WO2015146745A1 - 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス - Google Patents

酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス Download PDF

Info

Publication number
WO2015146745A1
WO2015146745A1 PCT/JP2015/058061 JP2015058061W WO2015146745A1 WO 2015146745 A1 WO2015146745 A1 WO 2015146745A1 JP 2015058061 W JP2015058061 W JP 2015058061W WO 2015146745 A1 WO2015146745 A1 WO 2015146745A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
sintered body
tungsten
oxide sintered
semiconductor film
Prior art date
Application number
PCT/JP2015/058061
Other languages
English (en)
French (fr)
Inventor
宮永 美紀
研一 綿谷
浩一 曽我部
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/787,751 priority Critical patent/US9957604B2/en
Priority to KR1020157032831A priority patent/KR20150143812A/ko
Priority to KR1020177011334A priority patent/KR102042905B1/ko
Priority to EP15768922.5A priority patent/EP2980041A4/en
Priority to CN201580000813.3A priority patent/CN105246856A/zh
Publication of WO2015146745A1 publication Critical patent/WO2015146745A1/ja
Priority to US15/928,769 priority patent/US10480060B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/003Pressing by means acting upon the material via flexible mould wall parts, e.g. by means of inflatable cores, isostatic presses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78609Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • C04B2235/326Tungstates, e.g. scheelite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to an oxide sintered body suitably used as a sputtering target for forming an oxide semiconductor film by a sputtering method, a manufacturing method thereof, a sputtering target including the oxide sintered body, and a sputtering target using the sputtering target.
  • the present invention relates to a semiconductor device including an oxide semiconductor film formed by a method.
  • an amorphous silicon film has conventionally been mainly used as a semiconductor film functioning as a channel layer of a TFT (thin film transistor) that is a semiconductor device. It was.
  • an oxide semiconductor film containing an In—Ga—Zn-based composite oxide (hereinafter also referred to as IGZO) as a main component is more likely to move carriers than an amorphous silicon film. It is attracting attention because of its great advantage.
  • Patent Document 1 discloses that such an oxide semiconductor film containing IGZO as a main component is formed by a sputtering method using an oxide sintered body as a target.
  • Patent Document 2 discloses that a TFT having excellent operating characteristics can be obtained by forming a channel layer by sputtering using a target containing titanium or tungsten and indium. To do.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2006-347807 is suitable for forming an oxide transparent conductive film by a vacuum vapor deposition method such as an electron beam vapor deposition method, an ion plating method, a high density plasma assisted vapor deposition method.
  • the material used includes indium oxide in which tungsten is dissolved, tungsten is included in an atomic ratio of 0.001 to 0.034 with respect to indium, and the density (apparent density) is 4.0 g / cm 3 to 6 Disclosed is an oxide sintered body of 5 g / cm 3 or less.
  • a TFT thin film transistor
  • IGZO oxide semiconductor film containing IGZO as a main component as disclosed in JP 2008-199005 A (Patent Document 1) as a channel layer
  • Patent Document 1 is made of metal gallium having a high market price. Since gallium oxide is used as a raw material, there is a problem that the manufacturing cost is high.
  • a TFT including an oxide semiconductor film manufactured using a target disclosed in Japanese Patent Application Laid-Open No. 2008-192721 (Patent Document 2) as a channel layer has a high OFF current of about 1 ⁇ 10 ⁇ 11 A and is driven. There is a problem in that the ratio of the ON current to the OFF current cannot be sufficiently increased unless the voltage is increased to about 40V.
  • Patent Document 3 since the oxide sintered body disclosed in Japanese Patent Application Laid-Open No. 2006-347807 (Patent Document 3) has a small density (apparent density) of 6.5 g / cm 3 or less, an oxide semiconductor film is formed. There is a problem that it cannot be used as a sputtering target of the sputtering method which is the optimum method.
  • an oxide sintered body that can solve the above-described problems and can be suitably used as a sputtering target for forming an oxide semiconductor film of a semiconductor device with high characteristics by a sputtering method, a manufacturing method thereof, and oxide sintering It is an object to provide a semiconductor device including a sputter target including a body, and an oxide semiconductor film formed by a sputtering method using the sputter target.
  • the oxide sintered body according to an aspect of the present invention is an oxide sintered body containing indium, tungsten, and zinc, and includes a bixbite type crystal phase as a main component and an apparent density of 6. 5 g / cm 3 and a greater than 7.1 g / cm 3 or less, the indium in the oxide sintered body, the content of the tungsten to the total of tungsten and zinc is less than 30 atomic% greater than 1.2 atomic%, The zinc content relative to the sum of indium, tungsten and zinc in the oxide sintered body is greater than 1.2 atomic% and smaller than 30 atomic%.
  • a sputter target according to another aspect of the present invention includes the oxide sintered body according to the above aspect.
  • a semiconductor device according to still another aspect of the present invention includes an oxide semiconductor film formed by a sputtering method using the sputtering target according to the above aspect.
  • the method for producing an oxide sintered body according to still another aspect of the present invention is a method for producing an oxide sintered body according to the above aspect, wherein a primary mixture of zinc oxide powder and tungsten oxide powder is prepared. Forming a calcined powder by heat-treating the primary mixture, preparing a secondary mixture of raw material powders including the calcined powder, and forming a molded body by molding the secondary mixture. The step of forming an oxide sintered body by sintering the formed body, and the step of forming the calcined powder is performed at a temperature of 550 ° C. or higher and lower than 1200 ° C. in an oxygen-containing atmosphere. The heat treatment of the next mixture includes forming a double oxide powder containing zinc and tungsten as the calcined powder.
  • an oxide sintered body that can be suitably used as a sputtering target for forming an oxide semiconductor film of a semiconductor device with high characteristics by a sputtering method, a manufacturing method thereof, and a sputtering including the oxide sintered body
  • a semiconductor device including a target and an oxide semiconductor film formed by a sputtering method using a sputtering target can be provided.
  • FIG. 1A and 1B are schematic views illustrating an example of a semiconductor device according to one embodiment of the present invention, in which FIG. 1A is a schematic plan view, and FIG. 1B is a schematic cross-sectional view taken along line IB-IB illustrated in FIG. It is a schematic sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1 aspect of this invention.
  • An oxide sintered body according to an embodiment of the present invention is an oxide sintered body containing indium, tungsten, and zinc, includes a bixbite type crystal phase as a main component, and has an apparent appearance.
  • the density is larger than 6.5 g / cm 3 and not larger than 7.1 g / cm 3 . Since the oxide sintered body of the present embodiment contains a bixbite type crystal phase as a main component and an apparent density is larger than 6.5 g / cm 3 and not larger than 7.1 g / cm 3 , It is suitably used as a sputtering target for forming an oxide semiconductor film by a sputtering method.
  • the content of tungsten with respect to the total of indium, tungsten and zinc in the oxide sintered body is greater than 1.2 atomic% and smaller than 30 atomic%.
  • the zinc content relative to the sum of indium, tungsten and zinc is greater than 1.2 atom% and less than 30 atom%.
  • the bixbite type crystal phase includes indium oxide as a main component, and includes tungsten and zinc that are dissolved in at least a part of the bixbite type crystal phase. be able to.
  • the ratio of the ON current to the OFF current can be increased with a low driving voltage.
  • the oxide sintered body of the present embodiment contains at least one element selected from the group consisting of aluminum, titanium, chromium, gallium, hafnium, zirconium, silicon, molybdenum, vanadium, niobium, tantalum, and bismuth. Further can be included.
  • the content of the element with respect to the total of indium, tungsten, zinc and the element in the oxide sintered body can be 0.1 atomic% or more and 10 atomic% or less.
  • the oxide sintered body of the present embodiment contains the above elements, the atomic ratio of silicon to indium (atomic ratio) in the oxide sintered body is a value smaller than 0.007. Can do. Thereby, the electrical resistivity of the oxide semiconductor film formed using the sputtering target containing this oxide sintered compact can be raised.
  • the atomic ratio (atomic ratio) of titanium to indium in the oxide sintered body is a value smaller than 0.004. Can do. Thereby, the electrical resistivity of the oxide semiconductor film formed using the sputtering target containing this oxide sintered compact can be raised.
  • the oxide sintered body of the present embodiment can include tungsten having at least one valence of hexavalence and tetravalence.
  • the oxide sintered body of the present embodiment can include tungsten having a bond energy measured by X-ray photoelectron spectroscopy of 245 eV or more and 250 eV or less.
  • a sputter target according to another embodiment of the present invention includes the oxide sintered body of the above embodiment. Since the sputter target of this embodiment includes the oxide sintered body of the above-described embodiment, it is suitably used for forming an oxide semiconductor film of a semiconductor device having high characteristics by a sputtering method.
  • a semiconductor device includes an oxide semiconductor film formed by sputtering using the sputtering target of the above embodiment. Since the semiconductor device of this embodiment includes an oxide semiconductor film formed by a sputtering method using the sputtering target of the above embodiment, high characteristics can be exhibited.
  • the semiconductor device described here is not particularly limited, but a TFT (thin film transistor) including an oxide semiconductor film formed by a sputtering method using the sputtering target of the above embodiment as a channel layer is a preferable example.
  • the content of tungsten with respect to the total of indium, tungsten, and zinc in the oxide semiconductor film is set to be larger than 1.2 atomic% and smaller than 30 atomic%.
  • the zinc content relative to the sum of indium, tungsten and zinc can be greater than 1.2 atomic percent and less than 30 atomic percent. Accordingly, in a semiconductor device including an oxide semiconductor film as a channel layer, the ratio of the ON current to the OFF current can be increased with a low driving voltage.
  • the atomic ratio of tungsten to zinc in the oxide semiconductor film can be made larger than 0.5 and smaller than 3.0. Accordingly, in a semiconductor device including an oxide semiconductor film as a channel layer, the ratio of the ON current to the OFF current can be increased with a low driving voltage.
  • the atomic ratio of silicon to indium in the oxide semiconductor film can be less than 0.007. Accordingly, the electrical resistivity of the oxide semiconductor film can be increased to 1 ⁇ 10 2 ⁇ cm or more.
  • the atomic ratio of titanium to indium in the oxide semiconductor film can be less than 0.004. Accordingly, the electrical resistivity of the oxide semiconductor film can be increased to 1 ⁇ 10 2 ⁇ cm or more.
  • the oxide semiconductor film may include tungsten having at least one valence of hexavalence and tetravalence. Accordingly, in a semiconductor device including an oxide semiconductor film as a channel layer, the ratio of the ON current to the OFF current can be increased with a low driving voltage.
  • the oxide semiconductor film may contain tungsten having a binding energy measured by X-ray photoelectron spectroscopy of 245 eV or more and 250 eV or less. Accordingly, in a semiconductor device including an oxide semiconductor film as a channel layer, the ratio of the ON current to the OFF current can be increased with a low driving voltage.
  • a method for manufacturing an oxide sintered body according to still another embodiment of the present invention is a method for manufacturing an oxide sintered body according to the above-described embodiment, and includes a zinc oxide powder and a tungsten oxide powder.
  • a step of preparing a primary mixture, a step of forming a calcined powder by heat-treating the primary mixture, a step of preparing a secondary mixture of raw material powders including the calcined powder, and forming the secondary mixture The step of forming a sintered body and the step of forming an oxide sintered body by sintering the molded body, the step of forming the calcined powder is performed at 550 ° C. or higher and 1200 ° C. in an oxygen-containing atmosphere.
  • the oxide oxide sintered body has a higher apparent density and can be suitably used as a sputtering target. A knot is obtained.
  • the tungsten oxide powder is at least one crystal phase selected from the group consisting of a WO 3 crystal phase, a WO 2 crystal phase, and a WO 2.72 crystal phase. Can be included. Thereby, the apparent density of the oxide sintered body is increased, and an oxide sintered body that can be suitably used as a sputtering target is obtained.
  • the tungsten oxide powder may have a median particle diameter d50 of 0.1 ⁇ m or more and 4 ⁇ m or less. Thereby, the apparent density of the oxide sintered body is increased, and an oxide sintered body that can be suitably used as a sputtering target is obtained.
  • the double oxide may contain a ZnWO 4 type crystal phase. Thereby, the apparent density of the oxide sintered body is increased, and an oxide sintered body that can be suitably used as a sputtering target is obtained.
  • the oxide sintered body of the present embodiment is an oxide sintered body containing indium, tungsten, and zinc, includes a bixbyite crystal phase as a main component, and has an apparent density of 6.5 g / cm. It is larger than 3 and 7.1 g / cm 3 or less. Since the oxide sintered body of the present embodiment contains a bixbite type crystal phase as a main component and an apparent density is larger than 6.5 g / cm 3 and not larger than 7.1 g / cm 3 , It is suitably used as a sputtering target for forming an oxide semiconductor film by a sputtering method.
  • the “bixbite type crystal phase” means a bixbite crystal phase and a phase having the same crystal structure as the bixbite crystal phase, and at least a part of the bixbite crystal phase is indium (In).
  • the bixbite crystal phase is one of the crystal phases of indium oxide (In 2 O 3 ), refers to the crystal structure defined in JCPDS card 6-0416, and is a rare earth oxide C-type phase (or C-rare). Also called soil structure phase.
  • the bixbite type crystal layer can be identified by X-ray diffraction. That is, the existence of a bixbite type crystal phase is confirmed by X-ray diffraction, and the spacing between each plane can be measured.
  • “comprising a bixbite type crystal phase as a main component” means that the proportion of the bixbite type crystal phase in the oxide sintered body (the bixbite type crystal phase occupancy rate described later) is 90% or more. Means.
  • the oxide sintered body may contain other crystal phases such as a crystal phase that is unavoidably mixed. A method for discriminating between the bixbite type crystal phase and the other crystal phases is as follows.
  • the phase confirmed by X-ray diffraction may be only a bixbite type crystal phase.
  • the bixbite type crystal phase is the main component.
  • X-ray diffraction confirms the presence of a bixbite type crystal phase and the presence of other crystal phases
  • a sample is taken from a portion of the oxide sintered body, and the surface of the sample is polished and smoothed. To. Subsequently, the surface of the sample was observed with SEM (scanning secondary electron microscope) using SEM-EDX (scanning secondary electron microscope with an energy dispersive fluorescent X-ray analyzer), and each crystal particle was observed.
  • the metal elemental composition ratio is analyzed by EDX (energy dispersive fluorescence X-ray analyzer).
  • the crystal particles are grouped according to the tendency of the composition ratio of the metal elements of the crystal particles.
  • a group of crystal grains having a high Zn content, a high W content, or both, and a group of crystal grains having a very low Zn content and W content and a high In content Can be divided into A group of crystal grains having a high Zn content, a high W content, or both are other crystal phases, and a group of crystal grains having a very low Zn content and a low W content and a high In content. Concludes that it is an In 2 O 3 type phase that is a bixbite type crystal phase.
  • the occupancy rate of the bixbite type crystal phase in the oxide sintered body is defined as the ratio (percentage) of the area of the bixbite type crystal phase to the measurement surface of the oxide sinter. Therefore, the oxide sintered body of the present embodiment has a bixbite type crystal phase as a main component, and the bixbite type crystal phase occupancy defined above is 90% or more.
  • the oxide sintered body of the present embodiment has an apparent density greater than 6.5 g / cm 3 and 7.1 g / cm 3 or less.
  • the oxide sintered body disclosed in JP-A-2006-347807 has an apparent density of 4.0 g / cm 3 or more and 6.5 g / cm 3 or less, and the oxide of this embodiment. The apparent density of the sintered body is lower than that of the sintered body.
  • the theoretical density of the bixbite type crystal phase that is the main component of the oxide sintered body of the present embodiment is that the theoretical density of the bixbite crystal phase formed of indium oxide is 7.28 g / cm 3 , and In consideration of the substitutional solid solution of tungsten and zinc at a ratio of 1.2 atomic% to 30 atomic% in at least a part of the bixbite crystal phase, the minimum is 7.19 g / cm 3 and the maximum Is considered to be 7.24 g / cm 3 . Then, the percentage of the apparent density of the sintered body relative to the theoretical density, that is, the relative density of the sintered body is 55.2% or more and 90.4% of the oxide sintered body disclosed in JP-A-2006-347807. On the other hand, the oxide sintered body of the present embodiment is extremely high, being higher than 90.4% and not higher than 99.0%.
  • the apparent density of the sintered body is preferably as high as possible.
  • the low apparent density of the sintered body means that there are many voids in the sintered body.
  • the sputter target is used while its surface is etched with argon ions during use. Therefore, if there are vacancies in the sintered body, this is exposed during film formation and the internal gas is released, so that the gas released from the target is mixed in the deposited oxide semiconductor thin film, Film characteristics deteriorate.
  • the oxide sintered body of the present embodiment has an apparent density greater than 6.5 g / cm 3 . Since it is as large as 1 g / cm 3 or less, it is suitably used as a sputtering target for forming an oxide semiconductor film of a semiconductor device having high characteristics by a sputtering method.
  • the content of tungsten relative to the total of indium, tungsten, and zinc in the oxide sintered body is as follows. More than 1.2 atom% and less than 30 atom%, the zinc content relative to the sum of indium, tungsten and zinc in the oxide sintered body (hereinafter also referred to as “Zn content” of the oxide sintered body) Is greater than 1.2 atomic percent and smaller than 30 atomic percent.
  • a semiconductor device for example, TFT
  • the ratio of the ON current to the OFF current can be increased with a low driving voltage. Can do.
  • the W content of the oxide sintered body is preferably larger than 2.0 atomic% and lower than 15 atomic%, more preferably larger than 4.0 atomic% and smaller than 12 atomic%.
  • the Zn content of the oxide sintered body is preferably larger than 2.0 atomic% and lower than 15 atomic%, more preferably larger than 4.0 atomic% and smaller than 12 atomic%. .
  • the W content of the oxide sintered body is 1.2 atomic% or less
  • a semiconductor device for example, TFT
  • TFT semiconductor film formed using the oxide sintered body as a channel layer
  • the OFF current increases, and the ratio of the ON current to the OFF current becomes small.
  • the W content of the oxide sintered body is 30 atomic% or more
  • the semiconductor device including the oxide semiconductor film formed using the oxide sintered body as a channel layer the ON current is reduced, Or, at a low driving voltage, the ratio of the ON current to the OFF current becomes small.
  • the OFF current increases. As a result, the ratio of the ON current to the OFF current becomes small.
  • the Zn content of the oxide sintered body is 30 atomic% or more, in a semiconductor device including an oxide semiconductor film formed using the oxide sintered body as a channel layer, the ON current is reduced, Or, at a low driving voltage, the ratio of the ON current to the OFF current becomes small.
  • the bixbite type crystal phase preferably contains indium oxide as a main component and includes tungsten and zinc that are solid-solved in at least a part of the bixbite type crystal phase.
  • a semiconductor device for example, TFT
  • the ratio of the ON current to the OFF current can be increased with a low driving voltage. Can do.
  • the bixbite type crystal phase contains indium oxide as a main component and tungsten and zinc are dissolved in at least a part thereof” means the bixbite crystal phase.
  • Form in which tungsten and zinc are solid-dissolved in substitutional form in at least part of the crystal lattice of indium oxide, or form in which interstitial solid-solution is formed between crystal lattices, or substitutional type and interstitial type Means a form that is solid-solved in both forms.
  • the distance between the planes defined in JCPDS card 6-0416 may be larger, It becomes narrower.
  • the peak position shifts to the high angle side or shifts to the low angle side. This peak shift is confirmed, and SEM-EDX (scanning secondary electron microscope with an energy dispersive fluorescent X-ray analyzer) and TEM-EDX (transmission with an energy dispersive fluorescent X-ray analyzer) are used.
  • SEM-EDX scanning secondary electron microscope with an energy dispersive fluorescent X-ray analyzer
  • TEM-EDX transmission with an energy dispersive fluorescent X-ray analyzer
  • existing elements are identified using ICP (inductively coupled plasma) mass spectrometry, SEM-EDX, and other element identification methods, and the presence of zinc and tungsten along with indium has been confirmed. Then, it can be determined that tungsten or zinc is dissolved in the bixbite type crystal phase by confirming that no oxide of zinc, oxide of tungsten, or double oxide of zinc and tungsten is confirmed.
  • ICP inductively coupled plasma
  • the oxide sintered body of the present embodiment includes aluminum (Al), titanium (Ti), chromium (Cr), gallium (Ga), hafnium (Hf), zirconium (Zr), silicon (Si), and molybdenum (Mo). And at least one element M selected from the group consisting of vanadium (V), niobium (Nb), tantalum (Ta), and bismuth (Bi).
  • the content of element M with respect to the sum of indium (In), tungsten (W), zinc (Zn) and element (M) in the oxide sintered body (hereinafter referred to as “M content of oxide sintered body” Is preferably 0.1 atomic percent or more and 10 atomic percent or less.
  • the ratio of the ON current to the OFF current can be increased with a low driving voltage.
  • the M content of the oxide sintered body is more preferably from 0.1 atomic% to 5 atomic%, and further preferably from 0.1 atomic% to 1 atomic%.
  • the oxide sintered body when the content of at least one additive element of Al, Ti, Cr, Ga, Hf, Si, V, and Nb is 0.1 atomic% or more, the oxide sintered body is used. Although there is an effect that the OFF current of a semiconductor device including an oxide semiconductor is reduced, when the content of the additive element is larger than 10 atomic%, the ON current of the semiconductor device tends to be reduced.
  • the content of at least one additive element of Zr, Mo, Ta, and Bi is 0.1 atomic% or more, ON of a semiconductor device including an oxide semiconductor obtained using the oxide sintered body
  • the content of the additive element is larger than 10 atomic%, the OFF current of the semiconductor device tends to increase.
  • the oxide semiconductor film formed using the oxide sintered body according to the present embodiment is used as a semiconductor layer of a semiconductor device, it is desirable that the electrical resistivity is higher than that desired for a transparent conductive film.
  • the oxide semiconductor film formed using the oxide sintered body according to this embodiment preferably has an electric resistivity of 1 ⁇ 10 2 ⁇ cm or more.
  • the Si content that can be contained in the oxide sintered body is preferably less than 0.007 in terms of the Si / In atomic ratio
  • the Ti content that can be contained in the oxide sintered body Is preferably smaller than 0.004 in Ti / In atomic ratio.
  • the electrical resistivity of the oxide semiconductor film is measured by a four-terminal method.
  • Mo electrode is formed by sputtering method as electrode material, voltage between -40V to + 40V is swept between outer electrodes, current is passed, voltage between inner electrodes is measured, and electric resistivity is calculated To do.
  • the oxide sintered body of the present embodiment preferably contains tungsten having at least one valence of hexavalent and tetravalent. According to such an oxide sintered body, in a semiconductor device (for example, TFT) including an oxide semiconductor film formed using the oxide sintered body as a channel layer, the ratio of the ON current to the OFF current can be increased with a low driving voltage. Can do.
  • a semiconductor device for example, TFT
  • the oxide sintered body of the present embodiment preferably also contains tungsten having a bond energy measured by X-ray photoelectron spectroscopy of 245 eV or more and 250 eV or less.
  • tungsten having a bond energy measured by X-ray photoelectron spectroscopy of 245 eV or more and 250 eV or less.
  • a semiconductor device for example, TFT
  • the ratio of the ON current to the OFF current can be increased with a low driving voltage. Can do.
  • Tungsten is known to have various valences as ions.
  • a semiconductor device for example, TFT
  • TFT including, as a channel layer, an oxide semiconductor film formed using such an oxide sintered body when having at least one valence of tetravalence and hexavalence
  • the ON current can be increased and the ratio of the ON current to the OFF current can be increased with a low drive voltage.
  • the valence of tungsten may be only tetravalent or only hexavalent, may include both tetravalent and hexavalent, or may include other valences that are not the main component.
  • Tungsten having at least one valence of tetravalent and hexavalent is preferably 70 atomic% or more of the total amount of tungsten.
  • the valence can be obtained from the bond energy of tungsten, and the valence valence ratio can be obtained by peak separation.
  • the semiconductor device includes an oxide semiconductor film as a channel layer when the peak position is 245 eV or more and 250 eV or less.
  • the ON current can be increased, and the ratio of the ON current to the OFF current can be increased with a low driving voltage.
  • the binding energy is more preferably 246 eV or more and 249 eV or less, and further preferably 246 eV or more and 248 eV or less.
  • the oxide sintered body of the present embodiment is mainly hexavalent, and a semiconductor device (for example, a TFT) including an oxide semiconductor film formed using the oxide sintered body as a channel layer. ) Is preferable from the viewpoint of increasing the ON current and increasing the ratio of the ON current to the OFF current at a low driving voltage.
  • the method for producing an oxide sintered body according to the present embodiment is a method for producing an oxide sintered body according to Embodiment 1, in which a primary mixture of zinc oxide powder and tungsten oxide powder is prepared.
  • a step of forming a calcined powder by heat-treating the primary mixture a step of preparing a secondary mixture of raw material powders including the calcined powder, a step of forming a molded body by molding the secondary mixture, Forming an oxide sintered body by sintering the formed body.
  • the primary mixture is heat-treated at a temperature of 550 ° C. or higher and lower than 1200 ° C. in an oxygen-containing atmosphere, thereby forming a double oxide powder containing zinc and tungsten as the calcined powder. Including that.
  • the primary mixture of zinc oxide powder and tungsten oxide powder is 550 ° C. or higher and 1200 ° C. in an oxygen-containing atmosphere. Since it includes forming a double oxide powder containing zinc and tungsten as the calcined powder by heat treatment at a temperature lower than 0 ° C., the apparent density of the oxide sintered body is increased and it is suitably used as a sputtering target. An oxide sintered body that can be obtained is obtained.
  • a primary mixture is prepared by mixing zinc oxide powder and tungsten oxide powder in a raw material powder, and the primary mixture is brought into an atmosphere containing oxygen.
  • the apparent density of the oxide sintered body can be increased by performing heat treatment at a temperature of 550 ° C. or more and less than 1200 ° C. to form a double oxide powder containing zinc and tungsten as the calcined powder.
  • the double oxide may be deficient in oxygen or substituted with metal.
  • the heat treatment temperature is less than 550 ° C., a double oxide powder containing zinc and tungsten is not obtained, and when it is 1200 ° C. or higher, the double oxide powder containing zinc and tungsten is decomposed or scattered, The particle size of the powder becomes too large.
  • a primary mixture of zinc oxide powder and tungsten oxide powder is heat-treated at a temperature of 550 ° C. or more and less than 1200 ° C. in an atmosphere containing oxygen, and a double oxide containing zinc and tungsten as a calcined powder
  • tungsten in the oxide sintered body can contain at least one valence of tetravalent and hexavalent.
  • the ratio of the ON current to the OFF current can be increased with a low driving voltage in a semiconductor device including, as a channel layer, an oxide semiconductor film formed using a sputtering target including the obtained oxide sintered body. .
  • the double oxide containing zinc and tungsten contains a ZnWO 4 type crystal phase to increase the apparent density of the oxide sintered body, and the hexavalent and tetravalent in the oxide sintered body. From the viewpoint of increasing the proportion of tungsten having at least one valence, it is preferable.
  • the ZnWO 4 type crystal phase is a zinc tungstate compound crystal phase having a crystal structure represented by the space group P12 / c1 (13) and having a crystal structure defined by JCPDS card 01-088-0251. . As long as these crystal systems are shown, oxygen may be deficient or metal may be dissolved, and the lattice constant may be changed.
  • the tungsten oxide powder contains at least one crystal phase selected from the group consisting of the WO 3 crystal phase, the WO 2 crystal phase, and the WO 2.72 crystal phase, thereby increasing the apparent density of the oxide sintered body. From the viewpoint of increasing the proportion of tungsten having at least one valence of hexavalent and tetravalent in the oxide sintered body. From this point of view, the tungsten oxide powder is more preferably at least one powder selected from the group consisting of WO 3 powder, WO 2 powder, and WO 2.72 powder.
  • the median particle diameter d50 of the tungsten oxide powder is preferably 0.1 ⁇ m or more and 4 ⁇ m or less, more preferably 0.2 ⁇ m or more and 2 ⁇ m or less, and more preferably 0.3 ⁇ m or more from the viewpoint of increasing the apparent density of the oxide sintered body. More preferably, it is 1.5 ⁇ m or less.
  • the median particle diameter d50 is a value obtained by BET specific surface area measurement. When the median particle size d50 is smaller than 0.1 ⁇ m, it is difficult to handle the powder, and it is difficult to uniformly mix the zinc oxide powder and the tungsten oxide powder.
  • the median particle size d50 is larger than 4 ⁇ m, the mixed oxide powder containing zinc and tungsten obtained by heat treatment at a temperature of 550 ° C. or more and less than 1200 ° C. in an atmosphere containing oxygen after mixing with the zinc oxide powder.
  • the particle size also increases, and it is difficult to increase the apparent density of the oxide sintered body.
  • the double oxide preferably contains a ZnWO 4 type crystal phase from the viewpoint of increasing the apparent density of the oxide sintered body.
  • the manufacturing method of the oxide sintered body of the present embodiment is not particularly limited, but includes the following steps from the viewpoint of efficiently forming the oxide sintered body of Embodiment 1.
  • tungsten oxide powder for example, WO 3 powder, WO 2.72 powder, WO 2 powder
  • ZnO powder a material powder constituting an oxide sintered body such as a material powder
  • the tungsten oxide powder not only the WO 3 powder but also a powder having a chemical composition deficient in oxygen as compared with the WO 3 powder such as the WO 2.72 powder and the WO 2 powder may be used as a raw material. This is preferable from the viewpoint of setting the valence of tungsten in the sintered body to at least one of hexavalent and tetravalent.
  • the purity of the raw material powder is preferably a high purity of 99.9% by mass or more from the viewpoint of preventing unintended mixing of metal elements and Si into the oxide sintered body and obtaining stable physical properties.
  • the median particle diameter d50 of the tungsten oxide powder is preferably 0.1 ⁇ m or more and 4 ⁇ m or less from the viewpoint of increasing the apparent density of the oxide sintered body.
  • tungsten oxide powder (WO 3 powder, WO 2.72 powder and / or WO 2 powder) and zinc oxide powder (ZnO powder) are pulverized and mixed To do.
  • a tungsten oxide powder and a zinc oxide powder are used as a raw material powder in a molar ratio of 1: 1, and Zn 2 W 3
  • tungsten oxide powder and zinc oxide powder are mixed as a raw material powder in a molar ratio of 3: 2.
  • the use of the ZnWO 4 type phase is preferable from the viewpoint of increasing the apparent density of the oxide sintered body.
  • the method for pulverizing and mixing the raw material powder is not particularly limited and may be any of dry and wet methods. Specifically, the raw material powder is pulverized and mixed using a ball mill, a planetary ball mill, a bead mill, or the like. In this way, a primary mixture of raw material powders is obtained.
  • a drying method such as natural drying or a spray dryer may be preferably used for drying the mixture obtained using the wet pulverization and mixing method.
  • the calcining temperature of the primary mixture is preferably less than 1200 ° C. so that the particle size of the calcined product becomes too large and the apparent density of the sintered body does not decrease.
  • the temperature is preferably 550 ° C. or higher. More preferably, it is 550 degreeC or more and less than 1000 degreeC, More preferably, it is 550 degreeC or more and 800 degrees C or less.
  • the calcining atmosphere may be an atmosphere containing oxygen, but is preferably an atmospheric atmosphere pressurized to atmospheric pressure or air, or an oxygen-nitrogen mixed atmosphere containing 25% by volume or more of oxygen. Further, since the productivity is high, an atmospheric pressure-air atmosphere is more preferable.
  • Step of preparing secondary mixture of raw material powder including calcined powder Next, the obtained calcined powder and the In 2 O 3 powder of the raw material powder are mixed by the same pulverization method as described above, Grind and mix. In this way, a secondary mixture of raw material powders is obtained.
  • Step of forming a molded body by molding the secondary mixture the obtained secondary mixture is molded.
  • the method for forming the secondary mixture is not particularly limited, but from the viewpoint of increasing the apparent density of the sintered body, a uniaxial press method, a CIP (cold isostatic treatment) method, a casting method and the like are preferable. In this way, a molded body is obtained.
  • Step of forming an oxide sintered body by sintering the molded body the obtained molded body is sintered. It is preferable not to use a hot press sintering method.
  • the sintering temperature of the molded body is not particularly limited, but is preferably 900 ° C. or higher and 1200 ° C. or lower from the viewpoint that the apparent density of the oxide sintered body to be formed is larger than 6.5 g / cm 3 .
  • the sintering atmosphere is not particularly limited, but an atmospheric pressure-atmosphere atmosphere is preferable from the viewpoint of preventing the generation of cracks by preventing the grain size of the constituent crystals of the oxide sintered body from increasing. In this way, the oxide sintered body of the present embodiment is obtained.
  • the sputter target of the present embodiment includes the oxide sintered body of the first embodiment. Since the sputter target of this embodiment includes the oxide sintered body of Embodiment 1, it can be suitably used for forming an oxide semiconductor film of a semiconductor device with high characteristics by a sputtering method.
  • the sputter target of the present embodiment preferably includes the oxide sintered body of the first embodiment in order to be suitably used for forming an oxide semiconductor film of a semiconductor device having high characteristics by a sputtering method. More preferably, the oxide sintered body of Embodiment 1 is used.
  • a semiconductor device 10 of this embodiment includes an oxide semiconductor film 14 formed by a sputtering method using the oxide sintered body of Embodiment 1 as a sputtering target. Since the semiconductor device of this embodiment includes an oxide semiconductor film formed by a sputtering method using the oxide sintered body of Embodiment 1 as a sputtering target, the semiconductor device has high characteristics.
  • the semiconductor device 10 of the present embodiment is not particularly limited.
  • the semiconductor device 10 includes, as a channel layer, the oxide semiconductor film 14 formed by a sputtering method using the oxide sintered body of Embodiment 1 as a sputtering target. It is a certain TFT (Thin Film Transistor).
  • a TFT which is an example of the semiconductor device 10 of this embodiment includes an oxide semiconductor film 14 formed by sputtering using the oxide sintered body of the above embodiment as a target, and thus has a low OFF current. At the same time, the ratio of the ON current to the OFF current becomes high at a low driving voltage.
  • the TFT which is the semiconductor device 10 of the present embodiment is arranged as a substrate 11, a gate electrode 12 arranged on the substrate 11, and an insulating layer on the gate electrode 12, as shown in FIG.
  • the content of tungsten with respect to the total of indium, tungsten, and zinc in the oxide semiconductor film 14 (hereinafter, from the viewpoint of increasing the ratio of the ON current to the OFF current at a low driving voltage) , which is also referred to as “W content” of the oxide semiconductor film 14) and larger than 1.2 atomic% and smaller than 30 atomic%, and the zinc content relative to the total of indium, tungsten, and zinc in the oxide semiconductor film 14.
  • Zn content is preferably greater than 1.2 atomic% and smaller than 30 atomic%.
  • the chemical composition of the oxide semiconductor film 14, that is, the content of various elements, is measured by RBS (Rutherford backscattering analysis).
  • the W content of the oxide semiconductor film 14 is more preferably greater than 2.0 atomic percent and smaller than 15 atomic percent, and more preferably greater than 4.0 atomic percent and smaller than 12 atomic percent.
  • the Zn content of the oxide semiconductor film 14 is more preferably larger than 2.0 atomic% and smaller than 15 atomic%, and more preferably larger than 4.0 atomic% and smaller than 12 atomic%. preferable.
  • the OFF current increases, and the OFF current is reduced.
  • the ON current ratio tends to be small.
  • the W content of the oxide semiconductor film 14 is 30 atomic% or more, in the TFT which is the semiconductor device 10 including the oxide semiconductor film 14 as a channel layer, the ON current is reduced or at a low driving voltage. The ratio of the ON current to the OFF current tends to be small.
  • the OFF current increases, and the OFF current
  • the ON current ratio tends to be small.
  • the ON current is reduced or at a low driving voltage. The ratio of the ON current to the OFF current tends to be small.
  • the atomic ratio of tungsten to zinc contained in the oxide semiconductor film 14 (hereinafter referred to as “W / Zn”) from the viewpoint of increasing the ratio of the ON current to the OFF current at a low driving voltage.
  • W / Zn the atomic ratio of tungsten to zinc contained in the oxide semiconductor film 14
  • the chemical composition of the oxide semiconductor film 14, that is, the W / Zn atomic ratio is measured by RBS (Rutherford backscattering analysis).
  • the W / Zn atomic ratio is 3.0 or more
  • the OFF current increases, and the ratio of the ON current to the OFF current decreases. End up.
  • the W / Zn atomic ratio is 0.5 or less
  • the ON current decreases, or the ON current with respect to the OFF current is reduced at a low driving voltage. The current ratio becomes small.
  • the oxide semiconductor film 14 is at least hexavalent and tetravalent. It is preferable to include tungsten having one valence.
  • the oxide semiconductor film 14 has a binding energy measured by X-ray photoelectron spectroscopy of 245 eV or more from the viewpoint of increasing the ratio of the ON current to the OFF current at a low driving voltage. It is preferable to contain tungsten of 250 eV or less.
  • the manufacturing method of the semiconductor device 10 of the present embodiment is not particularly limited, but the step of forming the gate electrode 12 on the substrate 11 from the viewpoint of efficiently manufacturing the high-performance semiconductor device 10.
  • FIG. 2A a step of forming a gate insulating film 13 as an insulating layer over the gate electrode 12
  • an oxide semiconductor film 14 as a channel layer over the gate insulating film 13.
  • FIG. 2C a step of forming the source electrode 15 and the drain electrode 16 over the oxide semiconductor film 14 so as not to contact each other
  • gate electrode 12 is formed on substrate 11. Although there is no restriction
  • the gate electrode 12 is not particularly limited, but a Mo electrode, a Ti electrode, a W electrode, an Al electrode, a Cu electrode, or the like is preferable because it has high oxidation resistance and low electrical resistance.
  • the method for forming the gate electrode 12 is not particularly limited, but a vacuum vapor deposition method, a sputtering method, or the like is preferable because it can be uniformly formed in a large area on the main surface of the substrate.
  • a gate insulating film 13 is formed on the gate electrode 12 as an insulating layer.
  • the gate insulating film 13 is not particularly limited, but an SiO x film, an SiN y film, or the like is preferable from the viewpoint of high insulation.
  • the method for forming the gate insulating film 13 is not particularly limited. However, plasma CVD (chemical vapor deposition) is preferable because it can be uniformly formed in a large area on the main surface of the substrate 11 on which the gate electrode is formed and the insulating property is ensured.
  • the phase deposition method is preferred.
  • an oxide semiconductor film 14 is formed over the gate insulating film 13 as a channel layer.
  • the oxide semiconductor film 14 is formed by sputtering using the oxide sintered body of Embodiment 1 as a sputtering target from the viewpoint of manufacturing the semiconductor device 10 having high characteristics.
  • sputtering means that a target and a substrate are arranged facing each other in a deposition chamber, a voltage is applied to the target, and the surface of the target is sputtered with rare gas ions, thereby forming the target from the target.
  • This is a method of forming a film composed of atoms constituting a target by discharging atoms to be deposited on a substrate (including the substrate on which the gate electrode and the gate insulating film are formed).
  • Source electrode 15 and drain electrode 16 are formed on oxide semiconductor film 14 so as not to contact each other.
  • the source electrode 15 and the drain electrode 16 are not particularly limited, but have a high oxidation resistance, a low electric resistance, and a low contact electric resistance with the oxide semiconductor film 14, so that the Mo electrode, the Ti electrode, and the W electrode Al electrodes, Cu electrodes and the like are preferable.
  • a method for forming the source electrode 15 and the drain electrode 16 is not particularly limited. However, the source electrode 15 and the drain electrode 16 can be uniformly formed in a large area on the main surface of the substrate 11 on which the oxide semiconductor film 14 is formed. The method is preferred.
  • a method for forming the source electrode 15 and the drain electrode 16 so as not to contact each other is not particularly limited, but the source electrode 15 and the drain having a large area and a uniform area on the main surface of the substrate 11 on which the oxide semiconductor film 14 is formed. From the viewpoint that the pattern of the electrode 16 can be formed, formation by an etching method using a photoresist is preferable.
  • the valence of tungsten contained in the oxide semiconductor film in the oxide sintered body of Embodiment 1, the sputter target of Embodiment 3, and the semiconductor device of Embodiment 4 is measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the ratio of tungsten having at least one valence of hexavalent and tetravalent can be determined from the intensity areas of the peaks existing in these ranges and the peaks existing in other ranges.
  • the total peak intensity area ratio of hexavalent and tetravalent to the total peak intensity area of tungsten is 70% or more, it can be determined that tungsten having at least one valence of hexavalent and tetravalent is the main component. .
  • the oxide semiconductor film in which tungsten contained in the oxide semiconductor film 14 in the oxide sintered body of Embodiment 1, the sputter target of Embodiment 3, and the semiconductor device 10 of Embodiment 4 is mainly hexavalent.
  • the TFT thin film transistor
  • the fact that the valence of tungsten is hexavalent can be confirmed from the fact that the binding energy of tungsten investigated by X-ray photoelectron spectroscopy is 245 eV or more and 250 eV or less.
  • Example 1 to Example 8 Preparation of Powder Raw Material Tungsten oxide powder (shown as “W” in Table 1) having the type and median particle size d50 shown in Table 1 and a purity of 99.99% by mass, and median particle size d50 of 1.
  • ZnO powder having a purity of 99.99% by mass at 0 ⁇ m (indicated as “Z” in Table 1) and In 2 O 3 powder having a median particle diameter d50 of 1.0 ⁇ m and a purity of 99.99% by mass
  • Table 1 was written as “I” in FIG.
  • a primary mixture of raw material powder was prepared by putting a tungsten oxide powder and a ZnO powder among the prepared raw material powders in a ball mill and pulverizing and mixing for 18 hours.
  • Ethanol was used as a dispersion medium during the above pulverization and mixing.
  • the obtained primary mixture of raw material powders was dried in the air.
  • the obtained primary mixture of raw material powder was put in an alumina crucible and calcined at a temperature of 650 ° C. for 8 hours in an air atmosphere.
  • the calcination temperature is preferably lower from the viewpoint that the grain size of the calcined powder can be made as small as possible as long as the crystal phase is formed. In this way, a calcined powder containing a ZnWO 4 type phase as a crystal phase was obtained.
  • the crystal phase of the obtained oxide sintered body was identified by taking a sample from a part of the oxide sintered body and analyzing the crystal by a powder X-ray diffraction method. Cu X-rays were used as X-rays. Table 1 summarizes the crystal phases present in the oxide sintered body.
  • the In 2 O 3 type phase which is a bixbite type crystal phase
  • the main component the In 2 O 3 type phase, which is a bixbite type crystal phase.
  • the existence of a bixbite type crystal phase and the presence of other crystal phases were confirmed by X-ray diffraction.
  • the phase confirmed by X-ray diffraction was only a bixbite type crystal phase.
  • the bixbite type crystal phase was the main component.
  • a sample was taken from a part of the oxide sintered body, and the surface of the sample was polished and smoothed. Subsequently, the surface of the sample was observed with SEM using SEM-EDX, and the composition ratio of the metal elements of each crystal particle was analyzed with EDX.
  • the crystal particles were grouped according to the tendency of the composition ratio of the metal elements of the crystal particles, a group of crystal particles having a high Zn content and a high W content, a Zn content and a W content being very low, It could be divided into a group of crystal grains with high content.
  • the group of crystal grains having a high Zn content and W content is a crystal phase other than the bixbite type crystal phase, and the group of crystal grains having a very low Zn content and W content and a high In content is a bixbite type. It was concluded that the crystal phase was an In 2 O 3 type crystal phase.
  • the bixbite type crystal phase When the ratio of the area of the In 2 O 3 type crystal phase that is the bixbite type crystal phase to the measurement surface of the oxide sintered body (bixbite type crystal phase occupancy) is 90% or more, the bixbite type crystal phase
  • the In 2 O 3 type crystal phase was determined as the main component.
  • Each of the oxide sintered bodies of Examples 1 to 8 was mainly composed of an In 2 O 3 type crystal phase which is a bixbite type crystal phase.
  • the apparent density of the obtained oxide sintered body was determined by the Archimedes method.
  • X-ray photoelectron spectroscopy (XPS) was used as a method for measuring the valence of tungsten contained in the obtained oxide sintered body and sputtering target.
  • the peak of the binding energy of tungsten 4d5 / 2 of WO 3 where tungsten is hexavalent appears in the range of 247 eV or more and 249 eV or less, and the peak of binding energy of tungsten 4d5 / 2 of WO 2 where tungsten metal and tungsten are tetravalent is It appears in the range of 243 eV to 244 eV.
  • Table 2 summarizes the valence of tungsten (identified as “W valence” in Table 2) and the peak position of bond energy (denoted as “W bond energy” in Table 2) identified from XPS.
  • Target The obtained oxide sintered body was processed into a target having a diameter of 3 inches (76.2 mm) and a thickness of 5.0 mm.
  • a synthetic quartz glass substrate having a size of 50 mm ⁇ 50 mm ⁇ thickness 0.6 mm is prepared as a substrate 11 and sputtered on the substrate 11.
  • a Mo electrode having a thickness of 100 nm was formed as the gate electrode 12 by the method.
  • an amorphous SiO x film having a thickness of 200 nm was formed as a gate insulating film 13 on the gate electrode 12 by plasma CVD.
  • Oxide Semiconductor Film Referring to FIG. 2C, next, a target processed from each oxide sintered body of Examples 1 to 8 is formed on the gate insulating film 13.
  • An oxide semiconductor film 14 having a thickness of 35 nm was formed by the DC (direct current) magnetron sputtering method used.
  • the plane of the target having a diameter of 3 inches (76.2 mm) was the sputtering surface.
  • the gate insulating film 13 is exposed on the substrate 11 on which the gate electrode 12 and the gate insulating film 13 are formed on a water-cooled substrate holder in a film forming chamber of a sputtering apparatus (not shown). Arranged.
  • the target was disposed at a distance of 90 mm so as to face the gate insulating film 13.
  • the target was sputtered in the following manner with a vacuum of about 6 ⁇ 10 ⁇ 5 Pa in the film formation chamber.
  • a mixed gas of Ar (argon) gas and O 2 (oxygen) gas was introduced into the film formation chamber up to a pressure of 0.5 Pa in a state where a shutter was put between the gate insulating film 13 and the target.
  • the O 2 gas content in the mixed gas was 20% by volume.
  • Sputtering discharge was caused by applying DC power of 100 W to the target, thereby cleaning the target surface (pre-sputtering) for 10 minutes.
  • the oxide semiconductor film 14 was formed on the gate insulating film 13 by removing the shutter while maintaining the atmosphere in the film formation chamber. Note that no bias voltage was applied to the substrate holder, and the substrate holder was only water-cooled. At this time, the deposition time was set so that the thickness of the oxide semiconductor film 14 was 35 nm. Thus, the oxide semiconductor film 14 was formed by the DC (direct current) magnetron sputtering method using the target processed from the oxide sintered body. The oxide semiconductor film 14 functions as a channel layer in the TFT (thin film transistor) that is the semiconductor device 10.
  • a source electrode forming portion 14s, a drain electrode forming portion 14d, and a channel portion 14c were formed.
  • the size of the main surface of the source electrode forming portion 14s and the drain electrode forming portion 14d is 100 ⁇ m ⁇ 100 ⁇ m and the channel length C L (see FIGS. 1A and 1B and FIG. 2)
  • the channel length CL refers to the distance of the channel portion 14c between the source electrode 15 and the drain electrode 16.
  • the channel length C L is 20 ⁇ m
  • the channel width C W (see FIGS. 1A and 1B and FIG. 2).
  • the channel width C W is the width of the channel portion 14c.) was 40 ⁇ m.
  • the channel portion 14c is arranged such that a thin film transistor (TFT), which is a semiconductor device, is arranged at 25 mm ⁇ 25 mm at 3 mm intervals in a 75 mm ⁇ 75 mm substrate main surface at 3 mm intervals in a 75 mm ⁇ 75 mm substrate main surface. And 25 vertical x 25 horizontal.
  • TFT thin film transistor
  • the substrate 11 on which the oxide semiconductor film 14 was formed in this order was immersed in the etching aqueous solution. At this time, the aqueous etching solution was heated to 45 ° C. in a hot bath.
  • Source electrode 15 and drain electrode 16 were formed on oxide semiconductor film 14 separately from each other.
  • a resist (not shown) is applied on the oxide semiconductor film 14 so that only the main surfaces of the source electrode forming portion 14s and the drain electrode forming portion 14d of the oxide semiconductor film 14 are exposed. Exposed and developed. On the main surfaces of the source electrode forming portion 14s and the drain electrode forming portion 14d of the oxide semiconductor film 14, the thicknesses of the Mo electrode and the drain electrode 16 having a thickness of 100 nm as the source electrode 15 are formed by sputtering. A Mo electrode having a thickness of 100 nm was formed separately from each other. Thereafter, the resist on the oxide semiconductor film 14 was peeled off.
  • Such Mo electrodes as the source electrode 15 and the drain electrode 16 are arranged such that the thin film transistors (TFTs) as the semiconductor devices 10 are arranged 25 ⁇ 25 ⁇ 25 mm apart on a 75 mm ⁇ 75 mm substrate main surface at intervals of 3 mm.
  • One source electrode 15 and one drain electrode 16 are arranged for one channel portion 14c.
  • a TFT including the oxide semiconductor film 14 as a channel layer was manufactured as the semiconductor device 10.
  • the obtained TFT as the semiconductor device 10 was heat-treated at 150 ° C. for 1 hour in a nitrogen atmosphere.
  • the characteristics of the TFT as the semiconductor device 10 were evaluated as follows. First, a measuring needle was brought into contact with the gate electrode 12, the source electrode 15, and the drain electrode 16. A source-drain voltage V ds of 7 V is applied between the source electrode 15 and the drain electrode 16, and the source-gate voltage V gs applied between the source electrode 15 and the gate electrode 12 is changed from ⁇ 10V to 15V. The source-drain current I ds at that time was measured. The source-drain current I ds when the source-gate voltage V gs was ⁇ 5 V was defined as the OFF current. The values of OFF current in each example are summarized in Table 2.
  • the valence of tungsten contained in the obtained oxide semiconductor film 14 was measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the peak of the binding energy of tungsten 4d5 / 2 of WO 3 at which tungsten is hexavalent appears at 247 eV or more and 249 eV or less, and the peak of binding energy of tungsten 4d5 / 2 of WO 2 at which tungsten metal and tungsten are tetravalent is 243 eV. It appeared in the range of 244 eV or less.
  • Table 2 summarizes the valence (expressed as “W valence” in Table 2) of tungsten identified from XPS and the peak position of the bond energy (expressed as “W bond energy” in Table 2).
  • Example 9 to 12 Preparation of Powder Raw Material Tungsten oxide powder (shown as “W” in Table 1) having the type and median particle size d50 shown in Table 1 and a purity of 99.99% by mass, and median particle size d50 of 1.
  • ZnO powder having a purity of 99.99% by mass at 0 ⁇ m (indicated as “Z” in Table 1) and In 2 O 3 powder having a median particle diameter d50 of 1.0 ⁇ m and a purity of 99.99% by mass (Table 1 was written as “I” in FIG.
  • a primary mixture of raw material powder was prepared by putting a tungsten oxide powder and a ZnO powder among the prepared raw material powders in a ball mill and pulverizing and mixing for 18 hours.
  • Ethanol was used as a dispersion medium during the above pulverization and mixing.
  • the obtained primary mixture of raw material powders was dried in the air.
  • TFT which is a semiconductor device
  • oxide powders Al 2 O 3 , TiO 2 , Cr
  • element M shown in Table 1 in addition to the calcined powder and In 2 O 3 powder are used as the raw material powder.
  • an oxide sintered body containing a bixbite type crystal phase (In 2 O 3 type phase) containing tungsten and zinc as a solid solution and further containing the element M was produced.
  • Table 2 shows the M content in the oxide sintered body.
  • an In 2 O 3 type crystal phase which is a bixbite type crystal phase was a main component.
  • the obtained oxide sintered body is processed into a target, and a TFT which is a semiconductor device including an oxide semiconductor film formed by a DC magnetron sputtering method using the target is made in the same manner as in Examples 1 to 12. Made.
  • Table 1 and Table 2 summarize the physical properties of the obtained oxide sintered body and oxide semiconductor film, and the characteristics of TFT as a semiconductor device.
  • the measuring methods of physical properties and characteristics are the same as in Examples 1 to 12.
  • Example 1 to Example 8 or Example except that a mixture of raw material powders was prepared and then calcined and molded without sintering, when preparing the oxide sintered body.
  • oxide sintered bodies were produced.
  • the obtained oxide sintered body was processed into a target, and a TFT as a semiconductor device including an oxide semiconductor film formed by a DC magnetron sputtering method using the target was manufactured in the same manner as in the example. It was confirmed that there was no formation of a double oxide crystal phase by molding and sintering a mixture of raw material powders without calcining.
  • the oxide sintered bodies of Comparative Examples 1 to 3 have an apparent density of 6.5 g / cm 3 or less. Between Comparative Examples 1 to 3, the molar mixing ratios of WO 2.72 powder or WO 2 powder, ZnO powder or SnO 2 powder, and In 2 O 3 powder are different.
  • Table 2 summarizes the physical properties of the obtained oxide sintered body and oxide semiconductor film and the characteristics of the TFT as a semiconductor device. The measuring methods of physical properties and characteristics are the same as in the examples.
  • oxide powder (TiO 2 , SiO 2 ) containing element M shown in Table 3 was added in addition to the calcined powder and In 2 O 3 powder as raw material powder. Except for this, an oxide sintered body containing a bixbite type crystal phase (In 2 O 3 type phase) in which tungsten and zinc are in solid solution and further contains the element M, in the same manner as in Examples 1 to 12 was made. Table 3 shows the M content in the oxide sintered body and the atomic ratio of element M to In (M / In ratio). In all of the oxide sintered bodies of Examples 25 to 28, an In 2 O 3 type crystal phase that is a bixbite type crystal phase was a main component. The obtained oxide sintered body is processed into a target, and a TFT which is a semiconductor device including an oxide semiconductor film formed by a DC magnetron sputtering method using the target is made in the same manner as in Examples 1 to 12. Made.
  • a TFT which is a semiconductor device including an oxide semiconductor film formed by a DC magnetr
  • Table 3 summarizes the physical properties of the obtained oxide sintered body and oxide semiconductor film and the characteristics of the TFT as a semiconductor device.
  • the measuring methods of physical properties and characteristics are the same as in Examples 1 to 12.
  • the electrical resistivity of the oxide semiconductor film was measured by the following procedure. First, an oxide semiconductor film was formed in the same manner as described in “9. Fabrication of Semiconductor Device (3) Formation of Oxide Semiconductor Film” in Examples 1 to 8 (after formation of the oxide semiconductor film) Etching was not performed). About the obtained oxide semiconductor film, the electrical resistivity was measured by the four probe method. At this time, a Mo electrode is formed as an electrode material by a sputtering method so that the electrode interval is 10 mm, a voltage of ⁇ 40 V to +40 V is swept between the outer electrodes, and a current is passed between the inner electrodes. The electrical resistivity was calculated by measuring the voltage. The results are shown in Table 3.
  • the Si / In atomic ratio is preferably smaller than 0.007.
  • the Ti / In atomic ratio is preferably less than 0.004.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Thin Film Transistor (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

 インジウムと、タングステンと、亜鉛と、を含む酸化物焼結体であって、ビックスバイト型結晶相を主成分として含み、見かけ密度が6.5g/cm3より大きく7.1g/cm3以下であり、インジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が1.2原子%より大きく30原子%より小さく、インジウム、タングステンおよび亜鉛の合計に対する亜鉛の含有率が1.2原子%より大きく30原子%より小さい酸化物焼結体、これを含むスパッタターゲット、ならびに当該スパッタターゲットを用いてスパッタ法により形成した酸化物半導体膜(14)を含む半導体デバイス(10)が提供される。

Description

酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス
 本発明は、酸化物半導体膜をスパッタ法で形成するためのスパッタターゲットとして好適に用いられる酸化物焼結体およびその製造方法、酸化物焼結体を含むスパッタターゲット、ならびにスパッタターゲットを用いてスパッタ法により形成した酸化物半導体膜を含む半導体デバイスに関する。
 液晶表示装置、薄膜EL(エレクトロルミネッセンス)表示装置、有機EL表示装置などにおいて、半導体デバイスであるTFT(薄膜トランジスタ)のチャネル層として機能する半導体膜として、従来では主として非晶質シリコン膜が使用されてきた。
 しかし、近年では、そのような半導体膜として、In-Ga-Zn系複合酸化物(以下、IGZOともいう)を主成分とする酸化物半導体膜が、非晶質シリコン膜に比べてキャリアの移動度が大きいという利点から注目されている。
 たとえば、特開2008-199005号公報(特許文献1)は、かかるIGZOを主成分とする酸化物半導体膜が、酸化物焼結体をターゲットとして使用するスパッタ法によって形成されることを開示する。
 また、特開2008-192721号公報(特許文献2)は、チタンまたはタングステンとインジウムを含むターゲットを用いたスパッタ法によりチャネル層を形成することによって、動作特性に優れたTFTが得られることを開示する。
 また、特開2006-347807号公報(特許文献3)は、電子ビーム蒸着法、イオンプレーティング法、高密度プラズマアシスト蒸着法などの真空蒸着法により酸化物透明導電膜を形成する際に好適に用いられる材料として、タングステンを固溶したインジウム酸化物を含有し、タングステンがインジウムに対する原子数比で0.001以上0.034以下含まれ、密度(見かけ密度)が4.0g/cm3以上6.5g/cm3以下である酸化物焼結体を開示する。
特開2008-199005号公報 特開2008-192721号公報 特開2006-347807号公報
 特開2008-199005号公報(特許文献1)が開示するIGZOを主成分とする酸化物半導体膜をチャネル層として含む半導体デバイスであるTFT(薄膜トランジスタ)には、市場価格が高い金属ガリウムを原料とする酸化ガリウムを原料として用いているため、製造コストが高いという問題があった。
 また、特開2008-192721号公報(特許文献2)が開示するターゲットを用いて作製した酸化物半導体膜をチャネル層として含むTFTには、OFF電流が1×10-11A程度と高く、駆動電圧を40V程度に高くしないとOFF電流に対するON電流の比を十分に大きくすることができないという問題があった。
 また、特開2006-347807号公報(特許文献3)が開示する酸化物焼結体は、密度(見かけ密度)が6.5g/cm3以下と小さいために、酸化物半導体膜を形成するための最適な方法であるスパッタ法のスパッタターゲットとしては用いることができないという問題があった。
 そこで、上記問題点を解決し、特性の高い半導体デバイスの酸化物半導体膜をスパッタ法で形成するためのスパッタターゲットとして好適に用いることのできる酸化物焼結体およびその製造方法、酸化物焼結体を含むスパッタターゲット、ならびにスパッタターゲットを用いてスパッタ法により形成した酸化物半導体膜を含む半導体デバイスを提供することを目的とする。
 本発明のある態様に係る酸化物焼結体は、インジウムと、タングステンと、亜鉛と、を含む酸化物焼結体であって、ビックスバイト型結晶相を主成分として含み、見かけ密度が6.5g/cm3より大きく7.1g/cm3以下であり、前記酸化物焼結体中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が1.2原子%より大きく30原子%より小さく、前記酸化物焼結体中のインジウム、タングステンおよび亜鉛の合計に対する亜鉛の含有率が1.2原子%より大きく30原子%より小さい。
 本発明の別の態様に係るスパッタターゲットは、上記態様の酸化物焼結体を含む。
 本発明のさらに別の態様に係る半導体デバイスは、上記態様のスパッタターゲットを用いてスパッタ法により形成した酸化物半導体膜を含む。
 本発明のさらに別の態様に係る酸化物焼結体の製造方法は、上記態様の酸化物焼結体の製造方法であって、亜鉛酸化物粉末とタングステン酸化物粉末との1次混合物を調製する工程と、1次混合物を熱処理することにより仮焼粉末を形成する工程と、仮焼粉末を含む原料粉末の2次混合物を調製する工程と、2次混合物を成形することにより成形体を形成する工程と、成形体を焼結することにより酸化物焼結体を形成する工程と、を含み、仮焼粉末を形成する工程は、酸素含有雰囲気下、550℃以上1200℃未満の温度で1次混合物を熱処理することにより、仮焼粉末として亜鉛とタングステンとを含む複酸化物の粉末を形成することを含む。
 上記によれば、特性の高い半導体デバイスの酸化物半導体膜をスパッタ法で形成するためのスパッタターゲットとして好適に用いることのできる酸化物焼結体およびその製造方法、酸化物焼結体を含むスパッタターゲット、ならびにスパッタターゲットを用いてスパッタ法により形成した酸化物半導体膜を含む半導体デバイスを提供できる。
本発明の一態様に係る半導体デバイスの一例を示す概略図であり、(A)は概略平面図を示し、(B)は(A)に示されるIB-IB線における概略断面図を示す。 本発明の一態様に係る半導体デバイスの製造方法の一例を示す概略断面図である。
 <本発明の実施形態の説明>
 [1]本発明のある実施形態である酸化物焼結体は、インジウムと、タングステンと、亜鉛と、を含む酸化物焼結体であって、ビックスバイト型結晶相を主成分として含み、見かけ密度が6.5g/cm3より大きく7.1g/cm3以下である。本実施形態の酸化物焼結体は、ビックスバイト型結晶相を主成分として含み、見かけ密度が6.5g/cm3より大きく7.1g/cm3以下であるため、特性の高い半導体デバイスの酸化物半導体膜をスパッタ法で形成するためのスパッタターゲットとして好適に用いられる。
 本実施形態の酸化物焼結体において、酸化物焼結体中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率は、1.2原子%より大きく30原子%より小さく、酸化物焼結体中のインジウム、タングステンおよび亜鉛の合計に対する亜鉛の含有率は、1.2原子%より大きく30原子%より小さい。これにより、かかる酸化物焼結体を含むスパッタターゲットを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 [2]本実施形態の酸化物焼結体において、ビックスバイト型結晶相は、インジウム酸化物を主成分として含み、ビックスバイト型結晶相の少なくとも一部に固溶しているタングステンおよび亜鉛を含むことができる。これにより、かかる酸化物焼結体を含むスパッタターゲットを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 [3]本実施形態の酸化物焼結体は、アルミニウム、チタン、クロム、ガリウム、ハフニウム、ジルコニウム、シリコン、モリブデン、バナジウム、ニオブ、タンタル、およびビスマスからなる群より選ばれる少なくとも1種の元素をさらに含むことができる。この場合、酸化物焼結体中におけるインジウム、タングステン、亜鉛および上記元素の合計に対する上記元素の含有率は、0.1原子%以上10原子%以下であることができる。これにより、かかる酸化物焼結体を含むスパッタターゲットを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 [4]本実施形態の酸化物焼結体が上記元素を含む場合において、酸化物焼結体中における、インジウムに対するシリコンの原子比(原子数比)は、0.007より小さい値であることができる。これにより、かかる酸化物焼結体を含むスパッタターゲットを用いて形成された酸化物半導体膜の電気抵抗率を高めることができる。
 [5]本実施形態の酸化物焼結体が上記元素を含む場合において、酸化物焼結体中における、インジウムに対するチタンの原子比(原子数比)は、0.004より小さい値であることができる。これにより、かかる酸化物焼結体を含むスパッタターゲットを用いて形成された酸化物半導体膜の電気抵抗率を高めることができる。
 [6]本実施形態の酸化物焼結体は、6価および4価の少なくとも1つの原子価を有するタングステンを含むことができる。これにより、かかる酸化物焼結体を含むスパッタターゲットを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 [7]本実施形態の酸化物焼結体は、X線光電子分光法により測定される結合エネルギーが245eV以上250eV以下のタングステンを含むことができる。これにより、かかる酸化物焼結体を含むスパッタターゲットを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 [8]本発明の別の実施形態であるスパッタターゲットは、上記実施形態の酸化物焼結体を含む。本実施形態のスパッタターゲットは、上記実施形態の酸化物焼結体を含むため、特性の高い半導体デバイスの酸化物半導体膜をスパッタ法で形成するために好適に用いられる。
 [9]本発明のさらに別の実施形態である半導体デバイスは、上記実施形態のスパッタターゲットを用いてスパッタ法により形成した酸化物半導体膜を含む。本実施形態の半導体デバイスは、上記実施形態のスパッタターゲットを用いてスパッタ法により形成した酸化物半導体膜を含むため、高い特性を示すことができる。ここで述べる半導体デバイスとは、特に制限はないが、上記実施形態のスパッタターゲットを用いてスパッタ法により形成した酸化物半導体膜をチャネル層として含むTFT(薄膜トランジスタ)が好適な例である。
 [10]本実施形態の半導体デバイスにおいて、酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率を1.2原子%より大きく30原子%より小さくし、酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対する亜鉛の含有率が1.2原子%より大きく30原子%より小さくすることができる。これにより、酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 [11]本実施形態の半導体デバイスにおいて、酸化物半導体膜中における、亜鉛に対するタングステンの原子比を0.5より大きく3.0より小さくすることができる。これにより、酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 [12]本実施形態の半導体デバイスにおいて、酸化物半導体膜中における、インジウムに対するシリコンの原子比は0.007より小さい値であることができる。これにより、酸化物半導体膜の電気抵抗率を1×102Ωcm以上に高めることができる。
 [13]本実施形態の半導体デバイスにおいて、酸化物半導体膜中における、インジウムに対するチタンの原子比は0.004より小さい値であることができる。これにより、酸化物半導体膜の電気抵抗率を1×102Ωcm以上に高めることができる。
 [14]本実施形態の半導体デバイスにおいて、酸化物半導体膜は、6価および4価の少なくとも1つの原子価を有するタングステンを含むことができる。これにより、酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 [15]本実施形態の半導体デバイスにおいて、酸化物半導体膜は、X線光電子分光法により測定される結合エネルギーが245eV以上250eV以下のタングステンを含むことができる。これにより、酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 [16]本発明のさらに別の実施形態である酸化物焼結体の製造方法は、上記実施形態の酸化物焼結体の製造方法であって、亜鉛酸化物粉末とタングステン酸化物粉末との1次混合物を調製する工程と、1次混合物を熱処理することにより仮焼粉末を形成する工程と、仮焼粉末を含む原料粉末の2次混合物を調製する工程と、2次混合物を成形することにより成形体を形成する工程と、成形体を焼結することにより酸化物焼結体を形成する工程と、を含み、仮焼粉末を形成する工程は、酸素含有雰囲気下、550℃以上1200℃未満の温度で1次混合物を熱処理することにより、仮焼粉末として亜鉛とタングステンとを含む複酸化物の粉末を形成することを含む。本実施形態の酸化物焼結体の製造方法によれば、仮焼粉末を形成する工程において、亜鉛酸化物粉末とタングステン酸化物粉末とを混合し、酸素含有雰囲気下、550℃以上1200℃未満の温度で熱処理することにより、亜鉛とタングステンとを含む複酸化物粉末を形成することを含むため、酸化物焼結体の見かけ密度が高くなり、スパッタターゲットとして好適に用いることのできる酸化物焼結体が得られる。
 [17]本実施形態の酸化物焼結体の製造方法において、タングステン酸化物粉末は、WO3結晶相、WO2結晶相、およびWO2.72結晶相からなる群より選ばれる少なくとも1種の結晶相を含むことができる。これにより、酸化物焼結体の見かけ密度が高くなり、スパッタターゲットとして好適に用いることのできる酸化物焼結体が得られる。
 [18]本実施形態の酸化物焼結体の製造方法において、タングステン酸化物粉末は、メジアン粒径d50が0.1μm以上4μm以下であることができる。これにより、酸化物焼結体の見かけ密度が高くなり、スパッタターゲットとして好適に用いることのできる酸化物焼結体が得られる。
 [19]本実施形態の酸化物焼結体の製造方法において、上記複酸化物はZnWO4型結晶相を含むことができる。これにより、酸化物焼結体の見かけ密度が高くなり、スパッタターゲットとして好適に用いることのできる酸化物焼結体が得られる。
 <本発明の実施形態の詳細>
 [実施形態1:酸化物焼結体]
 本実施形態の酸化物焼結体は、インジウムと、タングステンと、亜鉛と、を含む酸化物焼結体であって、ビックスバイト型結晶相を主成分として含み、見かけ密度が6.5g/cm3より大きく7.1g/cm3以下である。本実施形態の酸化物焼結体は、ビックスバイト型結晶相を主成分として含み、見かけ密度が6.5g/cm3より大きく7.1g/cm3以下であるため、特性の高い半導体デバイスの酸化物半導体膜をスパッタ法で形成するためのスパッタターゲットとして好適に用いられる。
 本明細書において、「ビックスバイト型結晶相」とは、ビックスバイト結晶相、ならびにビックスバイト結晶相と同じ結晶構造を含む相であって、ビックスバイト結晶相の少なくとも一部にインジウム(In)以外の金属元素およびシリコン(Si)の少なくとも1つの元素が含まれる相の総称をいう。ビックスバイト結晶相は、インジウム酸化物(In23)の結晶相の1つであり、JCPDSカードの6-0416に規定される結晶構造をいい、希土類酸化物C型相(またはC-希土構造相)とも呼ぶ。
 ビックスバイト型結晶層は、X線回折により同定できる。すなわち、X線回折により、ビックスバイト型結晶相の存在が確認され、各面間隔を測定することができる。
 また、「ビックスバイト型結晶相を主成分として含む」とは、酸化物焼結体中でビックスバイト型結晶相が占める割合(後述するビックスバイト型結晶相占有率)が90%以上である場合を意味する。酸化物焼結体は、混入が不可避の結晶相など、他の結晶相を含むことがある。ビックスバイト型結晶相とそれ以外の結晶相との判別方法は、以下のとおりである。
 まず、X線回折にてビックスバイト型結晶相の存在と、それ以外の結晶相の存在を確認する。X線回折で確認される相はビックスバイト型結晶相のみの場合もある。ビックスバイト型結晶相のみ確認された場合は、ビックスバイト型結晶相が主成分であると判断する。
 X線回折にてビックスバイト型結晶相の存在と、それ以外の結晶相の存在とを確認した場合、酸化物焼結体の一部からサンプルを採取して、サンプルの表面を研磨して平滑にする。続いて、SEM-EDX(エネルギー分散型ケイ光X線分析計を付帯する走査型二次電子顕微鏡)を用いて、サンプルの表面をSEM(走査型二次電子顕微鏡)で観察し、各結晶粒子の金属元素の組成比をEDX(エネルギー分散型ケイ光X線分析計)で分析する。結晶粒子をそれらの結晶粒子の金属元素の組成比の傾向でグループ分けを行う。具体的には、Zn含有率が高い、またはW含有率の高い、もしくはその両方が高い結晶粒子のグループと、Zn含有率およびW含有率が非常に低くIn含有率が高い結晶粒子のグループとに分けることができる。Zn含有率が高い、またはW含有率の高い、もしくはその両方が高い結晶粒子のグループがその他の結晶相であり、Zn含有率およびW含有率が非常に低くIn含有率が高い結晶粒子のグループはビックスバイト型結晶相であるIn23型相であると結論づける。
 酸化物焼結体におけるビックスバイト型結晶相占有率は、酸化物焼結体の上記測定面に占めるビックスバイト型結晶相の面積の割合(百分率)として定義される。したがって、本実施形態の酸化物焼結体は、ビックスバイト型結晶相が主成分であり、上記で定義されるビックスバイト型結晶相占有率が90%以上である。
 また、本実施形態の酸化物焼結体は、見かけ密度が6.5g/cm3より大きく7.1g/cm3以下である。これに対して、特開2006-347807号公報に開示されている酸化物焼結体は、見かけ密度が4.0g/cm3以上6.5g/cm3以下であり、本実施形態の酸化物焼結体に比べて焼結体の見かけ密度が低い。
 本実施形態の酸化物焼結体の主成分であるビックスバイト型結晶相の理論密度は、インジウム酸化物で形成されるビックスバイト結晶相の理論密度が7.28g/cm3であること、および、かかるビックスバイト結晶相の少なくとも一部にそれぞれ1.2原子%から30原子%の割合でタングステンおよび亜鉛が置換固溶していることを考慮すると、最小で7.19g/cm3であり最大で7.24g/cm3であると考えられる。とすると、理論密度に対する焼結体の見かけ密度の百分率、すなわち、焼結体の相対密度は、特開2006-347807号公報に開示の酸化物焼結体が55.2%以上90.4%以下と低いのに対し、本実施形態の酸化物焼結体は、90.4%より大きく99.0%以下と極めて高い。
 焼結体をスパッタターゲットとして用いる場合、その焼結体の見かけ密度は高ければ高いほど望ましいとされている。焼結体の見かけ密度が低いということは、焼結体中に空孔が多く存在することを意味している。スパッタターゲットは使用時に表面がアルゴンイオンでエッチングされながら使用される。したがって、焼結体中に空孔が存在すると成膜中にこれが露出して内部の気体が放出されるため、析出される酸化物半導体薄膜中にターゲットから放出された気体が混入してしまい、膜特性が劣化する。また、焼結体の見かけ密度が低いと成膜時にノジュールと言われるインジウムの絶縁体がターゲット上に生成し、良好なスパッタ放電が阻害されることが知られており、この観点からも焼結体の見かけ密度を高くすることが望まれている。
 すなわち、本実施形態の酸化物焼結体は、見かけ密度が6.5g/cm3より大きく7 .1g/cm3以下と大きいため、特性の高い半導体デバイスの酸化物半導体膜をスパッタ法で形成するためのスパッタターゲットとして好適に用いられる。
 本実施形態の酸化物焼結体において、酸化物焼結体中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率(以下、酸化物焼結体の「W含有率」ともいう。)は、1.2原子%より大きく30原子%より小さく、酸化物焼結体中のインジウム、タングステンおよび亜鉛の合計に対する亜鉛の含有率(以下、酸化物焼結体の「Zn含有率」ともいう。)は、1.2原子%より大きく30原子%より小さい。かかる酸化物焼結体によれば、これを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイス(たとえば、TFT)において、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 また、上記の観点から、酸化物焼結体のW含有率は、2.0原子%より大きく15原子%より低いことが好ましく、4.0原子%より大きく12原子%より小さいことがより好ましい。また、上記の観点から、酸化物焼結体のZn含有率は、2.0原子%より大きく15原子%より低いことが好ましく、4.0原子%より大きく12原子%より小さいことがより好ましい。
 酸化物焼結体のW含有率が1.2原子%以下の場合、かかる酸化物焼結体を用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイス(たとえば、TFT)において、そのOFF電流が増加してしまい、OFF電流に対するON電流の比が小さくなってしまう。酸化物焼結体のW含有率が30原子%以上の場合、かかる酸化物焼結体を用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、そのON電流が低下するか、または、低い駆動電圧ではOFF電流に対するON電流の比が小さくなってしまう。
 酸化物焼結体のZn含有率が1.2原子%以下の場合、かかる酸化物焼結体を用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、そのOFF電流が増加してしまい、OFF電流に対するON電流の比が小さくなってしまう。酸化物焼結体のZn含有率が30原子%以上の場合、かかる酸化物焼結体を用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、そのON電流が低下するか、または、低い駆動電圧ではOFF電流に対するON電流の比が小さくなってしまう。
 本実施形態の酸化物焼結体において、ビックスバイト型結晶相は、インジウム酸化物を主成分として含み、ビックスバイト型結晶相の少なくとも一部に固溶しているタングステンおよび亜鉛を含むことが好ましい。かかる酸化物焼結体によれば、これを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイス(たとえば、TFT)において、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 本実施形態の酸化物焼結体において、「ビックスバイト型結晶相がインジウム酸化物を主成分として含み、その少なくとも一部にタングステンおよび亜鉛が固溶している」とは、ビックスバイト結晶相を有するインジウム酸化物の結晶格子中の少なくとも一部に、タングステンおよび亜鉛が置換型にて固溶している形態、または結晶格子間に侵入型で固溶している形態、または置換型と侵入型の両方の形態で固溶している形態を意味する。
 本実施形態の酸化物焼結体において、タングステンおよび亜鉛がビックスバイト型結晶相の少なくとも一部に固溶していると、JCPDSカードの6-0416に規定される面間隔よりも広くなったり、狭くなったりする。X線回折では、ピーク位置が高角度側にシフトしたり、低角度側にシフトしたりする。かかるピークシフトが確認されるとともに、SEM-EDX(エネルギー分散型ケイ光X線分析計を付帯する走査型二次電子顕微鏡)やTEM-EDX(エネルギー分散型ケイ光X線分析計を付帯する透過型二次電子顕微鏡)により面分析を行い、インジウムとタングステンと亜鉛とが混在する領域の存在が確認されたとき、ビックスバイト型結晶相にタングステンおよび亜鉛が固溶していることが推定できる。
 あるいは、ICP(誘導結合プラズマ)質量分析、SEM-EDX、その他の元素同定方法を用いて存在元素の同定を行い、インジウムとともに亜鉛およびタングステンの存在が確認されたのにもかかわらず、X線回折では亜鉛の酸化物、タングステンの酸化物、亜鉛とタングステンの複酸化物が確認されないことをもって、タングステンもしくは亜鉛がビックスバイト型結晶相に固溶していると判断することもできる。
 本実施形態の酸化物焼結体は、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、ガリウム(Ga)、ハフニウム(Hf)、ジルコニウム(Zr)、シリコン(Si)、モリブデン(Mo)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、およびビスマス(Bi)からなる群より選ばれる少なくとも1種の元素Mをさらに含有することができる。この場合、酸化物焼結体中におけるインジウム(In)、タングステン(W)、亜鉛(Zn)および元素(M)の合計に対する元素Mの含有率(以下、酸化物焼結体の「M含有率」ともいう。)は、0.1原子%以上10原子%以下であることが好ましい。かかる酸化物焼結体によれば、これを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイス(たとえば、TFT)において、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。また、かかる観点から、酸化物焼結体のM含有率は、0.1原子%以上5原子%以下がより好ましく、0.1原子%以上1原子%以下がさらに好ましい。
 ここで、Al、Ti、Cr、Ga、Hf、Si、V、およびNbの少なくとも1種の添加元素の含有率が0.1原子%以上のとき、その酸化物焼結体を用いて得られる酸化物半導体を含む半導体デバイスのOFF電流が低くなる効果があるが、かかる添加元素の含有率が10原子%より大きくなると、半導体デバイスのON電流が低くなる傾向がある。
 また、Zr、Mo、Ta、およびBiの少なくとも1種の添加元素の含有率が0.1原子%以上のとき、その酸化物焼結体を用いて得られる酸化物半導体を含む半導体デバイスのON電流が高くなる効果があるが、かかる添加元素の含有率が10原子%より大きくなると、半導体デバイスのOFF電流が高くなる傾向がある。
 本実施形態に係る酸化物焼結体を用いて形成される酸化物半導体膜は、半導体デバイスの半導体層として用いられるため、透明導電膜として望まれるよりも電気抵抗率が高いことが望ましい。具体的には、本実施形態に係る酸化物焼結体を用いて形成される酸化物半導体膜は、電気抵抗率が1×102Ωcm以上であることが好ましい。このために、酸化物焼結体に含まれ得るSiの含有率は、Si/In原子数比で0.007より小さいことが好ましく、また、酸化物焼結体に含まれ得るTiの含有率は、Ti/In原子数比で0.004より小さいことが好ましい。
 酸化物半導体膜の電気抵抗率は、四端子法によって測定される。電極材としてMo電極をスパッタリング法により形成し、外側の電極同士に-40Vから+40Vまでの電圧を掃印し、電流を流しながら、内側の電極間の電圧を測定して、電気抵抗率を算出する。
 本実施形態の酸化物焼結体は、6価および4価の少なくとも1つの原子価を有するタングステンを含むことが好ましい。かかる酸化物焼結体によれば、これを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイス(たとえば、TFT)において、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 本実施形態の酸化物焼結体は、X線光電子分光法により測定される結合エネルギーが245eV以上250eV以下のタングステンを含むことも好ましい。かかる酸化物焼結体によれば、これを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイス(たとえば、TFT)において、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 タングステンは、イオンとして様々な原子価を持つことが知られている。このうち、4価および6価の少なくとも1つの原子価を有している場合に、かかる酸化物焼結体を用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイス(たとえば、TFT)において、そのON電流を高めるとともに、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。タングステンの原子価は、4価のみまたは6価のみであってもよいし、4価および6価の両方が含まれてもよいし、主成分とはならない他の価数が含まれても良い。4価および6価の少なくとも1つの原子価を有するタングステンは、タングステンの総量の70原子%以上であることが好ましい。
 X線光電子分光法(XPS)においては、タングステンの結合エネルギーから原子価を求めることができ、ピーク分離によって原子価の価数の割合を求めることができる。本実施形態の酸化物焼結体に含まれるタングステンについてX線光電子分光法により結合エネルギーを測定したところ、ピーク位置が245eV以上250eV以下である場合に、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえば、TFT)において、そのON電流を高めるとともに、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。かかる観点から、上記結合エネルギーは、246eV以上249eV以下がより好ましく、246eV以上248eV以下がさらに好ましい。
 タングステンが6価となるWO3のタングステン4d5/2の結合エネルギーのピークは247eV以上249eV以下に現れ、タングステン金属およびタングステンが4価となるWO2のタングステン4d5/2の結合エネルギーのピークは、243eV以上244eV以下の範囲に現れることが知られている。これより、本実施形態の酸化物焼結体は、主に6価をとることが、かかる酸化物焼結体を用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイス(たとえば、TFT)において、そのON電流を高めるとともに、低い駆動電圧でOFF電流に対するON電流の比を高くする観点から、好ましい。
 [実施形態2:酸化物焼結体の製造方法]
 本実施形態の酸化物焼結体の製造方法は、実施形態1の酸化物焼結体の製造方法であって、亜鉛酸化物粉末とタングステン酸化物粉末との1次混合物を調製する工程と、1次混合物を熱処理することにより仮焼粉末を形成する工程と、仮焼粉末を含む原料粉末の2次混合物を調製する工程と、2次混合物を成形することにより成形体を形成する工程と、成形体を焼結することにより酸化物焼結体を形成する工程とを含む。仮焼粉末を形成する工程は、酸素含有雰囲気下、550℃以上1200℃未満の温度で1次混合物を熱処理することにより、仮焼粉末として亜鉛とタングステンとを含む複酸化物の粉末を形成することを含む。
 本実施形態の酸化物焼結体の製造方法によれば、仮焼粉末を形成する工程において、亜鉛酸化物粉末とタングステン酸化物粉末との1次混合物を、酸素含有雰囲気下において550℃以上1200℃未満の温度で熱処理することにより、仮焼粉末として亜鉛とタングステンとを含む複酸化物粉末を形成することを含むため、酸化物焼結体の見かけ密度が高くなり、スパッタターゲットとして好適に用いることのできる酸化物焼結体が得られる。
 本実施形態の酸化物焼結体の製造方法では、原料粉末中の亜鉛酸化物粉末とタングステン酸化物粉末を混合することにより1次混合物を調製し、かかる1次混合物を、酸素を含む雰囲気にて550℃以上1200℃未満の温度で熱処理し、仮焼粉末として亜鉛とタングステンとを含む複酸化物粉末を形成することにより、酸化物焼結体の見かけ密度を高くすることができる。該複酸化物は、酸素が欠損していたり、金属が置換していたりしてもよい。熱処理温度が550℃未満の場合は、亜鉛とタングステンとを含む複酸化物粉末が得られず、1200℃以上の場合、亜鉛とタングステンとを含む複酸化物粉末が分解、飛散してしまうか、粉末の粒径が大きくなりすぎる。
 また、亜鉛酸化物粉末とタングステン酸化物粉末との1次混合物を、酸素を含む雰囲気下にて550℃以上1200℃未満の温度で熱処理し、仮焼粉末として亜鉛とタングステンとを含む複酸化物粉末を形成することにより、酸化物焼結体中のタングステンが4価および6価の少なくとも1つの原子価を含むことができる。これにより、得られる酸化物焼結体を含むスパッタターゲットを用いて形成された酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
 ここで、亜鉛とタングステンとを含む複酸化物は、ZnWO4型結晶相を含むことが、酸化物焼結体の見かけ密度を高くする観点および酸化物焼結体中における6価および4価の少なくとも1つの原子価を有するタングステンの割合を高める観点から、好ましい。ZnWO4型結晶相は、空間群P12/c1(13)にて表される結晶構造を有し、JCPDSカードの01-088-0251に規定される結晶構造を有するタングステン酸亜鉛化合物結晶相である。これらの結晶系を示す限り、酸素が欠損したり、金属が固溶していたりしていて、格子定数が変化していても構わない。
 また、タングステン酸化物粉末は、WO3結晶相、WO2結晶相、およびWO2.72結晶相からなる群より選ばれる少なくとも1種の結晶相を含むことが、酸化物焼結体の見かけ密度を高くする観点および酸化物焼結体中における6価および4価の少なくとも1つの原子価を有するタングステンの割合を高める観点から、好ましい。かかる観点から、タングステン酸化物粉末は、WO3粉末、WO2粉末、およびWO2.72粉末からなる群より選ばれる少なくとも1つの粉末であることがより好ましい。
 また、タングステン酸化物粉末のメジアン粒径d50は、酸化物焼結体の見かけ密度を高くする観点から、0.1μm以上4μm以下が好ましく、0.2μm以上2μm以下がより好ましく、0.3μm以上1.5μm以下がさらに好ましい。ここで、メジアン粒径d50は、BET比表面積測定により求めた値である。メジアン粒径d50が0.1μmより小さい場合、粉末のハンドリングが困難で、亜鉛酸化物粉末とタングステン酸化物粉末を均一に混合することが難しい。メジアン粒径d50が4μmより大きい場合、亜鉛酸化物粉末と混合後、酸素を含む雰囲気下で550℃以上1200℃未満の温度にて熱処理して得られる亜鉛とタングステンとを含む複酸化物粉末の粒径も大きくなってしまい、酸化物焼結体の見かけ密度を高くすることが難しい。
 また、上記複酸化物は、酸化物焼結体の見かけ密度を高くする観点から、ZnWO4型結晶相を含むことが好ましい。
 本実施形態の酸化物焼結体の製造方法は、特に制限はないが、効率よく実施形態1の酸化物焼結体を形成する観点から、たとえば、以下の工程を含む。
 1.原料粉末を準備する工程
 酸化物焼結体の原料粉末として、インジウム酸化物粉末(たとえばIn23粉末)、タングステン酸化物粉末(たとえばWO3粉末、WO2.72粉末、WO2粉末)、亜鉛酸化物粉末(たとえばZnO粉末)など、酸化物焼結体を構成する金属元素またはSiの酸化物粉末を準備する。なお、タングステン酸化物粉末としてはWO3粉末だけでなく、WO2.72粉末、WO2粉末などのようなWO3粉末に比べて酸素が欠損した化学組成を有する粉末を原料として用いることが、酸化物焼結体中のタングステンの原子価を6価および4価の少なくとも1つにする観点から、好ましい。かかる観点から、WO2.72粉末およびWO2粉末の少なくとも1つをタングステン酸化物粉末の少なくとも一部として用いることがより好ましい。原料粉末の純度は、酸化物焼結体への意図しない金属元素およびSiの混入を防止し安定した物性を得る観点から、99.9質量%以上の高純度であることが好ましい。
 また、タングステン酸化物粉末のメジアン粒径d50は、0.1μm以上4μm以下であることが、酸化物焼結体の見かけ密度を高くする観点から、好ましい。
 2.原料粉末の1次混合物を調製する工程
 上記原料粉末の内、タングステン酸化物粉末(WO3粉末、WO2.72粉末および/またはWO2粉末)と、亜鉛酸化物粉末(ZnO粉末)と、を粉砕混合する。このとき、酸化物焼結体の結晶相として、ZnWO4型相を得たい場合は原料粉末としてタングステン酸化物粉末と亜鉛酸化物粉末とをモル比で1:1の割合で、Zn238型相を得たい場合は原料粉末としてタングステン酸化物粉末と亜鉛酸化物粉末とをモル比で3:2の割合で混合する。ZnWO4型相を用いる方が酸化物焼結体の見かけ密度を高める観点から好ましい。原料粉末を粉砕混合する方法には、特に制限はなく、乾式および湿式のいずれの方式であってもよく、具体的には、ボールミル、遊星ボールミル、ビーズミルなどを用いて粉砕混合される。このようにして、原料粉末の1次混合物が得られる。ここで、湿式の粉砕混合方式を用いて得られた混合物の乾燥には、自然乾燥やスプレードライヤなどの乾燥方法が好ましく用いられ得る。
 3.1次混合物を熱処理することにより仮焼粉末を形成する工程
 次に、得られた1次混合物を熱処理(仮焼)する。1次混合物の仮焼温度は、仮焼物の粒径が大きくなりすぎて焼結体の見かけ密度が低下することがないように1200℃未満であることが好ましく、仮焼生成物としてZnWO4型結晶相、Zn238型結晶相を得るためには550℃以上であることが好ましい。より好ましくは550℃以上1000℃未満であり、さらに好ましくは550℃以上800℃以下である。このようにして、ZnWO4型結晶相またはZn238型結晶相を含む仮焼粉末が得られる。仮焼雰囲気は、酸素を含む雰囲気であればよいが、大気圧もしくは大気よりも加圧された大気雰囲気もしくは酸素を25体積%以上含む酸素-窒素混合雰囲気が好ましい。また、生産性が高いことから大気圧-大気雰囲気がより好ましい。
 4.仮焼粉末を含む原料粉末の2次混合物を調製する工程
 次に、得られた仮焼粉末と、上記原料粉末の内のIn23粉末とを、上記と同様の粉砕混合する方法により、粉砕混合する。このようにして、原料粉末の2次混合物が得られる。
 5.2次混合物を成形することにより成形体を形成する工程
 次に、得られた2次混合物を成形する。2次混合物を成形する方法は、特に制限はないが、焼結体の見かけ密度を高くする点から、一軸プレス法、CIP(冷間静水圧処理)法、キャスティング法などが好ましい。このようにして、成形体が得られる。
 6.成形体を焼結することにより酸化物焼結体を形成する工程
 次に、得られた成形体を焼結する。ホットプレス焼結法は用いないことが好ましい。成形体の焼結温度は、特に制限はないが、形成する酸化物焼結体の見かけ密度を6.5g/cm3より大きくする点から、900℃以上1200℃以下が好ましい。また、焼結雰囲気は、特に制限はないが、酸化物焼結体の構成結晶の粒径が大きくなることを防いでクラックの発生を防止する観点から、大気圧-大気雰囲気が好ましい。このようにして、本実施形態の酸化物焼結体が得られる。
 [実施形態3:スパッタターゲット]
 本実施形態のスパッタターゲットは、実施形態1の酸化物焼結体を含む。本実施形態のスパッタターゲットは、実施形態1の酸化物焼結体を含むため、特性の高い半導体デバイスの酸化物半導体膜をスパッタ法で形成するために好適に用いることができる。
 本実施形態のスパッタターゲットは、特性の高い半導体デバイスの酸化物半導体膜をスパッタ法で形成するために好適に用いられるものとするために、実施形態1の酸化物焼結体を含むことが好ましく、実施形態1の酸化物焼結体からなることがより好ましい。
 [実施形態4:半導体デバイス]
 図1を参照して、本実施形態の半導体デバイス10は、実施形態1の酸化物焼結体をスパッタターゲットとして用いるスパッタ法により形成した酸化物半導体膜14を含む。本実施形態の半導体デバイスは、実施形態1の酸化物焼結体をスパッタターゲットとして用いるスパッタ法により形成した酸化物半導体膜を含むため、高い特性を有する。
 本実施形態の半導体デバイス10は、特に限定はされないが、たとえば、実施形態1の酸化物焼結体をスパッタターゲットとして用いるスパッタ法により形成した酸化物半導体膜14をチャネル層として含む半導体デバイス10であるTFT(薄膜トランジスタ)である。本実施形態の半導体デバイス10の一例であるTFTは、上記実施形態の酸化物焼結体をターゲットとして用いてスパッタ法により形成した酸化物半導体膜14をチャネル層として含むため、そのOFF電流が低くなるとともに、低い駆動電圧でOFF電流に対するON電流の比が高くなる。
 本実施形態の半導体デバイス10であるTFTは、より具体的には、図1に示すように、基板11と、基板11上に配置されたゲート電極12と、ゲート電極12上に絶縁層として配置されたゲート絶縁膜13と、ゲート絶縁膜13上にチャネル層として配置された酸化物半導体膜14と、酸化物半導体膜14上に互いに接触しないように配置されたソース電極15およびドレイン電極16と、を含む。
 本実施形態の半導体デバイス10であるTFTにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くする観点から、酸化物半導体膜14中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率(以下、酸化物半導体膜14の「W含有率」ともいう。)を1.2原子%より大きく30原子%より小さくし、酸化物半導体膜14中のインジウム、タングステンおよび亜鉛の合計に対する亜鉛の含有率(以下、酸化物半導体膜14の「Zn含有率」ともいう。)を1.2原子%より大きく30原子%より小さくすることが好ましい。ここで、酸化物半導体膜14の化学組成すなわち各種元素の含有率は、RBS(ラザフォード後方散乱分析)により測定する。
 また、上記の観点から、酸化物半導体膜14のW含有率は、2.0原子%より大きく15原子%より小さいことがより好ましく、4.0原子%より大きく12原子%より小さいことがさらに好ましい。また、上記の観点から、酸化物半導体膜14のZn含有率は、2.0原子%より大きく15原子%より小さいことがより好ましく、4.0原子%より大きく12原子%より小さいことがさらに好ましい。
 酸化物半導体膜14のW含有率が1.2原子%以下の場合、かかる酸化物半導体膜14をチャネル層として含む半導体デバイス10であるTFTにおいて、そのOFF電流が増加してしまい、OFF電流に対するON電流の比が小さくなってしまう傾向にある。酸化物半導体膜14のW含有率が30原子%以上の場合、かかる酸化物半導体膜14をチャネル層として含む半導体デバイス10であるTFTにおいて、そのON電流が低下するか、または、低い駆動電圧ではOFF電流に対するON電流の比が小さくなってしまう傾向にある。
 酸化物半導体膜14のZn含有率が1.2原子%以下の場合、かかる酸化物半導体膜14をチャネル層として含む半導体デバイス10であるTFTにおいて、そのOFF電流が増加してしまい、OFF電流に対するON電流の比が小さくなってしまう傾向にある。酸化物半導体膜14のZn含有率が30原子%以上の場合、かかる酸化物半導体膜14をチャネル層として含む半導体デバイス10であるTFTにおいて、そのON電流が低下するか、または、低い駆動電圧ではOFF電流に対するON電流の比が小さくなってしまう傾向にある。
 本実施形態の半導体デバイス10であるTFTにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くする観点から、酸化物半導体膜14に含まれる亜鉛に対するタングステンの原子比(以下、「W/Zn原子比」ともいう。)は、0.5より大きく3.0より小さいことが好ましく、0.8より大きく2.5より小さいことがより好ましく、1.0より大きく2.2より小さいことがさらに好ましい。ここで、酸化物半導体膜14の化学組成すなわちW/Zn原子比は、RBS(ラザフォード後方散乱分析)により測定する。
 W/Zn原子比が3.0以上の場合、かかる酸化物半導体膜をチャネル層として含む半導体デバイス10であるTFTにおいて、そのOFF電流が増加してしまい、OFF電流に対するON電流の比が小さくなってしまう。W/Zn原子比が0.5以下の場合、かかる酸化物半導体膜14をチャネル層として含む半導体デバイス10であるTFTにおいて、そのON電流が低下するか、または、低い駆動電圧ではOFF電流に対するON電流の比が小さくなってしまう。
 本実施形態の半導体デバイス10であるTFTにおいて、そのON電流を高めるとともに、低い駆動電圧でOFF電流に対するON電流の比を高くする観点から、酸化物半導体膜14は、6価および4価の少なくとも1つの原子価を有するタングステンを含むことが好ましい。
 本実施形態の半導体デバイス10であるTFTにおいて、低い駆動電圧でOFF電流に対するON電流の比を高くする観点から、酸化物半導体膜14は、X線光電子分光法により測定される結合エネルギーが245eV以上250eV以下のタングステンを含むことが好ましい。
 (半導体デバイスの製造方法)
 図2を参照して、本実施形態の半導体デバイス10の製造方法は、特に制限はないが、効率よく高特性の半導体デバイス10を製造する観点から、基板11上にゲート電極12を形成する工程(図2(A))、ゲート電極12上に絶縁層としてゲート絶縁膜13を形成する工程(図2(B))と、ゲート絶縁膜13上にチャネル層として酸化物半導体膜14を形成する工程(図2(C))と、酸化物半導体膜14上にソース電極15およびドレイン電極16を互いに接触しないように形成する工程(図2(D))と、を含むことが好ましい。
 1.ゲート電極を形成する工程
 図2(A)を参照して、基板11上にゲート電極12を形成する。基板11は、特に制限はないが、透明性、価格安定性、および表面平滑性を高くする点から、石英ガラス基板、無アルカリガラス基板、アルカリガラス基板などが好ましい。ゲート電極12は、特に制限はないが、耐酸化性が高くかつ電気抵抗が低い点から、Mo電極、Ti電極、W電極、Al電極、Cu電極などが好ましい。ゲート電極12の形成方法は、特に制限はないが、基板の主面上に大面積で均一に形成できる点から、真空蒸着法、スパッタ法などが好ましい。
 2.ゲート絶縁膜を形成する工程
 図2(B)を参照して、ゲート電極12上に絶縁層としてゲート絶縁膜13を形成する。ゲート絶縁膜13は、特に制限はないが、絶縁性が高い点から、SiOx膜、SiNy膜などが好ましい。ゲート絶縁膜13の形成方法は、特に制限はないが、ゲート電極が形成された基板11の主面上に大面積で均一に形成できる点および絶縁性を確保する点から、プラズマCVD(化学気相堆積)法などが好ましい。
 3.酸化物半導体膜を形成する工程
 図2(C)を参照して、ゲート絶縁膜13上にチャネル層として酸化物半導体膜14を形成する。酸化物半導体膜14は、特性の高い半導体デバイス10を製造する観点から、実施形態1の酸化物焼結体をスパッタターゲットとして用いてスパッタ法により形成する。ここで、スパッタ法とは、成膜室内に、ターゲットと基板とを対向させて配置し、ターゲットに電圧を印加して、希ガスイオンでターゲットの表面をスパッタリングすることにより、ターゲットからターゲットを構成する原子を放出させて基板(上記のゲート電極およびゲート絶縁膜が形成された基板も含む。)上に堆積させることによりターゲットを構成する原子で構成される膜を形成する方法をいう。
 4.ソース電極およびドレイン電極を形成する工程
 図2(D)を参照して、酸化物半導体膜14上にソース電極15およびドレイン電極16を互いに接触しないように形成する。ソース電極15およびドレイン電極16は、特に制限はないが、耐酸化性が高く、電気抵抗が低く、かつ酸化物半導体膜14との接触電気抵抗が低いことから、Mo電極、Ti電極、W電極、Al電極、Cu電極などが好ましい。ソース電極15およびドレイン電極16を形成する方法は、特に制限はないが、酸化物半導体膜14が形成された基板11の主面上に大面積で均一に形成できる点から、真空蒸着法、スパッタ法などが好ましい。ソース電極15およびドレイン電極16を互いに接触しないように形成する方法は、特に制限はないが、酸化物半導体膜14が形成された基板11の主面上に大面積で均一なソース電極15とドレイン電極16のパターンを形成できる点から、フォトレジストを使ったエッチング法による形成が好ましい。
 実施形態1の酸化物焼結体、実施形態3のスパッタターゲット、実施形態4の半導体デバイスにおける酸化物半導体膜に含まれるタングステンの原子価は、X線光電子分光法(XPS)により測定する。タングステンが6価となるWO3のタングステン4d5/2の結合エネルギーのピークは247eV以上249eV以下の範囲に現れ、タングステン金属およびタングステンが4価となるWO2のタングステン4d5/2の結合エネルギーのピークは、243eV以上244eV以下の範囲に現れる。したがって、これらの範囲に存在するピークとこれら以外の範囲に存在するピークの強度面積から、6価および4価の少なくとも1つの原子価を有するタングステンの割合を求めることができる。タングステンの全ピーク強度面積に対する6価および4価の合計ピーク強度面積割合が70%以上の場合、6価および4価の少なくとも1つの原子価を有するタングステンが主成分であると判断することができる。
 実施形態1の酸化物焼結体、実施形態3のスパッタターゲット、および実施形態4の半導体デバイス10における酸化物半導体膜14に含まれるタングステンは、主に6価をとることが、酸化物半導体膜14をチャネル層として含む半導体デバイス10であるTFT(薄膜トランジスタ)において、そのON電流を高めるとともに、低い駆動電圧でOFF電流に対するON電流の比を高くする観点から、好ましい。
 ここで、タングステンの原子価が6価であることは、X線光電子分光法により調べたタングステンの結合エネルギーが、245eV以上250eV以下であることから確認できる。
 (実施例1~実施例8)
 1.粉末原料の準備
 表1に示す種類とメジアン粒径d50を有し純度が99.99質量%のタングステン酸化物粉末(表1において「W」と表記した。)と、メジアン粒径d50が1.0μmで純度が99.99質量%のZnO粉末(表1において「Z」と表記した。)と、メジアン粒径d50が1.0μmで純度が99.99質量%のIn23粉末(表1において「I」と表記した。)と、を準備した。
 2.原料粉末の1次混合物の調製
 まず、ボールミルに、準備した原料粉末の内、タングステン酸化物粉末とZnO粉末とを入れて、18時間粉砕混合することにより原料粉末の1次混合物を調製した。タングステン酸化物粉末とZnO粉末とのモル混合比はタングステン酸化物粉末:ZnO粉末=1:1とした。上記の粉砕混合の際の分散媒としてエタノールを用いた。得られた原料粉末の1次混合物は大気中で乾燥させた。
 3.1次混合物の熱処理による仮焼粉末の形成
 次に、得られた原料粉末の1次混合物をアルミナ製坩堝に入れて、大気雰囲気中、650℃の温度で8時間仮焼した。仮焼温度は結晶相が形成される温度であれば仮焼粉の粒径をなるべく小さくできる点から低い方が好ましい。このようにして、結晶相としてZnWO4型相を含む仮焼粉末が得られた。
 4.仮焼粉末を含む原料粉末の2次混合物の調製
 次に、得られた仮焼粉末を、準備した原料粉末であるIn23粉末とともにポットへ投入し、さらに粉砕混合ボールミルに入れて、12時間粉砕混合することにより原料粉末の2次混合物を調製した。In23粉末の混合量は、タングステン酸化物粉末とZnO粉末とIn23粉末とのモル混合比率が表1に示されるとおりとなるようにした。上記の粉砕混合の際の分散媒としてエタノールを用いた。得られた混合粉末はスプレードライで乾燥させた。
 5.2次混合物の成形による成形体の形成
 次に、得られた2次混合物をプレスにより成形し、さらにCIPにより室温(5℃~30℃)の静水中で190MPaの圧力で加圧成形して、直径100mmで厚さ約9mmの円板状の成形体を得た。
 6.成形体の焼結による酸化物焼結体の形成
 次に、得られた成形体を大気圧-大気雰囲気中にて表1の実施例1~実施例8に示す焼成温度で8時間焼成して、タングステンおよび亜鉛が固溶したビックスバイト型結晶相(In23型相)を含む酸化物焼結体を得た。
 7.酸化物焼結体の物性評価
 得られた酸化物焼結体の結晶相の同定は、酸化物焼結体の一部からサンプルを採取して、粉末X線回折法よる結晶解析により行った。X線にはCuのKα線を用いた。酸化物焼結体に存在する結晶相を表1にまとめた。
 得られた酸化物焼結体において、ビックスバイト型結晶相であるIn23型相が主成分であることの確認は、次のようにして行った。まず、X線回折にてビックスバイト型結晶相の存在と、それ以外の結晶相の存在を確認した。X線回折で確認される相はビックスバイト型結晶相のみの場合もあった。ビックスバイト型結晶相のみ確認された場合は、ビックスバイト型結晶相が主成分であると判断した。
 X線回折にてビックスバイト型結晶相の存在と、それ以外の結晶相の存在とを確認した場合、ビックスバイト型結晶相であるIn23型相が主成分であることの確認は、以下のようにして行った。
 酸化物焼結体の一部からサンプルを採取して、サンプルの表面を研磨して平滑にした。続いて、SEM-EDXを用いて、サンプルの表面をSEMで観察し、各結晶粒子の金属元素の組成比をEDXで分析した。結晶粒子をそれらの結晶粒子の金属元素の組成比の傾向でグループ分けを行ったところ、Zn含有率とW含有率の高い結晶粒子のグループと、Zn含有率およびW含有率が非常に低くIn含有率が高い結晶粒子のグループとに分けることができた。Zn含有率およびW含有率の高い結晶粒子のグループはビックスバイト型結晶相以外の結晶相であり、Zn含有率およびW含有率が非常に低くIn含有率が高い結晶粒子のグループはビックスバイト型結晶相であるIn23型結晶相であると結論づけた。
 酸化物焼結体の上記測定面に占めるビックスバイト型結晶相であるIn23型結晶相の面積の割合(ビックスバイト型結晶相占有率)が90%以上の場合、ビックスバイト型結晶相であるIn23型結晶相が主成分と判断した。実施例1~実施例8の酸化物焼結体はいずれも、ビックスバイト型結晶相であるIn23型結晶相が主成分であった。
 得られた酸化物焼結体中のインジウム、亜鉛、およびタングステンの含有量は、ICP質量分析法により測定した。これらの含有量に基づいてW含有率(表2において「W含有率」と表記した。)およびZn含有率(表2において「Zn含有率」と表記した。)をそれぞれ原子%で算出した。結果を表2にまとめた。
 得られた酸化物焼結体の見かけ密度はアルキメデス法により求めた。
 得られた酸化物焼結体、スパッタターゲットに含まれるタングステンの原子価を測定する方法として、X線光電子分光法(XPS)を用いた。タングステンが6価となるWO3のタングステン4d5/2の結合エネルギーのピークは247eV以上249eV以下の範囲に現れ、タングステン金属およびタングステンが4価となるWO2のタングステン4d5/2の結合エネルギーのピークは243eVから244eVの範囲に現れる。XPSから同定されたタングステンの原子価(表2において「W原子価」と表記した。)および結合エネルギーのピーク位置(表2において「W結合エネルギー」と表記した。)を表2にまとめた。
 8.ターゲットの作製
 得られた酸化物焼結体を、直径3インチ(76.2mm)で厚さ5.0mmのターゲットに加工した。
 9.半導体デバイスの作製
 (1)ゲート電極の形成
 図2(A)を参照して、まず、基板11として50mm×50mm×厚さ0.6mmの合成石英ガラス基板を準備し、その基板11上にスパッタ法によりゲート電極12として厚さ100nmのMo電極を形成した。
 (2)ゲート絶縁膜の形成
 図2(B)を参照して、次に、ゲート電極12上にプラズマCVD法によりゲート絶縁膜13として厚さ200nmの非晶質のSiOx膜を形成した。
 (3)酸化物半導体膜の形成
 図2(C)を参照して、次に、ゲート絶縁膜13上に、実施例1~実施例8のそれぞれの酸化物焼結体から加工されたターゲットを用いたDC(直流)マグネトロンスパッタ法により、厚さ35nmの酸化物半導体膜14を形成した。ここで、ターゲットの直径3インチ(76.2mm)の平面がスパッタ面であった。
 具体的には、スパッタリング装置(図示せず)の成膜室内の水冷している基板ホルダ上に、上記ゲート電極12およびゲート絶縁膜13が形成された基板11をゲート絶縁膜13が露出されるように配置した。上記ターゲットをゲート絶縁膜13に対向するように90mmの距離で配置した。成膜室内を6×10-5Pa程度の真空度として、ターゲットを以下のようにしてスパッタリングした。
 まず、ゲート絶縁膜13とターゲットとの間にシャッターを入れた状態で、成膜室内へAr(アルゴン)ガスとO2(酸素)ガスとの混合ガスを0.5Paの圧力まで導入した。混合ガス中のO2ガス含有率は20体積%であった。ターゲットに100WのDC電力を印加してスパッタリング放電を起こし、これによってターゲット表面のクリーニング(プレスパッタ)を10分間行った。
 次いで、同じターゲットに100WのDC電力を印加して、成膜室内の雰囲気をそのまま維持した状態で、上記シャッターを外すことにより、ゲート絶縁膜13上に酸化物半導体膜14を成膜した。なお、基板ホルダに対しては、特にバイアス電圧は印加されておらず、水冷がされているのみであった。このとき、酸化物半導体膜14の厚さが35nmとなるように成膜時間を設定した。このようにして、酸化物焼結体から加工されたターゲットを用いたDC(直流)マグネトロンスパッタ法により酸化物半導体膜14が形成された。かかる酸化物半導体膜14は、半導体デバイス10であるTFT(薄膜トランジスタ)においてチャネル層として機能する。
 次に、形成された酸化物半導体膜14の一部をエッチングすることにより、ソース電極形成用部14s、ドレイン電極形成用部14d、およびチャネル部14cを形成した。ここで、ソース電極形成用部14sおよびドレイン電極形成用部14dの主面の大きさを100μm×100μm、チャネル長さCL(図1(A)および(B)ならびに図2を参照して、チャネル長さCLとは、ソース電極15とドレイン電極16との間のチャネル部14cの距離をいう。)は20μm、チャネル幅CW(図1(A)および(B)ならびに図2を参照して、チャネル幅CWとは、チャネル部14cの幅をいう。)は40μmとした。チャネル部14cは、半導体デバイスである薄膜トランジスタ(TFT)が75mm×75mmの基板主面内に3mm間隔で縦25個×横25個配置されるように、75mm×75mmの基板主面内に3mm間隔で縦25個×横25個配置した。
 上記の酸化物半導体膜14の一部のエッチングは、具体的には、体積比でリン酸:酢酸:硝酸=87:10:3であるエッチング水溶液を調製し、ゲート電極12、ゲート絶縁膜13および酸化物半導体膜14がこの順に形成された基板11を、そのエッチング水溶液に浸漬することにより行った。このとき、エッチング水溶液は、ホットバス内で45℃に昇温されていた。
 (4)ソース電極およびドレイン電極の形成
 図2(D)を参照して、次に、酸化物半導体膜14上にソース電極15およびドレイン電極16を互いに分離して形成した。
 具体的には、酸化物半導体膜14のソース電極形成用部14sおよびドレイン電極形成用部14dの主面のみが露出するように、酸化物半導体膜14上にレジスト(図示せず)を塗布、露光および現像した。酸化物半導体膜14のソース電極形成用部14sおよびドレイン電極形成用部14dのそれぞれの主面上に、スパッタ法により、ソース電極15である厚さが100nmのMo電極とドレイン電極16である厚さが100nmのMo電極とを互いに分離して形成した。その後、酸化物半導体膜14上のレジストを剥離した。このようなソース電極15、ドレイン電極16としてのMo電極は、半導体デバイス10である薄膜トランジスタ(TFT)が75mm×75mmの基板主面内に3mm間隔で縦25個×横25個配置されるように、一つのチャネル部14cに対してソース電極15、ドレイン電極16を各1つずつ配置した。これにより、半導体デバイス10として、酸化物半導体膜14をチャネル層として備えるTFTを製造した。
 次に、得られた半導体デバイス10であるTFTを窒素雰囲気中150℃で1時間熱処理した。
 10.半導体デバイスの特性評価
 半導体デバイス10であるTFTの特性を以下のようにして評価した。まず、ゲート電極12、ソース電極15およびドレイン電極16に測定針を接触させた。ソース電極15とドレイン電極16との間に7Vのソース-ドレイン間電圧Vdsを印加し、ソース電極15とゲート電極12との間に印加するソース-ゲート間電圧Vgsを-10Vから15Vに変化させて、そのときのソース-ドレイン間電流Idsを測定した。ソース-ゲート間電圧Vgsが-5Vのときのソース-ドレイン間電流IdsをOFF電流と定義した。各実施例におけるOFF電流の値を表2にまとめた。表2における「OFF電流」の欄において、たとえば「E-12」とは、「10-12」を意味する。ソース-ゲート間電圧Vgsが15Vのときのソース-ドレイン間電流IdsをON電流と定義して、OFF電流の値に対するON電流の値の比(ON電流/OFF電流比)を求め、これを表2にまとめた。表2における「ON電流/OFF電流比」の欄において、9桁とは1×109以上1×1010未満を意味し、8桁とは1×108以上1×109未満を意味し、7桁とは1×107以上1×108未満を意味し、6桁とは1×106以上1×107未満を意味し、4桁とは1×104以上1×105未満を意味する。
 TFTが備える酸化物半導体膜14中のインジウム、亜鉛、およびタングステンの含有量は、RBS(ラザフォード後方散乱分析)により測定した。これらの含有量に基づいてW含有率およびZn含有率をそれぞれ原子%にて算出した。また、これらの含有量に基づいて、W/Zn原子比を算出した。結果を表2にまとめた。
 得られた酸化物半導体膜14に含まれるタングステンの原子価を、X線光電子分光法(XPS)により測定した。タングステンが6価となるWO3のタングステン4d5/2の結合エネルギーのピークは247eV以上249eV以下に現れ、タングステン金属およびタングステンが4価となるWO2のタングステン4d5/2の結合エネルギーのピークは、243eV以上244eV以下の範囲に現れた。XPSから同定されたタングステンの原子価(表2において「W原子価」と表記した。)、結合エネルギーのピーク位置(表2において「W結合エネルギー」と表記した。)を表2にまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (実施例9~実施例12)
 1.粉末原料の準備
 表1に示す種類とメジアン粒径d50を有し純度が99.99質量%のタングステン酸化物粉末(表1において「W」と表記した。)と、メジアン粒径d50が1.0μmで純度が99.99質量%のZnO粉末(表1において「Z」と表記した。)と、メジアン粒径d50が1.0μmで純度が99.99質量%のIn23粉末(表1において「I」と表記した。)と、を準備した。
 2.原料粉末の1次混合物の調製
 まず、ボールミルに、準備した原料粉末の内、タングステン酸化物粉末とZnO粉末とを入れて、18時間粉砕混合することにより原料粉末の1次混合物を調製した。タングステン酸化物粉末とZnO粉末とのモル混合比はタングステン酸化物粉末:ZnO粉末=3:2とした。上記の粉砕混合の際の分散媒としてエタノールを用いた。得られた原料粉末の1次混合物は大気中で乾燥させた。
 3.1次混合物の仮焼による仮焼粉末の形成
 次に、得られた原料粉末の1次混合物をアルミナ製坩堝に入れて、大気雰囲気中、950℃の温度で5時間仮焼した。このようにして、結晶相としてZn238型相を含む仮焼粉末が得られた。
 4.仮焼粉末を含む原料粉末の2次混合物の調製
 次に、得られた仮焼粉末を、準備した原料粉末であるIn23粉末とともにポットへ投入し、さらに粉砕混合ボールミルに入れて、12時間粉砕混合することにより原料粉末の2次混合物を調製した。In23粉末の混合量は、タングステン酸化物粉末とZnO粉末とIn23粉末とのモル混合比率が表1に示されるとおりとなるようにした。上記の粉砕混合の際の分散媒としてエタノールを用いた。得られた混合粉末はスプレードライで乾燥させた。
 5.2次混合物の成形による成形体の形成
 次に、得られた2次混合物を用い、実施例1~実施例8の場合と同様にして、直径100mmで厚さ約9mmの円板状の成形体を得た。
 6.成形体の焼結による酸化物焼結体の形成
 次に、得られた成形体を大気雰囲気中にて表1の実施例9~実施例12に示す焼成温度で8時間焼成して、タングステンおよび亜鉛が固溶したビックスバイト型結晶相(In23型相)を含む酸化物焼結体を得た。
 7.酸化物焼結体の物性評価
 実施例1~実施例8と同様にして、粉末X線回折法よる結晶解析により結晶相の同定を行った。酸化物焼結体に存在する結晶相を表1にまとめた。また、実施例1~実施例8と同様の方法によって、実施例9~実施例12の酸化物焼結体はいずれも、ビックスバイト型結晶相であるIn23型結晶相が主成分であることを確認した。
 また、実施例1~実施例8と同様にして、酸化物焼結体のW含有率およびZn含有率、見掛け密度、タングステンの原子価、ならびにW結合エネルギーを測定した。結果を表2にまとめた。
 8.ターゲットの作製
 得られた酸化物焼結体を、実施例1~実施例8の場合と同様に、直径3インチ(76.2mm)で厚さ5.0mmのターゲットに加工した。
 9.半導体デバイスの作製
 実施例1~実施例8の場合と同様にして、半導体デバイスであるTFTを作製した。
 10.半導体デバイスの特性評価
 実施例1~実施例8の場合と同様にして、OFF電流、およびOFF電流の値に対するON電流の値の比を測定した。結果を表2にまとめた。
 また、実施例1~実施例8と同様にして、酸化物半導体膜14のW含有率、Zn含有率、W/Zn原子比、酸化物半導体膜14に含まれるタングステンの原子価、および酸化物半導体膜14に含まれるタングステンのW結合エネルギーを測定した。結果を表2にまとめた。
 (実施例13~実施例24)
 原料粉末の2次混合物の調製の際に、原料粉末として、仮焼粉末およびIn23粉末の他に、表1に示す元素Mを含む酸化物粉末(Al23、TiO2、Cr23、Ga23、HfO2、SiO2、V25、Nb23、ZrO2、MoO2、Ta23、Bi23)を添加したこと以外は、実施例1~実施例12と同様にして、タングステンおよび亜鉛が固溶し、元素Mをさらに含有するビックスバイト型結晶相(In23型相)を含む酸化物焼結体を作製した。酸化物焼結体中のM含有率を表2に示した。実施例13~実施例24の酸化物焼結体はいずれも、ビックスバイト型結晶相であるIn23型結晶相が主成分であった。得られた酸化物焼結体をターゲットに加工して、かかるターゲットを用いたDCマグネトロンスパッタ法により形成された酸化物半導体膜を含む半導体デバイスであるTFTを実施例1~実施例12と同様にして作製した。
 得られた酸化物焼結体および酸化物半導体膜の物性ならびに半導体デバイスであるTFTの特性を表1および表2にまとめた。物性および特性の測定方法は、実施例1~実施例12と同様である。
 (比較例1~比較例3)
 酸化物焼結体の作製の際、原料粉末の混合物を調製した後、仮焼をすることなく、原料粉末の混合物を成形し焼結したこと以外は、実施例1~実施例8または実施例9~実施例12と同様にして、酸化物焼結体を作製した。得られた酸化物焼結体をターゲットに加工して、かかるターゲットを用いたDCマグネトロンスパッタ法により形成された酸化物半導体膜を含む半導体デバイスであるTFTを実施例と同様にして作製した。仮焼をすることなく、原料粉末の混合物を成形し焼結したことにより、複酸化物結晶相の生成がないことを確認した。比較例1~比較例3の酸化物焼結体は、見かけ密度が6.5g/cm3以下である。比較例1~比較例3の間では、WO2.72粉末もしくはWO2粉末、ZnO粉末もしくはSnO2粉末、およびIn23粉末のモル混合比率が異なっている。
 得られた酸化物焼結体および酸化物半導体膜の物性ならびに半導体デバイスであるTFTの特性を表2にまとめた。物性および特性の測定方法は、実施例と同様である。
 (実施例25~実施例28)
 原料粉末の2次混合物の調製の際に、原料粉末として、仮焼粉末およびIn23粉末の他に、表3に示す元素Mを含む酸化物粉末(TiO2、SiO2)を添加したこと以外は、実施例1~実施例12と同様にして、タングステンおよび亜鉛が固溶し、元素Mをさらに含有するビックスバイト型結晶相(In23型相)を含む酸化物焼結体を作製した。酸化物焼結体中のM含有率、及びInに対する元素Mの原子比(M/In比)を表3に示した。実施例25~実施例28の酸化物焼結体はいずれも、ビックスバイト型結晶相であるIn23型結晶相が主成分であった。得られた酸化物焼結体をターゲットに加工して、かかるターゲットを用いたDCマグネトロンスパッタ法により形成された酸化物半導体膜を含む半導体デバイスであるTFTを実施例1~実施例12と同様にして作製した。
 得られた酸化物焼結体および酸化物半導体膜の物性ならびに半導体デバイスであるTFTの特性を表3にまとめた。物性および特性の測定方法は、実施例1~実施例12と同様である。
 また、実施例25~実施例28については次の手順で酸化物半導体膜の電気抵抗率を測定した。まず、実施例1~実施例8の「9.半導体デバイスの作製 (3)酸化物半導体膜の形成」に記載の方法と同様にして酸化物半導体膜を形成した(酸化物半導体膜形成後のエッチングは行わなかった)。得られた酸化物半導体膜について、四端子法により電気抵抗率を測定した。この際、電極材としてMo電極を電極間隔が10mmとなるようにスパッタリング法により形成し、外側の電極同士に-40Vから+40Vまでの電圧を掃印し、電流を流しながら、内側の電極間の電圧を測定して、電気抵抗率を算出した。結果を表3に示す。電気抵抗率を、酸化物半導体として用いることができる1×102Ωcm以上とするためには、添加する元素MがSiである場合、Si/In原子数比は0.007より小さいことが好ましく、また、添加する元素MがTiである場合、Ti/In原子数比は0.004より小さいことが好ましかった。電気抵抗率の増大に伴いOFF電流の減少がみられ、TFT特性が向上し、1×102Ωcm未満の場合、OFF電流が高い傾向にあった。
Figure JPOXMLDOC01-appb-T000003
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
 10 半導体デバイス、11 基板、12 ゲート電極、13 ゲート絶縁膜、14 酸化物半導体膜、14c チャネル部、14d ドレイン電極形成用部、14s ソース電極形成用部、15 ソース電極、16 ドレイン電極。

Claims (19)

  1.  インジウムと、タングステンと、亜鉛と、を含む酸化物焼結体であって、
     ビックスバイト型結晶相を主成分として含み、見かけ密度が6.5g/cm3より大きく7.1g/cm3以下であり、
     前記酸化物焼結体中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が1.2原子%より大きく30原子%より小さく、
     前記酸化物焼結体中のインジウム、タングステンおよび亜鉛の合計に対する亜鉛の含有率が1.2原子%より大きく30原子%より小さい酸化物焼結体。
  2.  前記ビックスバイト型結晶相は、インジウム酸化物を主成分として含み、前記ビックスバイト型結晶相の少なくとも一部に固溶しているタングステンおよび亜鉛を含む請求項1に記載の酸化物焼結体。
  3.  アルミニウム、チタン、クロム、ガリウム、ハフニウム、ジルコニウム、シリコン、モリブデン、バナジウム、ニオブ、タンタル、およびビスマスからなる群より選ばれる少なくとも1種の元素をさらに含み、
     前記酸化物焼結体中におけるインジウム、タングステン、亜鉛および前記元素の合計に対する前記元素の含有率が0.1原子%以上10原子%以下である請求項1または請求項2に記載の酸化物焼結体。
  4.  前記酸化物焼結体中における、インジウムに対するシリコンの原子比が0.007より小さい、請求項3に記載の酸化物焼結体。
  5.  前記酸化物焼結体中における、インジウムに対するチタンの原子比が0.004より小さい、請求項3または請求項4に記載の酸化物焼結体。
  6.  6価および4価の少なくとも1つの原子価を有するタングステンを含む請求項1から請求項5のいずれか1項に記載の酸化物焼結体。
  7.  X線光電子分光法により測定される結合エネルギーが245eV以上250eV以下のタングステンを含む請求項1から請求項5のいずれか1項に記載の酸化物焼結体。
  8.  請求項1から請求項7のいずれか1項に記載の酸化物焼結体を含むスパッタターゲット。
  9.  請求項8に記載のスパッタターゲットを用いてスパッタ法により形成した酸化物半導体膜を含む半導体デバイス。
  10.  前記酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が1.2原子%より大きく30原子%より小さく、
     前記酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対する亜鉛の含有率が1.2原子%より大きく30原子%より小さい請求項9に記載の半導体デバイス。
  11.  前記酸化物半導体膜中における、亜鉛に対するタングステンの原子比が0.5より大きく3.0より小さい請求項9または請求項10に記載の半導体デバイス。
  12.  前記酸化物半導体膜中における、インジウムに対するシリコンの原子比が0.007より小さく、かつ前記酸化物半導体膜の電気抵抗率が1×102Ωcm以上である請求項9から請求項11のいずれか1項に記載の半導体デバイス。
  13.  前記酸化物半導体膜中における、インジウムに対するチタンの原子比が0.004より小さく、かつ前記酸化物半導体膜の電気抵抗率が1×102Ωcm以上である請求項9から請求項12のいずれか1項に記載の半導体デバイス。
  14.  前記酸化物半導体膜は、6価および4価の少なくとも1つの原子価を有するタングステンを含む請求項9から請求項13のいずれか1項に記載の半導体デバイス。
  15.  前記酸化物半導体膜は、X線光電子分光法により測定される結合エネルギーが245eV以上250eV以下のタングステンを含む請求項9から請求項13のいずれか1項に記載の半導体デバイス。
  16.  請求項1から請求項6のいずれか1項に記載の酸化物焼結体の製造方法であって、
     亜鉛酸化物粉末とタングステン酸化物粉末との1次混合物を調製する工程と、
     前記1次混合物を熱処理することにより仮焼粉末を形成する工程と、
     前記仮焼粉末を含む原料粉末の2次混合物を調製する工程と、
     前記2次混合物を成形することにより成形体を形成する工程と、
     前記成形体を焼結することにより酸化物焼結体を形成する工程と、
    を含み、
     前記仮焼粉末を形成する工程は、酸素含有雰囲気下、550℃以上1200℃未満の温度で前記1次混合物を熱処理することにより、前記仮焼成粉末として亜鉛とタングステンとを含む複酸化物の粉末を形成することを含む酸化物焼結体の製造方法。
  17.  前記タングステン酸化物粉末は、WO3結晶相、WO2結晶相、およびWO2.72結晶相からなる群より選ばれる少なくとも1種の結晶相を含む請求項16に記載の酸化物焼結体の製造方法。
  18.  前記タングステン酸化物粉末のメジアン粒径d50が、0.1μm以上4μm以下である請求項16または請求項17に記載の酸化物焼結体の製造方法。
  19.  前記複酸化物がZnWO4型結晶相を含む請求項16から請求項18のいずれか1項に記載の酸化物焼結体の製造方法。
PCT/JP2015/058061 2014-03-25 2015-03-18 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス WO2015146745A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/787,751 US9957604B2 (en) 2014-03-25 2015-03-18 Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
KR1020157032831A KR20150143812A (ko) 2014-03-25 2015-03-18 산화물 소결체 및 그 제조 방법, 스퍼터 타겟, 그리고 반도체 디바이스
KR1020177011334A KR102042905B1 (ko) 2014-03-25 2015-03-18 산화물 소결체 및 그 제조 방법, 스퍼터 타겟, 그리고 반도체 디바이스
EP15768922.5A EP2980041A4 (en) 2014-03-25 2015-03-18 Oxide sintered compact, method for manufacturing same, sputtering target, and semiconductor device
CN201580000813.3A CN105246856A (zh) 2014-03-25 2015-03-18 氧化物烧结体及其制造方法、溅射靶和半导体器件
US15/928,769 US10480060B2 (en) 2014-03-25 2018-03-22 Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-061493 2014-03-25
JP2014061493 2014-03-25
JP2015-016695 2015-01-30
JP2015016695A JP6119773B2 (ja) 2014-03-25 2015-01-30 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/787,751 A-371-Of-International US9957604B2 (en) 2014-03-25 2015-03-18 Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
US15/928,769 Division US10480060B2 (en) 2014-03-25 2018-03-22 Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device

Publications (1)

Publication Number Publication Date
WO2015146745A1 true WO2015146745A1 (ja) 2015-10-01

Family

ID=54195267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058061 WO2015146745A1 (ja) 2014-03-25 2015-03-18 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス

Country Status (7)

Country Link
US (2) US9957604B2 (ja)
EP (1) EP2980041A4 (ja)
JP (1) JP6119773B2 (ja)
KR (2) KR20150143812A (ja)
CN (1) CN105246856A (ja)
TW (1) TWI653352B (ja)
WO (1) WO2015146745A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129146A1 (ja) * 2015-02-13 2016-08-18 住友電気工業株式会社 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス
JP2017224650A (ja) * 2016-06-13 2017-12-21 住友電気工業株式会社 半導体デバイスおよびその製造方法
US9957604B2 (en) 2014-03-25 2018-05-01 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
US10087517B2 (en) 2014-10-22 2018-10-02 Sumitomo Electric Industries, Ltd. Oxide sintered body and semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809157B2 (ja) * 2016-02-22 2021-01-06 東ソー株式会社 酸化物焼結体及び酸化物透明導電膜
CN109906211B (zh) * 2016-11-04 2022-04-01 住友电气工业株式会社 氧化物烧结材料及其制造方法、溅射靶和制造半导体器件的方法
WO2018109970A1 (ja) * 2016-12-12 2018-06-21 住友電気工業株式会社 半導体デバイスおよびその製造方法
KR102401708B1 (ko) * 2017-02-20 2022-05-26 스미토모덴키고교가부시키가이샤 산화물 소결체 및 그의 제조 방법, 스퍼터 타겟, 그리고 반도체 디바이스의 제조 방법
CN110300738B (zh) * 2017-02-20 2022-03-22 住友电气工业株式会社 氧化物烧结材料、制造氧化物烧结材料的方法、溅射靶和制造半导体器件的方法
CN109994559B (zh) * 2019-03-29 2021-07-23 吉林建筑大学 一种半导体氧化膜及其制备方法
CN111943650B (zh) * 2020-07-22 2022-11-29 长沙壹纳光电材料有限公司 一种用于活化等离子沉积技术的iwo靶材及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275623A (ja) * 2001-03-19 2002-09-25 Sumitomo Metal Mining Co Ltd 透明導電性薄膜形成用焼結体ターゲット、その製造方法、及びそれより得られる透明導電性薄膜
JP2004091265A (ja) * 2002-08-30 2004-03-25 Sumitomo Metal Mining Co Ltd 酸化物焼結体
JP2005314131A (ja) * 2004-04-27 2005-11-10 Sumitomo Metal Mining Co Ltd 酸化物焼結体、スパッタリングターゲット、透明導電性薄膜およびその製造方法
JP2006160535A (ja) * 2004-12-02 2006-06-22 Sumitomo Metal Mining Co Ltd 酸化物焼結体、スパッタリングターゲットおよび透明導電性薄膜
JP2006193363A (ja) * 2005-01-12 2006-07-27 Sumitomo Metal Mining Co Ltd 酸化物焼結体、スパッタリングターゲットおよび透明導電性薄膜
JP2010251604A (ja) * 2009-04-17 2010-11-04 Bridgestone Corp 薄膜トランジスタの製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038857B2 (en) 2004-03-09 2011-10-18 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes
JP2006022373A (ja) 2004-07-07 2006-01-26 Sumitomo Metal Mining Co Ltd 透明導電性薄膜作製用スパッタリングターゲットの製造方法
JP2006188392A (ja) * 2005-01-06 2006-07-20 Sumitomo Metal Mining Co Ltd 酸化物焼結体、透明導電性薄膜およびその実装素子
JP4760154B2 (ja) 2005-06-15 2011-08-31 住友金属鉱山株式会社 酸化物焼結体、酸化物透明導電膜、およびこれらの製造方法
JP2007153702A (ja) 2005-12-07 2007-06-21 Canon Inc 亜鉛とタングステンからなる三斜晶系構造の複合酸化物および発光体
JP4662075B2 (ja) 2007-02-02 2011-03-30 株式会社ブリヂストン 薄膜トランジスタ及びその製造方法
KR101312259B1 (ko) 2007-02-09 2013-09-25 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
JP5372776B2 (ja) * 2007-12-25 2013-12-18 出光興産株式会社 酸化物半導体電界効果型トランジスタ及びその製造方法
KR20130080063A (ko) 2008-06-06 2013-07-11 이데미쓰 고산 가부시키가이샤 산화물 박막용 스퍼터링 타겟 및 그의 제조 방법
JPWO2010070832A1 (ja) 2008-12-15 2012-05-24 出光興産株式会社 複合酸化物焼結体及びそれからなるスパッタリングターゲット
CN102460712A (zh) 2009-04-17 2012-05-16 株式会社普利司通 薄膜晶体管以及薄膜晶体管的制造方法
US20120023188A1 (en) * 2010-07-23 2012-01-26 Martin Galaxia L Private Profile Radio Channel
EP2671855B1 (en) 2011-02-04 2016-05-25 Sumitomo Metal Mining Co., Ltd. Oxide sintered body and tablets obtained by processing same
JP2013001590A (ja) 2011-06-15 2013-01-07 Sumitomo Electric Ind Ltd 導電性酸化物およびその製造方法、ならびに酸化物半導体膜
JP2013173658A (ja) 2012-02-27 2013-09-05 Sumitomo Chemical Co Ltd 酸化錫系焼結体およびその製造方法
JP5772667B2 (ja) 2012-03-06 2015-09-02 住友金属鉱山株式会社 蒸着用タブレットとその製造方法
JP5966840B2 (ja) 2012-10-11 2016-08-10 住友金属鉱山株式会社 酸化物半導体薄膜および薄膜トランジスタ
JP6137111B2 (ja) 2013-10-23 2017-05-31 住友電気工業株式会社 酸化物焼結体および半導体デバイスの製造方法
KR20150105527A (ko) 2014-03-06 2015-09-17 삼성디스플레이 주식회사 산화물 스퍼터링 타겟 및 이를 이용한 박막 트랜지스터
JP6119773B2 (ja) 2014-03-25 2017-04-26 住友電気工業株式会社 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス
US20160251264A1 (en) * 2014-08-12 2016-09-01 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
KR101816468B1 (ko) * 2014-10-22 2018-01-08 스미토모덴키고교가부시키가이샤 산화물 소결체 및 반도체 디바이스
JP6551414B2 (ja) * 2015-01-26 2019-07-31 住友電気工業株式会社 酸化物半導体膜および半導体デバイス
EP3257827A4 (en) * 2015-02-13 2018-10-17 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for producing same, sputter target, and semiconductor device
WO2017037564A1 (en) * 2015-08-28 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, transistor, and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275623A (ja) * 2001-03-19 2002-09-25 Sumitomo Metal Mining Co Ltd 透明導電性薄膜形成用焼結体ターゲット、その製造方法、及びそれより得られる透明導電性薄膜
JP2004091265A (ja) * 2002-08-30 2004-03-25 Sumitomo Metal Mining Co Ltd 酸化物焼結体
JP2005314131A (ja) * 2004-04-27 2005-11-10 Sumitomo Metal Mining Co Ltd 酸化物焼結体、スパッタリングターゲット、透明導電性薄膜およびその製造方法
JP2006160535A (ja) * 2004-12-02 2006-06-22 Sumitomo Metal Mining Co Ltd 酸化物焼結体、スパッタリングターゲットおよび透明導電性薄膜
JP2006193363A (ja) * 2005-01-12 2006-07-27 Sumitomo Metal Mining Co Ltd 酸化物焼結体、スパッタリングターゲットおよび透明導電性薄膜
JP2010251604A (ja) * 2009-04-17 2010-11-04 Bridgestone Corp 薄膜トランジスタの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980041A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957604B2 (en) 2014-03-25 2018-05-01 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
US10480060B2 (en) 2014-03-25 2019-11-19 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
US10087517B2 (en) 2014-10-22 2018-10-02 Sumitomo Electric Industries, Ltd. Oxide sintered body and semiconductor device
WO2016129146A1 (ja) * 2015-02-13 2016-08-18 住友電気工業株式会社 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス
CN106164016A (zh) * 2015-02-13 2016-11-23 住友电气工业株式会社 氧化物烧结体及其制造方法、溅射靶和半导体器件
US20170069474A1 (en) 2015-02-13 2017-03-09 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
CN106164016B (zh) * 2015-02-13 2019-08-09 住友电气工业株式会社 氧化物烧结体及其制造方法、溅射靶和半导体器件
US10475631B2 (en) 2015-02-13 2019-11-12 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
US10811238B2 (en) 2015-02-13 2020-10-20 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
JP2017224650A (ja) * 2016-06-13 2017-12-21 住友電気工業株式会社 半導体デバイスおよびその製造方法
WO2017217007A1 (ja) * 2016-06-13 2017-12-21 住友電気工業株式会社 半導体デバイスおよびその製造方法

Also Published As

Publication number Publication date
CN105246856A (zh) 2016-01-13
US20190093211A1 (en) 2019-03-28
US10480060B2 (en) 2019-11-19
KR20150143812A (ko) 2015-12-23
TWI653352B (zh) 2019-03-11
KR20170049630A (ko) 2017-05-10
KR102042905B1 (ko) 2019-11-08
EP2980041A4 (en) 2017-01-11
EP2980041A1 (en) 2016-02-03
TW201542848A (zh) 2015-11-16
JP6119773B2 (ja) 2017-04-26
US9957604B2 (en) 2018-05-01
US20170022602A1 (en) 2017-01-26
JP2015193525A (ja) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6119773B2 (ja) 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス
JP6428780B2 (ja) 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス
JP6137111B2 (ja) 酸化物焼結体および半導体デバイスの製造方法
JP6493502B2 (ja) 酸化物焼結体の製造方法
WO2016063557A1 (ja) 酸化物焼結体および半導体デバイス
WO2017047152A1 (ja) 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法
JP6593268B2 (ja) 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法
JP6233447B2 (ja) 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス
JP6350466B2 (ja) 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法
JP6493501B2 (ja) 酸化物焼結体の製造方法
WO2018083837A1 (ja) 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法
JP2016060686A (ja) 酸化物焼結体およびその製造方法、スパッタリング用ターゲット、ならびに半導体デバイス
JP6493601B2 (ja) 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法
JP6255813B2 (ja) 酸化物焼結体および半導体デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000813.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 14787751

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2015768922

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157032831

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE