WO2015146706A1 - ガス拡散電極およびその製造方法 - Google Patents

ガス拡散電極およびその製造方法 Download PDF

Info

Publication number
WO2015146706A1
WO2015146706A1 PCT/JP2015/057856 JP2015057856W WO2015146706A1 WO 2015146706 A1 WO2015146706 A1 WO 2015146706A1 JP 2015057856 W JP2015057856 W JP 2015057856W WO 2015146706 A1 WO2015146706 A1 WO 2015146706A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
diffusion electrode
microporous layer
porous substrate
conductive porous
Prior art date
Application number
PCT/JP2015/057856
Other languages
English (en)
French (fr)
Inventor
頌 加藤
道生 若田部
三宅 徹
橋本 勝
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CA2940184A priority Critical patent/CA2940184A1/en
Priority to JP2015514696A priority patent/JP5822049B1/ja
Priority to KR1020167028595A priority patent/KR102224340B1/ko
Priority to US15/121,533 priority patent/US10297833B2/en
Priority to EP15770098.0A priority patent/EP3125342B1/en
Priority to CN201580014899.5A priority patent/CN106104877B/zh
Publication of WO2015146706A1 publication Critical patent/WO2015146706A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • a fuel cell is a mechanism that electrically extracts energy generated when water is produced by reacting hydrogen and oxygen, and is expected to be clean energy because it has high energy efficiency and has only water.
  • the present invention relates to a gas diffusion electrode used in a fuel cell and a method for manufacturing the same, and more particularly to a gas diffusion electrode used in a polymer electrolyte fuel cell used as a power source for a fuel cell vehicle and the like, and a method for manufacturing the same. .
  • An electrode used in a polymer electrolyte fuel cell is sandwiched between two separators in a polymer electrolyte fuel cell, and is disposed between the two separators. On both surfaces of the polymer electrolyte membrane, the electrode is on the surface of the polymer electrolyte membrane. It has a structure comprising a formed catalyst layer and a gas diffusion layer formed outside the catalyst layer. A gas diffusion electrode is distributed as an individual member for forming a gas diffusion layer on the electrode.
  • the performance required for the gas diffusion electrode includes, for example, gas diffusivity, conductivity for collecting electricity generated in the catalyst layer, and drainage for efficiently removing moisture generated on the surface of the catalyst layer. can give.
  • a conductive porous substrate having gas diffusion ability and conductivity is used.
  • the conductive porous substrate carbon felt made of carbon fiber, carbon paper, carbon cloth, and the like are used, and carbon paper is most preferable from the viewpoint of mechanical properties.
  • a fuel cell is a system that electrically extracts energy generated when hydrogen and oxygen react to produce water
  • the electrical load increases, that is, if the current taken out of the cell is increased, a large amount of water (Water vapor) is generated. If this water vapor condenses into water droplets at low temperatures and plugs the pores of the gas diffusion electrode, the amount of gas (oxygen or hydrogen) supplied to the catalyst layer decreases and eventually all the pores are blocked. If this happens, power generation stops (this phenomenon is called flooding).
  • the gas diffusion electrode is required to have drainage.
  • a gas diffusion electrode obtained by subjecting a conductive porous substrate to a water repellent treatment is usually used (see Patent Documents 1, 2, and 3).
  • a technique of immersing the conductive porous substrate in a dispersion in which a water repellent material is dispersed in water or an organic solvent is generally used (see Patent Documents 1, 2, and 3).
  • a layer called a microporous layer is provided by applying a coating liquid in which conductive fine particles such as carbon black are dispersed on a conductive porous substrate that has been subjected to a water-repellent treatment, followed by drying and sintering.
  • the gas diffusion electrode is required to have high gas diffusibility.
  • the conductive porous substrate for the gas diffusion electrode is as thin as possible and has a high porosity so that the gas can easily diffuse.
  • a coating liquid for forming the microporous layer a so-called microporous layer coating liquid
  • oozes into a substrate having a small thickness and a high porosity and in extreme cases
  • the coating liquid falls out on the back side of the substrate, and the manufacturing process is soiled with the coating liquid. Therefore, if this is cleaned, productivity will fall.
  • the microporous layer coating liquid permeates into the base material, the pores inside the base material are blocked, and it is difficult for the gas to diffuse and power generation performance may be reduced.
  • Patent Document 3 in order to suppress the penetration of the microporous layer coating liquid into the conductive porous substrate, sintering is performed after the water repellent treatment of the substrate to decompose the surfactant in the water repellent material.
  • a technique for preventing the microporous layer to be applied later from oozing out by removing is disclosed.
  • the adhesion between the water-repellent substrate and the microporous layer is poor, and the microporous layer is partly missing during the assembly of the fuel cell, so There was a possibility that the role could not be played.
  • an object of the present invention is to provide a gas diffusion electrode that is excellent in gas diffusibility and has good adhesion between a microporous layer and a conductive porous substrate.
  • the gas diffusion electrode of the present invention employs the following means in order to solve the above problems. That is, a gas diffusion electrode used in a fuel cell in which a microporous layer containing conductive fine particles and a water-repellent resin is formed on at least one surface of a conductive porous substrate, and has a gas diffusion property in the thickness direction. 30% or more, and the conductive porous substrate has a sliding angle of 70 ° or less and a porosity of 80% or more, and the microporous layer has a thickness of 10 ⁇ m or more and 50 ⁇ m or less and a porosity of 60% or more.
  • the gas diffusion electrode is 95% or less.
  • the method for producing a gas diffusion electrode of the present invention employs the following means in order to solve the above problems. That is, a method for producing a gas diffusion electrode for use in a fuel cell, in which a microporous layer containing conductive fine particles and a water-repellent resin is formed on at least one surface of a conductive porous substrate, the method comprising: A material is transported or installed substantially horizontally, and a microporous layer coating liquid in which conductive fine particles, water-repellent resin and dispersion medium are kneaded is applied from below, and dried and sintered to obtain a gas diffusion electrode. A method of manufacturing a gas diffusion electrode.
  • -It can be a gas diffusion electrode with good gas diffusivity and capable of high power generation. -Since the conductive porous substrate and the microporous layer have good adhesion and are difficult to crack, the gas diffusion electrode can be made durable and hardly flooded. -It can be a gas diffusion electrode with few appearance defects such as foreign matter adhering to the surface of the microporous layer.
  • the following effects can be expected by using the method for producing a gas diffusion electrode of the present invention.
  • the gas diffusion electrode of this invention mentioned above can be manufactured suitably.
  • ⁇ Productivity is high without making the process dirty, and gas diffusion electrodes can be produced.
  • An example of the arrangement of a preferable apparatus for manufacturing the gas diffusion electrode of the present invention is shown.
  • positioning of the apparatus for manufacturing the gas diffusion electrode of a comparative example (prior art) is shown. It is a layout of the apparatus used in order to perform water-repellent treatment in an example and a comparative example.
  • a microporous layer containing conductive fine particles and a water-repellent resin such as a fluororesin is formed on at least one surface of the conductive porous substrate.
  • the gas diffusion electrode has a high gas diffusibility for diffusing the gas supplied from the separator to the catalyst, and a high drainage for discharging the water generated by the electrochemical reaction to the separator.
  • high conductivity is required. That is, a sheet-like material having excellent electrical conductivity while allowing gas to permeate in the thickness direction is required.
  • a conductive porous base material which is a base material made of a porous body having conductivity and an average pore diameter of usually 10 ⁇ m or more and 100 ⁇ m or less, is used for the gas diffusion electrode.
  • the conductive porous base material include porous base materials containing carbon fibers such as carbon fiber papermaking bodies, carbon felt, carbon paper, and carbon cloth, foam sintered metal, metal mesh, and expanded metal. It is preferable to use a metal porous substrate such as. Among them, since the corrosion resistance is excellent, it is preferable to use a porous substrate such as carbon felt containing carbon fiber, carbon paper, carbon cloth, and moreover, a property of absorbing a dimensional change in the thickness direction of the electrolyte membrane, That is, since it is excellent in “spring property”, it is preferable to use a base material obtained by binding a carbon fiber papermaking body with a carbide, that is, carbon paper.
  • the thickness of the conductive porous substrate is made as small as possible and the porosity is increased. It is desirable to improve gas diffusivity.
  • the thickness of the conductive porous substrate is preferably 220 ⁇ m or less, more preferably 180 ⁇ m or less, further preferably 150 ⁇ m or less, and particularly preferably 120 ⁇ m or less.
  • the lower limit is about 70 ⁇ m or about 80 ⁇ m.
  • the porosity of the conductive porous substrate is 80% or more, preferably 85% or more, the gas diffusibility is further enhanced.
  • the upper limit of the porosity of the conductive porous substrate that can be industrially produced is about 95%.
  • the porosity of the conductive porous substrate is enlarged by about 20000 times by selecting 20 different locations from the cross section of the conductive porous substrate at random using a microscope such as a scanning electron microscope. Take a picture, binarize the gap and non-gap in each image and measure the ratio of the area of the gap to the total area (the sum of the area of the gap and the area of the non-gap). The average value in 20 places.
  • a scanning electron microscope S-4800 manufactured by Hitachi, Ltd. or an equivalent thereof can be used.
  • an apparatus for producing a cross section of the conductive porous substrate an ion milling apparatus IM4000 manufactured by Hitachi High-Technologies Corporation or an equivalent thereof can be used.
  • the conductive porous base material it is necessary to increase the water repellency in order to enhance the drainage property for discharging the water generated inside the fuel cell.
  • the sliding angle of the substrate can be used. In order to enhance drainage and prevent flooding, it is necessary to use a conductive porous substrate having a sliding angle of 70 ° or less, preferably 60 ° or less, more preferably 50 ° or less. The lower the sliding angle, the better. However, the lower limit for measuring the sliding angle is about 1 °.
  • the sliding angle of the base material is a base material at the time when the water droplet slides down by dropping 10 ⁇ l of water droplets on the horizontally arranged base material and gradually increasing the inclination of the base material from the horizontal state. It means the angle (tilt angle) between the surface and the horizontal plane.
  • the sliding angle of the conductive porous substrate is sufficient if the sliding angle measured from at least one side of the conductive porous substrate is 70 ° or less.
  • the side of the gas diffusion electrode where the microporous layer is not formed (the conductivity of the gas diffusion electrode) This is possible by measuring the sliding angle from the side of the porous porous substrate.
  • the sliding angle is determined using the conductive porous substrate before forming the microporous layer. It becomes possible by measuring.
  • the conductive porous substrate is usually subjected to water repellent treatment with a water repellent material.
  • a fluororesin is preferably used.
  • the fluororesin PTFE (polytetrafluoroethylene) (for example, “Teflon” (registered trademark)), FEP (tetrafluoroethylene hexafluoropropylene copolymer) , PFA (perfluoroalkoxy fluoride resin), ETFA (ethylene tetrafluoride ethylene copolymer), PVDF (polyvinylidene fluoride), PVF (polyvinyl fluoride), etc., PTFE expressing strong water repellency, or It is preferable to use FEP.
  • PTFE exhibits stronger water repellency, it is difficult to spread inside the conductive porous substrate, so it is preferable to use FEP in that it easily spreads over the entire carbon fiber constituting
  • the amount of water repellent material attached is preferably 1 mass per 100 parts by mass of the conductive porous substrate. Part to 20 parts by mass, more preferably 2 parts to 10 parts by mass.
  • the amount of the water repellent material is less than 1 part by mass, it is difficult to sufficiently obtain water repellency such that the sliding angle is in the above-described range.
  • the amount of the water repellent material exceeds 20 parts by mass, there is a possibility that the pores of the conductive porous substrate are blocked and the gas diffusibility is lowered or the conductivity is lowered.
  • a water repellent treatment method in which a water repellent dispersion made of a water repellent material and a dispersion medium such as water is immersed.
  • a processing technique it is difficult to control the amount of water-repellent material adhering to the conductive porous substrate, so that coating techniques such as die coating and spray coating are more suitable as a method of water-repellent processing.
  • the water repellent material dispersion may be used after appropriately diluting the stock solution.
  • the viscosity of the water repellent dispersion is from several mPa ⁇ s to several tens of mPa ⁇ s, but a thickener is added for the purpose of controlling the degree of penetration into the conductive porous substrate. You may use it, raising a viscosity. However, since the water repellent dispersion needs to enter the pores of the conductive porous substrate, the upper limit of the viscosity is about 200 mPa ⁇ s.
  • the water repellent dispersion usually contains a surfactant as a dispersant.
  • this surfactant should be finally removed by a method such as thermal decomposition.
  • the adhesiveness with the microporous layer described later is better when the surfactant is left.
  • the gas diffusion electrode is used to form a membrane electrode assembly by sandwiching a microporous layer on both sides of an electrolyte membrane having catalyst layers laminated on both sides so as to contact the catalyst layer.
  • This membrane electrode assembly is incorporated into a single cell of a fuel cell.
  • the membrane is subjected to loads such as expansion and contraction of the electrolyte membrane and wet drying, so that the adhesion between the microporous layer and the conductive porous substrate in the gas diffusion electrode When it is low, there is a possibility that the microporous layer and the conductive porous substrate are peeled off due to these loads.
  • the adhesive force between the conductive porous substrate and the microporous layer can be adopted, and such an adhesive force is 5N. / Cm 2 or more is preferable.
  • the adhesion between the conductive porous substrate and the microporous layer is the maximum tension per unit area of the peeled surface that is applied when the microporous layer is peeled off from the conductive porous substrate.
  • “Autograph” registered trademark manufactured by Shimadzu Corporation
  • a membrane electrode assembly is produced with such a gas diffusion electrode having an adhesion strength of less than 5 N / cm 2 , the microporous layer is easily peeled off from the conductive porous substrate, and the generated water accumulates in the peeled portion and gas diffusion occurs. There is a possibility that inconveniences such as a factor of inhibition or a decrease in durability itself may occur.
  • the microporous layer or the conductive porous substrate itself will cohesively break when measuring the above-mentioned adhesion force.
  • the adhesion between the porous layer and the conductive porous substrate has not been substantially measured, if the value obtained as the adhesion is 5 N / cm 2 or more, a membrane electrode using such a gas diffusion electrode In the joined body, the microporous layer and the conductive porous substrate are not separated by a practical load.
  • adhesion power from the above-mentioned viewpoint is about 50 N / cm ⁇ 2 > normally.
  • the present invention is premised on a gas diffusion electrode in which a microporous layer is formed on at least one surface of a conductive porous substrate.
  • the porosity of the microporous layer needs to be 60% or more and 95% or less.
  • the porosity of the microporous layer is less than 60%, the diffusibility of gas (hydrogen, air or oxygen) in the microporous layer is low, and the drainage property when condensed water is generated in the microporous layer. Therefore, the power generation performance at a high current density is lowered.
  • the porosity of the microporous layer is preferably 70% or more, more preferably 75% or more.
  • the porosity of the microporous layer is preferably high, but the upper limit for maintaining the structure of the microporous layer when incorporated in a fuel cell is 95%.
  • the porosity of the microporous layer can be measured as follows, similarly to the porosity of the conductive porous substrate. Using an ion milling device (Hitachi High-Technologies Corporation IM4000 type and equivalent products can be used), cut the surface of the microporous layer in the thickness direction and select 20 different locations at random from the surface of the surface.
  • the photo was taken at a magnification of about 20,000 to 50,000 times with a microscope such as an electron microscope, and the void and non-gap portions were binarized in each image, and the entire area (the area of the void and non-gap)
  • the ratio of the area of the void portion to the sum of the area of the portion) is measured, and the average value of the ratio at 20 locations is defined as the porosity (%) of the microporous layer.
  • the microporous layer includes conductive fine particles such as carbon black, carbon nanotubes, carbon nanofibers, chopped fibers of carbon fibers, graphene, and graphite.
  • carbon black acetylene black is preferably used because it has few impurities and hardly reduces the activity of the catalyst.
  • carbon nanofibers capable of forming a coating film having a large porosity are preferably used as the conductive fine particles.
  • the microporous layer has characteristics such as conductivity, gas diffusivity, water drainage, moisture retention, and thermal conductivity, as well as strong acid resistance on the anode side inside the fuel cell and oxidation resistance on the cathode side. Therefore, in addition to the conductive fine particles, a water-repellent resin such as a fluororesin is included.
  • a water-repellent resin such as a fluororesin is included.
  • the water-repellent resin used for the microporous layer include fluororesins such as PTFE, FEP, PFA, and ETFA, similarly to the water-repellent material used in the water-repellent treatment. PTFE or FEP is preferred because of its particularly high water repellency.
  • the content of the water-repellent resin in the microporous layer is preferably 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the conductive fine particles.
  • the content of the water repellent resin is less than 1 part by mass, the water repellent effect cannot be sufficiently obtained. Further, when the content of the water repellent resin exceeds 50 parts by mass, there is a concern that the water repellent resin fills the pores of the conductive porous base material and gas diffusibility is lowered. The conductivity of the material may be impaired.
  • a more preferable range of the content of the water repellent resin is 5 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the conductive fine particles.
  • a microporous layer coating solution is applied to the conductive porous substrate.
  • the microporous layer coating liquid is obtained by kneading the conductive fine particles, the water-repellent resin, and a dispersion medium such as water or alcohol.
  • the microporous layer coating liquid often contains a surfactant that acts as a dispersant for dispersing conductive fine particles and water-repellent resin.
  • the concentration of the conductive fine particles in the microporous layer coating liquid is usually 5% by mass or more, preferably 10% by mass or more based on the total amount of the coating liquid from the viewpoint of productivity. If the viscosity, dispersion stability of the conductive fine particles, and applicability of the coating liquid are appropriate, there is no upper limit to the concentration, but if it exceeds 50% by mass, the suitability as a coating liquid may be impaired. . In particular, when acetylene black is used as the conductive fine particles, the upper limit of about 25% by mass is studied by the present inventors. When the concentration exceeds this, acetylene blacks reaggregate and so-called percolation occurs. However, the applicability of the coating liquid is impaired due to a sudden increase in viscosity. Such a phenomenon appears particularly remarkably in the case of a coating liquid (water-based coating liquid) using water as a dispersion medium.
  • the role of the microporous layer is as follows: (1) protection of the catalyst, (2) re-dressing effect that prevents the surface of the rough conductive porous substrate from being transferred to the electrolyte membrane, and (3) water vapor generated at the cathode. This is an effect of preventing condensation in the vicinity of the catalyst layer.
  • (2) in order to develop the effect of retouching a certain amount of thickness is required for the microporous layer.
  • the microporous layer coating solution is contained in the conductive porous substrate. It is desirable that it does not penetrate as much as possible.
  • the microporous layer coating liquid that has permeated into the conductive porous substrate may inhibit gas diffusion in the gas diffusion electrode.
  • the degree of penetration into the conductive porous substrate can be quantified from the pore size distribution by a mercury porosimeter.
  • the microporous layer coating liquid By applying the microporous layer coating liquid to the peak height of the pore size distribution curve of the conductive porous substrate itself (usually in the range of 10 ⁇ m to 100 ⁇ m pore size), the microporous layer becomes conductive porous. When it penetrates into the inside of the base material, the peak height is attenuated. This pore attenuation rate (with respect to the peak height of the conductive porous substrate itself, the peak height of the conductive porous substrate itself and the conductive porous substrate with the microporous layer coating liquid penetrating into the inside.
  • the ratio (%) of the difference from the peak height can be used as an index of the degree of soaking, and is referred to as a soaking index.
  • the soaking index pore attenuation rate
  • the thickness of the microporous layer needs to be 10 ⁇ m or more and 50 ⁇ m or less in a dry state in consideration of the surface roughness of the current conductive porous substrate, and if it exceeds 50 ⁇ m, the electric resistance of the gas diffusion electrode itself is Get higher.
  • a more preferable thickness range of the microporous layer is 10 ⁇ m or more and 40 ⁇ m or less, and a most preferable thickness range of the microporous layer is 15 ⁇ m or more and 40 ⁇ m or less.
  • the thickness of the microporous layer is a value obtained by subtracting the thickness 101A of the conductive porous substrate from the thickness 103A of the gas diffusion electrode as shown in FIG. That is, the portion of the microporous layer that has penetrated into the conductive porous substrate is not included in the thickness of the microporous layer.
  • the thickness of the gas diffusion electrode and the thickness of the conductive porous substrate can be obtained by using a micrometer or the like while applying a load of 0.15 MPa in the direction perpendicular to the sample to be measured.
  • the microporous layer coating liquid is prepared by dispersing conductive fine particles in a dispersion medium (water in the case of an aqueous system) as described above.
  • a dispersant may be added in an amount of 0.1 to 10 parts by weight per 100 parts by weight of the conductive fine particles.
  • a surfactant it is effective to use a surfactant as a dispersant and increase the amount added to stabilize the dispersion for a long time to prevent an increase in the viscosity of the coating liquid and prevent the liquid from separating. .
  • the thickness of the microporous layer is 10 ⁇ m or more in a dry state
  • a preferable range of the viscosity of the coating liquid is 3000 mPa ⁇ s or more and 20 Pa ⁇ s or less, and more preferably 5000 mPa ⁇ s or more and 15 Pa ⁇ s or less.
  • the conductive porous substrate in order to efficiently manufacture the gas diffusion electrode described above, is transported or installed substantially horizontally, and the above-mentioned microporous layer coating liquid is applied from the lower side thereof. By doing so, the penetration of the microporous layer coating liquid into the conductive porous substrate is suppressed under the influence of gravity.
  • the angle of the conductive porous substrate may be substantially horizontal, and the complete horizontal, that is, the angle between the substrate surface and the horizontal plane is most preferably 0 °, but may be inclined to some extent.
  • the allowable limit is up to 60 ° from the horizontal plane, and if it is tilted beyond this, the penetration becomes large and the downward dripping flow tends to occur.
  • the microporous layer coating liquid is applied from the lower side, drying is performed to remove the dispersion medium. Also during drying, the microporous layer coating liquid is preferably in a state in which the penetration of the microporous layer coating liquid into the conductive porous substrate is suppressed.
  • the drying temperature is 50 ° C. or higher and 120 ° C. or lower, preferably 60 ° C. or higher and 100 ° C. or lower, and the drying is followed by sintering. Also in the sintering, it is preferable that the microporous layer coating liquid is in a state in which the penetration of the microporous layer coating liquid into the conductive porous substrate is suppressed.
  • sintering refers to heat treatment at a temperature at which the water-repellent resin melts in order to fix the conductive fine particles using the water-repellent resin as a binder to form a microporous layer.
  • a sintering temperature 250 ° C. or higher and 400 ° C. or lower is appropriate.
  • the sintering temperature is less than 250 ° C., when a surfactant is used in the water-repellent material dispersion or the microporous layer coating liquid, it is not sufficiently removed. If the sintering temperature exceeds 400 ° C., the water repellent resin used as the binder may be decomposed.
  • surfactants are often added to the water-repellent material dispersion and the microporous layer coating liquid as a dispersant or a thickener. If it remains in the substrate, gas diffusibility and electrical conductivity may be impaired. Therefore, it is removed by drying the water repellent material dispersion or the dispersion medium of the microporous layer coating liquid, or by heat treatment (sintering) performed after drying. It is desirable.
  • the sintering temperature is appropriately set depending on the decomposition temperature of the surfactant used and the melting point of the water repellent resin.
  • the preferred embodiment of the gas diffusion electrode to be produced in the present invention is that the conductive porous base material with regulated thickness and porosity is subjected to water repellent treatment, and the microporous layer coating liquid is conveyed horizontally.
  • the microporous layer coating liquid is applied from the lower side of the conductive porous base material, dried and sintered in a state in which the penetration of the microporous layer coating liquid into the conductive porous base material is suppressed.
  • the surfactant in the dispersion of the water repellent material is removed so as not to impair the gas diffusion ability of the resulting gas diffusion electrode.
  • both the thickness direction of the gas diffusion electrode that is, the direction perpendicular to the horizontal plane of the gas diffusion electrode and the plane of the gas diffusion electrode, that is, the horizontal plane direction of the gas diffusion electrode are considered. There is a need.
  • High power generation performance can be obtained by using a gas diffusion electrode having a gas diffusion property in the thickness direction of 30% or more, preferably 32% or more.
  • the gas diffusivity in the thickness direction can be measured as follows. That is, a gas whose diffusibility is to be measured is flowed to one side (primary side) of the gas diffusion electrode, and a nitrogen gas is flowed to the other side (secondary side) to thereby obtain a differential pressure between the primary side and the secondary side.
  • the gas concentration is measured, and this value (%) is used as an index of gas diffusivity in the thickness direction.
  • FIG. 5 A cross section of a single cell of the polymer electrolyte fuel cell is shown in FIG.
  • catalyst layers 202 and 203 are provided on both surfaces of an electrolyte membrane 201, gas diffusion layers 204 are disposed on both outer sides thereof, and further on both outer sides thereof.
  • a separator 205 is disposed.
  • the separator 205 is provided with a gas flow path 206 through which hydrogen (anode side), oxygen or air (cathode side) flows.
  • the gas diffusion layer 204 needs to have a function of diffusing the gas supplied through the gas flow path in the in-plane direction so that the gas reaches the catalyst layer corresponding to the rib 207 portion.
  • the in-plane gas permeability is used as a required characteristic for the gas diffusion electrode corresponding to the in-plane gas diffusivity. This in-plane gas permeability is measured at a pressure difference of 5 kPa as a basic measurement condition using a gas diffusion electrode, as will be described later.
  • the measurement limit exceeds 190 cc / min.
  • the practical upper limit is about 190 cc / min at 3 kPa, and if there is a permeability exceeding this, the thickness of the gas diffusion electrode is too large and the gas diffusivity in the thickness direction decreases, or the porosity Is too large to be incorporated as a gas diffusion layer in a fuel cell, the structure as the gas diffusion layer cannot be maintained.
  • the thickness of the microporous layer on the surface of the conductive porous substrate will be reduced, which is the meaning of the original microporous layer.
  • the effect is low.
  • the coating amount (weight) is increased, gas diffusibility is impaired.
  • the conductive porous substrate can be obtained as a long wound conductive porous substrate wound body, in the present invention, from the conductive porous substrate wound body to the conductive porous substrate.
  • the conductive porous substrate is preferably transported or installed substantially horizontally.
  • the so-called roll-to-roll processing is performed by winding the dried and sintered gas diffusion electrode with a winder or the like so that the coated surface does not come into contact with the transport roll.
  • Conductive porous substrate A carbon paper having a thickness of 100 ⁇ m and a porosity of 85% was prepared as follows.
  • Polyacrylonitrile carbon fiber “Torayca” (registered trademark) T300-6K manufactured by Toray Industries, Inc. (average single fiber diameter: 7 ⁇ m, number of single fibers: 6,000 fibers) was cut to a length of 6 mm and exposed to hardwood from Alabara River With kraft pulp (LBKP) craft market pulp (hardwood), water is continuously made as a paper making medium, further immersed in a 10% by weight aqueous solution of polyvinyl alcohol and dried, and then wound into a roll. A long carbon fiber paper having a basis weight of carbon short fibers of 15 g / m 2 was obtained. The amount of added pulp corresponds to 40 parts by mass, and the amount of polyvinyl alcohol attached corresponds to 20 parts by mass with respect to 100 parts by mass of carbon fiber paper.
  • a dispersion obtained by mixing scale powder BF-5A (average particle size 5 ⁇ m), phenol resin and methanol at a mass ratio of 2: 3: 25 was prepared.
  • the carbon fiber paper is continuously impregnated with the dispersion so that the resin impregnation amount is 78 parts by mass of phenol resin with respect to 100 parts by mass of carbon short fibers, and dried at a temperature of 90 ° C. for 3 minutes. After passing through the resin impregnation step, it was wound into a roll to obtain a resin-impregnated carbon fiber paper.
  • the phenol resin a resin obtained by mixing a resol type phenol resin KP-743K manufactured by Arakawa Chemical Industries, Ltd. and a novolac type phenol resin Tamanol 759 at a mass ratio of 1: 1 was used.
  • the effective pressurization length LP of the hot plate was 1200 mm
  • the feed amount LF of the resin-impregnated carbon fiber paper when intermittently transported was 100 mm
  • LF / LP was 0.08. That is, compression treatment was performed by repeating heating and pressurization for 30 seconds, mold opening, and feeding (100 mm) of carbon fiber ridges, and wound into a roll.
  • the compressed carbon fiber paper is used as a precursor fiber sheet, introduced into a heating furnace having a maximum temperature of 2400 ° C. maintained in a nitrogen gas atmosphere, and continuously running in the heating furnace at about 500 ° C./min. After passing through a carbonization step of firing at a heating rate of 400 ° C./min up to 650 ° C. and 550 ° C./min at temperatures exceeding 650 ° C., the carbon paper was obtained by winding it into a roll. The obtained carbon paper had a density of 0.25 g / cm 3 and a porosity of 85%.
  • B Dispersion medium Ion exchange water
  • C Water repellent material or water repellent resin / PTFE resin “Polyflon” (registered trademark) PTFE dispersion D-210C (manufactured by Daikin Industries, Ltd.) -FEP resin "Polyflon” (registered trademark) FEP dispersion ND-110 (manufactured by Daikin Industries, Ltd.)
  • D Others / Surfactant “TRITON” (registered trademark) X-100 (manufactured by Nacalai Tesque)
  • E Conductive fine particles (carbonaceous powder) ⁇ Carbon black “DENKA BLACK” (registered trademark) (manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • ⁇ Measurement of thickness of gas diffusion electrode, conductive porous substrate and microporous layer The thickness of the gas diffusion electrode and the thickness of the conductive porous substrate were measured using a Mitutoyo micrometer while applying a load of 0.15 MPa to the gas diffusion electrode or the conductive porous substrate. The thickness of the microporous layer was determined by subtracting the thickness of the conductive porous substrate from the thickness of the gas diffusion electrode.
  • ⁇ Measurement of porosity of microporous layer> Using an IM4000 model manufactured by Hitachi High-Technologies Corporation as an ion milling device, a cross-sectional surface in the thickness direction of the microporous layer was cut out, and 20 different locations were selected at random from the cross-sectional surface of the microporous layer. ) The photo was taken at a magnification of 20,000 times by Hitachi S-4800), and the voids and non-gaps were binarized in each image, and the total area (gap area and non-gap part) The ratio (%) of the area of the void portion to the sum of the areas) was measured, and the average value at 20 locations of the ratio was obtained.
  • a conductive porous substrate (carbon paper) before water repellent treatment is cut into a 5 cm ⁇ 5 cm square, and its mass is measured with an electronic balance. After water repellent treatment, it is contained in a water repellent material at 380 ° C. Measure the mass of a sample cut into a square of 5 cm x 5 cm from the conductive porous substrate from which the surfactant has been removed, divide the increase in mass by the mass before water repellent treatment, and multiply by 100 to obtain the conductivity. The adhesion amount (part by mass) per 100 parts by mass of the porous substrate was determined.
  • MVDP-200C water vapor gas vapor permeation diffusion evaluation apparatus manufactured by Seika Sangyo Co., Ltd.
  • a gas to be measured for diffusivity is flowed to one of the gas diffusion electrodes (primary side), and a nitrogen gas is flowed to the other (secondary side) .
  • the differential pressure between the primary side and the secondary side is controlled in the vicinity of 0 Pa (0 ⁇ 3 Pa), and the gas concentration when the equilibrium is reached is measured by the gas concentration meter on the secondary side, and this value (%) was defined as gas diffusivity in the thickness direction.
  • ⁇ In-plane gas permeability> In the piping system as shown in FIG. 6, using only a steam gas / water vapor permeation diffusion evaluation apparatus (MVDP-200C) manufactured by Seika Sangyo Co., Ltd., only valve A (303) is first opened and valve B (305) is closed. Then, a nitrogen gas 313 is caused to flow to the primary side pipe A (302), a predetermined amount (190 cc / min) of gas flows to the mass flow controller (301), and the gas pressure to the pressure controller (304) Adjust to take 5 kPa.
  • the gas diffusion electrode sample (308) is set on the sealing material (312) between the gas chamber A (307) and the gas chamber B (309).
  • valve A (303) is closed and the valve B (305) is opened so that nitrogen gas flows through the pipe B (306).
  • the nitrogen gas flowing into the gas chamber A (307) moves to the gas chamber B (309) through the gap of the gas diffusion electrode sample (308), passes through the pipe C (310), and further flows into the gas flow meter (311). And is released into the atmosphere.
  • the gas flow rate (cc / min) flowing through the gas flow meter (311) at this time was measured, and this value was defined as in-plane gas permeability.
  • ⁇ Breaking index Pore attenuation rate> It was quantified from the pore size distribution with a mercury porosimeter. First, the peak height of the pore diameter distribution curve of the conductive porous substrate itself (usually present in the range of pore diameters of 10 ⁇ m to 100 ⁇ m) was determined. Next, the above-mentioned peak height in a state where the microporous layer coating solution penetrated into the inside of the conductive porous substrate was measured by applying the microporous layer coating solution to the substrate. Then, the peak height of the conductive porous substrate itself and the peak height of the conductive porous substrate into which the microporous layer coating solution has penetrated are compared with the peak height of the conductive porous substrate itself. The difference ratio (%) was obtained and used as the soaking index.
  • an electrolyte membrane / catalyst layer integrated product (Nippon Gore's electrolyte membrane “Gore Select” (registered trademark) and Nippon Gore's catalyst layer “PRIMEA” (registered trademark) on both sides)
  • the membrane electrode assembly was fabricated by sandwiching the catalyst layer and the microporous layer on both sides of the formed layer) and hot pressing at 130 ° C. This membrane electrode assembly is incorporated into a single cell for a fuel cell.
  • the cell temperature is 40 ° C.
  • the fuel utilization efficiency is 70%
  • the air utilization efficiency is 40%
  • the hydrogen on the anode side and the air on the cathode side have dew points of 75 ° C.
  • Level 4 Decomposition does not occur just by dismantling, and if it is forcibly separated, separation occurs between the catalyst layer and the microporous layer.
  • Level 3 Detachment does not occur just by dismantling, and if it is forcibly separated, cohesive failure occurs between the microporous layers, and the microporous layer remains almost on the conductive porous substrate side.
  • Level 2 Detachment does not occur just by dismantling, and if it is forcibly separated, cohesive failure occurs between the microporous layers, and the microporous layers are separated to the same extent on the conductive porous substrate side and the catalyst layer side.
  • the tester is set to the compression mode, and the other upper sample mounting jig (401) is pressed for 30 seconds from the microporous layer surface side (406) at 400 N (surface pressure of 1 MPa). Thereafter, the tester is put into a tensile test mode, and the upper sample mounting jig (401) is raised at a speed of 0.5 mm / second. The value obtained by dividing the maximum tension applied at that time by the area of the sample (2.24 cm ⁇ 2.24 cm) was defined as the adhesion. Three samples (404) were prepared and measured, and the average value was adopted.
  • Example 1 Using the winding-type conveyance device shown in FIG. 3, a carbon paper having a thickness of 100 ⁇ m and a porosity of 85% is mounted on the unwinding machine 2, and the carbon paper 1 is wound from the unwinding machine 2. Take out and transport in the guide roll 3, soak in a dipping tank 15 filled with a water repellent dispersion, perform water repellent treatment, dry with a dryer 7 set at 100 ° C. and take up with a winder 9 Thus, a water-repellent treated conductive porous substrate was obtained.
  • the water-repellent-treated conductive porous substrate is mounted on the unwinding machine 2, and the water-repellent-treated conductive porous substrate is unwound from the unwinding machine 2.
  • the die coater 5 is used to finely A porous layer coating solution was applied, then dried with a dryer 7 and sintered with a sintering furnace 8 to obtain a gas diffusion electrode.
  • microporous layer coating solution used is as follows.
  • Drying after applying the microporous layer coating solution was performed at 90 ° C., and further sintering was performed at 350 ° C.
  • the basis weight of the microporous layer after dry sintering was set to 15 g / m 2 , and the thickness of the microporous layer was set to about 30 ⁇ m.
  • the coating liquid did not contaminate the rolls during the coating process of the microporous layer coating liquid.
  • Example 1 Comparative Example 1 except that the microporous layer coating liquid is applied in a state where the conductive porous substrate is being transported in the vertical direction using an apparatus having a die coater as shown in FIG. 2 instead of the apparatus of FIG.
  • Comparative Example 2 All the comparative examples except that the sintering furnace 8 was set to 370 ° C. and the sintering was performed when the water-repellent conductive porous substrate was obtained using the winding-type conveying device shown in FIG. 1 was used to prepare a gas diffusion electrode.
  • the coating liquid permeated the conductive porous substrate and the rolls were soiled, and cleaning was performed after the coating was completed, but the soiling was less than that of Comparative Example 2.
  • Example 2 In Example 1, the FEP dispersion used for the water-repellent treatment of carbon paper and the microporous layer coating liquid was changed to PTFE resin “Polyflon” (registered trademark) PTFE dispersion D-210C (manufactured by Daikin Industries, Ltd.) A gas diffusion electrode was prepared in the same manner as in Example 1 except that the sintering temperature was changed to 380 ° C. As in Example 1, the coating solution did not contaminate the rolls during the coating process of the microporous layer coating solution.
  • Example 3 In Example 1, the FEP dispersion used for the water repellent treatment of the carbon paper was changed to PTFE resin “Polyflon” (registered trademark) PTFE dispersion D-210C (manufactured by Daikin Industries, Ltd.), and the sintering temperature was changed. A gas diffusion electrode was prepared in the same manner as in Example 1 except that the temperature was changed to 380 ° C. As in Example 1, the coating solution did not contaminate the rolls during the coating process of the microporous layer coating solution.
  • Example 4 In Example 1, the FEP dispersion used for the microporous layer coating liquid was changed to PTFE resin “Polyflon” (registered trademark) PTFE dispersion D-210C (manufactured by Daikin Industries, Ltd.), and the sintering temperature was 380.
  • a gas diffusion electrode was prepared in the same manner as in Example 1 except that the temperature was changed to ° C.
  • the coating solution did not contaminate the rolls during the coating process of the microporous layer coating solution.
  • Example 5 A gas diffusion electrode was prepared in the same manner as in Example 1 except that carbon paper having a thickness of 100 ⁇ m and porosity of 85% was changed to carbon paper having a thickness of 150 ⁇ m and porosity of 85%. As in Example 1, the coating solution did not contaminate the rolls during the coating process of the microporous layer coating solution.
  • Example 6 A gas diffusion electrode was prepared in the same manner as in Example 1 except that carbon paper having a thickness of 100 ⁇ m and porosity of 85% was changed to carbon paper having a thickness of 180 ⁇ m and porosity of 85%. As in Example 1, the coating solution did not contaminate the rolls during the coating process of the microporous layer coating solution.
  • Example 7 A gas diffusion electrode was prepared in the same manner as in Example 1 except that carbon paper having a thickness of 100 ⁇ m and porosity of 85% was changed to carbon paper having a thickness of 100 ⁇ m and porosity of 75%. As in Example 1, the coating solution did not contaminate the rolls during the coating process of the microporous layer coating solution.
  • Example 8 In Example 1, a gas diffusion electrode was prepared in the same manner as in Example 1 except that the coating amount of the microporous layer coating solution was adjusted so that the thickness of the microporous layer was 45 ⁇ m (weight per unit area: 18 g / m 2 ). . As in Example 1, the coating solution did not contaminate the rolls during the coating process of the microporous layer coating solution.
  • Example 9 In Example 1, a gas diffusion electrode was prepared in the same manner as in Example 1 except that the coating amount of the microporous layer coating liquid was adjusted so that the thickness of the microporous layer was 70 ⁇ m (weight per unit area 25 g / m 2 ). . As in Example 1, the coating solution did not contaminate the rolls during the coating process of the microporous layer coating solution.
  • Example 10 In Example 1, the microporous layer coating solution was changed to the following.
  • Diska Black (registered trademark) 7.7 parts by mass, manufactured by Denki Kagaku Kogyo Co., Ltd., FEP dispersion ("Polyflon” (registered trademark) ND-110, manufactured by Daikin Industries, Ltd.) 3.0 parts by mass, surface active 3 parts by weight of an agent (manufactured by Nacalai Tesque Co., Ltd., “TRITON” (registered trademark) X-100) and 86.3 parts by weight of ion-exchanged water are kneaded with a planetary mixer, dispersed with a bead mill, and defoamed with an aspirator. A coating solution was prepared. The viscosity of the prepared microporous layer coating liquid was 3.8 Pa ⁇ s.
  • the coating liquid having the above composition had a low viscosity, and a thickness of 30 ⁇ m could not be achieved by a single application, so the application was performed in two times to achieve a thickness of 30 ⁇ m.
  • a gas diffusion electrode was prepared in the same manner as in Example 1 except that the coating was performed in two portions using this microporous layer coating solution.
  • the microporous layer coated in this way was dense and the porosity was 52%.
  • the coating solution did not contaminate the rolls during the coating process of the microporous layer coating solution.
  • Example 11 In Example 1, the water-repellent material dispersion was obtained by diluting PTFE resin “Polyflon” (registered trademark) PTFE dispersion D-210C (manufactured by Daikin Industries, Ltd.) to 0.2% by mass with ion-exchanged water. A gas diffusion electrode was produced in the same manner as in Example 1 except that the gas diffusion electrode was changed to. Since the water-repellent material dispersion was made thin, the amount of water-repellent material attached to the fibers constituting the carbon paper was reduced, and the sliding angle was 90 ° or more (even if it was tilted to 90 °, it did not slide). As in Example 1, the coating solution did not contaminate the rolls during the coating process of the microporous layer coating solution.
  • Table 1 summarizes the processing conditions and characteristics of the gas diffusion electrodes produced in these examples and comparative examples.
  • Table 1 summarizes the processing conditions and characteristics of the gas diffusion electrodes produced in these examples and comparative examples.
  • the examples within the range of the gas diffusion electrode of the present invention it can be seen that since the penetration index is small and the gas diffusibility is good, the power generation performance is good and the adhesion is also good.
  • the range of the gas diffusion electrode of the present invention when the range of the gas diffusion electrode of the present invention is deviated, there are some cases where the power generation performance and the adhesion level are slightly inferior. There were few appearance defects such as foreign matter adhering to the surface of the porous layer, and the productivity was high without contaminating the process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 導電性多孔質基材の少なくとも片面に、導電性微粒子と撥水性樹脂を含む微多孔層が形成されてなる、燃料電池に用いられるガス拡散電極であって、厚み方向のガス拡散性が30%以上であり、かつ導電性多孔質基材は、滑落角が70°以下、空隙率が80%以上であり、かつ微多孔層は、厚みが10μm以上50μm以下、空隙率が60%以上95%以下である、ガス拡散電極およびその製造方法。

Description

ガス拡散電極およびその製造方法
 燃料電池は水素と酸素を反応させて水が生成する際に生起するエネルギーを電気的に取り出す機構であり、エネルギー効率が高く排出物が水しかないことからクリーンエネルギーとして期待されている。本発明は、燃料電池に用いられるガス拡散電極およびその製造方法に関し、特に、燃料電池の中でも燃料電池車などの電源として使用される高分子電解質型燃料電池に用いるガス拡散電極およびその製造方法に関する。
 高分子電解質型燃料電池に使用される電極は、高分子電解質型燃料電池において2つのセパレータで挟まれてその間に配置されるもので、高分子電解質膜の両面において、高分子電解質膜の表面に形成される触媒層と、この触媒層の外側に形成されるガス拡散層とからなる構造を有する。電極でのガス拡散層を形成するための個別の部材として、ガス拡散電極が流通している。そして、このガス拡散電極に求められる性能としては、例えばガス拡散性、触媒層で発生した電気を集電するための導電性、および触媒層表面に発生した水分を効率よく除去する排水性などがあげられる。このようなガス拡散電極を得るため、一般的に、ガス拡散能および導電性を兼ね備えた導電性多孔質基材が用いられる。
 導電性多孔質基材としては、具体的には、炭素繊維からなるカーボンフェルト、カーボンペーパーおよびカーボンクロスなどが用いられ、中でも機械的特性などの点からカーボンペーパーが最も好ましいとされる。
 また、燃料電池は水素と酸素が反応し水が生成する際に生じるエネルギーを電気的に取り出すシステムであるため、電気的な負荷が大きくなると、すなわち電池外部へ取り出す電流を大きくすると、多量の水(水蒸気)が発生する。この水蒸気が低温では凝縮して水滴になり、ガス拡散電極の細孔を塞いでしまうとガス(酸素あるいは水素)の触媒層への供給量が低下し、最終的に全ての細孔が塞がれてしまうと発電が停止することになる(この現象をフラッディングという)。
 このフラッディングを可能な限り発生させないように、言い換えるとフラッディングを起こす電流値を出来る限り大きくするために、ガス拡散電極には排水性が求められる。この排水性を高める手段として、通常、導電性多孔質基材に撥水処理を施したガス拡散電極が用いられている(特許文献1,2,3参照)。撥水処理については、撥水材を水あるいは有機溶媒に分散したディスパージョンに上記導電性多孔質基材を浸漬する技術が一般的である(特許文献1,2,3参照)。
 また、上記のような撥水処理が施された導電性多孔質基材をそのままガス拡散電極として用いると、その繊維の目が粗いため、水蒸気が凝縮すると大きな水滴が発生し、フラッディングを完全に抑制するには不十分である。このため、撥水処理を施した導電性多孔質基材の上に、カーボンブラックなどの導電性微粒子を分散した塗液を塗布し乾燥焼結することにより、微多孔層と呼ばれる層を設ける場合がある(特許文献1、2、3参照)。
 燃料電池自動車用途では、発進、高速走行、登坂などの運転モードにおいて大出力が要求されるため、高出力が望まれる。また、高出力を達成するために燃料電池内部のセパレータのガス流路からガス拡散層を酸素や水素が通過して触媒層へ速やかに拡散していく必要がある。
 このためにガス拡散電極には高度なガス拡散性が求められる。斯かる要求を考慮すると、ガス拡散電極用の導電性多孔質基材は極力薄く、空隙率の高い物にしてガスが容易に拡散することが好ましい。このような状況において、微多孔層を塗布すると、厚みが小さく空隙率も高い基材へ、微多孔層を形成するための塗液、いわゆる微多孔層塗液が滲みこみ、極端な場合には基材の裏側に塗液が抜けてしまい、製造工程を塗液で汚してしまう。そのため、これを清掃するなどすると、生産性が低下する。また、基材に微多孔層塗液が滲みこむと基材内部の細孔がふさがれてしまい、ガスが拡散しにくくなり発電性能が低下する可能性がある。
 特許文献3においては、導電性多孔質基材への微多孔層塗液の滲み込みを抑制するために、基材の撥水処理後に焼結を行なって撥水材中の界面活性剤を分解除去することにより、後に塗布する微多孔層を滲みこまないようにする技術を開示している。しかしながら、特許文献3に開示された方法では撥水処理された基材と微多孔層の密着が悪く、微多孔層が燃料電池組み立て中に一部欠落してしまったりして微多孔層本来の役割が果たしえない可能性があった。
特許第3382213号公報 特開2000-123842号公報 特許第3773325号公報
 本発明における課題は、上記のような技術的背景に鑑み、ガス拡散性に優れ、微多孔層と導電性多孔質基材の密着が良好なガス拡散電極を提供することにある。
 本発明のガス拡散電極は上記の課題を解決するため、次のような手段を採用するものである。すなわち、導電性多孔質基材の少なくとも片面に、導電性微粒子と撥水性樹脂を含む微多孔層が形成されてなる、燃料電池に用いられるガス拡散電極であって、厚み方向のガス拡散性が30%以上であり、かつ導電性多孔質基材は、滑落角が70°以下、空隙率が80%以上であり、かつ微多孔層は、厚みが10μm以上50μm以下、空隙率が60%以上95%以下である、ガス拡散電極である。
 また、本発明のガス拡散電極の製造方法は上記の課題を解決するため、次のような手段を採用するものである。すなわち、導電性多孔質基材の少なくとも片面に導電性微粒子と撥水性樹脂を含む微多孔層が形成されてなる、燃料電池に用いられるガス拡散電極の製造方法であって、導電性多孔質基材を略水平に搬送あるいは設置し、その下側から、導電性微粒子、撥水性樹脂および分散媒が混練された微多孔層塗液を塗布し、乾燥および焼結を行なってガス拡散電極を得る、ガス拡散電極の製造方法である。
 本発明のガス拡散電極により、以下の効果が期待できる。
・ガス拡散性が良く高出力の発電が可能であるガス拡散電極にできる。
・導電性多孔質基材と微多孔層の密着が良く、クラックなどができにくいため、耐久性が良く、またフラッディングを起こしにくいガス拡散電極にできる。
・微多孔層表面に異物付着など外観欠点が少ないガス拡散電極にできる。
 また、本発明のガス拡散電極の製造方法を用いることにより、以下の効果が期待できる。
・上記した本発明のガス拡散電極を好適に製造することができる。
・工程を汚さず生産性が高くガス拡散電極を生産することができる。
本発明のガス拡散電極を製造するに好ましい装置の配置の1例を示す。 比較例(従来技術)のガス拡散電極を製造するための装置の配置例を示す。 実施例および比較例において撥水処理を施すために用いた装置の配置図である。 ガス拡散電極の各構成要素の厚みの定義を説明するためのガス拡散電極の概略断面図である。 固体高分子型燃料電池の一つのセル(単セル)の断面図である。 面内のガス透過性を測定するための装置の概略図である。 密着力の測定方法を説明するための概略図である。
 本発明のガス拡散電極は、導電性多孔質基材の少なくとも片面に、導電性微粒子とフッ素樹脂などの撥水性樹脂を含む微多孔層が形成されてなる。
 固体高分子型燃料電池において、ガス拡散電極は、セパレータから供給されるガスを触媒へと拡散するための高いガス拡散性、電気化学反応に伴って生成する水をセパレータへ排出するための高い排水性、発生した電流を取り出すため、高い導電性が必要である。すなわち、ガスを厚み方向に透過させつつ電気伝導性に優れたシート状の材料が求められる。このため、ガス拡散電極には、導電性を有し、平均細孔径が通常10μm以上100μm以下の多孔体からなる基材である導電性多孔質基材を用いる。導電性多孔質基材としては、具体的には、例えば、炭素繊維抄紙体、カーボンフェルト、カーボンペーパー、カーボンクロスなどの炭素繊維を含む多孔質基材、発泡焼結金属、金属メッシュ、エキスパンドメタルなどの金属多孔質基材を用いることが好ましい。中でも、耐腐食性が優れることから、炭素繊維を含むカーボンフェルト、カーボンペーパー、カーボンクロスなどの多孔質基材を用いることが好ましく、さらには、電解質膜の厚み方向の寸法変化を吸収する特性、すなわち「ばね性」に優れることから、炭素繊維抄紙体を炭化物で結着してなる基材、すなわちカーボンペーパーを用いることが好適である。
 ここで、燃料電池の発電性能はガス拡散性に大きく依存するため、燃料電池自動車など高出力を要求される用途では、導電性多孔質基材の厚みを極力小さくし、また空隙率を高くしてガス拡散性を高めることが望ましい。このため、本発明においては導電性多孔質基材の厚みは220μm以下が好ましく、180μm以下がより好ましく、150μm以下がさらに好ましく、120μm以下が特に好ましい。また、導電性多孔質基材の厚みがあまりに薄いと、工程でのハンドリング性が悪くなるおそれがある。そのため、現状では70μm程度または80μm程度をその下限とすることが好ましい。
 また、導電性多孔質基材の空隙率が80%以上、好ましくは85%以上であると一層、ガスの拡散性が高まる。工業的に生産しうる導電性多孔質基材の空隙率の上限としては95%程度である。
 なお、導電性多孔質基材の空隙率は、走査型電子顕微鏡などの顕微鏡で、導電性多孔質基材の、面直断面から無作為に異なる20箇所を選び、20000倍程度で拡大して写真撮影を行い、それぞれの画像で空隙部と非空隙部を2値化して全体の面積(空隙部の面積と非空隙部の面積の和)に対する空隙部の面積の比率を計測し、その比率の20箇所での平均値を指す。走査型電子顕微鏡としては、(株)日立製作所製S-4800、あるいはその同等品を用いることができる。導電性多孔質基材の断面を作製するための装置としては(株)日立ハイテクノロジーズ製イオンミリング装置IM4000、あるいはその同等品を用いることができる。
 導電性多孔質基材としては、燃料電池内部で生成する水を排出する排水性を高めるため、撥水性を高める必要がある。基材の撥水性の指標としては、基材の滑落角を用いることができる。排水性を高めてフラッディングを起こしにくくするためには、滑落角が70°以下、好ましくは60°以下、より好ましくは50°以下である導電性多孔質基材を用いることが必要である。滑落角は低いほど好ましいが、滑落角を測定できる下限は1°程度である。なお、基材の滑落角とは、水平に配置した基材上に10μリットルの水滴を滴下し、基材を水平の状態から段階的に傾斜を増していき、水滴が滑落する時点の基材面と水平面がなす角度(傾斜角度)を意味する。また導電性多孔質基材の滑落角は、少なくとも導電性多孔質基材の片側から測定した滑落角が70°以下であれば十分である。そのため片面のみに微多孔層が形成されているガス拡散電極における導電性多孔質基材の滑落角を求めるためには、ガス拡散電極の微多孔層の形成されていない側(ガス拡散電極の導電性多孔質基材の側)から滑落角を測定することで可能となる。一方で両面に微多孔層が形成されているガス拡散電極における導電性多孔質基材の滑落角を求めるためには、微多孔層を形成する前の導電性多孔質基材を用いて滑落角を測定することで可能となる。
 滑落角を前記した範囲とするため通常、導電性多孔質基材に撥水材で撥水処理を施す。撥水材としてはフッ素樹脂を用いることが好ましく、フッ素樹脂としては、PTFE(ポリテトラフルオロエチレン)(たとえば“テフロン”(登録商標))、FEP(四フッ化エチレン六フッ化プロピレン共重合体)、PFA(ペルフルオロアルコキシフッ化樹脂)、ETFA(エチレン四フッ化エチレン共重合体)、PVDF(ポリフッ化ビニリデン)、PVF(ポリフッ化ビニル)などが挙げられるが、強い撥水性を発現するPTFE、あるいはFEPを用いるのが好ましい。PTFEはより強い撥水性を示すが、導電性多孔質基材内部に広がりにくいので、導電性多孔質基材を構成する炭素繊維全体に広がりやすい点でFEPを用いるのが好ましい。
 導電性多孔質基材を撥水材で撥水処理することにより、撥水材の付着量(撥水材量ともいう)を、導電性多孔質基材の100質量部あたり、好ましくは1質量部以上、20質量部以下、より好ましくは2質量部以上、10質量部以下とする。撥水材量が1質量部未満では、滑落角が前記した範囲となるほどの撥水性が十分に得られにくい。また、撥水材量が20質量部を超えると、導電性多孔質基材の細孔を塞いでガス拡散性が低下したり、導電性が低下したりする可能性がある。
 撥水処理の方法は一般的には、撥水材と水などの分散媒からなる撥水材ディスパージョンに浸漬する処理技術が知られている。しかしながら、斯かる処理技術では、導電性多孔質基材への撥水材の付着量を制御することが困難であることから、ダイコート、スプレーコートなどの塗布技術が撥水処理の方法としてより好適に適用できる。撥水材ディスパージョンは原液を適度に希釈して使用してもよい。通常、撥水材ディスパージョンの粘度は数mPa・sから数十mPa・sであるが、導電性多孔質基材への滲み込みの度合いをコントロールするなどの目的で増粘剤を添加して粘度を上昇させて使用しても良い。ただし、導電性多孔質基材の細孔に撥水材ディスパージョンが進入していく必要があるので、粘度の上限は200mPa・s程度である。
 撥水材ディスパージョンには通常、界面活性剤が分散剤として含まれている。撥水性を発現させるためには、最終的にはこの界面活性剤は熱分解などの方法により除去されるべきである。しかし、撥水処理工程終了後においては、界面活性剤を残すようにするほうが、後述する微多孔層との接着性が良好となる。
 ガス拡散電極は、両面に触媒層を積層した電解質膜の両側に微多孔層が触媒層に接するように挟み込み、膜電極接合体を構成するために使用される。この膜電極接合体は燃料電池の単セルに組み込まれる。車載用途のように運転条件が広範囲の温度、出力に及ぶ場合、電解質膜の膨張収縮、湿潤乾燥といった負荷を受けるので、ガス拡散電極において、微多孔層と導電性多孔質基材の接着性が低いと、これらの負荷により、微多孔層と導電性多孔質基材が剥離してしまう可能性がある。したがって、導電性多孔質基材を撥水材で撥水処理を行なう場合には、微多孔層と導電性多孔質基材の接着性を高めるため、微多孔層塗液を塗布する前に、撥水材の焼結を行なわない方が好ましい。
 この導電性多孔質基材と微多孔層との接着性については、発電性能の評価試験後、燃料電池セルから膜電極接合体を取り出し、ガス拡散電極を解体する際に、ガス拡散電極における微多孔層の導電性多孔質基材に対する接着の状態を観察することにより、定性的に評価することができる。
 導電性多孔質基材と微多孔層との接着性のより実用的な指標として、導電性多孔質基材と微多孔層との密着力を採用することができ、斯かる密着力を、5N/cm以上とするのが好ましい。
 導電性多孔質基材と微多孔層との密着力とは、微多孔層を導電性多孔質基材から引き剥がすときにかかる、引き剥がし面の単位面積当たりの最大張力であり、引っ張り試験機(例えば、(株)島津製作所製“オートグラフ”(登録商標))を用いて、測定することができる。斯かる密着力が5N/cm未満であるガス拡散電極で膜電極接合体を作製した時には、微多孔層が導電性多孔質基材から剥がれやすく、剥がれた部分に生成水が溜まりガス拡散を阻害する要因となる、もしくは耐久性自体が低下するなどの不都合が生じる可能性が考えられる。
 導電性多孔質基材と微多孔層との接着性が大きすぎると、上記した密着力の測定時に、微多孔層や導電性多孔質基材自体が凝集破壊してしまうため、その場合、微多孔層と導電性多孔質基材との接着性を実質的には測定できていないが、密着力として得られる値が5N/cm以上であれば、斯かるガス拡散電極を用いた膜電極接合体において、実用的な負荷により、微多孔層と導電性多孔質基材が剥離してしまうことはない。なお、密着力の値は大きいほど好ましいが、前記した観点から、密着力を測定できる上限は通常、50N/cm程度である。
 本発明においては、導電性多孔質基材の少なくとも片面に、微多孔層が形成されたガス拡散電極を前提とする。
 微多孔層は、空隙率が60%以上95%以下である必要がある。微多孔層の空隙率が60%未満であると、微多孔層中でのガス(水素、空気あるいは酸素)の拡散性が低く、また、微多孔層内に凝縮水が発生した場合の排水性が低いため、高電流密度での発電性能が低くなってしまう。微多孔層の空隙率は、好ましくは70%以上、より好ましくは75%以上である。微多孔層の空隙率は高い方が良いが、燃料電池に組み込んだときに微多孔層の構造を維持できる上限は95%である。
 微多孔層の空隙率については、導電性多孔質基材の空隙率と同様に、次のようにして測定できる。イオンミリング装置(日立ハイテクノロジーズ社製 IM4000型およびその同等品が使用可能)により、微多孔層の厚み方向の面直断面を切り出し、その面直断面から無作為に異なる20箇所を選び、走査型電子顕微鏡などの顕微鏡により20,000~50,000倍程度に拡大して写真撮影を行い、それぞれの画像で空隙部と非空隙部を2値化し、全体の面積(空隙部の面積と非空隙部の面積の和)に対する空隙部の面積の比率を計測し、その比率の20箇所での平均値を、微多孔層の空隙率(%)とする。
 微多孔層は、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、炭素繊維のチョップドファイバー、グラフェン、黒鉛などの導電性微粒子を含んでなる。カーボンブラックとしては、不純物が少なく触媒の活性を低下させにくいという点でアセチレンブラックが好適に用いられる。
 さらに、微多孔層中のガス拡散性を高めるためには、空隙率の大きい塗布膜を形成することができるカーボンナノファイバーが、導電性微粒子として好ましく用いられる。
 また、微多孔層には、導電性、ガス拡散性、水の排水性、あるいは保湿性、熱伝導性といった特性、さらには燃料電池内部のアノード側での耐強酸性、カソード側での耐酸化性が求められるため、導電性微粒子に加えて、フッ素樹脂などの撥水性樹脂が含まれている。微多孔層に用いられる撥水性樹脂としては、撥水処理で用いられる撥水材と同様、PTFE、FEP、PFA、ETFAなどのフッ素樹脂が挙げられる。撥水性が特に高いという点でPTFE、あるいはFEPが好ましい。微多孔層における撥水性樹脂の含有量は、導電性微粒子の100質量部に対して1質量部以上50質量部以下が好ましい。撥水性樹脂の含有量が1質量部未満では撥水効果は十分に得られない。また、撥水性樹脂の含有量が50質量部を超えると、導電性多孔質基材の細孔を撥水性樹脂が埋めてしまい、ガス拡散性が低下する懸念があるとともに、導電性多孔質基材の導電性が損なわれる可能性がある。撥水性樹脂の含有量のさらに好ましい範囲は、導電性微粒子の100質量部に対して、5質量部以上30質量部以下である。
 導電性多孔質基材に微多孔層を設けるためには、導電性多孔質基材に微多孔層塗液を塗布する。微多孔層塗液は、前記した導電性微粒子、撥水性樹脂、および水やアルコールなどの分散媒を混練してなる。また、微多孔層塗液には、導電性微粒子や撥水性樹脂を分散するための分散剤として作用する界面活性剤が配合されることが多い。
 微多孔層塗液における導電性微粒子の濃度は通常、生産性の点から、塗液全量に対して5質量%以上、好ましくは10質量%以上である。粘度、導電性微粒子の分散安定性、塗液の塗布性などが適性であれば濃度に上限はないが、実際的には50質量%を超えると塗液としての適性が損なわれる可能性がある。特に導電性微粒子としてアセチレンブラックを用いた場合には、本発明者らの検討では、25質量%程度が上限であり、これを超える濃度になると、アセチレンブラックどうしが再凝集し、いわゆるパーコレーションが発生し、急激な粘度増加で塗液の塗布性が損なわれる。斯かる現象は、水を分散媒として用いた塗液(水系塗液)の場合に特に顕著に現れる。
 微多孔層の役割としては、(1)触媒の保護、(2)目の粗い導電性多孔質基材の表面が電解質膜に転写しないようにする化粧直し効果、(3)カソードで発生する水蒸気が触媒層近傍において凝縮することを防止する効果などである。上記のうち、(2)化粧直し効果を発現するためには、微多孔層に、ある程度の厚みが必要となり、この目的のためには、微多孔層塗液は、導電性多孔質基材中になるべく滲みこまない方が望ましい。微多孔層塗液の滲み込みが大きくなるとその分、導電性多孔質基材表面に積層されるべき微多孔層が薄くなり化粧直し効果が得られにくい。また、導電性多孔質基材中に滲みこんだ微多孔層塗液が、ガス拡散電極におけるガスの拡散を阻害する可能性がある。
 導電性多孔質基材への滲み込みの度合いは、水銀ポロシメーターによる細孔径分布から定量化することができる。導電性多孔質基材そのものの細孔径分布曲線のピーク高さ(通常細孔径10μm以上100μm以下の範囲に存在)に対して、微多孔層塗液を塗布することにより微多孔層が導電性多孔質基材内部に貫入すると上記ピーク高さが減衰する。この細孔減衰率(導電性多孔質基材そのものでのピーク高さに対する、導電性多孔質基材そのものでのピーク高さと微多孔層塗液が内部に貫入した導電性多孔質基材でのピーク高さとの差分の比率(%))を滲み込み度合いの指標とすることができ、滲み込み指数と称する。本発明においては、滲み込み指数(細孔減衰率)を65%以下にすることが好ましい。
 微多孔層の厚みについては、現状の導電性多孔質基材の表面粗さを考慮すれば、乾燥状態で10μm以上50μm以下である必要があり、50μmを超えるとガス拡散電極自体の電気抵抗が高くなる。さらに好ましい微多孔層の厚みの範囲は10μm以上40μm以下、最も好ましい微多孔層の厚みの範囲は15μm以上40μm以下である。
 ここで微多孔層の厚みとは、図4に示すように、ガス拡散電極の厚み103Aから導電性多孔質基材の厚み101Aを差し引いた値とする。すなわち、導電性多孔質基材に滲みこんだ微多孔層の分は微多孔層の厚みには含めない。
 なお、ガス拡散電極の厚みや導電性多孔質基材の厚みは、マイクロメーターなどを用い、測定すべき試料の面直方向に0.15MPaの荷重を加えながら測定することで得られる。
 微多孔層塗液は、前記したように導電性微粒子を分散媒(水系の場合には水)に分散して調製する。導電性微粒子を分散させるためには導電性微粒子の100質量部あたり0.1質量部ないし高々10質量部も分散剤を添加すれば良い。しかし、この分散を長時間安定させて塗液粘度の上昇を防ぎ、液が分離したりしないようにするために分散剤として界面活性剤を使用し、その添加量を増量することが有効である。
 また、前記したように微多孔層の厚みを乾燥状態で10μm以上にする場合、塗液の粘度を1000mPa・s以上に保つことが好ましい。塗液の粘度がこれより低いと塗液が導電性多孔質基材表面上で流れてしまい、また導電性多孔質基材の細孔に塗液が流入して裏抜けを起こしてしまう。逆にあまり塗液が高粘度になると塗布性が悪くなるため、塗液の粘度の上限は25Pa・s程度である。好ましい塗液の粘度の範囲としては、3000mPa・s以上、20Pa・s以下、さらに好ましくは5000mPa・s以上、15Pa・s以下である。
 本発明においては、前記したガス拡散電極を効率よく製造するために、導電性多孔質基材を略水平に搬送あるいは設置し、その下側から上記の微多孔層塗液を塗布する。このようにすることにより、重力の影響を受けて、導電性多孔質基材への微多孔層塗液の滲み込みが抑制される。導電性多孔質基材の角度は略水平であれば良く、完全な水平、すなわち基材面と水平面とのなす角度は0°が最も好ましいが、ある程度傾いていても構わない。許容限度は水平面から60°まででありこれを超えて傾けると、滲み込みが大きくなりまた下方への液だれ流動が起こり易くなる。
 また、このように搬送あるいは設置した導電性多孔質基材の下側のみから微多孔層塗液を塗布することにより、上方から落下してくる塵埃などが塗布面に付着して外観欠点となる可能性も少ない。
 本発明においては、微多孔層塗液を下側から塗布した後に、分散媒を除去するために乾燥を行なう。乾燥に際しても、微多孔層塗液を導電性多孔質基材中への微多孔層塗液の滲み込みを抑制した状態とするのがよい。通常、乾燥の温度は50℃以上120℃以下、好ましくは60℃以上100℃以下の範囲で行われ、乾燥に続いて焼結が行なわれる。焼結に際しても、微多孔層塗液を導電性多孔質基材中への微多孔層塗液の滲み込みを抑制した状態とするのがよい。ただし、乾燥工程と焼結工程を別工程とする必要はなく、焼結工程で乾燥を兼ねても良い。ここで、焼結とは、撥水性樹脂をバインダーとして導電性微粒子を固定して微多孔層を形成させるために、撥水性樹脂が溶融する温度で熱処理することをいう。焼結の温度としては、250℃以上、400℃以下が適切である。焼結の温度が250℃未満であると、撥水材ディスパージョンや微多孔層塗液に界面活性剤を用いた場合、それが十分に除去されない。また焼結の温度が400℃を超えると、バインダーとして使用する撥水性樹脂が分解する恐れがある。
 上記のように、撥水材ディスパージョン、微多孔層塗液には、分散媒に加えて、分散剤や増粘剤として界面活性剤が添加されることが多いが、これらはガス拡散電極中に残存するとガス拡散性や導電性を損なう可能性があるため、撥水材ディスパージョンや微多孔層塗液の分散媒を乾燥させると同時に、あるいは乾燥後に行う熱処理(焼結)により、除去されることが望ましい。焼結の温度は使用する界面活性剤の分解温度や撥水性樹脂の融点により適宜設定する。
 上記のように本発明において製造されるべき好ましいガス拡散電極の態様は、厚み、空隙率を規制した導電性多孔質基材に撥水処理を施し、微多孔層塗液を水平に搬送している導電性多孔質基材の下側から塗布して、導電性多孔質基材中への微多孔層塗液の滲み込みを抑制した状態で乾燥、焼結することにより、微多孔層塗液および撥水材ディスパージョン中の界面活性剤を除去して、得られるガス拡散電極のガス拡散能力を損なわないようにすることである。
 ガス拡散電極のガス拡散性については、ガス拡散電極の厚み方向、すなわちガス拡散電極の水平面に対して面直方向と、ガス拡散電極の面内、すなわちガス拡散電極の水平面方向の両方を考慮する必要がある。
 厚み方向のガス拡散性を、30%以上、好ましくは32%以上に設定したガス拡散電極を用いることにより、高い発電性能が得られる。厚み方向のガス拡散性は高いほど良いが、燃料電池に組み込んだ際に、空隙率が高すぎて、電池内部に圧力がかかったときにその構造を維持できる前提での上限値は40%程度と考えられる。ここで、厚み方向のガス拡散性は、次のようにして測定できる。すなわち、ガス拡散電極の一方の側(1次側)に拡散性を測定したいガスを流し、他方の側(2次側)に窒素ガスを流して、1次側と2次側の差圧を0Pa近傍(0±3Pa)に制御しておき、すなわち圧力差によるガスの流れがほとんどなく、分子拡散によってのみガスの移動現象が起こる状態としておき、2次側のガス濃度計により、平衡に達したときのガス濃度を測定し、この値(%)を厚み方向のガス拡散性の指標とする。
 一方、面内のガス透過性を25cc/分以上に設定したガス拡散電極を用いることにより、さらに高い発電性能が得られる。固体高分子型燃料電池の単セルの断面を図5に示す。図5に示すように、固体高分子型燃料電池の単セルは、電解質膜201の両面に触媒層202,203が設けられ、その両外側にガス拡散層204が配置され、さらにその両外側にセパレータ205が配置される。セパレータ205には、ガスの流路206が刻まれており、ここを水素(アノード側)、酸素あるいは空気(カソード側)が流れる。ガス流路とガス流路の間にはリブ207という部分があり、このリブに対応する触媒層にガスが供給されないと、その部分の触媒層にて発電されないため、発電性能が低下してしまう。そのため、ガス拡散層204にはガス流路を通って供給されるガスを面内方向に拡散させて、リブ207部分に対応する触媒層にもガスをたどり着かせる機能が必要である。この面内のガス拡散性に対応するガス拡散電極への要求特性として面内のガス透過性を用いる。この面内のガス透過性は、後述するように、ガス拡散電極を用いて、基本的な測定条件として5kPaの圧力差において測定する。しかし、測定上の限界として190cc/分を超えては測定できない。実際的な上限値としては、3kPaにおいて190cc/分程度であり、これを越える透過性がある場合にはガス拡散電極の厚みが大きすぎて厚み方向のガス拡散性が低下するか、あるいは空隙率が大きすぎて燃料電池のセルにガス拡散層として組み込んだときに、そのガス拡散層としての構造を維持できない。
 導電性多孔質基材への微多孔層塗液の滲み込みが抑制できなければ、導電性多孔質基材表面において微多孔層の厚みが小さくなり、本来の微多孔層の意義である「化粧直し効果」が低い物となる。これを回避するために塗布量(目付け)を大きくすると、ガス拡散性が損なわれる。
 導電性多孔質基材は、長尺に巻かれた導電性多孔質基材巻回体として入手することができるので、本発明では、導電性多孔質基材巻回体から導電性多孔質基材を巻き出し、微多孔層塗液を下側から塗布する際に、導電性多孔質基材を略水平に搬送あるいは設置するのがよい。そして、微多孔層塗液を下側から塗布した後に、塗布面が搬送ロールに接触しないようにして乾燥、焼結したガス拡散電極を巻き取り機などで巻き取る、いわゆるロール トゥ ロールでの加工とすることで、微多孔層塗液の導電性多孔質基材への滲み込みを抑止した状態で、連続した工程とすることができ、量産性を高めることができる。
 以下、実施例によって本発明をより具体的に説明する。実施例で用いた材料、各種評価方法を次に示した。
 <材 料>
A:導電性多孔質基材
 ・厚み100μm、空隙率85%のカーボンペーパーを以下のように調製して得た。
 東レ(株)製ポリアクリロニトリル系炭素繊維“トレカ”(登録商標)T300-6K(平均単繊維径:7μm、単繊維数:6,000本)を6mmの長さにカットしアラバラリバー社製広葉樹晒クラフトパルプ(LBKP)クラフトマーケットパルプ(ハードウッド)と共に、水を抄造媒体として連続的に抄造し、さらにポリビニルアルコールの10質量%水溶液に浸漬し、乾燥する抄紙工程を経て、ロール状に巻き取って、炭素短繊維の目付けが15g/mの長尺の炭素繊維紙を得た。炭素繊維紙100質量部に対して、添加したパルプの量は40質量部、ポリビニルアルコールの付着量は20質量部に相当する。
 (株)中越黒鉛工業所鱗片黒鉛BF-5A(平均粒子径5μm)、フェノール樹脂およびメタノールを2:3:25の質量比で混合した分散液を用意した。上記炭素繊維紙に、炭素短繊維100質量部に対してフェノール樹脂が78質量部である樹脂含浸量になるように、上記分散液を連続的に含浸し、90℃の温度で3分間乾燥する樹脂含浸工程を経た後、ロール状に巻き取って樹脂含浸炭素繊維紙を得た。フェノール樹脂には、荒川化学工業(株)製レゾール型フェノール樹脂KP-743Kとノボラック型フェノール樹脂タマノル759とを1:1の質量比で混合した樹脂を用いた。
 (株)カワジリ製100tプレスに熱板が互いに平行になるようにセットし、下熱板上にスペーサーを配置して、熱板温度170℃、面圧0.8MPaでプレスの開閉を繰り返しながら上下から離型紙で挟み込んだ樹脂含浸炭素繊維紙を間欠的に搬送しつつ、同じ箇所がのべ6分間加熱加圧されるよう圧縮処理した。また、熱板の有効加圧長LPは1200mmで、間欠的に搬送する際の樹脂含浸炭素繊維紙の送り量LFを100mmとし、LF/LPを0.08とした。すなわち、30秒の加熱加圧、型開き、炭素繊維祇の送り(100mm)、を繰り返すことによって圧縮処理を行い、ロール状に巻き取った。
 圧縮処理をした炭素繊維紙を前駆体繊維シートとして、窒素ガス雰囲気に保たれた、最高温度が2400℃の加熱炉に導入し、加熱炉内を連続的に走行させながら、約500℃/分(650℃までは400℃/分、650℃を超える温度では550℃/分)の昇温速度で焼成する炭化工程を経た後、ロール状に巻き取ってカーボンペーパーを得た。得られたカーボンペーパーは、密度0.25g/cm、空隙率85%であった。
 ・炭化後の厚みが150μmとなるように炭素繊維の目付け量、圧縮処理の際のスペーサーの厚みを調整した以外は、厚み100μm、空隙率85%のカーボンペーパーと同様にして、厚み150μm、空隙率85%のカーボンペーパーを得た。
 ・炭化後の厚みが180μmとなるように炭素繊維の目付け量、圧縮処理の際のスペーサーの厚みを調整した以外は、厚み100μm、空隙率85%のカーボンペーパーと同様にして、厚み180μm、空隙率85%のカーボンペーパーを得た。
 ・炭化後の空隙率が75%となるように炭素繊維の目付け量およびフェノール樹脂の含浸量を調整した以外は、厚み100μm、空隙率85%のカーボンペーパーと同様にして、厚み100μm、空隙率75%のカーボンペーパーを得た。
B:分散媒 イオン交換水
C:撥水材または撥水性樹脂
・PTFE樹脂 “ポリフロン”(登録商標)PTFEディスパージョンD-210C(ダイキン工業(株)製)
・FEP樹脂 “ポリフロン”(登録商標)FEPディスパージョン ND-110(ダイキン工業(株)製)
D:その他
・界面活性剤“TRITON”(登録商標)X-100(ナカライテスク(株)製)
E:導電性微粒子(炭素質粉末)
・カーボンブラック“デンカブラック”(登録商標)(電気化学工業(株)製)
 <ガス拡散電極、導電性多孔質基材および微多孔層の厚み測定>
 ガス拡散電極の厚みおよび導電性多孔質基材の厚みについては、ミツトヨ製マイクロメーターを用い、ガス拡散電極または導電性多孔質基材に0.15MPaの荷重を加えながら測定を行った。微多孔層の厚みについては、ガス拡散電極の厚みから導電性多孔質基材の厚みを差し引いて求めた。
 <粘度測定>
 スペクトリス社製ボーリン回転型レオメーターの粘度測定モードにおいて、直径40mm、傾き2°の円形コーンプレートを用いプレートの回転数を増加させながら(シェアレートを上昇させながら)応力を測定していく。このとき、シェアレート17/秒における粘度の値を塗液の粘度とした。
 <導電性多孔質基材の空隙率の測定>
 走査型電子顕微鏡として(株)日立製作所製S-4800を用い、導電性多孔質基材の面直断面から無作為に異なる20箇所を選び、20000倍で拡大して写真撮影を行い、それぞれの画像で空隙部と非空隙部を2値化して、全体の面積(空隙部の面積と非空隙部の面積の和)に対する空隙部の面積の比率(%)を計測し、その比率の20箇所での平均値を求めた。導電性多孔質基材の面直断面の作製に際しては、(株)日立ハイテクノロジーズ製イオンミリング装置IM4000を用いた。
 <微多孔層の空隙率の測定>
 イオンミリング装置として、日立ハイテクノロジーズ社製 IM4000型を用いて、微多孔層の厚み方向の面直断面を切り出し、その面直断面から無作為に異なる20箇所を選び、走査型電子顕微鏡((株)日立製作所製S-4800)により20,000倍に拡大して写真撮影を行い、それぞれの画像で空隙部と非空隙部を2値化し、全体の面積(空隙部の面積と非空隙部の面積の和)に対する空隙部の面積の比率(%)を計測し、その比率の20箇所での平均値を求めた。
 <導電性多孔質基材の滑落角>
 協和界面科学(株)製 自動接触角計DM501の滑落角測定モードを用い、試料上に10μリットルの水滴を滴下し、試料ステージを水平の状態から段階的に傾斜を増していき(1°/秒で傾斜、1秒間停止、これを繰り返す)、水滴が滑落して、測定画面から消え去る時の試料の傾斜角度を滑落角とした。
 <撥水材付着量>
 撥水処理前の導電性多孔質基材(カーボンペーパー)を5cm×5cmの正方形に切り出して、その質量を電子天秤で測定しておき、撥水処理した後380℃で撥水材に含まれる界面活性剤を除去した導電性多孔質基材から同じく5cm×5cmの正方形に切り出したサンプルの質量を測定して、質量の増分を撥水処理前の質量で除して100を乗じ、導電性多孔質基材100質量部あたりの付着量(質量部)を求めた。
 <厚み方向のガス拡散性>
 西華産業製水蒸気ガス水蒸気透過拡散評価装置(MVDP-200C)を用い、ガス拡散電極の一方(1次側)に拡散性を測定したいガスを流し、他方(2次側)に窒素ガスを流す。1次側と2次側の差圧を0Pa近傍(0±3Pa)に制御しておき、2次側のガス濃度計により、平衡に達したときのガス濃度を測定し、この値(%)を厚み方向のガス拡散性とした。
 <面内のガス透過性>
 西華産業製水蒸気ガス水蒸気透過拡散評価装置(MVDP-200C)を用い、図6に示すような配管系において、最初にバルブA(303)のみ開いて、バルブB(305)を閉じた状態にしておいて、窒素ガス313を一次側配管A(302)に流し、マスフローコントローラー(301)に所定量(190cc/分)のガスが流れ、圧力コントローラー(304)にガス圧力が大気圧に対して5kPaかかるように調整する。ガス室A(307)とガス室B(309)の間にあるシール材(312)の上にガス拡散電極試料(308)をセットする。次いで、バルブA(303)を閉じ、バルブB(305)を開いて、配管B(306)に窒素ガスが流れるようにする。ガス室A(307)に流入する窒素ガスは、ガス拡散電極試料(308)の空隙を通ってガス室B(309)に移動し、配管C(310)を通過、さらにガス流量計(311)を通過して大気中に放出される。このときのガス流量計(311)を流れるガス流量(cc/分)を測定し、この値を面内のガス透過性とした。
 <滲み込み指数:細孔減衰率>
 水銀ポロシメーターによる細孔径分布から定量化した。まず、導電性多孔質基材そのものの細孔径分布曲線のピーク高さ(通常細孔径10μm以上100μm以下の範囲に存在)を求めた。次に該基材に微多孔層塗液を塗布することにより微多孔層塗液が導電性多孔質基材内部に貫入した状態での上記ピーク高さを測定した。そして、導電性多孔質基材そのものでのピーク高さに対する、導電性多孔質基材そのものでのピーク高さと微多孔層塗液が内部に貫入した導電性多孔質基材でのピーク高さとの差分の比率(%)を求め、それを滲み込み指数として用いた。
 <発電性能>
 得られたガス拡散電極を用いて、電解質膜・触媒層一体化品(日本ゴア製の電解質膜“ゴアセレクト”(登録商標)に、日本ゴア製触媒層“PRIMEA”(登録商標)を両面に形成したもの)の両側に、触媒層と微多孔層が接するように挟み、130℃にてホットプレスすることにより、膜電極接合体(MEA)を作製した。この膜電極接合体を燃料電池用単セルに組み込み、電池温度40℃、燃料利用効率を70%、空気利用効率を40%、アノード側の水素、カソード側の空気をそれぞれ露点が75℃、60℃となるように加湿して発電させ、電流密度を高くしていって発電が停止する電流密度の値(限界電流密度)を耐フラッディング性の指標とした。また、通常の運転条件(電池温度70℃)および高温条件(電池温度80℃)での発電性能も同様にして測定した。
 <密着指数>
 上記発電性能の評価試験後、燃料電池セルから膜電極接合体を取り出し、ガス拡散電極を解体する際のガス拡散電極の微多孔層の導電性多孔質基材に対する密着の度合いを以下の4段階で定性評価を行ない、密着指数とした。
 レベル4 解体しただけでは剥離は起こらず無理に剥離すると、触媒層と微多孔層の間で剥離が起こる。
 レベル3 解体しただけでは剥離は起こらず無理に剥離すると、微多孔層の間で凝集破壊が起こり、微多孔層は導電性多孔質基材側にほとんど残っている。
 レベル2 解体しただけでは剥離は起こらず無理に剥離すると、微多孔層の間で凝集破壊が起こり、微多孔層は導電性多孔質基材側と触媒層側に同じ程度分離している。
 レベル1 解体しただけで、導電性多孔質基材が剥離し、導電性多孔質基材上に微多孔層がほとんど残らない。
 <密着力>
 (株)島津製作所製“オートグラフ”(登録商標)AGS-Xの引っ張り試験モードを用い、微多孔層と導電性多孔質基材との密着度合いを密着力として定量化した。図7を用いて、密着力の測定方法を具体的に説明する。図7中、下向き矢印は圧縮方向を意味し、上向き矢印は引っ張り方向を意味する。図7に示すように、引っ張り試験機に取り付けられた、上下2つの試料取り付け冶具(401、402)の試料接地面(2.0cm×2.0cm)に両面テープ(ニチバン製“ナイスタック”(登録商標)一般タイプNW-20)(403)を貼付する。ガス拡散電極から、2.24cm×2.24cmのサイズで切り抜いた試料(404)を、導電性多孔質基材面(405)を下方にして、試験機下側に取り付けた試料取り付け冶具(402)の上に載せる。試験機を圧縮モードにして、上方のもう一方の試料取り付け冶具(401)で、微多孔層面側(406)から400N(面圧1MPa)で30秒間押し付ける。その後、試験機を引っ張り試験モードにして、0.5mm/秒の速度で上側の試料取り付け冶具(401)を上昇させる。その時にかかる最大張力を試料の面積(2.24cm×2.24cm)で除した値を密着力とした。上記試料(404)を3個作製して測定し、その平均値を採用した。
 (実施例1)
 図3に示す巻き取り式の搬送装置を用い、ロール状に巻き取られた、厚み100μm、空隙率85%のカーボンペーパーを巻き出し機2に装着し、巻き出し機2からカーボンペーパー1を巻き出し、ガイドロール3で搬送しながら、撥水材ディスパージョンを満たした浸漬槽15に浸漬して撥水処理を行い、100℃に設定した乾燥機7で乾燥して巻き取り機9で巻き取って、撥水処理した導電性多孔質基材を得た。撥水材ディスパージョンはFEPディスパージョン(“ポリフロン”(登録商標)FEPディスパージョン ND-110(ダイキン工業(株)製))を水でFEPが2質量%濃度になるように薄めたものを用いた。なお、焼結炉8は昇温せず室温のままとした。
 次いで、図1に示すような装置を用い、上記撥水処理した導電性多孔質基材を巻き出し機2に装着し、撥水処理した導電性多孔質基材を巻き出し機2から巻き出し、巻き取り機9で巻き取りながら、導電性多孔質基材が水平(基材面と水平面とがなす角度は0°)に搬送されている部分において、下側からダイコーター5を用いて微多孔層塗液を塗布し、その後、乾燥機7で乾燥し、焼結炉8で焼結してガス拡散電極を得た。
 用いた微多孔層塗液は以下の通りである。
 電気化学工業(株)製“デンカブラック”(登録商標)7.7質量部、FEPディスパージョン(ダイキン工業(株)製 “ポリフロン”(登録商標)ND-110)3.0質量部、界面活性剤(ナカライテスク(株)製、“TRITON”(登録商標) X-100)14質量部、イオン交換水 75.3質量部をプラネタリーミキサーで混練し、粘度を10Pa・sに調整して微多孔層塗液とした。
 微多孔層塗液を塗布した後の乾燥は90℃で行い、さらにその後の焼結は350℃で行なった。乾燥焼結後の微多孔層目付けは15g/m、微多孔層の厚みは約30μmに設定した。
 なお、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 (比較例1)
 図1の装置に代えて、図2に示すようにダイコーターを設置した装置を用いて、導電性多孔質基材が鉛直方向を搬送されている状態で、微多孔層塗液を塗布した以外は全て実施例1と同様にしてガス拡散電極を調製した。なお、微多孔層塗液の塗布工程中に塗液が導電性多孔質基材を透過してロール類が汚れ、塗布終了後清掃作業を行なった。
 (比較例2)
 図3に示す巻き取り式の搬送装置を用いて、撥水処理した導電性多孔質基材を得るに際して焼結炉8を370℃に設定して焼結までも行なった以外は、全て比較例1と同じにして、ガス拡散電極を調製した。
 微多孔層塗液の塗布工程中に塗液が導電性多孔質基材を透過してロール類が汚れ、塗布終了後清掃作業を行なったが、比較例2にくらべ汚れは軽微であった。
 (実施例2)
 実施例1において、カーボンペーパーの撥水処理および微多孔層塗液に使用するFEPディスパージョンを、PTFE樹脂 “ポリフロン”(登録商標)PTFEディスパージョンD-210C(ダイキン工業(株)製)に変更し、焼結温度を380℃に変更した以外は全て実施例1と同様にしてガス拡散電極を調製した。実施例1と同様、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 (実施例3)
 実施例1において、カーボンペーパーの撥水処理に使用するFEPディスパージョンを、PTFE樹脂 “ポリフロン”(登録商標)PTFEディスパージョンD-210C(ダイキン工業(株)製)に変更し、焼結温度を380℃に変更した以外は全て実施例1と同様にしてガス拡散電極を調製した。実施例1と同様、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 (実施例4)
 実施例1において、微多孔層塗液に使用するFEPディスパージョンを、PTFE樹脂 “ポリフロン”(登録商標)PTFEディスパージョンD-210C(ダイキン工業(株)製)に変更し、焼結温度を380℃に変更した以外は全て実施例1と同様にしてガス拡散電極を調製した。実施例1と同様、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 (実施例5)
 厚み100μm、空隙率85%のカーボンペーパーを、厚み150μm、空隙率85%のカーボンペーパーに変更した以外は全て実施例1と同様にしてガス拡散電極を調製した。実施例1と同様、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 (実施例6)
 厚み100μm、空隙率85%のカーボンペーパーを、厚み180μm、空隙率85%のカーボンペーパーに変更した以外は全て実施例1と同様にしてガス拡散電極を調製した。実施例1と同様、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 (実施例7)
 厚み100μm、空隙率85%のカーボンペーパーを、厚み100μm、空隙率75%のカーボンペーパーに変更した以外は全て実施例1と同様にしてガス拡散電極を調製した。実施例1と同様、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 (実施例8)
 実施例1において、微多孔層の厚みが45μm(目付け18g/m)になるように微多孔層塗液の塗布量を調整した以外は全て実施例1と同様にしてガス拡散電極を調製した。実施例1と同様、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 (実施例9)
 実施例1において、微多孔層の厚みが70μm(目付け25g/m)になるように微多孔層塗液の塗布量を調整した以外は全て実施例1と同様にしてガス拡散電極を調製した。実施例1と同様、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 (実施例10)
 実施例1において、微多孔層塗液を次のものに変更した。
 電気化学工業(株)製“デンカブラック”(登録商標)7.7質量部、FEPディスパージョン(ダイキン工業(株)製 “ポリフロン”(登録商標)ND-110)3.0質量部、界面活性剤(ナカライテスク(株)製、“TRITON”(登録商標) X-100)3質量部、イオン交換水 86.3質量部をプラネタリーミキサーで混練後、ビーズミルにより分散し、アスピレーターで脱泡して塗液を調製した。調整された微多孔層塗液の粘度は3.8Pa・sであった。
 また、上記組成の塗液は粘度が低く、一回の塗布では30μmの厚みが達成できなかったので、2回に分けて塗布を行なって30μmの厚みを達成した。この微多孔層塗液を用いて2回に分けて塗布を行なった以外は、実施例1と同様にしてガス拡散電極を調製した。このようにして塗布した微多孔層は緻密であり空隙率は52%であった。実施例1と同様、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 (実施例11)
 実施例1において、撥水材ディスパージョンを、PTFE樹脂 “ポリフロン”(登録商標)PTFEディスパージョンD-210C(ダイキン工業(株)製)をイオン交換水により、0.2質量%まで薄めたものに変更した以外は全て実施例1と同じにして、ガス拡散電極を作製した。撥水材ディスパージョンを薄いものにしたため、撥水材のカーボンペーパーを構成する繊維への付着量が少なくなり、滑落角が90°以上(90°まで傾けても滑落しない)となった。実施例1と同様、微多孔層塗液の塗布工程中に塗液がロール類を汚すようなことは一切なかった。
 これら実施例、比較例において作製したガス拡散電極についての加工条件および特性を表1にまとめて示す。本発明のガス拡散電極の範囲内にある実施例では、滲み込み指数が小さくガス拡散性が良好なため発電性能が良好であり、かつ密着力も良好であることが分かる。また、実施例において、本発明のガス拡散電極の範囲をはずれていると発電性能、密着レベルにやや劣る部分が見られることがあったが、本発明の製造方法を採用しているため、微多孔層表面に異物付着など外観欠点が少なく、また工程を汚さずに生産性が高かった。
Figure JPOXMLDOC01-appb-T000001
1 導電性多孔質基材(カーボンペーパー)
2 巻き出し機
3 ガイドロール(非駆動)
4 ダイコーターA
5 ダイコーターB
6 バックロール(駆動)
7 乾燥機
8 焼結炉
9 巻き取り機
10 合い紙
11 合い紙巻き出し機
12 塗液タンク
13 送液ポンプ
14 フィルター
15 浸漬槽
101 導電性多孔質基材
102 微多孔層
101A 導電性多孔質基材の厚み
102A 微多孔層の厚み
103A ガス拡散電極の厚み
201 電解質膜
202 アノード側触媒層
203 カソード側触媒層
204 ガス拡散層
205 セパレータ
206 ガス流路
207 リブ
301 マスフローコントローラー
302 配管A
303 バルブA
304 圧力コントローラー
305 バルブB
306 配管B
307 ガス室A
308 ガス拡散電極試料
309 ガス室B
310 配管C
311 ガス流量計
312 シール材
313 窒素ガス
401 試料取り付け冶具(上側)
402 試料取り付け冶具(下側)
403 両面テープ
404 ガス拡散電極試料
405 導電性多孔質基材面
406 微多孔層面
 

Claims (14)

  1. 導電性多孔質基材の少なくとも片面に、導電性微粒子と撥水性樹脂を含む微多孔層が形成されてなる、燃料電池に用いられるガス拡散電極であって、厚み方向のガス拡散性が30%以上であり、かつ導電性多孔質基材は、滑落角が70°以下、空隙率が80%以上であり、かつ微多孔層は、厚みが10μm以上50μm以下、空隙率が60%以上95%以下である、ガス拡散電極。
  2. 前記導電性多孔質基材は、厚みが150μm以下である、請求項1に記載のガス拡散電極。
  3. 面内のガス透過性が25cc/分以上である、請求項1または2に記載のガス拡散電極。
  4. 前記導電性多孔質基材がカーボンペーパーである、請求項1~3のいずれかに記載のガス拡散電極。
  5. 前記導電性多孔質基材と微多孔層との密着力が、5N/cm以上である、請求項1~4のいずれかに記載のガス拡散電極。
  6. 厚み方向のガス拡散性が32%以上、かつ導電性多孔質基材は、厚みが120μm以下、空隙率が85%以上であり、かつ微多孔層は、厚みが10μm以上40μm以下である、請求項1~5のいずれかに記載のガス拡散電極。
  7. 撥水性樹脂が、ポリテトラフルオロエチレンまたは四フッ化エチレン六フッ化プロピレン共重合体である、請求項1~6のいずれかに記載のガス拡散電極。
  8. 導電性多孔質基材の少なくとも片面に導電性微粒子と撥水性樹脂を含む微多孔層が形成されてなる、燃料電池に用いられるガス拡散電極の製造方法であって、導電性多孔質基材を略水平に搬送あるいは設置し、その下側から、導電性微粒子、撥水性樹脂および分散媒が混練された微多孔層塗液を塗布し、乾燥および焼結を行なってガス拡散電極を得る、ガス拡散電極の製造方法。
  9. 微多孔層塗液を塗布する前に、導電性多孔質基材を撥水材で撥水処理し、撥水材の焼結を行なわない、請求項8に記載のガス拡散電極の製造方法。
  10. 略水平に搬送あるいは設置される導電性多孔質基材は、長尺に巻かれた導電性多孔質基材巻回体から巻き出されたものであり、微多孔層塗液を下側から塗布した後に、塗布面が搬送ロールに接触しないようにして、ガス拡散電極を巻き取る、請求項8または9に記載のガス拡散電極の製造方法。
  11.  微多孔層塗液を下側から塗布して、導電性多孔質基材中への滲み込みを抑制した状態で乾燥する、請求項8~10のいずれかに記載のガス拡散電極の製造方法。
  12.  微多孔層塗液を下側から塗布して、導電性多孔質基材中に滲み込みを抑制した状態で乾燥および焼結する、請求項8~11のいずれかに記載のガス拡散電極の製造方法。
  13.  下側のみから微多孔層塗液を塗布する、請求項8~12のいずれかに記載のガス拡散電極の製造方法。
  14.  前記微多孔層塗液の粘度が、1000mPa・s以上である、請求項8~13のいずれかに記載のガス拡散電極の製造方法。
     
PCT/JP2015/057856 2014-03-28 2015-03-17 ガス拡散電極およびその製造方法 WO2015146706A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2940184A CA2940184A1 (en) 2014-03-28 2015-03-17 Gas diffusion electrode and method for manufacturing the same
JP2015514696A JP5822049B1 (ja) 2014-03-28 2015-03-17 ガス拡散電極
KR1020167028595A KR102224340B1 (ko) 2014-03-28 2015-03-17 가스 확산 전극 및 그의 제조 방법
US15/121,533 US10297833B2 (en) 2014-03-28 2015-03-17 Gas diffusion electrode and method for manufacturing the same
EP15770098.0A EP3125342B1 (en) 2014-03-28 2015-03-17 Gas diffusion electrode and method for manufacturing same
CN201580014899.5A CN106104877B (zh) 2014-03-28 2015-03-17 气体扩散电极及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014069243 2014-03-28
JP2014-069243 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146706A1 true WO2015146706A1 (ja) 2015-10-01

Family

ID=54195229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057856 WO2015146706A1 (ja) 2014-03-28 2015-03-17 ガス拡散電極およびその製造方法

Country Status (8)

Country Link
US (1) US10297833B2 (ja)
EP (1) EP3125342B1 (ja)
JP (2) JP5822049B1 (ja)
KR (1) KR102224340B1 (ja)
CN (1) CN106104877B (ja)
CA (1) CA2940184A1 (ja)
TW (1) TWI658637B (ja)
WO (1) WO2015146706A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130694A1 (ja) * 2016-01-27 2017-08-03 東レ株式会社 ガス拡散電極、微多孔層塗料およびその製造方法
CN108292757A (zh) * 2015-12-11 2018-07-17 东丽株式会社 碳片、气体扩散电极基材和燃料电池
JP2018181536A (ja) * 2017-04-10 2018-11-15 トヨタ自動車株式会社 燃料電池用ガス拡散層の製造方法
WO2020066191A1 (ja) * 2018-09-28 2020-04-02 東レ株式会社 ガス拡散層、膜電極接合体および燃料電池

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2965802C (en) * 2014-11-04 2020-07-07 Mitsubishi Chemical Corporation Porous electrode substrate, membrane-electrode assembly using same, and polymer electrolyte fuel cell using same
JP6135826B2 (ja) * 2015-04-24 2017-05-31 東レ株式会社 ガス拡散電極基材およびその製造方法
WO2018061833A1 (ja) 2016-09-29 2018-04-05 東レ株式会社 ガス拡散電極および燃料電池
JP2018085332A (ja) 2016-11-11 2018-05-31 三菱ケミカル株式会社 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法
WO2018135381A1 (ja) 2017-01-19 2018-07-26 東レ株式会社 ガス拡散電極、および、燃料電池
CN106957093A (zh) * 2017-04-07 2017-07-18 西安工业大学 一种Fe骨架‑石墨烯气体扩散电极的制备方法
JP7052418B2 (ja) * 2018-03-01 2022-04-12 トヨタ自動車株式会社 ガス拡散層
CN108796540B (zh) * 2018-05-30 2020-04-21 中氧科技(广州)有限公司 臭氧发生器用膜电极组件的生产设备及其使用方法
US20200075962A1 (en) * 2018-09-04 2020-03-05 Toyota Jidosha Kabushiki Kaisha Manufacturing method and manufacturing apparatus for gas diffusion layer
JP7120076B2 (ja) * 2018-09-04 2022-08-17 トヨタ自動車株式会社 ガス拡散層の製造方法および製造装置
US11804606B2 (en) * 2019-07-29 2023-10-31 Toray Industries, Inc. Gas diffusion electrode, method for producing the same and membrane electrode assembly
JP7447780B2 (ja) * 2020-12-22 2024-03-12 トヨタ自動車株式会社 ガス拡散層の製造方法
DE102021213141A1 (de) * 2021-11-23 2023-05-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen einer Gasdiffusionslage, Gasdiffusionslage, Brennstoffzelle sowie Vorrichtung zum Herstellen einer Gasdiffusionslage
CN114464820B (zh) * 2022-04-08 2022-07-12 湖南隆深氢能科技有限公司 一种用于燃料电池gdl疏水工艺的设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123227A (ja) * 2005-09-28 2007-05-17 Nissan Motor Co Ltd ガス拡散電極用材料及びその製造方法
JP2010192425A (ja) * 2009-01-20 2010-09-02 Dainippon Printing Co Ltd ガス拡散層及びそれを用いた固体高分子形燃料電池
JP2010225304A (ja) * 2009-03-19 2010-10-07 Toyota Motor Corp 燃料電池用拡散層の製造方法
JP2013171775A (ja) * 2012-02-22 2013-09-02 Toyota Motor Corp 燃料電池、ガス拡散層、ガス拡散層の製造方法
JP2014222565A (ja) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 燃料電池用ガス拡散層の製造方法および燃料電池の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3773325B2 (ja) 1997-03-17 2006-05-10 ジャパンゴアテックス株式会社 高分子固体電解質燃料電池用ガス拡散層材料及びその接合体
JP3444530B2 (ja) 1998-10-13 2003-09-08 松下電器産業株式会社 燃料電池
JP3382213B2 (ja) 2000-08-08 2003-03-04 松下電器産業株式会社 高分子電解質型燃料電池用ガス拡散電極の製造方法
US7627552B2 (en) * 2003-03-27 2009-12-01 Microsoft Corporation System and method for filtering and organizing items based on common elements
US7063913B2 (en) * 2004-08-25 2006-06-20 General Motors Corporation Diffusion media with microporous layer
JP2006116816A (ja) * 2004-10-21 2006-05-11 Sumitomo Chemical Co Ltd 積層体の製造方法及び製造装置
JP5292729B2 (ja) * 2007-06-29 2013-09-18 大日本印刷株式会社 ガス拡散層の製造方法及びガス拡散層製造用ペースト組成物
JP2010232043A (ja) 2009-03-27 2010-10-14 Dainippon Printing Co Ltd 固体高分子形燃料電池用ガス拡散層又はガス拡散電極の製造方法
WO2011030720A1 (ja) * 2009-09-10 2011-03-17 日産自動車株式会社 燃料電池用ガス拡散層の製造方法、燃料電池用ガス拡散層、および燃料電池
WO2011074327A1 (ja) * 2009-12-18 2011-06-23 日産自動車株式会社 燃料電池用ガス拡散層及びこれを用いた膜電極接合体
CN101814616A (zh) * 2010-04-15 2010-08-25 武汉理工新能源有限公司 一种燃料电池用气体扩散层及其制备方法
JP2012190752A (ja) 2011-03-14 2012-10-04 Toyota Motor Corp ガス拡散層の製造方法、ガス拡散層、燃料電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123227A (ja) * 2005-09-28 2007-05-17 Nissan Motor Co Ltd ガス拡散電極用材料及びその製造方法
JP2010192425A (ja) * 2009-01-20 2010-09-02 Dainippon Printing Co Ltd ガス拡散層及びそれを用いた固体高分子形燃料電池
JP2010225304A (ja) * 2009-03-19 2010-10-07 Toyota Motor Corp 燃料電池用拡散層の製造方法
JP2013171775A (ja) * 2012-02-22 2013-09-02 Toyota Motor Corp 燃料電池、ガス拡散層、ガス拡散層の製造方法
JP2014222565A (ja) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 燃料電池用ガス拡散層の製造方法および燃料電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3125342A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3389123A4 (en) * 2015-12-11 2019-12-11 Toray Industries, Inc. CARBON LAYER, GAS DIFFUSION ELECTRODE SUBSTRATE AND FUEL CELL
CN108292757A (zh) * 2015-12-11 2018-07-17 东丽株式会社 碳片、气体扩散电极基材和燃料电池
KR20180087291A (ko) * 2015-12-11 2018-08-01 도레이 카부시키가이샤 탄소 시트, 가스 확산 전극 기재 및 연료 전지
KR102630169B1 (ko) * 2015-12-11 2024-01-29 도레이 카부시키가이샤 탄소 시트, 가스 확산 전극 기재 및 연료 전지
CN108292757B (zh) * 2015-12-11 2021-10-29 东丽株式会社 碳片、气体扩散电极基材和燃料电池
CN108475792A (zh) * 2016-01-27 2018-08-31 东丽株式会社 气体扩散电极、微多孔层涂料及其制造方法
JPWO2017130694A1 (ja) * 2016-01-27 2018-11-15 東レ株式会社 ガス拡散電極、微多孔層塗料およびその製造方法
EP3410521A4 (en) * 2016-01-27 2020-02-12 Toray Industries, Inc. GAS DIFFUSION ELECTRODE, MICROPOROUS LAYER COATING MATERIAL AND MANUFACTURING METHOD THEREFOR
CN108475792B (zh) * 2016-01-27 2022-05-13 东丽株式会社 气体扩散电极、微多孔层涂料及其制造方法
WO2017130694A1 (ja) * 2016-01-27 2017-08-03 東レ株式会社 ガス拡散電極、微多孔層塗料およびその製造方法
JP2018181536A (ja) * 2017-04-10 2018-11-15 トヨタ自動車株式会社 燃料電池用ガス拡散層の製造方法
WO2020066191A1 (ja) * 2018-09-28 2020-04-02 東レ株式会社 ガス拡散層、膜電極接合体および燃料電池
JPWO2020066191A1 (ja) * 2018-09-28 2021-08-30 東レ株式会社 ガス拡散層、膜電極接合体および燃料電池
JP7302474B2 (ja) 2018-09-28 2023-07-04 東レ株式会社 ガス拡散層、膜電極接合体および燃料電池
US11749810B2 (en) 2018-09-28 2023-09-05 Toray Industries, Inc. Gas diffusion layer, membrane electrode assembly, and fuel cell

Also Published As

Publication number Publication date
CA2940184A1 (en) 2015-10-01
EP3125342A1 (en) 2017-02-01
CN106104877A (zh) 2016-11-09
KR102224340B1 (ko) 2021-03-08
KR20160138459A (ko) 2016-12-05
CN106104877B (zh) 2019-04-26
US20160365582A1 (en) 2016-12-15
TWI658637B (zh) 2019-05-01
JP2016006799A (ja) 2016-01-14
EP3125342A4 (en) 2017-08-16
JP5822049B1 (ja) 2015-11-24
TW201543746A (zh) 2015-11-16
EP3125342B1 (en) 2019-03-06
JPWO2015146706A1 (ja) 2017-04-13
US10297833B2 (en) 2019-05-21

Similar Documents

Publication Publication Date Title
JP5822049B1 (ja) ガス拡散電極
TWI705608B (zh) 氣體擴散電極
CA2988934C (en) Gas diffusion electrode
US10461334B2 (en) Gas diffusion electrode and fuel cell
JP6357923B2 (ja) ガス拡散電極、その製造方法および製造装置
KR102427226B1 (ko) 가스 확산 전극 및 연료 전지
WO2020100649A1 (ja) ガス拡散電極、ガス拡散電極の製造方法、膜電極接合体、燃料電池
TWI693737B (zh) 氣體擴散電極及其製造方法
JP7114858B2 (ja) ガス拡散電極、および、燃料電池
US10950868B2 (en) Gas diffusion electrode and fuel cell
US11710831B2 (en) Gas diffusion electrode base material and production method therefor, and solid polymer fuel cell
JP2020161389A (ja) ガス拡散電極

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015514696

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2940184

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15121533

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015770098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015770098

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167028595

Country of ref document: KR

Kind code of ref document: A