WO2016171082A1 - ガス拡散電極基材およびその製造方法 - Google Patents

ガス拡散電極基材およびその製造方法 Download PDF

Info

Publication number
WO2016171082A1
WO2016171082A1 PCT/JP2016/062149 JP2016062149W WO2016171082A1 WO 2016171082 A1 WO2016171082 A1 WO 2016171082A1 JP 2016062149 W JP2016062149 W JP 2016062149W WO 2016171082 A1 WO2016171082 A1 WO 2016171082A1
Authority
WO
WIPO (PCT)
Prior art keywords
mpl
gas diffusion
diffusion electrode
electrode substrate
base material
Prior art date
Application number
PCT/JP2016/062149
Other languages
English (en)
French (fr)
Inventor
橋本勝
若田部道生
加藤頌
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020177032590A priority Critical patent/KR102587488B1/ko
Priority to JP2016528913A priority patent/JP6135826B2/ja
Priority to CA2980461A priority patent/CA2980461C/en
Priority to US15/567,111 priority patent/US10680250B2/en
Priority to EP16783103.1A priority patent/EP3288106B1/en
Priority to CN201680022919.8A priority patent/CN107534156B/zh
Priority to ES16783103T priority patent/ES2767928T3/es
Publication of WO2016171082A1 publication Critical patent/WO2016171082A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • a fuel cell is a mechanism that electrically extracts energy generated when water is produced by reacting hydrogen and oxygen, and is expected to be clean energy because it has high energy efficiency and has only water.
  • the present invention relates to a gas diffusion electrode substrate used for a fuel cell and a method for producing the same, and more particularly, to a gas diffusion electrode substrate used for a polymer electrolyte fuel cell used as a power source for a fuel cell vehicle, etc. It relates to the manufacturing method.
  • An electrode used for a polymer electrolyte fuel cell includes a catalyst layer formed on the surface of the polymer electrolyte membrane on both sides of the polymer electrolyte membrane and a gas diffusion layer formed outside the catalyst layer. It has a structure.
  • An electrode base material circulates as an individual member for forming a gas diffusion layer on the electrode.
  • the performance required for this electrode substrate includes, for example, gas diffusivity, conductivity for collecting electricity generated in the catalyst layer, and drainage for efficiently removing moisture generated on the surface of the catalyst layer. can give.
  • a conductive porous base material having both gas diffusibility and conductivity is generally used.
  • the conductive porous substrate carbon felt made of carbon fiber, carbon paper, carbon cloth, and the like are used, and among these, carbon paper is most preferable from the viewpoint of mechanical strength.
  • a fuel cell is a system that electrically extracts energy generated when hydrogen and oxygen react to produce water
  • the electrical load increases, that is, when the current taken out of the cell increases, a large amount of water
  • the amount of gas (oxygen or hydrogen) supplied to the catalyst layer decreases, and finally all If the pores are blocked, power generation is stopped. This phenomenon is called flooding.
  • the gas diffusion layer is required to have drainage in order to maximize the current value that causes flooding.
  • the water repellency is usually increased by using an electrode base material obtained by subjecting the conductive porous base material to a water repellent treatment.
  • Patent Documents 1 and 2 are examples of the amount of the water repellent material in the electrode base material continuously decreases from the catalyst layer side toward the other side.
  • Patent Document 1 proposes a method of applying a water-repellent liquid while heating the conductive porous substrate in order to suppress the penetration of the water-repellent liquid into the conductive porous substrate.
  • the water-repellent liquid is applied while heating the conductive porous substrate, the amount of the water-repellent material on the catalyst layer side of the conductive porous substrate becomes insufficient, and water is condensed at a site with poor water repellency. And hinder the discharge of water outside the system.
  • Patent Document 2 proposes a method in which a coating liquid composed of carbon powder and a water repellent material is applied from one side of a conductive porous base material, and the water repellent material in the coating liquid is soaked into the conductive porous base material.
  • the conductive porous substrate is not subjected to any treatment, and as a pretreatment, the surfactant solution is impregnated with the conductive porous substrate, so that the coating liquid can easily penetrate into the conductive porous substrate.
  • the water repellent material in the coating liquid but also the carbon powder soaks into the conductive porous substrate, thereby blocking the pores and lowering the gas diffusivity and lowering the power generation performance.
  • the surface treatment is performed using a surfactant, the water repellent material and the carbon powder reach the side opposite to the side where the coating liquid has been applied, which hinders the discharge of water outside the system. It was.
  • the present invention employs the following means in order to solve the above problems.
  • the thickness is 110 ⁇ m or more and 240 ⁇ m or less
  • the cross section of the gas diffusion electrode substrate is divided into a part having MPL and a part not having MPL, and a part not having MPL is further in contact with MPL (hereinafter referred to as CP1 cross section) and a part not in contact with MPL.
  • a gas diffusion electrode having an F / C ratio of the CP1 cross section of 0.03 or more and 0.10 or less and an F / C ratio of the CP2 cross section of less than 0.03 when divided into two equal parts hereinafter referred to as CP2 cross section).
  • Base material hereinafter referred to as CP2 cross section.
  • F means the mass of fluorine atoms
  • C means the mass of carbon atoms
  • the fuel cell comprising the gas diffusion layer of the gas diffusion electrode substrate of the present invention has good power generation performance at high current density under the low temperature condition of the fuel cell, that is, the condition where water vapor is condensed inside the fuel cell and water droplets are generated. It will be something.
  • the gas diffusion electrode substrate of the present invention has a microporous layer (hereinafter referred to as MPL) disposed on one surface of the electrode substrate.
  • MPL microporous layer
  • gas diffusion electrode substrate is an individual member corresponding to a gas diffusion layer in a fuel cell electrode.
  • electrode substrate means a “conductive porous substrate” containing fluorine atoms.
  • the gas diffusion layer has a high gas diffusibility for diffusing the gas supplied from the separator to the catalyst, a high drainage property for discharging the water generated by the electrochemical reaction to the separator, and generation. High electrical conductivity is needed to extract the measured current. Therefore, the electrode base material used for the gas diffusion electrode base material for constituting the gas diffusion layer is a conductive porous base material made of a porous body having conductivity and an average pore diameter of usually 10 to 100 ⁇ m. Use.
  • the conductive porous substrate specifically, for example, a porous substrate containing carbon fibers such as carbon fiber woven fabric, carbon fiber papermaking body, carbon fiber nonwoven fabric, carbon felt, carbon paper, carbon cloth, It is preferable to use a porous metal substrate such as a foam sintered metal, a metal mesh, or an expanded metal.
  • a porous substrate containing carbon fibers since the corrosion resistance is excellent, it is preferable to use a porous substrate containing carbon fibers as the conductive porous substrate, and moreover, a characteristic that absorbs a dimensional change in the thickness direction of the electrolyte membrane, that is, “ Since it is excellent in “spring property”, it is preferable to use carbon paper which is a base material formed by binding a carbon fiber papermaking body with carbide.
  • the carbon paper is obtained by impregnating a carbon fiber papermaking body with a resin and carbonizing it.
  • Examples of the carbon fiber include polyacrylonitrile (PAN), pitch, and rayon carbon fibers.
  • PAN polyacrylonitrile
  • pitch rayon carbon fibers.
  • PAN-based and pitch-based carbon fibers are preferably used in the present invention because of excellent mechanical strength.
  • the thickness of the conductive porous substrate or the electrode substrate is preferably 210 ⁇ m or less. Moreover, it is preferable that the thickness of a conductive porous base material or an electrode base material is 90 micrometers or more.
  • the gas diffusion distance in the thickness direction is shortened when this is used as the gas diffusion electrode substrate, and the gas diffusibility is improved.
  • the drainage path is shortened, drainage is improved and flooding can be suppressed.
  • the conduction path is shortened, the conductivity is improved, and the power generation performance is improved at both high and low temperatures.
  • the water repellent material is stained on the other surface when the water repellent treatment is performed from one surface of the conductive porous substrate. Since it does not come out, the F / C ratio of the CP2 cross section becomes 0.01 or less, and since water droplets are smoothly discharged out of the system, drainage is improved, and flooding can be suppressed, so that power generation performance at low temperature is improved.
  • the thickness of the conductive porous substrate or electrode substrate is 90 ⁇ m or more, the gas diffusion property in the in-plane direction is improved when the gas diffusion electrode substrate is used, and the separator rib Since the gas can be easily supplied to the catalyst in the above, the power generation performance is improved at both high and low temperatures. Further, when the thickness of the conductive porous substrate or electrode substrate is 90 ⁇ m or more, the mechanical strength of the conductive porous substrate is further improved, and when this is used as a gas diffusion electrode substrate, the electrolyte It becomes easier to support the membrane and catalyst layer.
  • the thickness of the conductive porous substrate and the electrode substrate can be determined using a micrometer in a state where the surface pressure is 0.15 MPa. The average of 10 individual measured values is taken as the thickness of the conductive porous substrate or electrode substrate.
  • the conductive porous substrate containing fluorine atoms is the electrode substrate.
  • an electrode substrate that is a conductive porous substrate containing fluorine atoms is formed.
  • fluorine atoms such as fluororesin act as a water repellent material.
  • whether or not the conductive porous substrate contains fluorine atoms, that is, whether or not a certain substrate corresponds to the electrode substrate is determined by the F / C ratio of the CP1 cross section and the F / C of the CP2 cross section described later. Determination is made based on whether or not at least one of the ratio and the F / C ratio of the surface opposite to the side on which the MPL is disposed is greater than zero.
  • a fluororesin suitable for being applied to the conductive porous substrate is PTFE (polytetrafluoroethylene) (for example, “Teflon” (registered trademark)), FEP (tetrafluoroethylene hexafluoride).
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene hexafluoride
  • propylene fluoride copolymer PFA (perfluoroalkoxy fluoride resin), ETFA (ethylene tetrafluoroethylene copolymer), PVDF (polyvinylidene fluoride), and PVF (polyvinyl fluoride).
  • the viscosity of the fluororesin becomes low when melted, the bias of the fluororesin, that is, the bias of fluorine atoms is reduced, and the power generation performance of the gas diffusion electrode substrate using such an electrode substrate is reduced. improves.
  • the fluororesin having a melting point of 200 ° C. or higher and 320 ° C. or lower include FEP and PFA, and FEP is particularly preferable.
  • the amount of the water repellent material that is, the amount of fluorine atoms continuously decreases from the catalyst layer side toward the other side. That is, in the gas diffusion electrode substrate of the present invention, as shown in FIG. 1, the cross section of the gas diffusion electrode substrate 1 is divided into a portion having MPL (MPL2) and a portion not having MPL (electrode substrate 3). Further, when the part having no MPL is divided into two parts, a part in contact with the MPL (CP1 cross section 4) and a part not in contact with the MPL (CP2 cross section 5), the F / C ratio of the CP1 cross section is 0.03 or more.
  • the F / C ratio of the CP2 cross section is less than 0.03 and the F / C ratio of the CP2 cross section is preferably 0.01 or less.
  • F means the mass of fluorine atoms
  • C means the mass of carbon atoms.
  • the lower limit of the F / C ratio of the CP2 cross section is zero.
  • the method for setting the F / C ratio of the CP2 cross section to less than 0.03 is not particularly limited.
  • the F / C ratio of the CP2 cross section can be made less than 0.03 by applying a water repellent material from one of the conductive porous substrates having a thickness of 90 ⁇ m or more.
  • the method for setting the F / C ratio of the CP1 cross section to 0.03 or more and 0.10 or less is not particularly limited.
  • the F / C ratio of the CP1 cross section is 0.03 or more and 0.10.
  • F / C ratio is an index indicating the abundance of a fluororesin that is a water repellent material that provides water repellency.
  • a large F / C ratio means high water repellency. If the F / C ratio of the CP1 cross section is 0.03 or more, there is sufficient water repellency and water droplets are prevented from staying in CP1. Further, if the F / C ratio of the CP1 cross section is 0.10 or less, it is generated on the surface of the catalyst layer and taken into the electrode base material without pushing back the water droplets that have passed through the MPL toward the CP1. To discharge. If the F / C ratio of the CP2 cross section is less than 0.03, water droplets coming from CP1 toward CP2 are discharged out of the system. If it is 0.03 or more, the water-repellent material inhibits water droplets from being discharged out of the system, and the drainage performance decreases.
  • the tip of the portion where MPL is most immersed in the electrode substrate is included.
  • it can be determined by drawing a line parallel to the surface of the substrate. Details will be described later.
  • the F / C ratio of the surface of the gas diffusion electrode substrate of the present invention on the side opposite to the side on which the MPL is disposed is 0.01 or less, water droplets from CP1 toward CP2 are discharged out of the system. Therefore, it is preferable.
  • the lower limit of the F / C ratio on the surface opposite to the side on which the MPL is disposed is zero.
  • the method for setting the F / C ratio on the surface opposite to the side on which the MPL is disposed to 0.01 or less is not particularly limited.
  • the F / C ratio of the surface of the gas diffusion electrode substrate of the present invention on the side where the MPL is disposed is 0.10 or more, it is preferable because there is sufficient water repellency and water droplets are prevented from staying in the MPL. Further, if the F / C ratio on the surface on which the MPL is disposed is 0.40 or less, the water stays between the catalyst layer and the MPL without pushing back the water droplets coming from the catalyst toward the MPL. It is preferable to prevent it.
  • a method of including a fluororesin in the MPL can be mentioned. .
  • MPL is disposed on one surface of the electrode substrate.
  • MPL has high gas diffusivity in the vertical direction for diffusing the gas supplied from the separator to the catalyst, high drainage for discharging liquid water generated by the electrochemical reaction to the separator, and the generated current. It has high conductivity for taking out. Furthermore, MPL also has a function of accelerating the back diffusion of moisture into the electrolyte membrane and moistening the electrolyte membrane. In the present invention, it is important that the MPL is disposed only on one surface of the electrode substrate. When MPL is arranged on both surfaces of the electrode base material, MPL having high water repellency is also arranged between the electrode base material and the separator. The power generation performance is reduced.
  • the method for producing the gas diffusion electrode substrate of the present invention is not particularly limited.
  • a production method in which a step of spraying or coating a dispersion containing a fluororesin from one surface of the conductive porous substrate and subsequently placing MPL on the surface is particularly suitable.
  • the manufacturing method of the gas diffusion electrode base material of this invention is demonstrated.
  • the electrode substrate of the present invention is a conductive porous substrate containing fluorine atoms. This can be obtained by applying a so-called water-repellent treatment for imparting a water-repellent material to the conductive porous substrate.
  • the water repellent treatment can be carried out by applying a dispersion containing the fluororesin from one surface of the conductive porous substrate and subsequently performing a heat treatment.
  • spraying or the like, or coating with a die coater or the like is preferable.
  • the amount of the fluororesin applied during the water repellent treatment is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the conductive porous substrate.
  • the electrode substrate When the coating amount of the fluororesin is 1 part by mass or more, the electrode substrate is preferable because it has excellent drainage. Moreover, when the application amount of the fluororesin is 5 parts by mass or less, the electrode base material is preferable because it has excellent conductivity. After the fluororesin coating, drying is preferably performed at 90 ° C. or more and less than 200 ° C.
  • the gas diffusion electrode substrate of the present invention is preferably a production method in which MPL is disposed on the surface after water-repellent treatment is performed from one surface of the conductive porous substrate in this way.
  • MPL comprises conductive fine particles such as carbon black, carbon nanotubes, carbon nanofibers, chopped fibers of carbon fibers, graphene, and graphite.
  • conductive fine particles carbon black, carbon nanotubes, carbon nanofibers, and graphene are particularly preferably used.
  • carbon black acetylene black is preferably used because it has few impurities and hardly reduces the activity of the catalyst.
  • the MPL also requires properties such as conductivity, gas diffusivity, water drainage, moisture retention and thermal conductivity, as well as strong acid resistance on the anode side inside the fuel cell and oxidation resistance on the cathode side. It is done. Therefore, the MPL preferably contains a water-repellent resin such as a fluororesin in addition to the conductive fine particles.
  • a fluororesin used for MPL PTFE, FEP, PFA, ETFA, etc. are suitable like the fluororesin used for an electrode substrate.
  • PTFE is preferable because it has the highest water repellency.
  • PTFE has a high melting point of around 330 ° C., there is a drawback that the sintering temperature described later must be 350 ° C.
  • a fluororesin having a melting point of 300 ° C. or lower such as FEP.
  • the lower limit of the melting point is not less than the boiling point of the solvent and substantially about 100 ° C., preferably 150 ° C. or more.
  • MPL coating liquid a coating liquid for forming MPL (hereinafter referred to as MPL coating liquid) to one surface of the electrode base material.
  • the MPL coating liquid usually contains the above-mentioned conductive fine particles and a solvent such as water or alcohol, and is often blended with a surfactant for dispersing the conductive fine particles. Further, in order to include the water repellent resin in the MPL, the water repellent resin is previously blended in the MPL coating liquid.
  • the coating of the MPL coating liquid on the electrode substrate can be performed using various commercially available coating apparatuses.
  • As the coating method screen printing, rotary screen printing, spray spraying, intaglio printing, gravure printing, die coater coating, bar coating, blade coating and the like can be used. Since the amount of coating can be quantified regardless of the surface roughness of the electrode substrate, coating with a die coater is preferred.
  • the coating methods exemplified above are only for illustrative purposes, and are not necessarily limited thereto.
  • sintering is performed for the purpose of removing the surfactant used for dispersing the conductive fine particles and for binding the conductive fine particles by dissolving the fluororesin once.
  • the sintering temperature is higher than the boiling point or decomposition temperature of the surfactant and the melting temperature of the fluororesin.
  • sintering should be performed at a sintering temperature of 330 ° C. or higher, preferably 350 ° C. or higher for 30 seconds or longer.
  • the upper limit is usually about 400 ° C.
  • the upper limit of the sintering time is usually about 60 minutes from the viewpoint of productivity.
  • a nonionic surfactant is generally used in that it has few impurities.
  • Octylphenoxypolyethoxyethanol (“TRITON (registered trademark)" X-100 manufactured by Nacalai Tesque, Inc.), polyoxyethylene alkyl ether, polyvinyl alcohol, and the like can be used.
  • the preferred production method of the present invention includes a step of applying the dispersion containing the fluororesin from one surface of the conductive porous substrate, and subsequently applying the MPL coating solution from the surface side. It is preferable to work.
  • moisture generated by the reaction is generated in the catalyst layer. That is, in the gas diffusion electrode substrate, moisture is generated on the side where the MPL is provided.
  • the generated moisture is condensed into water droplets, the water droplets move from a region with high water repellency to a region with low water repellency. Therefore, it is preferable to provide the MPL on the surface of the electrode substrate having a high water repellency because generated water droplets can be easily removed to the separator side.
  • the thickness of the gas diffusion electrode substrate is 240 ⁇ m or less.
  • the thickness of the gas diffusion electrode substrate is 110 ⁇ m or more.
  • the gas diffusion distance in the thickness direction is shortened and gas diffusibility is improved, and the drainage path is shortened to improve drainage and suppress flooding.
  • the conductive path is shortened, the conductivity is improved, and the power generation performance is improved at both high and low temperatures.
  • the thickness of the gas diffusion electrode substrate is 110 ⁇ m or more, the gas diffusibility in the in-plane direction is improved, and the gas can be more easily supplied to the catalyst under the ribs of the separator. In any case, the power generation performance is improved.
  • a gas diffusion electrode substrate having such a thickness can be obtained by controlling the thickness of the conductive porous substrate and the thickness of the MPL.
  • the thickness of the gas diffusion electrode substrate can be determined using a micrometer in a state where the surface pressure is 0.15 MPa, and the average of 10 individual measured values can be obtained as the gas diffusion electrode. The thickness of the substrate.
  • the gas diffusibility in the thickness direction of the gas diffusion electrode substrate is preferably 30% or more.
  • the gas diffusibility is 30% or more, high power generation performance can be obtained at both high and low temperatures.
  • the higher the gas diffusivity in the thickness direction the better.
  • the upper limit of gas diffusivity is considered to be about 40%.
  • the gas diffusion electrode substrate of the present invention is pressure-bonded so that the catalyst layer and the MPL of the gas diffusion electrode substrate are in contact with both sides of the electrolyte membrane provided with the catalyst layer on both sides, and further, a member such as a separator is assembled.
  • the battery is assembled and used as a fuel cell.
  • thermosetting resin using a resin in which a resol type phenolic resin and a novolac type phenolic resin are mixed at a mass ratio of 1: 1 as a thermosetting resin, scaly graphite (average particle size 5 ⁇ m) as a carbon filler, and methanol as a solvent.
  • Carbon-based filler / solvent 10 parts by mass / 5 parts by mass / 85 parts by mass
  • the paper body cut into 15 cm ⁇ 12.5 cm is immersed in a resin composition filled with aluminum bat, and the resin component (thermosetting resin + carbon filler) becomes 130 parts by mass with respect to 100 parts by mass of the carbon fibers. After impregnating in this manner, it was dried by heating at 100 ° C. for 5 minutes to prepare a pre-impregnated body. Next, it heat-processed for 5 minutes at 180 degreeC, pressing with a flat plate press. In addition, the space
  • the base material obtained by heat-treating the pre-impregnated body was introduced into a heating furnace having a maximum temperature of 2400 ° C. maintained in a nitrogen gas atmosphere in a heating furnace to obtain a conductive porous base material.
  • MPL was formed on the surface of the electrode base material coated with FEP using a slit die coater.
  • MPL coating liquid used here acetylene black (“DENKA BLACK” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.), which is a kind of carbon black, is used as the conductive fine particles, and PTFE (Daikin Industries, Ltd.) is used as the fluororesin.
  • DENKA BLACK registered trademark
  • PTFE Denki Kagaku Kogyo Co., Ltd.
  • Polyflon registered trademark
  • D-1E manufactured by Nacalai Tesque Co., Ltd. was used as a surfactant, and purified water was used as a dispersion medium.
  • the F / C ratio of the surface of the gas diffusion electrode substrate on the side where the MPL was disposed and the surface opposite to the side where the MPL was disposed were measured as follows.
  • the gas diffusion electrode substrate was cut to 5 ⁇ 5 mm. A part of the gas diffusion electrode base material cut to 5 ⁇ 5 mm using SEM-EDX (energy dispersive fluorescent X-ray) was magnified 200 times. Elemental analysis of the surface to be measured was performed with an acceleration voltage of 5 KeV, a scan width of 20 ⁇ m, and a line scan interval of 50 ⁇ m. The X-ray dose (count number) corresponding to fluorine and carbon was quantified to determine the F / C ratio.
  • SEM-EDX energy dispersive fluorescent X-ray
  • the F / C ratio of the cross section of the gas diffusion electrode substrate was measured as follows.
  • the gas diffusion electrode base material was placed horizontally and sliced perpendicularly to the horizontal plane using a single blade to give a cross section.
  • SEM-EDX energy dispersive X-ray fluorescence
  • the magnification was adjusted so that the field of view (overall field of view) from the portion close to one surface to the portion close to the other surface was within the monitor screen.
  • Elemental analysis of the cross section of the gas diffusion electrode substrate was performed at an acceleration voltage of 5 KeV, a scan width of 20 ⁇ m, and a line scan interval of 50 ⁇ m.
  • the X-ray dose (count number) corresponding to fluorine and carbon was quantified to determine the F / C ratio.
  • the measurement of the F / C ratio of the cross section was performed for each of the CP1 cross section and the CP2 cross section, which are portions having no MPL, in the cross section of the gas diffusion electrode substrate.
  • the boundary 6 between the portion having MPL and the portion not having MPL was drawn in parallel with the surface of the base material so that the MPL includes the tip of the portion most penetrating into the electrode base material. A line.
  • SEM-EDX an apparatus obtained by adding an energy dispersive X-ray fluorescence spectrometer SEMEDEX Type-H to SEM H-3000 manufactured by Hitachi was used.
  • ⁇ Gas diffusivity evaluation in the thickness direction> A gas water vapor permeation diffusion evaluation apparatus (MVDP-200C) manufactured by Seika Sangyo was used. A gas whose diffusibility is to be measured was flowed to one (primary side) of the gas diffusion electrode substrate, and nitrogen gas was flowed to the other (secondary side). The differential pressure between the primary side and the secondary side was controlled in the vicinity of 0 Pa (0 ⁇ 3 Pa). That is, there was almost no gas flow due to the pressure difference, and the gas movement phenomenon was caused only by molecular diffusion. The gas concentration when the equilibrium was reached was measured with a gas concentration meter on the secondary side, and this value (%) was defined as gas diffusivity in the thickness direction.
  • MVDP-200C gas water vapor permeation diffusion evaluation apparatus manufactured by Seika Sangyo was used.
  • a gas whose diffusibility is to be measured was flowed to one (primary side) of the gas diffusion electrode substrate, and nitrogen gas was flowed to the other (secondary
  • the obtained gas diffusion electrode base material is an electrolyte membrane / catalyst layer integrated product (Nippon Gore's electrolyte membrane “Gore Select (registered trademark)” and Nihon Gore's catalyst layer “PRIMEA (registered trademark)” on both sides.
  • a membrane electrode assembly (MEA) was produced by sandwiching the catalyst layer and the MPL so that the MPL was in contact with both sides of the formed product and hot pressing. This membrane electrode assembly is incorporated into a single cell for a fuel cell.
  • the battery temperature is 57 ° C.
  • the fuel utilization efficiency is 70%
  • the air utilization efficiency is 40%
  • the hydrogen on the anode side and the air on the cathode side have dew points of 57 ° C. and 57 ° C., respectively.
  • Humidification was performed so that the temperature reached °C, and power was generated.
  • the output voltage when the current density was 1.9 A / cm 2 was used as an indicator of flooding resistance.
  • Example 1 A gas diffusion electrode substrate was obtained according to the methods described in ⁇ Preparation of electrode substrate> and ⁇ Formation of MPL>. As a result of evaluating the power generation performance of this gas diffusion electrode substrate, as shown in Table 1, the output voltage is 0.40 V (operating temperature 57 ° C., humidification temperature 57 ° C., current density 1.9 A / cm 2 ), The flooding resistance was also good. The other measurement results were as shown in Table 1.
  • Example 2 In ⁇ Preparation of Electrode Base>, 5 parts by mass of FEP is sprayed from one side of the conductive porous base with 95 parts by weight of the conductive porous base, and heated at 100 ° C. for 5 minutes.
  • a gas diffusion electrode base material was obtained according to the method described in ⁇ Preparation of electrode base material> and ⁇ Formation of MPL> except that the electrode base material was prepared by heat treatment.
  • the output voltage was 0.42 V (operating temperature 57 ° C., humidification temperature 57 ° C., current density 1.9 A / cm 2 ), The flooding resistance was also good.
  • the other measurement results were as shown in Table 1.
  • Example 3 In ⁇ Preparation of Electrode Base>, 5 parts by mass of FEP is applied from one side of the conductive porous base with a die coater to 95 parts by weight of the conductive porous base, and at 100 ° C. for 5 minutes.
  • a gas diffusion electrode substrate was obtained according to the methods described in ⁇ Preparation of electrode substrate> and ⁇ Formation of MPL> except that the electrode substrate was prepared by heat treatment.
  • the output voltage is 0.41 V (operating temperature 57 ° C., humidification temperature 57 ° C., current density 1.9 A / cm 2 ), The flooding resistance was also good.
  • the other measurement results were as shown in Table 1.
  • Example 4 ⁇ Preparation of electrode substrate> In 93 parts by mass of the conductive porous substrate, 7 parts by mass of FEP was applied from one surface of the conductive porous substrate by a die coater, and the coating was performed at 100 ° C. for 5 minutes.
  • a gas diffusion electrode substrate was obtained according to the methods described in ⁇ Preparation of electrode substrate> and ⁇ Formation of MPL> except that the electrode substrate was prepared by heat treatment.
  • the output voltage is 0.40 V (operating temperature 57 ° C., humidification temperature 57 ° C., current density 1.9 A / cm 2 ), The flooding resistance was also good.
  • the other measurement results were as shown in Table 1.
  • CP1 F / C ratio is the F / C ratio of the CP1 cross section
  • CP2 F / C ratio is the F / C ratio of the CP2 cross section
  • MPL surfaceLF / C ratio is “MPL.
  • the F / C ratio of the surface on the side, “MPL opposite surface F / C ratio” means the F / C ratio of the surface opposite to the side on which the MPL is disposed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本発明は、細孔がふさがれることによるガス拡散性の低下を抑えて、発電性能の低下を抑えながら、さらに系外への水の排出性に優れたガス拡散電極基材を提供する。本発明は、電極基材の一方の表面に、マイクロポーラス層(以下、MPLという)を配置させたガス拡散電極基材であって、厚さが110μm以上240μm以下であり、ガス拡散電極基材の断面を、MPLを有する部分とMPLを有さない部分とに分け、さらにMPLを有さない部分を、MPLと接する部分(以下、CP1断面という)とMPLと接しない部分(以下、CP2断面という)に2等分したときに、CP1断面のF/C比が0.03以上0.10以下、CP2断面のF/C比が0.03未満である、ガス拡散電極基材である。ここで「F」とはフッ素原子の質量を意味し、「C」とは炭素原子の質量を意味する。

Description

ガス拡散電極基材およびその製造方法
 燃料電池は水素と酸素を反応させて水が生成する際に生起するエネルギーを電気的に取り出す機構であり、エネルギー効率が高く排出物が水しかないことからクリーンエネルギーとして期待されている。本発明は、燃料電池に用いられるガス拡散電極基材およびその製造方法に関し、特に、燃料電池の中でも燃料電池車などの電源として使用される固体高分子形燃料電池に用いるガス拡散電極基材およびその製造方法に関する。
 固体高分子形燃料電池に使用される電極は、高分子電解質膜の両面において、高分子電解質膜の表面に形成される触媒層と、この触媒層の外側に形成されるガス拡散層とからなる構造を有する。電極でのガス拡散層を形成するための個別の部材として、電極基材が流通している。そして、この電極基材に求められる性能としては、例えばガス拡散性、触媒層で発生した電気を集電するための導電性、および触媒層表面に発生した水分を効率よく除去する排水性などがあげられる。このような電極基材を得るため、一般的に、ガス拡散能および導電性を兼ね備えた導電性多孔質基材が用いられる。
 導電性多孔質基材としては、具体的には、炭素繊維からなるカーボンフェルト、カーボンペーパーおよびカーボンクロスなどが用いられ、中でも機械的強度などの点からカーボンペーパーが最も好ましいとされる。
 また、燃料電池は水素と酸素が反応し水が生成する際に生じるエネルギーを電気的に取り出すシステムであるため、電気的な負荷が大きくなると、即ち電池外部へ取り出す電流を大きくすると多量の水(水蒸気)が発生し、この水蒸気が低温では凝縮して水滴になり、ガス拡散層の細孔を塞いでしまうとガス(酸素あるいは水素)の触媒層への供給量が低下し、最終的に全ての細孔が塞がれてしまうと発電が停止することになる。この現象をフラッディングという。
 このフラッディングを可能な限り発生させないように、逆に言うとフラッディングを起こす電流値を出来る限り大きくするために、ガス拡散層には排水性が求められる。この排水性を高める手段として、通常、導電性多孔質基材に撥水処理を施した電極基材を用いて撥水性を高めている。
 また、電極基材内における撥水材の量が、触媒層側から他方の側に向かって連続的に減少していることにより、排水性をさらに向上させる技術が提案されている。(特許文献1,2)
特許第5079195号公報 特開2014-63730号公報
 特許文献1には、導電性多孔質基材への撥水液しみこみを抑制するため、導電性多孔質基材を加熱しながら撥水液を塗工する方法が提案されている。しかし、導電性多孔質基材を加熱しながら撥水液を塗工すると、導電性多孔質基材の触媒層側の撥水材の量が不十分となり、撥水性の乏しい部位において水が凝縮し、系外への水の排出を阻害する。
 特許文献2では、導電性多孔質基材の片面からカーボン粉と撥水材からなる塗工液を塗布し、塗工液中の撥水材を導電性多孔質基材にしみこませる方法が提案されている。導電性多孔質基材に何も処理を行わない場合と、下処理として界面活性剤溶液に導電性多孔質基材を含浸させ、より塗工液が導電性多孔質基材にしみ込み易くした場合が提案されている。しかし、塗工液中の撥水材だけでなくカーボン粉も導電性多孔質基材にしみ込むことにより、細孔がふさがれガス拡散性が低下し発電性能が低下する。また、特に界面活性剤を用いて下処理した場合は、撥水材およびカーボン粉が塗工液を塗布した側の反対側まで到達し、系外への水の排出を阻害するという問題があった。
 本発明は上記の課題を解決するため、次のような手段を採用するものである。
 電極基材の一方の表面に、マイクロポーラス層(以下、MPLという)を配置させたガス拡散電極基材であって、
 厚さが110μm以上240μm以下であり、
 ガス拡散電極基材の断面を、MPLを有する部分とMPLを有さない部分とに分け、さらにMPLを有さない部分を、MPLと接する部分(以下、CP1断面という)とMPLと接しない部分(以下、CP2断面という)に2等分したときに、CP1断面のF/C比が0.03以上0.10以下、CP2断面のF/C比が0.03未満である、ガス拡散電極基材。
 ここで「F」とはフッ素原子の質量を意味し、「C」とは炭素原子の質量を意味する。
 本発明のガス拡散電極基材でガス拡散層を構成した燃料電池は、燃料電池の低温条件、即ち燃料電池内部で水蒸気が凝縮して水滴が発生する条件における高電流密度での発電性能が良好なものとなる。
本発明のガス拡散電極基材の模式断面図 本発明のガス拡散電極基材の、MPLを有する部分と有さない部分の境界説明図
 本発明のガス拡散電極基材は、電極基材の一方の表面にマイクロポーラス層(以下、MPLという)が配置されている。
 なお本発明においては、電極基材の一方の表面にMPLを配置させたものを「ガス拡散電極基材」と称する。「ガス拡散電極基材」は、燃料電池電極でのガス拡散層に相当する個別部材である。そして「電極基材」とは、フッ素原子を含む「導電性多孔質基材」を意味する。
 本発明において、ガス拡散層は、セパレータから供給されるガスを触媒へと拡散するための高いガス拡散性、電気化学反応に伴って生成する水をセパレータへ排出するための高い排水性、および発生した電流を取り出すための高い導電性が必要である。このため、ガス拡散層を構成するためのガス拡散電極基材に用いる電極基材には、導電性を有し、平均細孔径が通常10~100μmの多孔体からなる導電性多孔質基材を用いる。
 ここで導電性多孔質基材としては、具体的には、例えば、炭素繊維織物、炭素繊維抄紙体、炭素繊維不織布、カーボンフェルト、カーボンペーパー、カーボンクロスなどの炭素繊維を含む多孔質基材、発泡焼結金属、金属メッシュ、エキスパンドメタルなどの金属多孔質基材を用いることが好ましい。中でも耐腐食性が優れることから、導電性多孔質基材としては、炭素繊維を含む多孔質基材を用いることが好ましく、さらには、電解質膜の厚み方向の寸法変化を吸収する特性、すなわち「ばね性」に優れることから、炭素繊維抄紙体を炭化物で結着してなる基材であるカーボンペーパーを用いることが好適である。本発明において、カーボンペーパーは、炭素繊維抄紙体に樹脂を含浸して炭素化することにより得られる。
 炭素繊維としては、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系などの炭素繊維が挙げられる。中でも、機械強度に優れることから、PAN系、ピッチ系炭素繊維が本発明において好ましく用いられる。
 本発明において、導電性多孔質基材や電極基材の厚さは210μm以下であることが好ましい。また導電性多孔質基材や電極基材の厚さは90μm以上であることが好ましい。導電性多孔質基材や電極基材の厚さが210μm以下であると、これを用いてガス拡散電極基材とした場合に厚み方向のガスの拡散距離が短くなりガス拡散性が向上し、また、排水のパスが短くなるため排水性が向上し、フラッディングを抑制でき、さらに、導電のパスが短くなり、導電性が向上し、高温、低温いずれにおいても発電性能が向上する。
 一方、導電性多孔質基材や電極基材の厚さが90μm以上であると、導電性多孔質基材の一方の表面から撥水処理した際に、もう一方の面に撥水材が染み出さないため、CP2断面のF/C比が0.01以下となり、水滴をスムーズに系外に排出するため排水性が向上し、フラッディングを抑制できるために低温での発電性能が向上する。また、導電性多孔質基材や電極基材の厚さが90μm以上であると、これを用いてガス拡散電極基材とした場合に面内方向のガス拡散性が向上し、セパレータのリブ下にある触媒へもガスの供給がより容易にできるため、高温、低温いずれにおいても発電性能が向上する。また、導電性多孔質基材や電極基材の厚さが90μm以上であると、導電性多孔質基材の機械強度がより向上し、これを用いてガス拡散電極基材とした場合に電解質膜、触媒層を支えやすくなる。
 ここで、導電性多孔質基材や電極基材の厚さは、面圧0.15MPaで加圧した状態で、マイクロメーターを用いて求めることができる。10箇所の個別の測定値を平均したものを、導電性多孔質基材又は電極基材の厚さとする。
 本発明においては、前述の通り、フッ素原子を含む導電性多孔質基材が電極基材である。よって、例えば導電性多孔質基材にフッ素樹脂が付与されることで、フッ素原子を含む導電性多孔質基材である電極基材が形成される。ここでフッ素樹脂などのフッ素原子は撥水材として作用する。なお、導電性多孔質基材がフッ素原子を含むか否か、つまり、ある基材が電極基材に該当するか否かは、後述するCP1断面のF/C比、CP2断面のF/C比、MPLを配置させた側とは反対側の表面のF/C比の少なくともいずれかが、0より大きいか否かで判断する。
 電極基材を得るために、導電性多孔質基材に付与するのに好適なフッ素樹脂は、PTFE(ポリテトラフルオロエチレン)(たとえば“テフロン”(登録商標))、FEP(四フッ化エチレン六フッ化プロピレン共重合体)、PFA(ペルフルオロアルコキシフッ化樹脂)、ETFA(エチレン四フッ化エチレン共重合体)、PVDF(ポリフッ化ビニリデン)、PVF(ポリフッ化ビニル)などが挙げられる。中でも、融点が200℃以上320℃以下であるフッ素樹脂を用いることが好ましい。このようなフッ素樹脂を用いると、フッ素樹脂が溶融時に低粘度となり、フッ素樹脂の偏り、つまりフッ素原子の偏りが少なくなり、このような電極基材を用いたガス拡散電極基材の発電性能が向上する。融点が200℃以上320℃以下であるフッ素樹脂としては、FEPまたはPFAが挙げられ、特に好ましくはFEPである。
 本発明のガス拡散電極基材中の電極基材は、撥水材の量、つまりフッ素原子の量が、触媒層側から他方の側に向かって連続的に減少している。つまり本発明のガス拡散電極基材は、図1に示すとおり、ガス拡散電極基材1の断面を、MPLを有する部分(MPL2)とMPLを有さない部分(電極基材3)とに分け、さらにMPLを有さない部分を、MPLと接する部分(CP1断面4)とMPLと接しない部分(CP2断面5)に2等分したときに、CP1断面のF/C比が0.03以上0.10以下、CP2断面のF/C比が0.03未満であり、好ましくはCP2断面のF/C比が0.01以下である。ここで「F」とはフッ素原子の質量を意味し、「C」とは炭素原子の質量を意味する。CP2断面のF/C比の下限は0である。
 そしてCP2断面のF/C比を0.03未満とするための方法は特に限定されない。たとえば、厚さ90μm以上の導電性多孔質基材の一方から撥水材を塗布することにより、CP2断面のF/C比を0.03未満とすることができる。
 CP1断面のF/C比を0.03以上0.10以下とする方法は特に限定されない。例えば撥水材として用いるフッ素樹脂の塗布量を、導電性多孔質基材100質量部に対して1~5質量部とすることにより、CP1断面のF/C比を0.03以上0.10以下にできる。
 F/C比は撥水性をもたらす撥水材であるフッ素樹脂の存在量を示す指標である。F/C比が大きいことは、撥水性が高いということである。CP1断面のF/C比が0.03以上であれば十分な撥水性があり、CP1に水滴が滞留することを防ぐ。また、CP1断面のF/C比が0.10以下であれば、触媒層表面に発生し、MPLを通ってCP1に向かってきた水滴を押し戻すことなく、電極基材に取り込んだ上で系外に排出する。CP2断面のF/C比が0.03未満であれば、CP1からCP2に向かってきた水滴を系外に排出する。0.03以上だと水滴が系外に排出されるのを撥水材が阻害し、排水性が低下する。
 ここで、ガス拡散電極基材の断面をMPLを有する部分とMPLを有さない部分とに分けるに際しては、図2に示すように、MPLが最も電極基材にしみこんでいる部分の先端を含むように、基材の表面と平行に線を引くことで決定できる。詳細は後述する。
 本発明のガス拡散電極基材の、MPLを配置させた側とは反対側の表面のF/C比が0.01以下であれば、CP1からCP2に向かってきた水滴を系外に排出するため好ましい。MPLを配置させた側とは反対側の表面のF/C比の下限は0である。
 MPLを配置させた側とは反対側の表面のF/C比を0.01以下とするための方法は特に限定されない。例えば、厚さ90μm以上の導電性多孔質基材の一方から撥水材を塗布する方法によって可能である。
 本発明のガス拡散電極基材の、MPLを配置させた側の表面のF/C比が0.10以上あれば十分な撥水性があり、MPLに水滴が滞留することを防ぐため好ましい。また、MPLを配置させた側の表面のF/C比が0.40以下であれば、触媒からMPLに向かってきた水滴を押し戻すことなく、触媒層とMPLの間に水が滞留することを防ぐため好ましい。ガス拡散電極基材の、MPLを配置させた側の表面のF/C比が0.10以上0.40以下とするためには、例えば、MPLにフッ素樹脂を含ませる方法を挙げることができる。
 本発明のガス拡散電極基材は、電極基材の一方の表面にMPLが配置されている。MPLは、セパレータから供給されるガスを触媒へと拡散するための高い面直方向のガス拡散性、電気化学反応に伴って生成する液水をセパレータへ排出するための高い排水性、発生した電流を取り出すための高い導電性を有する。さらには、MPLは、電解質膜への水分の逆拡散を促進し、電解質膜を湿潤する機能も有する。本発明において、MPLは、電極基材の一方の表面にのみ配置されていることが重要である。MPLが電極基材の両面に配置されていると、電極基材とセパレータの間にも撥水性の高いMPLが配置されることになるため、電極基材内部からの排水が阻害され、低温での発電性能が低下する。
 本発明のガス拡散電極基材の製造方法は特に限定されない。導電性多孔質基材の一方の表面からフッ素樹脂を含む分散液を噴霧又は塗工する工程を有し、続いて当該表面にMPLを配置させる製造方法が特に好適である。以下、本発明のガス拡散電極基材の製造方法について説明する。
 本発明の電極基材は、フッ素原子を含む導電性多孔質基材である。これは導電性多孔質基材に対して撥水材を付与する、いわゆる撥水処理を施すことにより得られる。撥水処理は、導電性多孔質基材の一方の表面から前記フッ素樹脂を含む分散液を塗布して、続いて熱処理することにより行うことができる。撥水材の塗布には、スプレーなどによる噴霧や、ダイコーターなどによる塗工が好ましい。撥水処理の際のフッ素樹脂の塗布量は、導電性多孔質基材100質量部に対して1~5質量部であることが好ましい。フッ素樹脂の塗布量が1質量部以上であると、電極基材が排水性に優れたものとなり好ましい。また、フッ素樹脂の塗布量が5質量部以下であると、電極基材が導電性の優れたものとなり好ましい。フッ素樹脂塗工後は、90℃以上200℃未満で乾燥を行うことが好ましい。本発明のガス拡散電極基材は、このようにして導電性多孔質基材の一方の表面から撥水処理した後に、当該表面にMPLを配置させる製造方法が好ましい。
 MPLは、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、炭素繊維のチョップドファイバー、グラフェン、黒鉛などの導電性微粒子を含んでなる。導電性微粒子としては、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、グラフェンが特に好ましく用いられる。カーボンブラックとしては、不純物が少なく触媒の活性を低下させにくいという点でアセチレンブラックが好適に用いられる。
 また、MPLは、導電性、ガス拡散性、水の排水性、あるいは保湿性、熱伝導性といった特性、さらには燃料電池内部のアノード側での耐強酸性、カソード側での耐酸化性が求められる。よって、MPLは、導電性微粒子に加えて、フッ素樹脂をはじめとする撥水性樹脂を含んでいるのが好ましい。MPLに用いられるフッ素樹脂としては、電極基材で用いられるフッ素樹脂と同様、PTFE、FEP、PFA、ETFAなどが好適である。撥水性が一番高いという点ではPTFEが好ましい。しかし、PTFEは融点が330℃前後と高いため、後述する焼結温度を350℃以上にしなければならない欠点もある。この点を考慮してFEPなど融点の300℃以下のフッ素樹脂を用いることも推奨される。融点の下限としては、溶剤の沸点以上、実質的に100℃程度であり、好ましくは、150℃以上である。
 電極基材にMPLを設けるためには、電極基材の一方の表面にMPL形成用の塗液(以下、MPL塗液という)を塗工するのが一般的である。MPL塗液は通常、前記した導電性微粒子と水やアルコールなどの溶媒を含んでなり、導電性微粒子を分散するための界面活性剤などが配合されることが多い。また、MPLに撥水性樹脂を含ませるため、MPL塗液には予め撥水性樹脂を配合しておく。
 MPL塗液の電極基材への塗工は、市販されている各種の塗工装置を用いて行うことができる。塗工方式としては、スクリーン印刷、ロータリースクリーン印刷、スプレー噴霧、凹版印刷、グラビア印刷、ダイコーター塗工、バー塗工、ブレード塗工などが使用できる。電極基材の表面粗さによらず塗工量の定量化を図ることができるため、ダイコーターによる塗工が好ましい。以上例示した塗工方法はあくまでも例示のためであり、必ずしもこれらに限定されるものではない。
 MPL塗液を塗工した後、導電性微粒子の分散に用いた界面活性剤を除去する目的およびフッ素樹脂を一度溶解して導電性微粒子を結着させる目的で、焼結を行なう。焼結の温度は、界面活性剤の沸点あるいは分解温度およびフッ素樹脂の融解温度より高い温度で行なう。PTFEを使用する場合には融点が330℃付近であるため、330℃以上好ましくは350℃以上の焼結温度で30秒以上の条件で焼結を行なうのがよい。ただし、焼結温度は、高すぎるとフッ素樹脂が分解する懸念があるので、通常400℃程度が上限である。また、焼結時間については生産性の観点から通常60分程度が上限である。
 界面活性剤としては、不純物が少ないという点で非イオン系の界面活性剤が一般的に用いられる。オクチルフェノキシポリエトキシエタノール(“TRITON(登録商標)”X-100 ナカライテスク(株)製など)、ポリオキシエチレンアルキルエーテル、ポリビニルアルコールなどを使用することができる。
 電極基材の両側の表面のうち、断面のF/C比が0.03以上0.10以下であるCP1側にMPLを設けることが好ましい。つまり、本発明の好適な製造方法においては、導電性多孔質基材の一方の表面から前記フッ素樹脂を含む分散液を塗布する工程を有し、続いて当該表面の側からMPL塗液を塗工することが好ましい。燃料電池において、反応により生成する水分は触媒層で発生する。即ち、ガス拡散電極基材においてはMPLを設ける側で水分が発生する。発生した水分が凝縮して水滴となる場合、撥水性が高い領域から低い領域へ水滴は移動していく。従って、電極基材の撥水性が高い側の面にMPLを設ける方が、発生した水滴をセパレータ側へ排除しやすいため好ましい。
 本発明において、ガス拡散電極基材の厚さは240μm以下である。またガス拡散電極基材の厚さは110μm以上である。ガス拡散電極基材の厚さが240μm以下であると、厚み方向のガスの拡散距離が短くなりガス拡散性が向上し、また、排水のパスが短くなるため排水性が向上し、フラッディングを抑制でき、さらに、導電のパスが短くなり、導電性が向上し、高温、低温いずれにおいても発電性能が向上する。一方、ガス拡散電極基材の厚さが110μm以上であると、面内方向のガス拡散性が向上し、セパレータのリブ下にある触媒へもガスの供給がより容易にできるため、高温、低温いずれにおいても発電性能が向上する。
 かかる厚さを有するガス拡散電極基材は、導電性多孔質基材の厚さとMPLの厚さを制御することにより得られる。ここで、ガス拡散電極基材の厚さは、面圧0.15MPaで加圧した状態で、マイクロメーターを用いて求めることができ、10箇所の個別の測定値を平均したものをガス拡散電極基材の厚さとする。
 本発明において、ガス拡散電極基材の厚み方向のガス拡散性は、30%以上であることが好ましい。ガス拡散性が30%以上であると、高温、低温いずれにおいても高い発電性能が得られる。厚み方向のガス拡散性は高いほどよい。しかし、燃料電池に組み込んだ際に、空隙率が高すぎると、燃料電池内部に圧力がかかったときにその構造を維持できなくなるので、ガス拡散性の上限値は40%程度と考えられる。
 ガス拡散電極基材の厚み方向のガス拡散性を30%以上とするためには、例えば、使用する電極基材の厚さを210μm以下とする方法を挙げることができる。
 本発明のガス拡散電極基材は、触媒層を両面に設けた電解質膜の両側に触媒層とガス拡散電極基材のMPLが接するように圧着し、さらに、セパレータなどの部材を組みこんで単電池を組み立てて燃料電池として使用される。
 以下、実施例によって本発明をより具体的に説明する。実施例および比較例で用いた材料、各種評価方法を次に示した。
 <電極基材の作製>
 東レ(株)製ポリアクリルニトリル系炭素繊維“トレカ”(登録商標)T300(平均炭素繊維径:7μm)を平均長さ12mmにカットし、水中に分散させて湿式抄紙法により連続的に抄紙した。さらに、バインダーとしてポリビニルアルコールの10質量%水溶液を当該抄紙に塗布し、乾燥させ、抄紙体を作製した。ポリビニルアルコールの塗布量は、抄紙体100質量部に対して、22質量部であった。
 熱硬化性樹脂としてレゾール型フェノール樹脂とノボラック型フェノール樹脂を1:1の質量比で混合した樹脂、炭素系フィラーとして鱗片状黒鉛(平均粒径5μm)、溶媒としてメタノールを用い、熱硬化性樹脂/炭素系フィラー/溶媒=10質量部/5質量部/85質量部の配合比でこれらを混合し、超音波分散装置を用いて1分間撹拌を行い、均一に分散した樹脂組成物を得た。
 15cm×12.5cmにカットした抄紙体をアルミバットに満たした樹脂組成物に浸漬し、炭素繊維100質量部に対して、樹脂成分(熱硬化性樹脂+炭素系フィラー)が130質量部となるように含浸させた後、100℃で5分間加熱して乾燥させ、予備含浸体を作製した。次に、平板プレスで加圧しながら、180℃で5分間熱処理を行った。なお、加圧の際に平板プレスにスペーサーを配置して上下プレス面板の間隔を調整した。
 予備含浸体を熱処理した基材を、加熱炉において、窒素ガス雰囲気に保たれた、最高温度が2400℃の加熱炉に導入し、導電性多孔質基材を得た。
 導電性多孔質基材99質量部に対し、1質量部のFEP(ダイキン工業株式会社製“ネオフロン”(登録商標)ND-110)をスプレーにより導電性多孔質基材の一方の面より噴霧し、100℃で5分間加熱して熱処理して、厚さ160μmの電極基材を作製した。
 <MPLの形成>
 スリットダイコーターを用いて電極基材のFEPを塗布した面にMPLを形成した。ここで用いたMPL塗液には、導電性微粒子としてカーボンブラックの一種であるアセチレンブラック(電気化学工業株式会社製“デンカ ブラック”(登録商標))を用い、フッ素樹脂としてPTFE(ダイキン工業株式会社製“ポリフロン”(登録商標)D-1E)を用い、界面活性剤としてナカライテスク株式会社製“TRITON”(登録商標)X-100を用い、分散媒として精製水を用いた。導電性微粒子7.7質量部、フッ素樹脂4質量部、界面活性剤14質量部、分散媒74.3質量部となるよう調整して配合した。ダイコーターを用いて電極基材にMPL塗液を塗工後、100℃で5分間、380℃で10分間加熱(焼結)し、厚さ194μmのガス拡散電極基材を作製した。
 <ガス拡散電極基材のF/C比測定>
 ガス拡散電極基材のMPLを配置させた側の表面およびMPLを配置させた側とは反対側の表面のF/C比を以下のようにして測定した。
 ガス拡散電極基材を5×5mmにカットした。SEM-EDX(エネルギー分散型蛍光X線)を用いて5×5mmにカットしたガス拡散電極基材の一部を200倍に拡大した。加速電圧5KeV、スキャン幅20μm、ラインスキャン間隔50μmで測定したい表面の元素分析を行った。フッ素および炭素に対応するX線量(カウント数)を定量し、F/C比を求めた。
 また、ガス拡散電極基材の断面のF/C比を以下のようにして測定した。
 ガス拡散電極基材を水平に置き、片刃を用いて水平面に対して垂直にスライスして断面を出した。SEM-EDX(エネルギー分散型蛍光X線)を用いて、一方の表面に近い部分から他方の表面に近い部分までの視野(全体視野)がモニター画面に収まるよう拡大倍率を調整した。加速電圧5KeV、スキャン幅20μm、ラインスキャン間隔50μmでガス拡散電極基材の断面の元素分析を行った。フッ素および炭素に対応するX線量(カウント数)を定量し、F/C比を求めた。
 なお、断面のF/C比の測定は、ガス拡散電極基材の断面のうち、MPLを有さない部分である、CP1断面とCP2断面のそれぞれについて行った。ここで図2に示すように、MPLを有する部分と有さない部分の境界6は、MPLが最も電極基材にしみこんでいる部分の先端を含むように、基材の表面と平行に引いた線とする。
 なお、SEM-EDXとしては、日立製SEM H-3000にエネルギー分散型蛍光X線分析装置SEMEDEX Type-Hを付加した装置を用いた。
 <厚み方向のガス拡散性評価>
 西華産業製ガス水蒸気透過拡散評価装置(MVDP-200C)を用いた。ガス拡散電極基材の一方(1次側)に拡散性を測定したいガスを流し、他方(2次側)に窒素ガスを流した。1次側と2次側の差圧を0Pa近傍(0±3Pa)に制御した。すなわち圧力差によるガスの流れがほとんどなく、分子拡散によってのみガスの移動現象が起こる状態としておいた。2次側のガス濃度計により、平衡に達したときのガス濃度を測定し、この値(%)を厚み方向のガス拡散性とした。
 <発電性能評価>
 得られたガス拡散電極基材を、電解質膜・触媒層一体化品(日本ゴア製の電解質膜“ゴアセレクト(登録商標)”に、日本ゴア製触媒層“PRIMEA(登録商標)”を両面に形成したもの)の両側に、触媒層とMPLが接するように挟み、ホットプレスすることにより、膜電極接合体(MEA)を作製した。この膜電極接合体を燃料電池用単セルに組み込み、電池温度57℃、燃料利用効率を70%、空気利用効率を40%、アノード側の水素、カソード側の空気をそれぞれ露点が57℃、57℃となるように加湿して発電させた。電流密度が1.9A/cmのときの出力電圧を耐フラッディング性の指標とした。
 (実施例1)
 <電極基材の作製>および<MPLの形成>に記載した方法に従って、ガス拡散電極基材を得た。このガス拡散電極基材の発電性能を評価した結果、表1に記載のように、出力電圧0.40V(運転温度57℃、加湿温度57℃、電流密度1.9A/cm)であり、耐フラッディング性も良好であった。その他の測定結果は表1に記載のとおりであった。
 (実施例2)
 <電極基材の作製>において、導電性多孔質基材95質量部に対し、5質量部のFEPをスプレーにより導電性多孔質基材の一方の面より噴霧し、100℃で5分間加熱して熱処理させて電極基材を作製したこと以外は、<電極基材の作製>および<MPLの形成>に記載した方法に従って、ガス拡散電極基材を得た。このガス拡散電極基材の発電性能を評価した結果、表1に記載のように、出力電圧0.42V(運転温度57℃、加湿温度57℃、電流密度1.9A/cm)であり、耐フラッディング性も良好であった。その他の測定結果は表1に記載のとおりであった。
 (実施例3)
 <電極基材の作製>において、導電性多孔質基材95質量部に対し、5質量部のFEPをダイコーターにより導電性多孔質基材の一方の面より塗工し、100℃で5分間熱処理させて電極基材を作製したこと以外は、<電極基材の作製>および<MPLの形成>に記載した方法に従って、ガス拡散電極基材を得た。このガス拡散電極基材の発電性能を評価した結果、表1に記載のように、出力電圧0.41V(運転温度57℃、加湿温度57℃、電流密度1.9A/cm)であり、耐フラッディング性も良好であった。その他の測定結果は表1に記載のとおりであった。
 (実施例4)
 <電極基材の作製>において、導電性多孔質基材93質量部に対し、7質量部のFEPをダイコーターにより導電性多孔質基材の一方の面より塗工し、100℃で5分間熱処理させて電極基材を作製したこと以外は、<電極基材の作製>および<MPLの形成>に記載した方法に従って、ガス拡散電極基材を得た。このガス拡散電極基材の発電性能を評価した結果、表1に記載のように、出力電圧0.40V(運転温度57℃、加湿温度57℃、電流密度1.9A/cm)であり、耐フラッディング性も良好であった。その他の測定結果は表1に記載のとおりであった。
 (比較例1)
 <電極基材の作製>において、撥水加工を行わず、<MPLの形成>において、電極基材ではなく導電性多孔質基材の一方の面にMPLを形成した以外は、<電極基材の作製>および<MPLの形成>に記載した方法に従って、ガス拡散電極基材を得た。このガス拡散電極基材の発電性能を評価した結果、表1に記載のように、出力電圧0.38V(運転温度57℃、加湿温度57℃、電流密度1.9A/cm)であり、耐フラッディング性がやや劣る結果であった。その他の測定結果は表1に記載のとおりであった。
 (比較例2)
 <電極基材の作製>において、導電性多孔質基材99質量部に対し、1質量部のFEPとなるように含浸撥水を行い、100℃で5分間加熱して乾燥させて電極基材を作製したこと以外は、<電極基材の作製>および<MPLの形成>に記載した方法に従って、ガス拡散電極基材を得た。このガス拡散電極基材の発電性能を評価した結果、表1に記載のように、出力電圧0.35V(運転温度57℃、加湿温度57℃、電流密度1.9A/cm)であり、耐フラッディング性がやや劣る結果であった。その他の測定結果は表1に記載のとおりであった。
 (比較例3)
 <電極基材の作製>において、厚さ70μmの電極基材となるように平板プレスにスペーサーを配置して上下プレス面板の間隔を調整したこと以外は、<電極基材の作製>および<MPLの形成>に記載した方法に従って、ガス拡散電極基材を得た。このガス拡散電極基材の発電性能を評価した結果、表1に記載のように、出力電圧0.30V(運転温度57℃、加湿温度57℃、電流密度1.9A/cm)であり、耐フラッディング性がやや劣る結果であった。その他の測定結果は表1に記載のとおりであった。
 (比較例4)
 <電極基材の作製>において、厚さ230μmの電極基材となるように平板プレスにスペーサーを配置して上下プレス面板の間隔を調整したこと以外は、<電極基材の作製>および<MPLの形成>に記載した方法に従って、ガス拡散電極基材を得た。このガス拡散電極基材の発電性能を評価した結果、表1に記載のように、出力電圧0.25V(運転温度57℃、加湿温度57℃、電流密度1.9A/cm)であり耐フラッディング性がやや劣る結果であった。その他の測定結果は表1に記載のとおりであった。
Figure JPOXMLDOC01-appb-T000001
 表において、「CP1 F/C比」はCP1断面のF/C比、「CP2 F/C比」はCP2断面のF/C比、「MPL表面 F/C比」は「MPLを配置させた側の表面のF/C比、「MPL反対面 F/C比」はMPLを配置させた側とは反対側の表面のF/C比を意味する。
1 ガス拡散電極基材
2 MPL
3 電極基材
4 CP1断面
5 CP2断面
6 MPLを有する部分と有さない部分の境界

Claims (7)

  1.  電極基材の一方の表面に、マイクロポーラス層(以下、MPLという)を配置させたガス拡散電極基材であって、
     厚さが110μm以上240μm以下であり、
     ガス拡散電極基材の断面を、MPLを有する部分とMPLを有さない部分とに分け、さらにMPLを有さない部分を、MPLと接する部分(以下、CP1断面という)とMPLと接しない部分(以下、CP2断面という)に2等分したときに、CP1断面のF/C比が0.03以上0.10以下、CP2断面のF/C比が0.03未満である、ガス拡散電極基材。
     ここで「F」とはフッ素原子の質量を意味し、「C」とは炭素原子の質量を意味する。
  2.  前記CP2断面のF/C比が0.01以下である、請求項1に記載のガス拡散電極基材。
  3.  前記ガス拡散電極基材の、MPLを配置させた側とは反対側の表面のF/C比が、0.01以下である、請求項1に記載のガス拡散電極基材。
  4.  前記ガス拡散電極基材の、MPLを配置させた側の表面のF/C比が、0.10以上0.40以下である、請求項1または2に記載のガス拡散電極基材。
  5.  厚み方向のガス拡散性が30%以上である、請求項1~3のいずれかに記載のガス拡散電極基材。
  6.  請求項1~5のいずれかに記載のガス拡散電極基材を製造する方法であって、導電性多孔質基材の一方の表面からフッ素樹脂を含む分散液を噴霧する工程を有し、続いて当該表面にMPLを配置させることを特徴とする、ガス拡散電極基材の製造方法。
  7.  請求項1~5のいずれかに記載のガス拡散電極基材を製造する方法であって、導電性多孔質基材の一方の表面からフッ素樹脂を含む分散液を塗工する工程を有し、続いて当該表面にMPLを配置させることを特徴とする、ガス拡散電極基材の製造方法。
PCT/JP2016/062149 2015-04-24 2016-04-15 ガス拡散電極基材およびその製造方法 WO2016171082A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177032590A KR102587488B1 (ko) 2015-04-24 2016-04-15 가스 확산 전극 기재 및 그의 제조 방법
JP2016528913A JP6135826B2 (ja) 2015-04-24 2016-04-15 ガス拡散電極基材およびその製造方法
CA2980461A CA2980461C (en) 2015-04-24 2016-04-15 Gas-diffusion electrode substrate comprising an electrode substrate and a microporous layer disposed thereon and method for manufacturing same
US15/567,111 US10680250B2 (en) 2015-04-24 2016-04-15 Gas-diffusion electrode substrate and method of manufacturing same
EP16783103.1A EP3288106B1 (en) 2015-04-24 2016-04-15 Gas-diffusion electrode base material and method for manufacturing same
CN201680022919.8A CN107534156B (zh) 2015-04-24 2016-04-15 气体扩散电极基材及其制造方法
ES16783103T ES2767928T3 (es) 2015-04-24 2016-04-15 Material de base de electrodo de difusión de gas y procedimiento para fabricar el mismo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-089039 2015-04-24
JP2015089039 2015-04-24

Publications (1)

Publication Number Publication Date
WO2016171082A1 true WO2016171082A1 (ja) 2016-10-27

Family

ID=57144445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062149 WO2016171082A1 (ja) 2015-04-24 2016-04-15 ガス拡散電極基材およびその製造方法

Country Status (9)

Country Link
US (1) US10680250B2 (ja)
EP (1) EP3288106B1 (ja)
JP (1) JP6135826B2 (ja)
KR (1) KR102587488B1 (ja)
CN (1) CN107534156B (ja)
CA (1) CA2980461C (ja)
ES (1) ES2767928T3 (ja)
TW (1) TWI668908B (ja)
WO (1) WO2016171082A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156818A (ja) * 2017-03-17 2018-10-04 東レ株式会社 ガス拡散電極、および、燃料電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116338A (ja) * 2003-10-08 2005-04-28 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池及びそのガス拡散電極の製造方法
WO2014030553A1 (ja) * 2012-08-24 2014-02-27 東レ株式会社 燃料電池用ガス拡散電極基材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324790Y2 (ja) 1973-11-21 1978-06-24
JP5079195B2 (ja) * 2001-09-27 2012-11-21 パナソニック株式会社 燃料電池用ガス拡散電極およびその製造法
US7063913B2 (en) * 2004-08-25 2006-06-20 General Motors Corporation Diffusion media with microporous layer
EP2228857A1 (de) * 2009-03-06 2010-09-15 Basf Se Verbesserte Membran-Elektrodeneinheiten
CN103081194B (zh) * 2010-08-27 2015-07-29 东邦泰纳克丝株式会社 导电片材及其制造方法
JP5924530B2 (ja) * 2011-06-17 2016-05-25 日産自動車株式会社 燃料電池用ガス拡散層
JP6183065B2 (ja) 2012-08-31 2017-08-23 三菱ケミカル株式会社 多孔質炭素電極とその製造方法
US9806326B2 (en) * 2013-12-05 2017-10-31 GM Global Technology Operations LLC One-step method for preparing a lithiated silicon electrode
CN106104877B (zh) * 2014-03-28 2019-04-26 东丽株式会社 气体扩散电极及其制造方法
CN107925093A (zh) * 2015-09-18 2018-04-17 东丽株式会社 气体扩散电极及其制造方法
US11016227B2 (en) * 2017-09-18 2021-05-25 Lumentum Operations Llc Diffractive optical element
US10637043B2 (en) * 2017-11-30 2020-04-28 Global Graphene Group, Inc. Anode particulates or cathode particulates and alkali metal batteries containing same
US10873083B2 (en) * 2017-11-30 2020-12-22 Global Graphene Group, Inc. Anode particulates or cathode particulates and alkali metal batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116338A (ja) * 2003-10-08 2005-04-28 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池及びそのガス拡散電極の製造方法
WO2014030553A1 (ja) * 2012-08-24 2014-02-27 東レ株式会社 燃料電池用ガス拡散電極基材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156818A (ja) * 2017-03-17 2018-10-04 東レ株式会社 ガス拡散電極、および、燃料電池
JP7114858B2 (ja) 2017-03-17 2022-08-09 東レ株式会社 ガス拡散電極、および、燃料電池

Also Published As

Publication number Publication date
CA2980461C (en) 2023-05-16
CN107534156A (zh) 2018-01-02
CN107534156B (zh) 2020-11-27
TW201703327A (zh) 2017-01-16
JP6135826B2 (ja) 2017-05-31
EP3288106A1 (en) 2018-02-28
CA2980461A1 (en) 2016-10-27
JPWO2016171082A1 (ja) 2017-05-18
KR20170141710A (ko) 2017-12-26
US20180102552A1 (en) 2018-04-12
KR102587488B1 (ko) 2023-10-11
US10680250B2 (en) 2020-06-09
ES2767928T3 (es) 2020-06-19
EP3288106A4 (en) 2018-09-19
EP3288106B1 (en) 2019-12-11
TWI668908B (zh) 2019-08-11

Similar Documents

Publication Publication Date Title
US9972847B2 (en) Gas diffusion electrode medium for fuel cell
WO2014126002A1 (ja) 燃料電池用ガス拡散層、およびその製造方法
JP6489009B2 (ja) ガス拡散電極基材
CA2962722C (en) Carbon sheet, gas diffusion electrode substrate and fuel cell
JP5835527B1 (ja) ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池
JP2015015226A (ja) 燃料電池用ガス拡散電極基材およびその製造方法
JP7302474B2 (ja) ガス拡散層、膜電極接合体および燃料電池
US11430995B2 (en) Gas diffusion electrode and fuel cell
JP6135826B2 (ja) ガス拡散電極基材およびその製造方法
WO2023190153A1 (ja) ガス拡散電極、燃料電池および輸送用機器
WO2023157745A1 (ja) 燃料電池用ガス拡散電極

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016528913

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2980461

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15567111

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177032590

Country of ref document: KR

Kind code of ref document: A