WO2015146881A1 - 1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体の製造方法 - Google Patents

1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体の製造方法 Download PDF

Info

Publication number
WO2015146881A1
WO2015146881A1 PCT/JP2015/058671 JP2015058671W WO2015146881A1 WO 2015146881 A1 WO2015146881 A1 WO 2015146881A1 JP 2015058671 W JP2015058671 W JP 2015058671W WO 2015146881 A1 WO2015146881 A1 WO 2015146881A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ethyl
acid
acid derivative
butyl
Prior art date
Application number
PCT/JP2015/058671
Other languages
English (en)
French (fr)
Inventor
村田 貴彦
誠 舟橋
西山 章
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP15768994.4A priority Critical patent/EP3124469A4/en
Priority to JP2016510322A priority patent/JPWO2015146881A1/ja
Priority to CN201580017064.5A priority patent/CN106164044B/zh
Publication of WO2015146881A1 publication Critical patent/WO2015146881A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/30Preparation of optical isomers
    • C07C227/32Preparation of optical isomers by stereospecific synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Definitions

  • the present invention relates to a method for producing a 1-arylimino-2-vinylcyclopropanecarboxylic acid derivative useful as an intermediate for a pharmaceutical product, particularly a therapeutic agent for hepatitis C.
  • the (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid derivative is useful as an intermediate for a therapeutic agent for hepatitis C, and its production method has been studied in detail in Non-Patent Document 1.
  • N- (phenylmethylene) glycine ethyl ester of Compound No. 4 and (E) -1,4-dibromo-2-butene are reacted at room temperature in the presence of a base to obtain the following Compound No.
  • cyclopropanation reaction 1-phenylimino-2-vinylcyclopropanecarboxylate (see the following formula, hereinafter referred to as cyclopropanation reaction), and then hydrolyzing the imino group to produce 1-amino-2-vinylcyclopropanecarboxylic acid Manufactures acid derivatives.
  • compound number 9 is generated as a by-product, and this by-product 9 is considered to be generated via cis imine (5) of the following formula.
  • Cis imine is a diastereoisomer of Compound No. 6, which is the target compound.
  • a nonpolar solvent such as toluene is preferable to a polar solvent such as THF
  • tert-butoxy base includes Li salt, Na salt, K salt (M + in the following formula) and It has been shown that diastereoselectivity decreases as the basicity increases, and that even with hexamethyldisilazane base, the diastereoselectivity decreases as the basicity increases with Li, Na and K salts. Therefore, it is considered optimal to use lithium tert-butoxide in toluene.
  • Non-Patent Document 1 performs asymmetric hydrolysis using alcalase
  • Patent Document 1 performs salt-forming crystallization using an optically active acid
  • Patent Document 2 performs asymmetric hydrolysis using hydrase.
  • an optically active 1-amino-2-vinylcyclocarboxylic acid derivative is obtained for the first time.
  • JP 2011-46613 A International Publication No. 2011/003063
  • lithium tert-butoxide which is optimal for the cyclopropanation reaction, is cheap, has a short delivery time, is difficult to obtain more stably, and hinders implementation on an industrial scale. Furthermore, as a result of confirmation by the present inventors, in the cyclopropanation reaction using lithium tert-butoxide, only a racemate is obtained even if an asymmetric catalyst is used, and an optically active cyclopropanation product cannot be produced.
  • the present invention does not hinder the implementation on an industrial scale, and has a yield close to that when lithium tert-butoxide is used, preferably 1-arylimino- with an excellent yield over lithium tert-butoxide.
  • An object is to provide a method capable of producing a 2-vinylcyclopropanecarboxylic acid derivative, or to provide a method capable of directly producing an optically active 1-arylimino-2-vinylcyclopropanecarboxylic acid derivative by a cyclopropanation reaction.
  • the inventors of the present invention when combined with sodium, which is conventionally regarded as bad, only ethoxy group among alkoxy groups having low steric hindrance, which has been regarded as bad. Contrary to these conventional suggestions, the asymmetric catalyst is used for the first time when the yield is as good as or better than that of lithium tert-butoxide, and when sodium ethoxide is used as a base.
  • the inventors have found that an optically active 1-arylimino-2-vinylcyclopropanecarboxylic acid derivative can be produced, and found that sodium ethoxide has a particularly excellent effect, thereby completing the present invention.
  • the present invention provides the following formula (1); (Wherein Ar represents a C6-C12 aryl group, R 1 represents a C1-C6 alkyl group) and (E) -1,4-dibromo-2 By reacting butene with sodium ethoxide to give the following formula (2): (Wherein Ar and R 1 are the same as defined above), which is a method for producing a 1-arylimino-2-vinylcyclopropanecarboxylic acid derivative.
  • the present invention provides the following formula (1) in the presence of an optically active catalyst; (Wherein Ar represents a C6-C12 aryl group, R 1 represents a C1-C6 alkyl group) and (E) -1,4-dibromo-2 By reacting butene with sodium ethoxide to give the following formula (4): (In the formula, Ar and R 1 are the same as defined above.) A method for producing a (1R, 2S) -1-arylimino-2-vinylcyclopropanecarboxylic acid derivative represented by the formula is also included.
  • N- (arylmethylene) glycine ester and (E) -1,4-dibromo-2-butene are reacted with sodium ethoxide, it is important for the production of pharmaceuticals (1R , 2S) -1-amino-2-vinylcyclopropanecarboxylic acid derivatives can be produced inexpensively and stably on an industrial scale.
  • phenyl group 1-naphthyl group, 2-naphthyl group, p-methylphenyl group, o-chlorophenyl group, m-chlorophenyl group, p-chlorophenyl group, p-bromophenyl group, p-fluorophenyl Group, p-trifluoromethyl group, p-nitrophenyl group, o-methoxyphenyl, m-methoxyphenyl, or p-methoxyphenyl group.
  • a phenyl group, a p-chlorophenyl group, or a p-methoxyphenyl group is preferable, and a phenyl group is more preferable.
  • R 1 represents a C1-C6 alkyl group. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group, preferably a methyl group, an ethyl group, and a tert-butyl group.
  • the compound (1) can be produced according to a known method (for example, J. Org. Chem, 2005, 70 (15), 5869-5879.). Commercial products can also be used. Specifically, compound (1) is produced by reacting H 2 N—CH 2 —COOR 1 (R 1 is the same as above) or a salt thereof with Ar—CHO in the presence of a base such as alkylamine. it can.
  • the amount of the compound (1) used is 0.5 to 20 equivalents relative to (E) -1,4-dibromo-2-butene, more preferably 0. 0.8 to 10 equivalents, particularly preferably 1 to 5 equivalents.
  • the shape of the sodium ethoxide is not particularly limited, and any of a powder form, a solution form dissolved in a solvent such as ethanol, and a suspension form can be used.
  • the amount used is too large, it is not preferable in terms of cost, so it is 1 to 20 equivalents relative to (E) -1,4-dibromo-2-butene, more preferably 1.3 to 10 equivalents. Particularly preferred is 1.5 to 5 equivalents.
  • the solvent for this reaction is not particularly limited as long as it does not affect the reaction.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and ethylene glycol are used.
  • Solvents; ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ethyl acetate, n-propyl acetate, isopropyl acetate, etc.
  • Ester solvents such as pentane, hexane, heptane and methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene and mesitylene; acetone and methyl Ketone solvents such as tilketone; halogen solvents such as methylene chloride, 1,2-dichloroethane, chlorobenzene; sulfoxide solvents such as dimethyl sulfoxide; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethyl Amide solvents such as acetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam and hexamethylphosphoramide; urea solvents such as dimethylpropylene urea; hexamethylphosphonic acid triamide Etc
  • Phosphonic acid triamide solvents such as can be used.
  • a polar solvent such as THF
  • the yield is remarkably lowered, whereas in the method using sodium ethoxide of the present invention, even if a nonpolar solvent is used. Even with a polar solvent, a high reaction yield can be achieved.
  • These solvents may be used independently and may use 2 or more types together. When using 2 or more types together, the mixing ratio is not particularly limited.
  • ethanol methyl tert-butyl ether, hexane, heptane, toluene, xylene, ethylbenzene, mesitylene, methylene chloride, 1,2-dichloroethane, or chlorobenzene, and more preferred is methyl tert-butyl ether or toluene.
  • the upper limit is preferably 100 times the weight of (E) -1,4-dibromo-2-butene.
  • the weight is preferably 50 times, particularly preferably 20 times.
  • the lower limit is preferably 0.1 times the weight of (E) -1,4-dibromo-2-butene, more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
  • the reaction temperature in this reaction is not particularly limited and may be set as appropriate.
  • the upper limit is preferably 100 ° C, more preferably 60 ° C, and particularly preferably 30. ° C. Further, it is preferably 0 ° C. or lower, particularly ⁇ 5 ° C. or lower.
  • the lower limit is preferably ⁇ 80 ° C., more preferably ⁇ 60 ° C., and particularly preferably ⁇ 40 ° C. In particular, when carried out at a low temperature of 0 ° C.
  • the reaction time in this reaction is not particularly limited and may be appropriately set.
  • the upper limit is preferably 120 hours, more preferably 100 hours, and particularly preferably 80 hours.
  • the lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
  • the mixing order of the compound (1), (E) -1,4-dibromo-2-butene, sodium ethoxide, and the solvent is not particularly limited, but (E) -1,4-dibromo-2-butene and the solvent It is preferable to add the compound (1) to the mixed solution, and more preferably (E) -1,4-dibromo-2-butene, a solvent, sodium ethoxide, and the compound (1) in this order.
  • a general process for obtaining a product from the reaction solution may be performed.
  • the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • the target product thus obtained has a sufficient purity that can be used in the subsequent steps. However, in order to further increase the purity, crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used. The purity may be further increased by a simple purification method.
  • the obtained compound (2) is preferably used in the next step without isolation.
  • the aforementioned reaction is carried out to produce a 1-arylimino-2-vinylcyclopropanecarboxylic acid derivative (2), followed by acid hydrolysis of the compound (2) to give the following formula ( 3); It is preferable to produce a 1-amino-2-vinylcyclopropanecarboxylic acid derivative represented by:
  • R 2 is the same as R 1 or a hydrogen atom, and specifically represents a C1-C6 alkyl group or a hydrogen atom.
  • Examples of the acid used for the hydrolysis include inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and perchloric acid; aromatic sulfonic acids such as p-toluenesulfonic acid and benzenesulfonic acid; Aliphatic sulfonic acids such as methanesulfonic acid and trifluoromethanesulfonic acid; aliphatic carboxylic acids such as acetic acid, propionic acid, citric acid, malic acid, succinic acid, lactic acid, maleic acid, and fumaric acid; phthalic acid, benzoic acid, Examples thereof include aromatic carboxylic acids such as 4-nitrobenzoic acid or 4-chlorobenzoic acid.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and perchloric acid
  • aromatic sulfonic acids such as p-tolu
  • the said acid may be used independently and may mix 2 or more types.
  • the acid is preferably an inorganic acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, or perchloric acid, and more preferably hydrochloric acid.
  • the amount of the acid used is preferably 0.5 to 100 equivalents, more preferably 1 to 30 equivalents, and particularly preferably 2 to 10 equivalents with respect to the compound (2).
  • the acid may be adjusted by sequential addition so that the pH of the mixture comprising the compound (2) and water is in the range of 0-4.
  • the upper limit is preferably 100 times the weight of the compound (2), more preferably 50 times the weight. Yes, particularly preferably 20 times the weight.
  • the lower limit is preferably 0.1 times the weight of the compound (2), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
  • an organic solvent may be further added to the acid hydrolysis for the purpose of ensuring fluidity or increasing the reaction rate.
  • the organic solvent is not particularly limited as long as it does not affect the acid hydrolysis.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and ethylene glycol are used.
  • Solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ethyl acetate, n-propyl acetate, isopropyl acetate, etc.
  • Ester solvents such as pentane, hexane, heptane, and methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and mesitylene; acetone, methylethyl Ketone solvents such as Tonne; halogen solvents such as methylene chloride, 1,2-dichloroethane, chlorobenzene; sulfoxide solvents such as dimethyl sulfoxide; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethyl Amide solvents such as acetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam and hexamethylphosphoramide; urea solvents such as dimethylpropylene urea; hexamethylphosphonic acid tri
  • Phosphonic acid triamide solvents such as can be used. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. Preferred is ethanol, methyl tert-butyl ether, hexane, heptane, toluene, xylene, ethylbenzene, mesitylene, methylene chloride, 1,2-dichloroethane, or chlorobenzene, and more preferred is methyl tert-butyl ether or toluene.
  • the upper limit is preferably 100 times weight, more preferably 50 times weight with respect to the compound (2). Particularly preferred is 20 times the weight.
  • the lower limit is preferably 0.1 times the weight of the compound (2), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
  • the acid hydrolysis temperature is not particularly limited and may be set as appropriate. However, in order to reduce the formation of by-products, the upper limit is preferably 120 ° C., and more preferably 100 ° C. The lower limit is preferably ⁇ 20 ° C., more preferably 0 ° C. The reaction time in the acid hydrolysis is not particularly limited and may be set as appropriate. The upper limit is preferably 120 hours, more preferably 100 hours, and particularly preferably 80 hours. The lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
  • the mixing order of the compound (2), water, acid and organic solvent is not particularly limited.
  • a general process for obtaining a product from the reaction solution may be performed.
  • the reaction solution after completion of the reaction is neutralized by adding a sodium hydroxide aqueous solution, a potassium carbonate aqueous solution, or a sodium hydrogen carbonate aqueous solution, and a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane, etc.
  • the extraction operation is performed using.
  • the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure, the desired product is obtained.
  • the compound (3) thus obtained has a sufficient purity that can be used in the subsequent steps.
  • the compound (3) can be further purified by a general purification method such as column chromatography. May be raised.
  • the compound (2) is asymmetrically hydrolyzed by an appropriate method to obtain the following formula (5); (Wherein R 2 is the same as above) may be produced.
  • Asymmetric hydrolysis includes a method of hydrolysis using an enzyme and a method of hydrolysis using an optically active acid or base.
  • the acid having optical activity include tartaric acids such as tartaric acid, tartaric acid ester, and tartaric acid amide, preferably tartaric acid monoarylamide, particularly tartranilic acid.
  • tartaric acids may have a substituent as appropriate.
  • a substituent such as a halogeno group may be bonded to a phenyl group.
  • an optically active catalyst preferably an optically active phase transfer catalyst, the following formula (1);
  • N- (arylmethylene) glycine ester represented by the formula (E) -1,4-dibromo-2-butene By reacting N- (arylmethylene) glycine ester represented by the formula (E) -1,4-dibromo-2-butene with sodium ethoxide, the following formula (4): The method of manufacturing the compound represented by these is also included.
  • Ar and R 1 are the same as described above. Asymmetric synthesis is possible by using sodium ethoxide.
  • the optically active phase transfer catalyst is preferably an optically active quaternary ammonium salt having a biphenyl skeleton and / or a binaphthyl skeleton, that is, Maruoka Catalyst (registered trademark), more preferably (11bS)-(+)-4.
  • the optical purity of the optically active phase transfer catalyst is not particularly limited, and in order to obtain a compound (4) having high optical purity, preferably 90% e.e. e. Or more, more preferably 95% e.e. e. Or more, particularly preferably 98% e.e. e. That's it.
  • the upper limit is preferably 0.01 equivalent to (E) -1,4-dibromo-2-butene. Yes, more preferably 0.005 equivalent, and particularly preferably 0.001 equivalent.
  • the lower limit is preferably 0.00001 equivalent, more preferably 0.0001 equivalent to (E) -1,4-dibromo-2-butene.
  • (E) -1,4-dibromo-2-butene, sodium ethoxide used in this step, reaction temperature, reaction time, reagent addition order, and post-reaction treatment This is the same as described in the production of the compound (2).
  • the (1R, 2S) -1-arylimino-2-vinylcyclopropanecarboxylic acid derivative (4) is produced by carrying out the reaction described above, and then the compound (4) is subjected to acid hydrolysis. And the following formula (5); It is also possible to produce a (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid derivative represented by:
  • the method for producing the compound (5) is the same as the method for producing the compound (3) by acid hydrolysis of the compound (2).
  • Example 1 Production of Racemic Ethyl 1-Amino-2-vinylcyclopropanecarboxylate (E) 1,4-Dibromo-2-butene 40 g (187 mmol), Sodium ethoxide 27 g (397 mmol), and toluene 200 g And the temperature was adjusted to -20 ° C. Thereto was added 95 g of a toluene solution of N- (phenylmethylene) glycine ethyl ester obtained in Reference Example 1 (N- (phenylmethylene) glycine ethyl ester pure content 43 g, 225 mmol) dropwise at ⁇ 20 ° C. over 5 hours, The reaction was carried out at ⁇ 20 ° C.
  • the solution was added dropwise at ⁇ 20 ° C. over 2 hours and reacted at ⁇ 20 ° C. for 2 hours. After completion of the reaction, the temperature of the reaction solution was adjusted to 0 ° C., and 17 g of water was added. Subsequently, 4.5 g of 35% hydrochloric acid aqueous solution (pure hydrochloric acid 1.6 g, 43 mmol) was added dropwise over 1 hour, and the mixture was stirred for 1 hour. Stirring was stopped, liquid separation was performed, and an aqueous layer was separated. 17 g of water was added to the obtained organic layer and stirred for 30 minutes.
  • hydrochloric acid aqueous solution pure hydrochloric acid 1.6 g, 43 mmol
  • Liquid separation was carried out after stopping the stirring, and the aqueous layers obtained were combined and 56 g of an aqueous solution containing a racemate of ethyl 1-amino-2-vinylcyclopropanecarboxylate (ethyl 1-amino-2-vinylcyclopropanecarboxylate) Of the racemate was obtained (4.5 g, 29 mmol).
  • the obtained aqueous solution was analyzed under the conditions described in Example 1 to calculate the racemic yield of ethyl 1-amino-2-vinylcyclopropanecarboxylate (74% yield).
  • Example 3 Preparation of racemic ethyl ethyl 1-amino-2-vinylcyclopropanecarboxylate (E) 8.1 g (38 mmol) of 1,4-dibromo-2-butene and 5.4 g (80 mmol) of sodium ethoxide ) And 41 g of toluene, and the temperature was adjusted to -20 ° C.
  • Example 5 Preparation of racemic ethyl ethyl 1-amino-2-vinylcyclopropanecarboxylate (E) -1,4-dibromo-2-butene (6.4 g, 30 mmol) and sodium ethoxide (4.3 g, 63 mmol) ) And 32 g of dichloromethane were mixed and the temperature was adjusted to -20 ° C. Thereto was added 15.3 g of a toluene solution of N- (phenylmethylene) glycine ethyl ester obtained in Reference Example 1 (6.9 g of pure N- (phenylmethylene) glycine ethyl ester, 36 mmol) at ⁇ 20 ° C.
  • E racemic ethyl ethyl 1-amino-2-vinylcyclopropanecarboxylate
  • sodium ethoxide 4.3 g, 63 mmol
  • Example 2 The obtained aqueous solution was analyzed under the high performance liquid chromatography analysis conditions described in Example 1, and the yield of ethyl 1-amino-2-vinylcyclopropanecarboxylate was analyzed under the optical purity analysis conditions described in Example 6. Then, the optical purity of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate was calculated. The results are shown in Table 2.
  • Example 8 Production of tert-butyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate (11bS)-(+)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ′, 2'-e] azepinium bromide 28.1 mg (0.04 mmol), (E) -1,4-dibromo-2-butene 1.6 g (7.5 mmol) and sodium ethoxide 1.1 g (15.8 mmol) ) And 8.0 g of toluene, and the temperature was adjusted to -20 ° C.
  • the method of the present invention can be used to produce a (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid derivative useful as a pharmaceutical intermediate, for example, an intermediate of a therapeutic agent for hepatitis C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 本発明は、工業的規模での実施に支障をきたすことなく、リチウムtert-ブトキシドを用いた場合に近い収率で、好ましくはリチウムtert-ブトキシド以上の優れた収率で、式(1)で表されるN-(アリールメチレン)グリシンエステルと(E)-1,4-ジブロモ-2-ブテンを、ナトリウムエトキシドを用いて反応させることにより、式(2)で表される1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造する方法である。 更に本発明は、光学活性な触媒の存在下、式(1)で表されるN-(アリールメチレン)グリシンエステルと(E)-1,4-ジブロモ-2-ブテンを、ナトリウムエトキシドを用いて反応させることにより、式(4)で表される(1R,2S)-1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造する方法も包含する。

Description

1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体の製造方法
 本発明は医薬品、特にC型肝炎治療薬の中間体として有用な1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体の製造法に関する。
 (1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸誘導体はC型肝炎治療薬の中間体として有用であり、その製造方法は非特許文献1で詳細に検討されている。この非特許文献1では、化合物番号4のN-(フェニルメチレン)グリシンエチルエステルと(E)-1,4-ジブロモ-2-ブテンとを塩基の存在下、室温で反応させて下記化合物番号6の1-フェニルイミノ-2-ビニルシクロプロパンカルボン酸エチルを製造し(下記式参照。以下、シクロプロパン化反応という)、次いでイミノ基を加水分解することで1-アミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造している。
Figure JPOXMLDOC01-appb-C000007
 そしてこのシクロプロパン化反応では、化合物番号9が副生成物として生じており、この副生成物9は、下記式のcisイミン(5)を経て生じていると考えられている。cisイミンは、目的化合物である化合物番号6のジアステレオ異性体である。 
Figure JPOXMLDOC01-appb-C000008
 副生成物9の原因となるcisイミン(5)ではなく、目的物のcisエステル(6)のジアステレオ選択性を高めるには、下記式に示す様に立体相互作用を最小化した中間体を経る様にする事が有効である事、その為には立体障害性の高い(hindered)tert-ブトキシ塩基を用いる事が最適である旨が指摘されている。さらには、反応温度は結果に影響しない事、THFなどの極性溶媒よりもトルエンなどの非極性溶媒が望ましい事、tert-ブトキシ塩基では、Li塩、Na塩、K塩(下記式のM+)と塩基性が強くなるに従ってジアステレオ選択性が低下し、ヘキサメチルジシラザン塩基でも、Li塩、Na塩、K塩と塩基性が強くなるに従ってジアステレオ選択性が低下する事が示されている。そのため、トルエン中、リチウムtert-ブトキシドを使用することが最適とされている。
Figure JPOXMLDOC01-appb-C000009
 前記検討結果は、特許文献1や特許文献2にも採用されており、これら特許文献でもN-(フェニルメチレン)グリシンエチルエステルと(E)-1,4-ジブロモ-2-ブテンから1-フェニルイミノ-2-ビニルシクロプロパンカルボン酸エチルを製造する反応を、トルエン中、リチウムtert-ブトキシドを用いて行っている。
 なお上記各文献では、シクロプロパン化反応の生成物(1-フェニルイミノ-2-ビニルシクロプロパンカルボン酸誘導体)は、いずれもラセミ体である。非特許文献1では、アルカラーゼを用いて不斉水解をすることで、特許文献1では光学活性な酸を用いて造塩晶析をすることで、特許文献2ではヒドラーゼを用いて不斉水解をすることで初めて光学活性な1-アミノ-2-ビニルシクロカルボン酸誘導体を得ている。
特開2011-46613号公報 国際公開第2011/003063号
J.Org.Chem,2005,70(15),5869-5879.
 しかし、シクロプロパン化反応で最適とされているリチウムtert-ブトキシドは安価、且つ短納期で、更に安定的に入手することが困難であり、工業的規模での実施に支障をきたす。さらには本発明者らが確認したところ、リチウムtert-ブトキシドを用いたシクロプロパン化反応では、不斉触媒を用いても、ラセミ体しか得られず、光学活性なシクロプロパン化物を製造できない。
 従って本発明は、工業的規模での実施に支障をきたすことなく、リチウムtert-ブトキシドを用いた場合に近い収率で、好ましくはリチウムtert-ブトキシド以上の優れた収率で1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造できる方法を提供すること、あるいはシクロプロパン化反応で光学活性な1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体を直接製造できる方法を提供することを目的とする。
 本発明者らは、前記課題を解決する為に鋭意検討した結果、従来、悪いとされていた立体障害の低いアルコキシ基のうちエトキシ基のみが、従来、悪いとされていたナトリウムと組み合わせた時に、こうした従来からの示唆に反して意外にも、リチウムtert-ブトキシドと同等或いはそれ以上の優れた収率を示す事、さらにはナトリウムエトキシドを塩基として使用した場合に初めて、不斉触媒を用いて、光学活性な1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造できる事を見出し、ナトリウムエトキシドには特異的に優れた効果があることを見出し、本発明を完成した。
 即ち、本発明は、下記式(1);
(式中、ArはC6~C12のアリール基、R1はC1~C6のアルキル基を表す。)で表されるN-(アリールメチレン)グリシンエステルと(E)-1,4-ジブロモ-2-ブテンを、ナトリウムエトキシドを用いて反応させることにより、下記式(2); 
Figure JPOXMLDOC01-appb-C000011
(式中、Ar、R1は前記に同じである。)で表される1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造する方法である。
 更に本発明は、光学活性な触媒の存在下、下記式(1);
Figure JPOXMLDOC01-appb-C000012
(式中、ArはC6~C12のアリール基、R1はC1~C6のアルキル基を表す。)で表されるN-(アリールメチレン)グリシンエステルと(E)-1,4-ジブロモ-2-ブテンを、ナトリウムエトキシドを用いて反応させることにより、下記式(4);
Figure JPOXMLDOC01-appb-C000013
(式中、Ar、R1は前記に同じである。)で表される(1R,2S)-1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造する方法も包含する。
 本発明によれば、ナトリウムエトキシドを用いてN-(アリールメチレン)グリシンエステルと(E)-1,4-ジブロモ-2-ブテンを反応させているため、医薬品等の製造上重要な(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸誘導体を工業的規模で安価かつ安定的に製造することが可能である。
 以下、本発明について詳細に記載する。
 まず本発明では、下記式(1);
Figure JPOXMLDOC01-appb-C000014
で表されるN-(アリールメチレン)グリシンエステル(1)と(E)-1,4-ジブロモ-2-ブテンを、ナトリウムエトキシドを用いて反応させることにより、下記式(2);
Figure JPOXMLDOC01-appb-C000015
で表される1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体(2)を製造する。ここで、ArはC6~C12のアリール基を表す。具体的には例えば、フェニル基、1-ナフチル基、2-ナフチル基、p-メチルフェニル基、o-クロロフェニル基、m-クロロフェニル基、p-クロロフェニル基、p-ブロモフェニル基、p-フルオロフェニル基、p-トリフルオロメチル基、p-ニトロフェニル基、o-メトキシフェニル、m-メトキシフェニル、又はp-メトキシフェニル基である。好ましくは、フェニル基、p-クロロフェニル基、又はp-メトキシフェニル基であり、更に好ましくはフェニル基である。
 また、R1はC1~C6のアルキル基を表す。具体的には例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基であり、好ましくはメチル基、エチル基、tert-ブチル基であり、更に好ましくはエチル基である。前記化合物(1)は公知の方法(例えば、J.Org.Chem,2005,70(15),5869-5879.)に従って製造することができる。また市販品を用いることもできる。具体的にはH2N-CH2-COOR1(R1は前記に同じ)又はその塩とAr-CHOとをアルキルアミンなどの塩基の存在下で反応させることによって、化合物(1)を製造できる。
 前記化合物(1)の使用量としては、多すぎるとコスト面で好ましくないため、(E)-1,4-ジブロモ-2-ブテンに対して0.5~20当量であり、更に好ましくは0.8~10当量であり、特に好ましくは1~5当量である。
 前記ナトリウムエトキシドの形状としては特に制限はなく、粉末状のものや、例えばエタノール等の溶媒に溶解した溶液状のものや、サスペンジョン状のもの等、いずれも用いることが出来る。使用量としては、多すぎるとコスト面で好ましくないため、(E)-1,4-ジブロモ-2-ブテンに対して1~20当量であり、更に好ましくは1.3~10当量であり、特に好ましくは1.5~5当量である。
 本反応の溶媒としては、反応に影響を与えない限りにおいては特に制限はなく、具体的には例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、エチレングリコール等のアルコール系溶媒;テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;塩化メチレン、1,2-ジクロロエタン、クロロベンゼン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ヘキサメチルホスホルアミド等のアミド系溶媒;ジメチルプロピレンウレア等のウレア系溶媒;ヘキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒等を用いることができる。リチウムtert-ブトキシドを用いる場合には、トルエンをTHFなどの極性溶媒に置き換えると、収率が著しく低下したのに対して、本発明のナトリウムエトキシドを用いる方法では、非極性溶媒であっても極性溶媒であっても、高い反応収率を達成できる。これら溶媒は単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくはエタノール、メチルtert-ブチルエーテル、ヘキサン、ヘプタン、トルエン、キシレン、エチルベンゼン、メシチレン、塩化メチレン、1,2-ジクロロエタン、又はクロロベンゼンであり、更に好ましくはメチルtert-ブチルエーテル、又はトルエンである。
 前記溶媒の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限としては、(E)-1,4-ジブロモ-2-ブテンに対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、(E)-1,4-ジブロモ-2-ブテンに対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。
 本反応における反応温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限として好ましくは100℃であり、更に好ましくは60℃であり、特に好ましくは30℃である。さらには0℃以下、特に-5℃以下であることも好ましい。下限として好ましくは-80℃であり、更に好ましくは-60℃であり、特に好ましくは-40℃である。特に0℃以下の低温で実施すると、(E)-1,4-ジブロモ-2-ブテンの分解が抑制され、高収率で1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体(2)を生成することができる。
 本反応における反応時間には特に制限はなく、適宜設定すればよいが、上限としては好ましくは120時間であり、更に好ましくは100時間であり、特に好ましくは80時間である。下限として好ましくは0.1時間であり、更に好ましくは1時間であり、特に好ましくは3時間である。
 前記化合物(1)、(E)-1,4-ジブロモ-2-ブテン、ナトリウムエトキシド、溶媒の混合順序について特に制限はないが、(E)-1,4-ジブロモ-2-ブテンと溶媒との混合液に化合物(1)を添加するのが好ましく、より好ましくは(E)-1,4-ジブロモ-2-ブテン、溶媒、ナトリウムエトキシド、前記化合物(1)の順に添加するとよい。
 反応後の処理としては、反応液から生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水、一般的な抽出溶媒、例えば酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得られる。
 このようにして得られた目的物は、後続工程に使用できる十分な純度を有しているが、純度を更に高める目的で、晶析、分別蒸留、転溶洗浄、カラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。好ましくは得られた前記化合物(2)を単離することなく次の工程に使用するとよい。
 本発明では、前述した反応を行って1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体(2)を製造した後、続いて、前記化合物(2)を酸加水分解することにより、下記式(3);
Figure JPOXMLDOC01-appb-C000016
で表される1-アミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造することが好ましい。ここで、R2は前記R1と同じであるか水素原子であり、具体的には、C1~C6のアルキル基、又は水素原子を表す。より具体的には例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、又は水素原子であり、好ましくはメチル基、エチル基、tert-ブチル基、又は水素原子であり、更に好ましくはエチル基である。
 加水分解に用いられる酸としては例えば、塩酸、臭化水素酸、硫酸、リン酸、硝酸、又は過塩素酸等の無機酸;p-トルエンスルホン酸、又はベンゼンスルホン酸等の芳香族スルホン酸;メタンスルホン酸、トリフルオロメタンスルホン酸等の脂肪族スルホン酸;酢酸、プロピオン酸、クエン酸、リンゴ酸、コハク酸、乳酸、マレイン酸、又はフマル酸等の脂肪族カルボン酸;フタル酸、安息香酸、4-ニトロ安息香酸、又は4-クロロ安息香酸等の芳香族カルボン酸が挙げられる。前記酸は単独で用いてもよいし、2種以上を混合してもよい。酸として好ましくは、塩酸、臭化水素酸、硫酸、リン酸、硝酸、又は過塩素酸等の無機酸であり、更に好ましくは塩酸である。
 前記酸の使用量としては、前記化合物(2)に対して好ましくは0.5~100当量であり、更に好ましくは1~30当量であり、特に好ましくは2~10当量である。若しくは、前記化合物(2)と水からなる混合物のpHが0~4の範囲となるように、酸を逐次添加して調節してもよい。
 酸加水分解に必要な水の量は、多すぎると後処理の点で好ましくないため、上限としては、前記化合物(2)に対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、前記化合物(2)に対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。
 また酸加水分解には、流動性を確保する目的、又は反応速度を高める目的で、更に有機溶媒を添加してもよい。酸加水分解に影響を与えない限りにおいては、有機溶媒に特に制限はなく、具体的には例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、エチレングリコール等のアルコール系溶媒;テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;塩化メチレン、1,2-ジクロロエタン、クロロベンゼン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ヘキサメチルホスホルアミド等のアミド系溶媒;ジメチルプロピレンウレア等のウレア系溶媒;ヘキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒等を用いることができる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくはエタノール、メチルtert-ブチルエーテル、ヘキサン、ヘプタン、トルエン、キシレン、エチルベンゼン、メシチレン、塩化メチレン、1,2-ジクロロエタン、又はクロロベンゼンであり、更に好ましくはメチルtert-ブチルエーテル、又はトルエンである。
 前記溶媒の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限としては、前記化合物(2)に対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、前記化合物(2)に対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。
 酸加水分解の温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限として好ましくは120℃であり、更に好ましくは100℃である。下限として好ましくは-20℃であり、更に好ましくは0℃である。酸加水分解における反応時間には特に制限はなく、適宜設定すればよいが、上限としては好ましくは120時間であり、更に好ましくは100時間であり、特に好ましくは80時間である。下限として好ましくは0.1時間であり、更に好ましくは1時間であり、特に好ましくは3時間である。
 前記化合物(2)、水、酸、有機溶媒の混合順序について特に制限はない。
 反応後の処理としては、反応液から生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水酸化ナトリウム水溶液、炭酸カリウム水溶液、又は炭酸水素ナトリウム水溶液を加えて中和し、一般的な抽出溶媒、例えば酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得られる。
 このようにして得られた前記化合物(3)は、後続工程に使用できる十分な純度を有しているが、化学純度を高める目的でカラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。
 また本発明では、前記化合物(2)を適当な方法で不斉水解することで、下記式(5);
Figure JPOXMLDOC01-appb-C000017
(式中、R2は前記に同じである。)で表される化合物を製造してもよい。不斉水解には、酵素を用いて加水分解する方法や、光学活性な酸又は塩基を用いて加水分解する方法が含まれる。光学活性を有する酸としては、例えば、酒石酸、酒石酸エステル、酒石酸アミドなどの酒石酸類が挙げられ、好ましくは酒石酸モノアリールアミド、特にタルトラニル酸が挙げられる。これら酒石酸類は、適宜、置換基を有していてもよく、例えば、前記タルトラニル酸はフェニル基にハロゲノ基などの置換基が結合していてもよい。
 本発明には、光学活性な触媒、好ましくは光学活性な相関移動触媒の存在下、下記式(1);
 
Figure JPOXMLDOC01-appb-C000018
で表されるN-(アリールメチレン)グリシンエステルと(E)-1,4-ジブロモ-2-ブテンを、ナトリウムエトキシドを用いて反応させることにより、下記式(4);
Figure JPOXMLDOC01-appb-C000019
で表される化合物を製造する方法も含まれる。ここで、ArとR1は前記に同じである。ナトリウムエトキシドを用いることで、不斉合成が可能となる。
 前記光学活性な相関移動触媒として好ましくは、ビフェニル骨格および/又はビナフチル骨格を有する光学活性な4級アンモニウム塩、即ち丸岡触媒(商標登録)であり、更に好ましくは(11bS)-(+)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド、(R,R)-3,4,5-トリフルオロフェニル-NASブロミド、(R,R)-β-ナフチル-NASブロミド、(15bS)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミドであり、特に好ましくは(11bS)-(+)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド、又は(15bS)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミドである。光学活性な相関移動触媒の光学純度は特に制限されず、高い光学純度を有する化合物(4)を得るためには、好ましくは90%e.e.以上であり、更に好ましくは95%e.e.以上であり、特に好ましくは98%e.e.以上である。
 前記光学活性な相関移動触媒の使用量は、多すぎるとコストの点で好ましくないため、上限としては、(E)-1,4-ジブロモ-2-ブテンに対して好ましくは0.01当量であり、更に好ましくは0.005当量であり、特に好ましくは0.001当量である。下限としては、(E)-1,4-ジブロモ-2-ブテンに対して好ましくは0.00001当量であり、更に好ましくは0.0001当量である。なお、本工程の前記化合物(1)、(E)-1,4-ジブロモ-2-ブテン、ナトリウムエトキシドの使用量、反応温度、反応時間、試剤の添加順序、反応後の処理については、前記化合物(2)の製造で説明した内容と同じである。
 本発明では前述した反応を行って(1R,2S)-1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体(4)を製造した後、続いて、前記化合物(4)を酸加水分解して、下記式(5); 
Figure JPOXMLDOC01-appb-C000020
で表される(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造することも可能である。化合物(5)を製造する方法については、前記化合物(2)を酸加水分解して前記化合物(3)を製造する方法と同じである。
本願は、2014年3月28日に出願された日本国特許出願第2014-68837号に基づく優先権の利益を主張するものである。2014年3月28日に出願された日本国特許出願第2014-68837号の明細書の全内容が、本願に参考のため援用される。
 以下に、実施例を示して本発明を更に詳細に説明するが、これら実施例は本発明を何ら限定するものではない。
(参考例1)N-(フェニルメチレン)グリシンエチルエステルの製造
 グリシンエチルエステル塩酸塩234g(1.68mol)とトルエン815gとを混合し、ベンズアルデヒド170g(1.60mol)を室温で添加した。得られた混合物を20℃に温度調整し、トリエチルアミン178g(1.76mol)を滴下した。滴下終了後、20℃にて10時間攪拌した。反応終了後、水475gを添加し、15分攪拌した。攪拌を停止して分液を行い、得られた有機層を減圧留去することで(N-(フェニルメチレン)グリシンエチルエステルのトルエン溶液648g(N-(フェニルメチレン)グリシンエチルエステル純分294g、1.54mmol)を取得した(収率96%)。
(参考例2)N-[(p-クロロフェニル)メチレン]グリシンエチルエステルの製造
 グリシンエチルエステル塩酸塩42g(302mmol)とトルエン146gとを混合し、p-クロロベンズアルデヒド40g(287mmol)を室温で添加した。得られた混合物を20℃に温度調整し、トリエチルアミン32g(316mmol)を滴下した。滴下終了後、20℃にて10時間攪拌した。反応終了後、水85gを添加し、15分攪拌した。攪拌を停止して分液を行い、得られた有機層を減圧留去することでN-[(p-クロロフェニル)メチレン]グリシンエチルエステルのトルエン溶液126g(N-[(p-クロロフェニル)メチレン]グリシンエチルエステル純分63g、278mmol)を取得した(収率97%)。
(参考例3)N-[(p-メトキシフェニル)メチレン]グリシンエチルエステルの製造
 グリシンエチルエステル塩酸塩18g(126mmol)とトルエン61gとを混合し、p-アニスアルデヒド16g(120mmol)を室温で添加した。得られた混合物を20℃に温度調整し、トリエチルアミン13g(132mmol)を滴下した。滴下終了後、20℃にて10時間攪拌した。反応終了後、水36gを添加し、15分攪拌した。攪拌を停止して分液を行い、得られた有機層を減圧留去することでN-[(p-メトキシフェニル)メチレン]グリシンエチルエステルのトルエン溶液56g(N-[(p-メトキシフェニル)メチレン]グリシンエチルエステル純分25g、114mmol)を取得した(収率95%)。
 
Figure JPOXMLDOC01-appb-C000021
(実施例1)1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の製造
 (E)-1,4-ジブロモ-2-ブテン40g(187mmol)とナトリウムエトキシド27g(397mmol)とトルエン200gとを混合し、-20℃に温度調整した。そこへ参考例1で得たN-(フェニルメチレン)グリシンエチルエステルのトルエン溶液95g(N-(フェニルメチレン)グリシンエチルエステル純分43g、225mmol)を-20℃にて5時間かけて滴下し、-20℃で6時間反応させた。反応終了後、反応液を0℃に温度調整し、水80gを添加した。続いて35%塩酸水溶液24g(塩酸純分8g、230mmol)を1時間かけて滴下し、3時間攪拌した。攪拌を停止して分液を行い、水層を分取した。得られた有機層に水80gを添加して30分攪拌した。攪拌を停止して分液を行い、得られた水層を合わせて1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体を含む水溶液269g(1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の純分25g、163mmol)を得た(収率87%)。なお、純分及び収率は、以下の条件で高速液体クロマトグラフィー分析することで決定した。
〔高速液体クロマトグラフィー分析条件〕
カラム :ナカライテスク社製 COSMOSIL(登録商標) 5C8AR-II(4.6×250mm)
移動相 :下記A液及びB液のグラジェントポンプによる混合液
     A液 0.1%リン酸水溶液
     B液 アセトニトリル
移動相中のB液濃度(体積%):5%(5分)→40%(25分)→80%(40分)→80%(45分)→5%(45.1分)→5%(55分)
流速  :1.0ml/分
検出器波長:210nm
保持時間 :9.3分(1-アミノ-2-ビニルシクロプロパンカルボン酸エチル)
(比較例1~10)1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の製造
 N-(フェニルメチレン)グリシンエチルエステルと(E)-1,4-ジブロモ-2-ブテンとの反応に以下に示す塩基を用い、上述の実施例1と同様の操作で行って1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体を取得した。得られた水溶液を実施例1に記載の条件で分析し、1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の収率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000022
(実施例2)1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の製造
 (E)-1,4-ジブロモ-2-ブテン8.4g(39mmol)とナトリウムエトキシド5.6g(82mmol)とトルエン42gとを混合し、-20℃に温度調整した。そこへ参考例2で得たN-[(p-クロロフェニル)メチレン]グリシンエチルエステルのトルエン溶液21.2g(N-[(p-クロロフェニル)メチレン]グリシンエチルエステル純分10.6g、47mmol)を-20℃にて2時間かけて滴下し、-20℃で2時間反応させた。反応終了後、反応液を0℃に温度調整し、水17gを添加した。続いて35%塩酸水溶液4.5g(塩酸純分1.6g、43mmol)を1時間かけて滴下し、1時間攪拌した。攪拌を停止して分液を行い、水層を分取した。得られた有機層に水17gを添加して30分攪拌した。攪拌を停止して分液を行い、得られた水層を合わせて1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体を含む水溶液56g(1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の純分4.5g、29mmol)を得た。得られた水溶液を実施例1に記載の条件で分析し、1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の収率を算出した(収率74%)。
(実施例3)1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の製造
 (E)-1,4-ジブロモ-2-ブテン8.1g(38mmol)とナトリウムエトキシド5.4g(80mmol)とトルエン41gとを混合し、-20℃に温度調整した。そこへ参考例3で得たN-[(p-メトキシフェニル)メチレン]グリシンエチルエステルのトルエン溶液22.5g(N-[(p-メトキシフェニル)メチレン]グリシンエチルエステル純分10.1g、46mmol)を-20℃にて2時間かけて滴下し、-20℃で2時間反応させた。反応終了後、反応液を0℃に温度調整し、水16gを添加した。続いて35%塩酸水溶液4.4g(塩酸純分1.5g、42mmol)を1時間かけて滴下し、1時間攪拌した。攪拌を停止して分液を行い、水層を分取した。得られた有機層に水16gを添加して30分攪拌した。攪拌を停止して分液を行い、得られた水層を合わせて1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体を含む水溶液55g(1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の純分4.5g、29mmol)を得た。得られた水溶液を実施例1に記載の条件で分析し、1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の収率を算出した(収率76%)。
(実施例4)1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の製造
 (E)-1,4-ジブロモ-2-ブテン8.3g(39mmol)とナトリウムエトキシド5.6g(82mmol)とメチルtert-ブチルエーテル42gとを混合し、-20℃に温度調整した。そこへ参考例1で得たN-(フェニルメチレン)グリシンエチルエステルのトルエン溶液19.8g(N-(フェニルメチレン)グリシンエチルエステル純分8.9g、47mmol)を-20℃にて2時間かけて滴下し、-20℃で2時間反応させた。反応終了後、反応液を0℃に温度調整し、水17gを添加した。続いて35%塩酸水溶液4.5g(塩酸純分1.6g、43mmol)を1時間かけて滴下し、1時間攪拌した。攪拌を停止して分液を行い、水層を分取した。得られた有機層に水17gを添加して30分攪拌した。攪拌を停止して分液を行い、得られた水層を合わせて1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体を含む水溶液57g(1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の純分4.6g、30mmol)を得た。得られた水溶液を実施例1に記載の条件で分析し、1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の収率を算出した(収率77%)。
(実施例5)1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の製造
 (E)-1,4-ジブロモ-2-ブテン6.4g(30mmol)とナトリウムエトキシド4.3g(63mmol)とジクロロメタン32gとを混合し、-20℃に温度調整した。そこへ参考例1で得たN-(フェニルメチレン)グリシンエチルエステルのトルエン溶液15.3g(N-(フェニルメチレン)グリシンエチルエステル純分6.9g、36mmol)を-20℃にて2時間かけて滴下し、-20℃で2時間反応させた。反応終了後、反応液を0℃に温度調整し、水13gを添加した。続いて35%塩酸水溶液3.4g(塩酸純分1.2g、33mmol)を1時間かけて滴下し、1時間攪拌した。攪拌を停止して分液を行い、水層を分取した。得られた有機層に水13gを添加して30分攪拌した。攪拌を停止して分液を行い、得られた水層を合わせて1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体を含む水溶液66.6g(1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の純分3.3g、22mmol)を得た。得られた水溶液を実施例1に記載の条件で分析し、1-アミノ-2-ビニルシクロプロパンカルボン酸エチルのラセミ体の収率を算出した(収率73%)。
(実施例6)(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチルの製造
Figure JPOXMLDOC01-appb-C000023
 (11bS)-(+)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド108mg(0.14mmol)と(E)-1,4-ジブロモ-2-ブテン6.2g(29.0mmol)とナトリウムエトキシド4.1g(60.8mmol)とトルエン31gを混合し、-20℃に温度調整した。そこへ参考例1で得たN-(フェニルメチレン)グリシンエチルエステルのトルエン溶液14.6g(N-(フェニルメチレン)グリシンエチルエステル純分6.7g、34.8mmol)を-20℃にて2時間かけて滴下し、-30℃で1時間反応させた。反応終了後、反応液を0℃に温度調整し、水12gを添加した。続いて35%塩酸水溶液3.6g(塩酸純分1.3g、34.8mmol)を1時間かけて滴下し、3時間攪拌した。攪拌を停止して分液を行い、水層を分取した。得られた有機層に水12gを添加して30分攪拌した。攪拌を停止して分液を行い、得られた水層を合わせて(1R,2S)-1-アミノ-2-ビニルシクロプロパン-1-カルボン酸エチルをその鏡像異性体よりも多く含む水溶液41.5g((1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチルの純分3.5g、22.7mmol)を得た(収率79%、光学純度59%e.e.)。得られた水溶液を実施例1に記載の高速液体クロマトグラフィー分析条件で分析し、(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチルの収率を算出した。また光学純度は以下の分析で決定した。
〔光学純度分析〕
カラム :ダイセル社製 CHIRALPAK(商品名) AD-RH(4.6×150mm,5μm)
移動相 :下記A液及びB液のA:B=6/4(体積比)混合液
     A液 メタノール
     B液 20mM重炭酸アンモニウム水溶液(pH9.0)
                 A/B=6/4
流速  :1.0ml/分
検出器波長:220nm
保持時間:4.9分((1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチル)、8.4分((1S,2R)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチル)
(比較例11)(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチルの製造
 (11bS)-(+)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミドの存在下、N-(フェニルメチレン)グリシンエチルエステルと(E)-1,4-ジブロモ-2-ブテンとの反応に以下に示す塩基を用い、上述の実施例6と同様の操作で行って、1-アミノ-2-ビニルシクロプロパンカルボン酸エチルを取得した。得られた水溶液を実施例1に記載の高速液体クロマトグラフィー分析条件で分析し、1-アミノ-2-ビニルシクロプロパンカルボン酸エチルの収率を、実施例6に記載の光学純度分析条件で分析し、(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチルの光学純度を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000024
(実施例7)(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチルの製造
Figure JPOXMLDOC01-appb-C000025
 (15bS)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミド7.3mg(0.01mmol)と(E)-1,4-ジブロモ-2-ブテン0.43g(2.0mmol)とナトリウムエトキシド0.29g(4.2mmol)とトルエン2.15gを混合し、-20℃に温度調整した。そこへ参考例1で得たN-(フェニルメチレン)グリシンエチルエステルのトルエン溶液1.01g(N-(フェニルメチレン)グリシンエチルエステル純分0.46g、2.4mmol)を-20℃にて2時間かけて滴下し、-30℃で1時間反応させた。反応終了後、反応液を0℃に温度調整し、水0.86gを添加した。続いて35%塩酸水溶液0.25g(塩酸純分0.09g、2.4mmol)を1時間かけて滴下し、3時間攪拌した。攪拌を停止して分液を行い、水層を分取した。得られた有機層に水0.86gを添加して30分攪拌した。攪拌を停止して分液を行い、得られた水層を合わせて(1R,2S)-1-アミノ-2-ビニルシクロプロパン-1-カルボン酸エチルをその鏡像異性体よりも多く含む水溶液2.80g((1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチルの純分0.12g、0.76mmol)を得た。得られた水溶液を実施例1に記載の高速液体クロマトグラフィー分析条件で分析し、(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチルの収率を、実施例6に記載の光学純度分析条件で分析し、(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸エチルの光学純度を算出した(収率38%、光学純度39%e.e.)。
(実施例8)(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸tert-ブチルの製造
Figure JPOXMLDOC01-appb-C000026
 (11bS)-(+)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド28.1mg(0.04mmol)と(E)-1,4-ジブロモ-2-ブテン1.6g(7.5mmol)とナトリウムエトキシド1.1g(15.8mmol)とトルエン8.0gを混合し、-20℃に温度調整した。そこへN-(フェニルメチレン)グリシンtert-ブチルエステルのトルエン溶液4.5g(N-(フェニルメチレン)グリシンtert-ブチルエステル純分2.0g、9.0mmol)を-20℃にて2時間かけて滴下し、-30℃で1時間反応させた。反応終了後、反応液を0℃に温度調整し、水3.2gを添加した。続いて35%塩酸水溶液0.9g(塩酸純分0.3g、9.0mmol)を1時間かけて滴下し、3時間攪拌した。攪拌を停止して分液を行い、水層を分取した。得られた有機層に水3.2gを添加して30分攪拌した。攪拌を停止して分液を行い、得られた水層を合わせて(1R,2S)-1-アミノ-2-ビニルシクロプロパン-1-カルボン酸tert-ブチルをその鏡像異性体よりも多く含む水溶液12.1g((1R,2S)-1-アミノ-2-ビニルシクロプロパン-1-カルボン酸tert-ブチルの純分0.3g、1.7mmol)を得た。得られた水溶液を実施例1に記載の高速液体クロマトグラフィー分析条件で分析し、(1R,2S)-1-アミノ-2-ビニルシクロプロパン-1-カルボン酸tert-ブチルの収率を、実施例6に記載の光学純度分析条件で分析し、(1R,2S)-1-アミノ-2-ビニルシクロプロパン-1-カルボン酸tert-ブチルの光学純度を算出した(収率23%、光学純度35%e.e.)。なお実施例6の分析条件での各光学異性体の保持時間は以下の通りである。
〔光学純度分析〕
保持時間:6.7分((1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸tert-ブチル)、14.5分((1S,2R)1-アミノ-2-ビニルシクロプロパンカルボン酸tert-ブチル)
 本発明の方法は、医薬中間体、例えばC型肝炎治療薬の中間体として有用な(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸誘導体の製造に利用できる。

Claims (14)

  1. 下記式(1);
    Figure JPOXMLDOC01-appb-C000001
    (式中、ArはC6~C12のアリール基、R1はC1~C6のアルキル基を表す。)で表されるN-(アリールメチレン)グリシンエステルと(E)-1,4-ジブロモ-2-ブテンを、ナトリウムエトキシドを用いて反応させることにより、下記式(2);
    Figure JPOXMLDOC01-appb-C000002
    (式中、Ar、R1は前記に同じである。)で表される1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造する方法。
  2.  前記請求項1に記載の反応を行って1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体(2)を製造した後、
     続いて酸加水分解して下記式(3);
    Figure JPOXMLDOC01-appb-C000003
    (式中、R2はC1~C6のアルキル基、又は水素原子を表す。)で表される1-アミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造する方法。
  3.  R1がメチル基、エチル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、又はtert-ブチル基であり、R2がメチル基、エチル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、又は水素原子である、請求項1又は2に記載の製造方法。
  4.  Arがフェニル基、p-クロロフェニル基、又はp-メトキシフェニル基である、請求項1~3のいずれかに記載の製造方法。
  5.  R1がエチル基であり、R2がエチル基であり、Arがフェニル基である、請求項1~4のいずれかに記載の製造方法。
  6.  光学活性な触媒の存在下、下記式(1);
    Figure JPOXMLDOC01-appb-C000004
    (式中、ArはC6~C12のアリール基、R1はC1~C6のアルキル基を表す。)で表されるN-(アリールメチレン)グリシンエステルと(E)-1,4-ジブロモ-2-ブテンを、ナトリウムエトキシドを用いて反応させることにより、下記式(4);
    Figure JPOXMLDOC01-appb-C000005
    (式中、Ar、R1は前記に同じである。)で表される(1R,2S)-1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造する方法。
  7.  前記請求項6に記載の反応を行って(1R,2S)-1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体(4)を製造した後、
     続いて酸加水分解して下記式(5);
    Figure JPOXMLDOC01-appb-C000006
    (式中、R2はC1~C6のアルキル基、又は水素原子を表す。)で表される(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボン酸誘導体を製造する方法。
  8.  反応温度が、0℃以下である請求項1~7のいずれかに記載の製造方法。
  9.  前記光学活性な触媒が、相関移動触媒である請求項6に記載の製造方法。
  10.  前記相関移動触媒が(11bS)-(+)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド、又は(15bS)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミドである請求項9に記載の製造方法。
  11.  R1がメチル基、エチル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、又はtert-ブチル基であり、R2がメチル基、エチル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、又は水素原子である、請求項7~10のいずれかに記載の製造方法。
  12.  Arがフェニル基、p-クロロフェニル基、又はp-メトキシフェニル基である、請求項7~11のいずれかに記載の製造方法。
  13.  R1がエチル基であり、R2がエチル基であり、Arがフェニル基である請求項6~12のいずれかに記載の製造方法。
  14.  前記光学活性な触媒の使用量が、(E)-1,4-ジブロモ-2-ブテンに対して0.01当量以下である、請求項6~13のいずれかに記載の製造方法。
PCT/JP2015/058671 2014-03-28 2015-03-23 1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体の製造方法 WO2015146881A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15768994.4A EP3124469A4 (en) 2014-03-28 2015-03-23 Process for producing 1-arylimino-2-vinylcyclopropanecarboxylic acid derivative
JP2016510322A JPWO2015146881A1 (ja) 2014-03-28 2015-03-23 1−アリールイミノ−2−ビニルシクロプロパンカルボン酸誘導体の製造方法
CN201580017064.5A CN106164044B (zh) 2014-03-28 2015-03-23 1-芳基亚氨基-2-乙烯基环丙烷羧酸衍生物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-068837 2014-03-28
JP2014068837 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146881A1 true WO2015146881A1 (ja) 2015-10-01

Family

ID=54195395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058671 WO2015146881A1 (ja) 2014-03-28 2015-03-23 1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体の製造方法

Country Status (4)

Country Link
EP (1) EP3124469A4 (ja)
JP (1) JPWO2015146881A1 (ja)
CN (1) CN106164044B (ja)
WO (1) WO2015146881A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348144A (zh) * 2015-12-01 2016-02-24 江西元盛生物科技有限公司 一种(1r,2s)-1-氨基-2-乙烯基环丙烷羧酸乙酯的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019066A1 (ja) * 2009-08-10 2011-02-17 住友化学株式会社 光学活性な1-アミノ-2-ビニルシクロプロパンカルボン酸エステルの製造方法
WO2011102388A1 (ja) * 2010-02-16 2011-08-25 株式会社エーピーアイ コーポレーション 1-アミノ-1-アルコキシカルボニル-2-ビニルシクロプロパンの製造方法
JP2012532146A (ja) * 2009-07-02 2012-12-13 ドクター・レディーズ・ラボラトリーズ・リミテッド アミノビニルシクロプロパンカルボン酸誘導体の分割のための酵素および方法
WO2013058241A1 (ja) * 2011-10-18 2013-04-25 株式会社カネカ (r)-2-アミノ-2-エチルヘキサノールの製造法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2264038B1 (en) * 2008-04-11 2016-01-06 Nippon Soda Co., Ltd. Optically active dibenzazepine derivatives
US20110245529A1 (en) * 2008-10-10 2011-10-06 Kaneka Corporation Method for producing optically active vinylcyclopropanecarboxylic acid derivative and optically active vinylcyclopropaneamino acid derivative
US8637449B2 (en) * 2009-08-27 2014-01-28 Merck Sharp & Dohme Corp. Processes for preparing protease inhibitors of hepatitis C virus
JP2013173677A (ja) * 2010-06-15 2013-09-05 Kaneka Corp (1r,2s)−1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの製造法
JP5673169B2 (ja) * 2011-02-08 2015-02-18 住友化学株式会社 4級アンモニウム塩及びそれを用いたシクロプロパン化合物の製造方法
CN103402972A (zh) * 2011-03-10 2013-11-20 住友化学株式会社 光学活性1-氨基-2-乙烯基环丙烷甲酸酯的制造方法
WO2013148550A1 (en) * 2012-03-30 2013-10-03 Merck Sharp & Dohme Corp. Asymmetric synthesis for preparing fluoroleucine alkyl esters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532146A (ja) * 2009-07-02 2012-12-13 ドクター・レディーズ・ラボラトリーズ・リミテッド アミノビニルシクロプロパンカルボン酸誘導体の分割のための酵素および方法
WO2011019066A1 (ja) * 2009-08-10 2011-02-17 住友化学株式会社 光学活性な1-アミノ-2-ビニルシクロプロパンカルボン酸エステルの製造方法
WO2011102388A1 (ja) * 2010-02-16 2011-08-25 株式会社エーピーアイ コーポレーション 1-アミノ-1-アルコキシカルボニル-2-ビニルシクロプロパンの製造方法
WO2013058241A1 (ja) * 2011-10-18 2013-04-25 株式会社カネカ (r)-2-アミノ-2-エチルヘキサノールの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124469A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348144A (zh) * 2015-12-01 2016-02-24 江西元盛生物科技有限公司 一种(1r,2s)-1-氨基-2-乙烯基环丙烷羧酸乙酯的合成方法

Also Published As

Publication number Publication date
EP3124469A4 (en) 2017-11-08
CN106164044A (zh) 2016-11-23
EP3124469A1 (en) 2017-02-01
CN106164044B (zh) 2018-05-04
JPWO2015146881A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
TWI385141B (zh) 製備光學活性中間物的方法
US5665890A (en) Stereoselective ring opening reactions
US11286230B2 (en) Ketamine flow synthesis
US8252952B2 (en) Optically active quaternary ammonium salt having axial asymmetry, and method for producing alpha-amino acid and derivative thereof by using the same
JP2011246366A (ja) 有機アルミニウム化合物
Liao et al. Catalytic Enantioselective Protonation of Monofluorinated Silyl Enol Ethers towards Chiral α‐Fluoroketones
JP6504530B2 (ja) 光学活性な2−(2−フルオロビフェニル−4−イル)プロパン酸の製造法
JP2008255094A (ja) 光学活性ホモアリルヒドラジノエステル類の製造方法
EP2586769B1 (en) Method for producing (1r, 2s)-1-amino-2-vinyl cyclopropane carboxylic acid ester that has improved optical purity
WO2015146881A1 (ja) 1-アリールイミノ-2-ビニルシクロプロパンカルボン酸誘導体の製造方法
US8765955B2 (en) Asymmetric aldol additions using bifunctional cinchona-alkaloid-based catalysts
US20100087662A1 (en) Chiral salen catalysts and methods for the preparation of chiral compounds from racemic epoxides by using them
CN101287692B (zh) 光学活性的含氟苄醇的制备方法
CA3186051A1 (en) Method for producing optically active compound
JP5372556B2 (ja) α付加型アリル化反応による選択的ホモアリルアルコール誘導体の製造法
WO2017043626A1 (ja) 光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法
JP5569938B2 (ja) ピロリジン誘導体及びその製造方法
JP5266128B2 (ja) 二官能性シンコナアルカロイドにより触媒作用が及ぼされる非対称炭素−炭素結合形成反応
JP2013142071A (ja) ピロリジニル−スピロオキシインドール誘導体及びその製造方法
Arimitsu et al. Phase-transfer-catalyzed Asymmetric Alkylation with Epoxy Triflates as Alkylating Agents: Highly Stereoselective Synthesis of γ, δ-Epoxy-α-amino Acids
JP2006206550A (ja) δ−イミノマロン酸誘導体の製造方法、及びそのための触媒
JP4617643B2 (ja) フッ素含有光学活性四級アンモニウム塩、その製造方法、並びにそれを用いた光学活性α−アミノ酸誘導体の製造方法
JP4860510B2 (ja) β位に不斉点を有するカルボン酸の製造及び求核剤
JP2008115178A (ja) ジフェニルアラニン−Ni(II)錯体の製造方法
US9328061B2 (en) Simple organic molecules as catalysts for practical and efficient enantioselective synthesis of amines and alcohols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015768994

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768994

Country of ref document: EP