal structure.
  • the sample in which the streak pattern is visually recognized has a metal structure composed of a fibrous structure as is known from FIG. Sample No. In No. 19, since the Si content was too high, a fibrous structure was formed. At the same time, the surface tone was yellowish. Sample No. In No. 20, since the Mn content was too high, a fibrous structure was formed. As a result, a streak pattern was visually recognized on the surface, and it was determined to be unacceptable.
  • Example 2 Next, examples according to the method for producing the high-strength aluminum alloy will be described with reference to Tables 3 to 5.
  • samples No. A to No. X
  • the strength of each sample was measured. Tissue observation was performed. Furthermore, after surface-treating each sample, the surface quality was evaluated.
  • Example manufacturing conditions An ingot with a diameter of 90 mm having the chemical components described in Table 3 is cast by semi-continuous casting. Thereafter, using a combination of processing temperature, processing time or cooling time shown in Table 4, the ingot is subjected to homogenization processing, hot extrusion processing, rapid cooling processing and artificial aging processing in this order to obtain a sample.
  • the room temperature aging time described in Table 4 means the time from when the wrought material reaches room temperature until the artificial aging treatment is performed after the rapid cooling treatment.
  • Table 5 shows the evaluation results of the samples prepared as described above. In addition, about the thing which was not determined to be pass in each measurement result, or the thing which was not determined to be a preferable result, the said evaluation result in Table 5 was shown with an underline.
  • the yield strength in the homogenization process was less than 350 MPa and it was determined to be unacceptable.
  • the crystal grains became coarse, and spotted patterns were also visually recognized on the surface.
  • the proof stress was less than 350 MPa and it was determined to be unacceptable.
  • the crystal grains became coarse, and spotted patterns were also visually recognized on the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Metal Rolling (AREA)

Abstract

 Zn:7.2%(質量%、以下同様)を超え8.7%以下、Mg:1.3%以上2.1%以下、Cu:0.50%未満、Fe:0.30%以下、Si:0.30%以下、Mn:0.05%未満、Cr:0.20%以下、Zr:0.05%未満、Ti:0.001以上0.05%以下及び残部がAlと不可避不純物からなる化学成分を有する。耐力が350MPa以上であり、金属組織が再結晶組織よりなる。再結晶組織は、その結晶粒の平均粒径が500μm以下であり、熱間加工方向に平行な方向の結晶粒長さが、熱間加工方向に垂直な方向の結晶粒長さに対して0.5~4倍であることが好ましい。

Description

高強度アルミニウム合金材およびその製造方法
 本発明は、例えば輸送機器、スポーツ用具、機械部品等の、強度特性と外観特性の双方が重要視される部位に用いられる高強度アルミニウム合金材に関する。
 輸送機器、スポーツ用具、機械部品等の、強度特性と外観特性の双方が重要視される用途に用いられる材料として、高強度かつ軽量なアルミニウム合金を採用することが増えてきている。これらの用途には、耐久性が要求されるため、耐力が350MPa以上であるアルミニウム合金が切望されている。
 このような高強度を示すアルミニウム合金としては、アルミニウムにZnおよびMgを添加した7000系アルミニウム合金が知られている。7000系アルミニウム合金は、Al-Mg-Zn系の析出物が時効析出するために高い強度を示す。また、7000系アルミニウム合金の中でも、Zn、Mgに加えてCuを添加したものは、アルミニウム合金の中で最も高い強度を示す。
 7000系アルミニウム合金は、例えば熱間押出加工等により製造され、高強度を要求される航空機や車両等の輸送機器、スポーツ用具、機械部品などに使用されている。これらの用途で使用する場合に要求される特性は、強度以外に、耐応力腐食割れ性、衝撃吸収性、展伸性などがある。上記特性を満足するアルミニウム合金の例としては、例えば特許文献1に記載のアルミニウム合金押出材が提案されている。
特開2007-119904号公報
 しかしながら、従来の成分範囲かつ従来の製造方法で製造した、7000系の高耐力を示すアルミニウム合金においては、例えば、表面傷を防止する目的で陽極酸化処理等を行うと、表面に筋状模様が現れてしまうという外観上の問題があった。
 また、上記アルミニウム合金は、例えば陽極酸化処理等の表面処理を行った後に、高級感をかもし出すためシルバー色となることが望まれている。しかしながら、上記従来の7000系アルミニウム合金に陽極酸化処理等を行うと、表面が黄色の色調を強く帯びてしまうという外観上の問題があった。
 このように、上記従来の7000系アルミニウム合金は、表面処理後に現れる筋状模様や色調変化が表面品質上の問題となるため、採用することが困難であった。
 本発明は、かかる背景に鑑みてなされたもので、表面品質に優れた高強度アルミニウム合金材およびその製造方法を提供しようとするものである。
 本発明の一態様は、Zn:7.2%(質量%、以下同様)を超え8.7%以下、Mg:1.3%以上2.1%以下、Cu:0.50%未満、Fe:0.30%以下、Si:0.30%以下、Mn:0.05%未満、Cr:0.20%以下、Zr:0.05%未満、Ti:0.001%以上0.05%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を有し、
 耐力が350MPa以上であり、
 金属組織が再結晶組織よりなることを特徴とする高強度アルミニウム合金材にある。
 本発明の他の態様は、Zn:7.2%(質量%、以下同様)を超え8.7%以下、Mg:1.3%以上2.1%以下、Cu:0.50%未満、Fe:0.30%以下、Si:0.30%以下、Mn:0.05%未満、Cr:0.20%以下、Zr:0.05%未満、Ti:0.001%以上0.05%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を有する鋳塊を作製し、
 上記鋳塊を、540℃を超え580℃以下の温度で1~24時間加熱する均質化処理を行い、
 その後、加工開始時における上記鋳塊の温度を440℃~560℃とした状態で該鋳塊に熱間加工を施して展伸材とし、
 該展伸材の温度が400℃以上である間に150℃以下の温度まで冷却する急冷処理を行い、
 該急冷処理またはその後の冷却により該展伸材の温度を室温まで冷却し、
 その後100℃~170℃の温度で5~30時間加熱する人工時効処理を行うことを特徴とする高強度アルミニウム合金材の製造方法にある。
 上記高強度アルミニウム合金材は、上記特定の化学成分を有している。そのため、上記従来の7000系アルミニウム合金材と同等の耐力を有すると共に、表面処理後に発生する色調変化等を抑制し、良好な表面品質を得ることができる。
 また、上記高強度アルミニウム合金材は、350MPa以上の耐力を有する。そのため、強度特性と外観特性の双方が重要視される用途に用いられる材料としての強度面での要求を比較的容易に満たすことができる。
 また、上記高強度アルミニウム合金材の金属組織は、再結晶組織よりなる。そのため、表面処理後に繊維状組織に起因する筋状模様が発生すること等を抑制し、良好な表面品質を得ることができる。
 従って、上記高強度アルミニウム合金材は、強度及び表面品質の両方に優れたものとなる。
 次に、上記高強度アルミニウム合金材の製造方法では、上記特定の処理温度、処理時間及び処理手順により上記高強度アルミニウム合金材を製造する。そのため、上記高強度アルミニウム合金材を容易に得ることができる。
実施例1にかかる試料No.1の再結晶組織写真。 実施例1にかかる試料No.18の繊維状組織写真。
 上記高強度アルミニウム合金材は、7.2%を超え8.7%以下のZnと、1.3%以上2.1%以下のMgを共に含有する。ZnとMgは、アルミニウム合金中において共存することでη’相を析出する。そのため、両者が共に含まれる上記高強度アルミニウム合金材は、析出強化により強度が向上する。
 Znの含有量が7.2%以下の場合には、η’相の析出量が少なくなるため、強度向上効果が低くなる。そのため、Znの含有量は7.2%より多い方が良く、好ましくは7.5%以上が良い。一方、Znの含有量が8.7%を超えると、熱間加工性が低下するため、生産性が低下する。そのため、Znの含有量は8.7%以下が良く、好ましくは8.5%以下が良い。
 また、Mgの含有量が1.3%より少ない場合には、η’相の析出量が少なくなるため、強度向上効果が低くなる。一方、Mgの含有量が2.1%を超えると、熱間加工性が低下するため、生産性が低下する。
 また上記化学成分のうち、Cuの含有量を0.50%未満に規制する。Cuは、上記高強度アルミニウム合金材の原料としてリサイクル材を使用する場合に混入する可能性がある。Cuがアルミニウム合金材に含有されると、その効果により強度が高くなるが、一方で化学研磨後の光沢の低下や、陽極酸化処理による黄色への色調変化など、表面品質が低下する原因となる。このような光沢の低下もしくは色調の変化による表面品質の低下は、Cuの含有量を0.50%未満に規制し、好ましくは0.20%未満に規制することにより抑制することができる。
 また上記化学成分のうち、Feを0.30%以下に、Siを0.30%以下に、Mnを0.05%未満に、Crを0.20%以下に、Zrを0.05%未満にそれぞれ規制する。Fe、Siはアルミニウム地金中の不純物として混入し、Mn、Cr、Zrはリサイクル材を使用する場合に混入する可能性のある成分である。
 上記の5成分のうち、Fe、SiおよびMnは、Alとの間にAlMn系、AlMnFe系もしくはAlMnFeSi系の金属間化合物を形成することにより再結晶化を抑制する作用を有する。また、Cr、Zrは、各々Alとの間にAlCr系、AlZr系の金属間化合物を形成することにより再結晶化を抑制する作用を有する。そのため、上記5成分が上記高強度アルミニウム合金材に過度に混入した場合には再結晶組織の生成が抑制され、その替わりに繊維状組織が生成されやすくなる。上記繊維状組織が存在すると、例えば陽極酸化処理を行った後に、上記繊維状組織に起因する筋状模様が表面に現れやすくなるため、表面品質が低下するおそれがある。
 このような筋状模様による表面品質の低下は、Feを0.30%以下に、Siを0.30%以下に、Mnを0.05%未満に、Crを0.20%以下に、Zrを0.05%未満にそれぞれ規制することで抑制することが可能となる。
 また上記高強度アルミニウム合金材は、0.001%以上0.05%以下のTiを含有する。Tiは、アルミニウム合金材に添加することで、鋳塊組織を微細化する作用を有する。鋳塊組織が微細になるほど、斑がなく高い光沢が得られるため、Tiが含有されることにより表面品質を向上させることができる。
 Tiの含有量が0.001%より少ない場合には、鋳塊組織の微細化が充分に為されないため、上記高強度アルミニウム合金材の光沢に斑を生じるおそれがある。また、Tiの含有量が0.05%より多い場合には、Alとの間に形成されるAlTi系金属間化合物などが原因となり、点状の欠陥が発生しやすくなるため、表面品質が低下するおそれがある。
 更に上記高強度アルミニウム合金材は、JIS Z2241(ISO6892-1)に規定される耐力が350MPa以上である。これにより、軽量化のための薄肉化に対応し得る強度特性を比較的容易に得ることができる。
 更に上記高強度アルミニウム合金材は、金属組織が粒状の再結晶組織より構成されている。通常、熱間加工を行って作製したアルミニウム合金材は繊維状組織よりなる金属組織を有するため、表面の光沢等に筋状模様が生じ、その結果表面品質が低くなるおそれがある。一方上記高強度アルミニウム合金材では、金属組織が再結晶組織で構成されているため、表面に筋状模様は発生せず、表面品質が良好となる。
 なお、上記金属組織は、例えばアルミニウム合金材の表面に電解研磨を行い、得られた表面を偏光顕微鏡で観察することで確認できる。
 また、上記再結晶組織は、その結晶粒の平均粒径が500μm以下であり、熱間加工方向に平行な方向の結晶長さを、熱間加工方向に垂直な方向の結晶長さに対して0.5倍以上4倍以下とすることができる。
 上記結晶粒の平均粒径が500μmを超えると、結晶粒が過度に粗大となるため、陽極酸化処理等の表面処理を行った後に、表面に斑が生じやすく、表面品質が低下するおそれがある。そのため、上記結晶粒の平均粒径は小さいほど良い。なお、平均粒径が50μm未満となる場合には、上記結晶粒の間に繊維状組織が残留するおそれがある。従って、良好な表面品質を得るためには、上記結晶粒の平均粒径は500μm以下が良く、好ましくは50μm以上500μm以下が良い。
 また、上記結晶粒のアスペクト比(熱間加工方向に垂直な方向の結晶長さに対する熱間加工方向に平行な方向の結晶長さの比を指す)が4を超えると、例えば陽極酸化処理等の表面処理を行った後の表面に筋状模様が現れるおそれがある。一方、アスペクト比が0.5未満となる結晶粒は、実質的な製造設備では得ることが難しい。
 また、上記再結晶組織は、熱間加工時に生成されたものであることが好ましい。
 再結晶組織は、その製造過程により動的再結晶組織と静的再結晶組織に分類することができ、上記のごとく熱間加工時に生成されるものを動的再結晶組織という。一方、静的再結晶組織は、熱間加工や冷間加工を行った後、溶体化処理や焼鈍処理等の熱処理工程を追加することにより生成されるものをいう。前述した課題は、いずれの再結晶組織であっても解決しうるが、動的再結晶組織の場合には、生産工程が簡素となるため、容易に製造することができる。
 次に、上記高強度アルミニウム合金材の製造方法においては、上記化学成分を有する鋳塊に対し、540℃を超え580℃以下の温度で1時間以上24時間以下の加熱をする、均質化処理を行う。
 上記均質化処理の加熱温度が540℃以下の場合には、上記鋳塊偏析層の均質化が不十分となる。その結果、結晶粒の粗大化や、不均一な結晶組織の形成等が起こるため、最終的に得られる合金材の表面品質が低下する。一方、加熱温度が580℃より高いと、上記鋳塊が局部的に溶融を起こすおそれがあるため、製造が困難となる。従って、上記均質化処理の温度は、540℃を超え580℃以下であることが好ましい。
 また、上記均質化処理の加熱時間が1時間未満の場合には、上記鋳塊偏析層の均質化が不十分となるため、上記と同様に最終的な表面品質が低下する。一方、加熱時間が24時間を超えると、上記鋳塊偏析層の均質化が充分なされた状態になるため、それ以上の効果を見込むことができない。従って、上記均質化処理の時間は、1時間以上24時間以内であることが好ましい。
 上記均質化処理を行った鋳塊は、熱間加工を施して展伸材とする。熱間加工開始時の上記鋳塊の温度は、440℃以上560℃以下とする。
 熱間加工前の鋳塊の加熱温度が440℃より低いと、変形抵抗が高く、実質的な製造設備では加工が困難となる。一方、鋳塊を560℃を超える温度まで加熱した後に熱間加工を行うと、加工時の加工発熱が加わることにより上記鋳塊が局所的に融解し、その結果熱間割れが発生するおそれがある。従って、熱間加工前の上記鋳塊の温度は、440℃以上560℃以下であることが好ましい。
 なお、上記熱間加工としては、押出加工や圧延加工などを採用することができる。
 また、上記熱間処理の後に、上記展伸材の温度が400℃以上である状態から、150℃以下の温度まで冷却する急冷処理を行う。
 上記急冷処理前の上記展伸材の温度が400℃未満である場合には、焼入れが不十分となり、その結果得られる展伸材の耐力が350MPa未満となるおそれがある。また、急冷処理後の展伸材の温度が150℃を超える場合にも焼入れが不十分となり、その結果得られる展伸材の耐力は350MPa未満となるおそれがある。
 なお、上記急冷処理とは、上記展伸材を強制的な手段により冷却する処理を意味する。上記急冷処理としては、例えばファン空冷、ミスト冷却、シャワー冷却もしくは水冷等の方法を採用できる。
 また、上記急冷処理の冷却速度は、5℃/秒以上1000℃/秒以下とすることができる。
 上記冷却速度が1000℃/秒を超える場合には、設備が過大になる上、それに見合った効果を得ることができない。一方、冷却速度が5℃/秒未満であると、焼入れが不十分となるため、得られる展伸材の耐力が350MPaに満たなくなるおそれがある。従って、冷却速度は早いほうがよく、5℃/秒以上1000℃/秒以下、好ましくは100℃/秒以上1000℃/秒以下がよい。
 また、上記急冷処理を行った後に、上記展伸材の温度を室温まで到達させる。これは、上記急冷処理により室温に到達してもよく、または該急冷処理の後に追加の冷却処理を行うことにより到達してもよい。展伸材の温度を室温まで到達させることにより、室温時効の効果が現れるため、展伸材の強度が向上する。
 なお、上記追加の冷却処理には、急冷処理と同じく、例えばファン空冷、ミスト冷却、シャワー冷却もしくは水冷等の方法を採用できる。
 ここで、上記展伸材を、室温を維持した状態で保管すると、室温時効効果により該展伸材の強度がより向上する。室温時効時間は、初期の段階においては時間が長いほど強度が向上するが、室温時効時間が24時間以上となる場合には、室温時効の効果が飽和してくる。
 次に、上記のごとく室温まで冷却を行った上記展伸材を、100℃以上170℃以下の温度で5時間以上30時間以内の加熱を行う人工時効処理を行う。人工時効処理が、上記の温度範囲または時間範囲を外れると、得られる展伸材の耐力が350MPa未満となるおそれがあり、充分な強度特性を有する展伸材を得ることが困難となる。
(実施例1)
 上記高強度アルミニウム合金材に係る実施例について、表1および表2を用いて説明する。
 本例では、表1に示すごとく、アルミニウム合金材の化学成分を変化させた試料(No.1~No.24)を同一の製造条件にて作製し、各試料の強度測定、金属組織観察を行った。更に、各試料に表面処理を行った後、表面品質評価を行った。
 以下に、各試料の製造条件、強度測定方法及び金属組織観察方法、ならびに表面処理方法及び表面品質評価方法を説明する。
 <試料の製造条件>
 半連続鋳造により、表1に記載された化学成分を有する直径90mmの鋳塊を鋳造する。その後、該鋳塊を550℃の温度で12時間加熱する均質化処理を行う。その後、上記鋳塊の温度が520℃である状態で、該鋳塊を熱間押出加工することにより、幅150mm、厚さ10mmの展伸材を形成する。その後、該展伸材の温度が505℃である状態で、該展伸材を600℃/秒の冷却速度で100℃まで冷却する急冷処理を行う。そして、上記急冷処理を行った上記展伸材を室温まで冷却し、室温下で24時間の室温時効を行った後に、150℃の温度で12時間の加熱を行う人工時効処理を実施して試料とする。
 <強度測定方法>
 試料から、JIS Z2241(ISO6892-1)に準拠する方法により試験片を採取し、引張強さ、耐力及び伸びの測定を行う。その結果、350MPa以上の耐力を示すものを合格と判定する。
 <金属組織観察方法>
 試料を電解研磨した後、倍率50倍~100倍の偏光顕微鏡により試料表面の顕微鏡像を取得する。該顕微鏡像に対し画像解析を行い、試料の金属組織を構成する結晶粒の平均粒径及びアスペクト比を求める。その結果、平均粒径については500μm以下であるもの、アスペクト比については0.5~4.0の範囲内にあるものをそれぞれ好ましい結果と判定する。
 <表面処理方法>
 上記人工時効処理を行った試料の表面をバフ研磨した後、水酸化ナトリウム水溶液によりエッチングを行い、次いでデスマット処理を行う。該デスマット処理を行った試料を、リン酸-硝酸法を用いて90℃の温度で1分間の化学研磨を行う。そして、該化学研磨を行った試料を、15%硫酸浴下において150A/m2の電流密度で陽極酸化処理を行い、10μmの陽極酸化皮膜を形成する。最後に、上記陽極酸化処理後の試料を沸騰水に浸漬し、上記陽極酸化皮膜の封孔処理を行う。
 <表面品質評価方法>
 上記表面処理を行った試料の表面を目視観察する。目視観察では、表面に筋状模様、斑状模様または点状欠陥等が現れていないものを合格と判定する。
 次いで、試料の表面の色調を色差計により計測し、JIS Z8729(ISO7724-1)に記載のL***表色系における各座標の値を取得する。その結果、L*値(明度):85~95、a*値(緑~赤の色度):-2.0~0、b*値(青~黄の色度):-0.5~2.5の範囲内にあるものを合格と判定する。
 上記のごとく作製した各試料の評価結果を、表2に示す。なお、各々の評価結果において合格と判定されなかったものもしくは好ましい結果と判定されなかったものについては、表2中の当該評価結果に下線を付して示した。
 表2より知られるごとく、試料No.1~No.12は、全ての評価項目で合格となり、強度、表面品質共に優れた特性を示した。
 優れた表面品質を有する試料の代表例として、図1に、試料No.1の金属組織観察結果を示す。優れた表面品質を有する試料は、図1より知られるごとく、粒状の再結晶組織よりなる金属組織を有すると同時に、目視確認においても筋状模様は観察されず、斑がなく高い光沢を有する。
 試料No.13は、Zn含有量が低すぎるため、強度向上効果が充分に得られず、耐力が不合格と判定した。
 試料No.14は、Zn含有量が高すぎるため、熱間加工性が悪く、実質的な設備では熱間押出加工が不可能であった。
 試料No.15は、Mg含有量が低すぎるため、強度向上効果が充分に得られず、耐力が不合格と判定した。
 試料No.16は、Mg含有量が高すぎるため、熱間加工性が悪く、実質的な設備では熱間押出加工が不可能であった。
 試料No.17は、Cu含有量が高すぎるため、表面の色調が黄色を帯び不合格と判定した。
 試料No.18は、Fe含有量が高すぎるため、繊維状組織が形成された結果、表面に筋状模様が視認され不合格と判定した。
 表面品質が不合格となった試料のうち、筋状模様が視認された試料の代表例として、図2に、試料No.18の金属組織観察結果を示す。筋状模様が視認された試料は、図2より知られるごとく、繊維状組織よりなる金属組織を有する。
 試料No.19は、Si含有量が高すぎるため、繊維状組織が形成された結果、表面に筋状模様が視認され不合格と判定した。同時に、表面の色調が黄色を帯びていた。
 試料No.20は、Mn含有量が高すぎるため、繊維状組織が形成された結果、表面に筋状模様が視認され不合格と判定した。
 試料No.21は、Cr含有量が高すぎるため、繊維状組織が形成された結果、表面に筋状模様が視認され不合格と判定した。同時に、表面の色調が黄色を帯びていた。
 試料No.22は、Zr含有量が高すぎるため、繊維状組織が形成された結果、表面に筋状模様が視認され不合格と判定した。
 試料No.23は、Ti含有量が低すぎるため、粗大な鋳塊組織に起因する斑状模様が現れ不合格と判定した。
 試料No.24は、Ti含有量が高すぎるため、Alとの金属間化合物が形成された結果、表面に点状欠陥が視認され不合格と判定した。
(実施例2)
 次に、上記高強度アルミニウム合金の製造方法に係る実施例について、表3~表5を用いて説明する。
 本例では、表3に示す化学成分を含有するアルミニウム合金材を、表4に示すごとく製造条件を変化させて試料(No.A~No.X)を作製し、各試料の強度測定、金属組織観察を行った。更に、各試料に表面処理を行った後、表面品質評価を行った。
 以下に、各試料の製造条件を詳説する。なお、各試料の強度測定方法、金属組織観察方法、表面処理方法及び表面品質評価方法は、上記実施例1と同一の方法によりおこなった。
 <試料の製造条件>
 半連続鋳造により、表3に記載された化学成分を有する直径90mmの鋳塊を鋳造する。その後、表4に示す処理温度、処理時間または冷却時間の組み合わせを用いて、上記鋳塊に均質化処理、熱間押出加工、急冷処理及び人工時効処理をこの順で施し、試料を得る。なお、表4に記載の室温時効時間とは、急冷処理を行った後、展伸材が室温に達してから人工時効処理を行うまでの時間を意味する。
 上記のごとく作製した各試料の評価結果を、表5に示す。なお、各々の測定結果において合格と判定されなかったものもしくは好ましい結果と判定されなかったものについては、表5中の当該評価結果に下線を付して示した。
 表5より知られるごとく、試料No.A~No.Oは、全ての評価項目で合格となり、強度、表面品質共に優れた特性を示した。
 試料Pは、均質化処理における加熱温度が低すぎたため、耐力が350MPaに満たず不合格と判定した。同時に、結晶粒が粗大となり、表面に斑状模様も視認された。
 試料Qは、均質化処理における処理時間が短すぎたため、耐力が350MPaに満たず不合格と判定した。同時に、結晶粒が粗大となり、表面に斑状模様も視認された。
 試料Rは、熱間押出加工前における鋳塊の加熱温度が高すぎたため、押出加工時に部分溶融した結果、熱間加工割れを起こし、急冷処理以降の処理を行うことができなかった。
 試料Sは、急冷処理における冷却速度が低すぎたため、焼入れが不十分となり耐力が350MPaに満たず不合格と判定した。
 試料Tは、急冷処理後における展伸材の温度が高すぎたため、焼入れが不十分となり耐力が350MPaに満たず不合格と判定した。
 試料Uは、人工時効処理における加熱温度が低すぎたため、時効硬化が不十分となり耐力が350MPaに満たず不合格と判定した。
 試料Vは、人工時効処理における加熱温度が高すぎたため、過時効となり耐力が350MPaに満たず不合格と判定した。
 試料Wは、人工時効処理における処理時間が短すぎたため、時効硬化が不十分となり耐力が350MPaに満たず不合格と判定した。
 試料Xは、人工時効処理における処理時間が長すぎたため、過時効となり耐力が350MPaに満たず不合格と判定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (4)

  1.  Zn:7.2%(質量%、以下同様)を超え8.7%以下、Mg:1.3%以上2.1%以下、Cu:0.50%未満、Fe:0.30%以下、Si:0.30%以下、Mn:0.05%未満、Cr:0.20%以下、Zr:0.05%未満、Ti:0.001%以上0.05%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を有し、
     耐力が350MPa以上であり、
     金属組織が再結晶組織よりなることを特徴とする高強度アルミニウム合金材。
  2.  請求項1に記載の高強度アルミニウム合金材において、上記再結晶組織は、その結晶粒の平均粒径が500μm以下であり、熱間加工方向に平行な方向の結晶粒長さが、熱間加工方向に垂直な方向の結晶粒長さに対して0.5~4倍であることを特徴とする高強度アルミニウム合金材。
  3.  Zn:7.2%(質量%、以下同様)を超え8.7%以下、Mg:1.3%以上2.1%以下、Cu:0.50%未満、Fe:0.30%以下、Si:0.30%以下、Mn:0.05%未満、Cr:0.20%以下、Zr:0.05%未満、Ti:0.001%以上0.05%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を有する鋳塊を作製し、
     上記鋳塊を540℃を超え580℃以下の温度で1~24時間加熱する均質化処理を行い、
     その後、加工開始時における上記鋳塊の温度を440℃~560℃とした状態で該鋳塊に熱間加工を施して展伸材とし、
     該展伸材の温度が400℃以上である間に150℃以下の温度まで冷却する急冷処理を行い、
     該急冷処理またはその後の冷却により該展伸材の温度を室温まで冷却し、
     その後100℃~170℃の温度で5~30時間加熱する人工時効処理を行うことを特徴とする高強度アルミニウム合金材の製造方法。
  4.  請求項3に記載の高強度アルミニウム合金材の製造方法において、上記急冷処理の冷却速度は5~1000℃/秒であることを特徴とする高強度アルミニウム合金材の製造方法。
PCT/JP2011/068675 2011-06-23 2011-08-18 高強度アルミニウム合金材およびその製造方法 WO2012176345A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147001906A KR101624111B1 (ko) 2011-06-23 2011-08-18 고강도 알루미늄 합금재 및 이의 제조 방법
US14/128,435 US9353431B2 (en) 2011-06-23 2011-08-18 High-strength aluminum alloy material and process for producing the same
CN201180071859.6A CN103732773B (zh) 2011-06-23 2011-08-18 高强度铝合金材料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011139715A JP5023232B1 (ja) 2011-06-23 2011-06-23 高強度アルミニウム合金材およびその製造方法
JP2011-139715 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012176345A1 true WO2012176345A1 (ja) 2012-12-27

Family

ID=46980534

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/068676 WO2012176346A1 (ja) 2011-06-23 2011-08-18 陽極酸化処理用高強度アルミニウム合金材
PCT/JP2011/068675 WO2012176345A1 (ja) 2011-06-23 2011-08-18 高強度アルミニウム合金材およびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068676 WO2012176346A1 (ja) 2011-06-23 2011-08-18 陽極酸化処理用高強度アルミニウム合金材

Country Status (5)

Country Link
US (1) US9353431B2 (ja)
JP (1) JP5023232B1 (ja)
KR (1) KR101624111B1 (ja)
CN (1) CN103732773B (ja)
WO (2) WO2012176346A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071818A (ja) * 2015-10-06 2017-04-13 昭和電工株式会社 アルミニウム合金押出材
US10208370B2 (en) 2014-01-29 2019-02-19 Uacj Corporation High-strength aluminum alloy and manufacturing method thereof
US10815551B2 (en) 2015-12-10 2020-10-27 Huawei Technologies Co., Ltd. Aluminum alloy material and housing made of aluminum alloy material

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285170B2 (ja) * 2011-11-07 2013-09-11 住友軽金属工業株式会社 高強度アルミニウム合金材及びその製造方法
JP6145274B2 (ja) 2013-01-18 2017-06-07 日立オートモティブシステムズ株式会社 ブラシレスモータの駆動装置
CN104789839B (zh) * 2014-05-07 2017-06-30 天长市正牧铝业科技有限公司 一种轻质高韧铝合金
CN104789836B (zh) * 2014-05-07 2017-05-24 天长市正牧铝业科技有限公司 一种轻质高强铝合金
JP6193808B2 (ja) * 2014-05-22 2017-09-06 株式会社神戸製鋼所 アルミニウム合金押出材及びその製造方法
CN104745897A (zh) * 2015-03-25 2015-07-01 薛元良 一种高硅变形铝合金材料及其生产方法
CN105063442B (zh) * 2015-08-10 2017-03-29 台山市金桥铝型材厂有限公司 一种铝合金
CN105112747B (zh) * 2015-10-08 2018-05-29 台山市金桥铝型材厂有限公司 一种7xxx铝合金
CN105316547A (zh) * 2015-11-19 2016-02-10 台山市金桥铝型材厂有限公司 一种高强度铝合金
JP6954722B2 (ja) * 2015-11-20 2021-10-27 株式会社Uacj アルミニウム合金材及びその製造方法
EP3701052A1 (en) * 2017-10-23 2020-09-02 Novelis, Inc. Reactive quenching solutions and methods of use
WO2019188452A1 (ja) * 2018-03-27 2019-10-03 古河電気工業株式会社 アルミニウム合金材ならびにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品
CN115449675A (zh) * 2022-07-28 2022-12-09 广西南南铝加工有限公司 一种Al-Zn-Mg超高强度铝合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128678A (ja) * 1992-10-13 1994-05-10 Sky Alum Co Ltd 陽極酸化処理後の色調が暗灰色〜黒色の高強度アルミニウム合金展伸材およびその製造方法
JP2000119782A (ja) * 1998-10-15 2000-04-25 Kobe Steel Ltd アルミニウム合金板及びその製造方法
JP2007119904A (ja) * 2005-09-27 2007-05-17 Aisin Keikinzoku Co Ltd 衝撃吸収性及び耐応力腐食割れ性に優れた高強度アルミニウム合金押出材及びその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194041A (ja) 1984-03-14 1985-10-02 Kobe Steel Ltd オ−トバイフレ−ム用アルミニウム合金
EP0462055A1 (de) 1990-06-11 1991-12-18 Alusuisse-Lonza Services Ag Vormaterial aus einer superplastischen AlZnMg-Legierung
JPH06330264A (ja) 1993-05-17 1994-11-29 Furukawa Alum Co Ltd 強度と靱性に優れたアルミニウム合金鍛造材の製造方法
JP2001355032A (ja) 2000-06-12 2001-12-25 Aisin Keikinzoku Co Ltd 衝撃吸収性に優れたアルミニウム合金押出材
US7360676B2 (en) 2002-09-21 2008-04-22 Universal Alloy Corporation Welded aluminum alloy structure
US20040099352A1 (en) 2002-09-21 2004-05-27 Iulian Gheorghe Aluminum-zinc-magnesium-copper alloy extrusion
US7214281B2 (en) 2002-09-21 2007-05-08 Universal Alloy Corporation Aluminum-zinc-magnesium-copper alloy extrusion
US20080299000A1 (en) 2002-09-21 2008-12-04 Universal Alloy Corporation Aluminum-zinc-copper-magnesium-silver alloy wrought product
US20070029016A1 (en) 2002-09-21 2007-02-08 Universal Alloy Corporation Aluminum-zinc-magnesium-copper alloy wrought product
FR2846669B1 (fr) * 2002-11-06 2005-07-22 Pechiney Rhenalu PROCEDE DE FABRICATION SIMPLIFIE DE PRODUITS LAMINES EN ALLIAGES A1-Zn-Mg, ET PRODUITS OBTENUS PAR CE PROCEDE
US7018489B2 (en) 2002-11-13 2006-03-28 Alcoa Inc. Artificial aging control of aluminum alloys
ES2292075T5 (es) 2005-01-19 2010-12-17 Otto Fuchs Kg Aleacion de aluminio no sensible al enfriamiento brusco, asi como procedimiento para fabricar un producto semiacabado a partir de esta aleacion.
BRPI0612903A2 (pt) 2005-07-21 2010-12-07 Aleris Aluminun Koblenz Gmbh produto trabalhado de liga de alumìnio da série aa-7000 e método de produção do mencionado produto
US20070151636A1 (en) * 2005-07-21 2007-07-05 Corus Aluminium Walzprodukte Gmbh Wrought aluminium AA7000-series alloy product and method of producing said product
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
WO2009024601A1 (en) 2007-08-23 2009-02-26 Aleris Aluminum Koblenz Gmbh Method for casting a composite aluminium alloy ingot or billet
JP2010159489A (ja) * 2008-12-09 2010-07-22 Sumitomo Light Metal Ind Ltd 7000系アルミニウム合金材の成形加工方法及び該7000系アルミニウム合金材の成形加工方法により成形される成形加工品
JP5285170B2 (ja) 2011-11-07 2013-09-11 住友軽金属工業株式会社 高強度アルミニウム合金材及びその製造方法
JP6022882B2 (ja) 2012-10-05 2016-11-09 株式会社Uacj 高強度アルミニウム合金押出材及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128678A (ja) * 1992-10-13 1994-05-10 Sky Alum Co Ltd 陽極酸化処理後の色調が暗灰色〜黒色の高強度アルミニウム合金展伸材およびその製造方法
JP2000119782A (ja) * 1998-10-15 2000-04-25 Kobe Steel Ltd アルミニウム合金板及びその製造方法
JP2007119904A (ja) * 2005-09-27 2007-05-17 Aisin Keikinzoku Co Ltd 衝撃吸収性及び耐応力腐食割れ性に優れた高強度アルミニウム合金押出材及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208370B2 (en) 2014-01-29 2019-02-19 Uacj Corporation High-strength aluminum alloy and manufacturing method thereof
JP2017071818A (ja) * 2015-10-06 2017-04-13 昭和電工株式会社 アルミニウム合金押出材
WO2017061224A1 (ja) * 2015-10-06 2017-04-13 昭和電工株式会社 アルミニウム合金押出材
US10815551B2 (en) 2015-12-10 2020-10-27 Huawei Technologies Co., Ltd. Aluminum alloy material and housing made of aluminum alloy material

Also Published As

Publication number Publication date
JP2013007085A (ja) 2013-01-10
JP5023232B1 (ja) 2012-09-12
KR20140030310A (ko) 2014-03-11
WO2012176346A1 (ja) 2012-12-27
US9353431B2 (en) 2016-05-31
CN103732773B (zh) 2015-11-25
CN103732773A (zh) 2014-04-16
KR101624111B1 (ko) 2016-05-25
US20140124103A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5023232B1 (ja) 高強度アルミニウム合金材およびその製造方法
JP5285170B2 (ja) 高強度アルミニウム合金材及びその製造方法
WO2015025706A1 (ja) 高強度アルミニウム合金及びその製造方法
JP5023233B1 (ja) 高強度アルミニウム合金材およびその製造方法
JP6022882B2 (ja) 高強度アルミニウム合金押出材及びその製造方法
US10208370B2 (en) High-strength aluminum alloy and manufacturing method thereof
JP2013108131A (ja) アルミニウム合金展伸材及びその製造方法
JPWO2017006816A1 (ja) 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
JP7172833B2 (ja) アルミニウム合金材及びその製造方法
JP6954722B2 (ja) アルミニウム合金材及びその製造方法
WO2017006816A1 (ja) 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
JP2013007114A (ja) 陽極酸化処理用高強度アルミニウム合金材
JP2000273563A (ja) 陽極酸化処理後の色調が灰色で安定なアルミニウム合金圧延板およびその製造方法
JP6291133B2 (ja) アルミニウム合金材
JP2008231518A (ja) 曲げ加工性及び陽極酸化処理後の光輝性に優れたアルミニウム合金ならびにその押出形材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14128435

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147001906

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11868280

Country of ref document: EP

Kind code of ref document: A1