WO2015146442A1 - 電子部品接合装置および電子部品接合方法 - Google Patents

電子部品接合装置および電子部品接合方法 Download PDF

Info

Publication number
WO2015146442A1
WO2015146442A1 PCT/JP2015/055441 JP2015055441W WO2015146442A1 WO 2015146442 A1 WO2015146442 A1 WO 2015146442A1 JP 2015055441 W JP2015055441 W JP 2015055441W WO 2015146442 A1 WO2015146442 A1 WO 2015146442A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
electrode
substrate
load
moving
Prior art date
Application number
PCT/JP2015/055441
Other languages
English (en)
French (fr)
Inventor
内藤 健治
川上 茂明
直人 上島
Original Assignee
アスリートFa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アスリートFa株式会社 filed Critical アスリートFa株式会社
Priority to JP2015553686A priority Critical patent/JP5964520B2/ja
Priority to KR1020157028214A priority patent/KR101775448B1/ko
Priority to CN201580000563.3A priority patent/CN105230138B/zh
Publication of WO2015146442A1 publication Critical patent/WO2015146442A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0413Pick-and-place heads or apparatus, e.g. with jaws with orientation of the component while holding it; Drive mechanisms for gripping tools, e.g. lifting, lowering or turning of gripping tools
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/046Surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • H01L2224/75821Upper part of the bonding apparatus, i.e. bonding head
    • H01L2224/75824Translational mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • H01L2224/7592Load or pressure adjusting means, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components

Definitions

  • the present invention relates to an electronic component joining apparatus for joining electronic components to a substrate or the like.
  • an apparatus that joins (mounts) an electrode of an electronic component and an electrode of a substrate with solder obtained by thermally melting is conventionally known.
  • Such an apparatus presses the electrode of the electronic component held by the electronic component holding unit against the electrode of the substrate, heats the electronic component and the substrate, melts the solder laminated on the electrode, and solders the electrodes together.
  • the electrode may be damaged.
  • the pressing is continued even after the solder is melted, the melted solder is crushed and flows out, and there is a possibility that adjacent electrodes are short-circuited by the flowing out solder. Therefore, the pressing force between the electrode of the electronic component and the electrode of the substrate is made appropriate, and the movement of the electronic component to the substrate is controlled in accordance with the molten state of the solder.
  • an object of this invention is to provide the electronic component joining apparatus which can control the pressing force and movement amount of an electronic component holding part with high precision.
  • an electronic component bonding apparatus has an electronic component lifting mechanism that moves an electronic component holding portion that holds an electronic component up and down toward a substrate, and the electronic component is separated from the substrate.
  • the electrode of the electronic component and the electrode of the substrate are moved from the position to a position where the electrode of the substrate contacts the electrode of the electronic component and the electrode of the substrate through a heat-meltable metal.
  • the high-speed moving mechanism that moves the electronic component holding unit at a high speed until the distance between the electrode and the substrate electrode reaches a predetermined distance, and the distance between the electrode of the electronic component and the electrode of the substrate becomes the predetermined distance.
  • a low-speed moving mechanism that moves at a lower speed than the high speed, and the drive source of the low-speed moving mechanism is a piezo element.
  • a load sensor that detects a load acting on an electronic component held by the electronic component holding portion from a side where the board is disposed, and a noise detection sensor that detects noise acting on the load sensor.
  • noise signal removing means for removing noise from the load signal detected by the load sensor based on the noise signal detected by the noise detection sensor.
  • the noise detection sensor, the load sensor, and the low speed moving mechanism are arranged along the moving direction of the electronic component holding unit.
  • the high-speed movement mechanism moves the first movement unit, and the low-speed movement mechanism is attached to a second movement unit that is attached to the first movement unit so as to be movable in the vertical direction.
  • the moving unit is supported by the first moving unit via the load cell in a state of being biased downward by the biasing means.
  • a load sensor that detects a load acting on the electronic component held by the electronic component holding unit from the side on which the board is disposed, and a load signal detected by the load sensor has a predetermined frequency. And a predetermined frequency signal removing means for removing the signal.
  • an electronic component bonding method in which an electrode of an electronic component and an electrode of a substrate are bonded via a heat-meltable metal, the electronic component and the substrate are heated, and the electronic component is applied to the substrate. Whether or not the metal is melted is determined by detecting the downward movement amount of the electronic component in a state in which the predetermined load is constantly applied.
  • An object of the present invention is to provide an electronic component joining apparatus capable of controlling the pressing force and moving amount of the electronic component holding portion with high accuracy.
  • FIG. 1 It is a figure which shows the schematic structure of the electronic component joining apparatus which is embodiment of this invention. It is a block diagram which shows roughly the electrical structure of an electronic component joining apparatus. It is an enlarged view of A part shown in FIG. It is a flowchart which shows operation
  • FIG. 1 It is a block diagram which shows roughly the electrical structure of the electronic component joining apparatus which concerns on other embodiment of this invention. It is a figure which shows the example of a load sensor signal. It is a figure which shows the result of having analyzed the frequency component of the load sensor signal shown by FIG. It is a figure which shows the signal which removed the signal of 130 Hz and 330 Hz from the load sensor signal shown by FIG. It is a figure which shows the load sensor signal which removed the signal of 130 Hz from the load sensor signal shown by FIG. It is a figure which shows the load sensor signal which removed the signal of 330 Hz from the load sensor signal shown by FIG.
  • FIG. 1 is a diagram schematically showing an overall configuration of an electronic component bonding apparatus 1.
  • FIG. 2 is a block diagram schematically showing an electrical configuration of the electronic component bonding apparatus 1.
  • FIG. 3 is an enlarged view of a portion A shown in FIG.
  • the electronic component bonding apparatus 1 includes an electronic component lifting mechanism 2 and a substrate placement unit 3, and also includes a control unit 4 as illustrated in FIG. 2.
  • the substrate P is placed on the substrate platform 3, and the electronic component lifting mechanism 2 holds an electronic component M that is bonded to the substrate P.
  • the electronic component M includes a semiconductor chip, a transistor, a diode, and the like.
  • the electronic component lifting mechanism 2 includes a base plate 5, a high speed moving mechanism 6, a piezo drive unit 7 as a low speed moving mechanism, and an electronic component holding unit 8.
  • the base plate 5 is attached to a frame or casing (not shown) that is installed on the floor surface or the like.
  • the high speed moving mechanism 6 includes a motor 9, a ball screw 10, and a ball screw nut 11.
  • the ball screw 10 is coupled to the output shaft 13 of the motor 9 via a coupling (connecting portion) 12.
  • the ball screw nut 11 is fixed to the first moving part 14.
  • the ball screw nut 11 is screwed to the ball screw 10.
  • the first moving unit 14 is attached to the base plate 5 via a first guide unit 15 fixed to the base plate 5.
  • the 1st guide part 15 guides the 1st moving part 14 so that a movement to an up-down direction is possible. That is, the high-speed moving mechanism 6 having the above-described configuration can move the first moving unit 14 in the vertical direction by driving the motor 9.
  • the high-speed moving mechanism 6 has a displacement sensor 16 and can detect the amount of vertical movement of the first moving unit 14, that is, the amount of vertical movement of the electronic component holding unit 8 by the high-speed moving mechanism 6.
  • the displacement sensor 16 can be constituted by, for example, a linear encoder.
  • a second moving unit 18 is supported on the first moving unit 14 via a load cell 17.
  • a spring 30 as an urging unit is provided between the first moving unit 14 and the second moving unit 18.
  • the spring 30 exerts a reaction force on the first moving part 14 and biases the second moving part 18 downward.
  • the second moving part 18 is attached to the first moving part 14 via a second guide part 19 fixed to the first moving part 14.
  • the 2nd guide part 19 guides the 2nd moving part 18 so that a movement to an up-down direction is possible. That is, the second moving unit 18 is supported so as to be movable in the vertical direction with respect to the first moving unit 14 via the second guide unit 19.
  • the 2nd guide part 19 can be set as the structure which uses a cross roller guide, for example.
  • the second moving unit 18 can be held with high rigidity with respect to the first moving unit 14.
  • the second guide part 19 can also use an air slide guide.
  • the second moving portion 18 is supported so as to be movable in the vertical direction with respect to the first moving portion 14 with high accuracy and low sliding resistance as compared with the case where a cross roller guide is used. Can do.
  • the second moving unit 18 includes a noise detection sensor 20, a load sensor 22, a displacement sensor 21, a piezo driving unit 7, a ceramic heater 23, and an electronic component holding unit in order from above (on the first moving unit 14 side). Part 8 is attached. Further, the noise detection sensor 20, the load sensor 22, and the piezo drive unit 7 are arranged along the moving direction of the electronic component holding unit 8, that is, the vertical direction.
  • the piezo drive unit 7 includes a piezo element (not shown), and moves the electronic component holding unit 8 downward in accordance with a piezo application signal V1 (see FIG. 5) applied to the piezo element.
  • the piezo drive unit 7 may be configured to transmit the deformation amount of the piezo element to the electronic component holding unit 8 as it is, or the piezo drive unit 7 may expand the deformation amount of the piezo element via the displacement amount enlargement mechanism and The structure which conveys may be sufficient.
  • the displacement sensor 21 is a sensor that detects the amount of displacement of the electronic component holding unit 8.
  • the detection accuracy is approximately 0.01 ⁇ m level, and for example, a capacitive displacement sensor can be used.
  • the capacitance type displacement sensor is a non-illustrated fixed electrode that is not displaced with respect to the second moving unit 18 and a non-illustrated displacement that is displaced according to the displacement amount of the electronic component holding unit 8 that is displaced by the piezo drive unit 7.
  • the sensor is provided so as to face the electrode, and measures the amount of displacement of the electronic component holding unit 8 by using a change in capacitance caused by the relative movement of the two electrodes.
  • the load sensor 22 is a sensor that detects a load applied to the electronic component holding unit 8 from below.
  • the detection accuracy is about 0.01 to 5N level, and for example, a piezo element can be used.
  • the noise detection sensor 20 is a sensor that detects noise acting on the load sensor 22.
  • the detection accuracy is equivalent to that of the load sensor 22, and a sensor equivalent to the load sensor 22 is preferably used.
  • the electronic component holding unit 8 can suck the electronic component M.
  • the lower surface of the electronic component holding portion 8 is provided with a hole (not shown) that is made negative by a suction mechanism (not shown), and the electronic component M can be sucked by the negative pressure generated in the hole. ing.
  • the ceramic heater 23 heats an electrode (hereinafter referred to as an electronic component electrode) M1 (refer to FIG. 6) of the electronic component M held by the electronic component holding unit 8, and a solder layer formed on the electronic component electrode M1.
  • M1 hereinafter referred to as an electronic component electrode
  • M2 see FIG. 6) (hereinafter referred to as a component-side solder layer) can be melted.
  • the second moving unit 18 is provided with a motor 24.
  • the members from the noise detection sensor 20 to the lower electronic component holding unit 8 are configured to move integrally, and the electronic component holding unit 8 can be rotated in a horizontal plane by driving the motor 24.
  • the substrate platform 3 includes a stage 25 on which the substrate P is placed, and a heater 26 that heats an electrode unit (hereinafter referred to as a substrate electrode) P1 of the substrate P via the stage 25.
  • the substrate platform 3 has a movable stage mechanism (not shown) that can be moved in the left-right direction (Y1-Y2 direction) and the front-rear direction.
  • the stage 25 and the heater 26 are assembled on the movable stage mechanism. ing. That is, the stage 25 and the heater 26 can move in the left-right direction and the front-rear direction.
  • the control unit 4 (see FIG. 2) is a computer having a CPU and a memory for performing signal processing.
  • the memory stores a control program and control data for controlling the electronic component bonding apparatus 1.
  • the control unit 4 determines the motor 9, the piezoelectric drive unit 7, the ceramic heater 23, the heater 26, and the like based on signals from the displacement sensor 16, the load cell 17, the displacement sensor 21, the load sensor 22, and the like. Control the behavior.
  • the electronic component M held at the tip of the electronic component holding portion 8 is provided with a plurality of electronic component electrodes M1 on which a component-side solder layer M2 is formed.
  • the substrate P placed on the stage 25 is provided with a plurality of substrate electrodes P1 on the surface of which a solder layer (hereinafter referred to as a substrate-side solder layer) P2 is formed.
  • the electronic component electrode M1 and the substrate electrode P1 are arranged so that they can be connected one to one.
  • the thickness of the component-side solder layer M2 of the electronic component electrode M1 and the thickness of the substrate-side solder layer P2 of the substrate electrode P1 are both about several tens of ⁇ m.
  • the electronic component electrode M1 and the substrate electrode P1 come into contact with each other.
  • the interval between the electronic component electrode M1 and the substrate electrode P1 is highly accurate so that the electrode M1 or the substrate electrode P1 is not damaged, or the molten solder does not short-circuit between the adjacent electronic component electrodes M1 or between the substrate electrodes P1. Need to manage.
  • the electronic component bonding apparatus 1 has the above-described configuration and can manage the interval between the electronic component electrode M1 and the substrate electrode P1 with high accuracy by performing the bonding operation described with reference to FIGS. it can.
  • FIG. 4 is a diagram illustrating an operation flow of the electronic component bonding apparatus 1.
  • FIG. 5 is a diagram schematically showing changes in the piezo application signal V1, the load sensor signal V2, the noise signal V3, the displacement sensor signal V4, and the load correction signal V5.
  • the piezo application signal V1 is a voltage signal applied to the piezo drive unit 7.
  • the load sensor signal V ⁇ b> 2 is a voltage signal that is output according to the load that acts on the load sensor 22.
  • the noise signal V ⁇ b> 3 is a voltage signal that is output according to noise that acts on the noise detection sensor 20.
  • the displacement sensor signal V4 is a voltage signal output from the displacement sensor 21 according to the displacement amount of the piezoelectric element, that is, the displacement amount of the electronic component holding unit 8.
  • the load correction signal V5 is a voltage signal obtained by correcting the load sensor signal V2 with the noise signal V3. That is, the load correction signal V5 is a voltage signal obtained by removing a noise component from the load sensor signal V2.
  • the control unit 4 generates a load correction signal V5 from which noise has been removed based on the noise signal V3 detected by the noise detection sensor 20 from the load sensor signal V2 detected by the load sensor 22, and based on the load correction signal V5, A load acting on the electronic component holding unit 8 from below is measured.
  • FIG. 1 shows a state in which the electronic component holding unit 8 is arranged at a standby position before the electronic component lifting mechanism 2 starts to descend.
  • each electronic component electrode M1 of the electronic component M and the substrate-side solder layer P2 of each substrate P are aligned with each other in the front-rear and left-right directions.
  • This alignment can be performed by moving the stage 25 forward and backward, left and right by a movable stage (not shown) and rotating the electronic component holding unit 8 in the horizontal plane by the motor 24.
  • Step S10 The control unit 4 drives the motor 9 and executes a high-speed descent operation for moving the electronic component holding unit 8 at a high speed downward from the standby position shown in FIG. 1 (step S10).
  • the ball screw 10 is rotated by the rotation of the motor 9.
  • a ball screw nut 11 that is screw-coupled to the ball screw 10 is fixed to the first moving portion 14. For this reason, the ball screw nut 11 is led by the rotation of the ball screw 10, the first moving part 14 moves downward, and the electronic component holding part 8 is also lowered along with the lowering of the first moving part 14.
  • the descending speed is higher than the descending speed of the electronic component M by the piezoelectric drive unit 7 described later, and is, for example, 500 mm / sec.
  • Steps S20 and S30 The control unit 4 detects the lowered position by the displacement sensor 16 and lowers the electronic component holding unit 8 to a predetermined position S (see FIG. 6) (steps S20 and S30).
  • the predetermined position S is a position where the electronic component electrode M1 of the electronic component M and the board-side solder layer P2 of the board P are not in contact with each other and are as close as possible.
  • the motor 9 is driven with a high torque so that the electronic component M can be lowered as fast as possible in order to increase work efficiency. Therefore, when the electronic component electrode M1 of the electronic component M lowered by the motor 9 driven with high torque collides with the substrate electrode P1 of the substrate P, the electronic component M or the substrate P may be damaged.
  • the electronic component bonding apparatus 1 lowers the electronic component holding unit 8 at a high speed to the predetermined position S, and further lowers the electronic component holding unit 8 from the predetermined position S as described later.
  • the driving force is set at a low load (steps S40 and S50).
  • the predetermined position S is a position where the electronic component electrode M1 of the electronic component M is disposed above the substrate electrode P1 of the substrate P by a distance D1 (for example, 100 ⁇ m).
  • the predetermined position S is set prior to the start of the joining operation as follows.
  • the electronic component M is held in the electronic component holding unit 8 and lowered toward the substrate P placed on the stage 25, and the electronic component electrode M1 is brought into contact with the substrate electrode P1.
  • the control unit 4 detects whether or not the electronic component electrode M1 is in contact with the substrate electrode P1 based on the output signal of the load cell 17, and measures the position at the time of contact with the displacement sensor 16.
  • the contact position measured by the displacement sensor 16 is detected as the moving distance of the electronic component holding unit 8 from the initial position before the electronic component M is lowered or the height of the substrate electrode P1 of the substrate P from the stage 25. Can do.
  • a position above the distance D1 is set as the predetermined position S and stored in the memory of the control unit 4. It is preferable to measure the position where the electronic component electrode M1 contacts the substrate electrode P1 for a plurality of, for example, three or four substrates P, and set the predetermined position S based on the average value.
  • the spring 30 urges the second moving part 18 downward, for example, at 50 kg. Therefore, the contact of the electronic component electrode M1 to the substrate electrode P1 can be detected by the load cell 17 in a state where the electronic component electrode M1 is reliably pressed against the substrate electrode P1.
  • the biasing force of the spring 30 is extremely large compared to the driving force of the piezo driving unit 7. Therefore, the second moving unit 18 does not move relative to the first moving unit 14 when the electronic component holding unit 8 is lowered with a low load by the driving force of the piezo driving unit 7. Therefore, it is possible to prevent the displacement sensor 21 and the load sensor 22 from degrading the displacement and load detection accuracy.
  • the pressing force with which the spring 30 urges the second moving unit 18 downward with respect to the pressing force with which the piezoelectric drive unit 7 presses the electronic component electrode M1 against the substrate electrode P1 is, for example, about 500 to 1500 times.
  • the contact of the electronic component electrode M1 to the substrate electrode P1 by the load cell 17 can be detected in a state where the electronic component electrode M1 is securely pressed against the substrate electrode P1, and the displacement by the displacement sensor 21 and the load sensor 22 can be detected. A decrease in load detection accuracy can be prevented.
  • the pressing force with which the spring 30 urges the second moving unit 18 downward is 700 to 1200 times the pressing force with which the piezoelectric drive unit 7 presses the electronic component electrode M1 against the substrate electrode P1.
  • the control unit 4 lowers the electronic component holding unit 8 to the predetermined position S (Yes in Step S20), and stops driving the motor 9 (Step S30).
  • the control unit 4 lowers the electronic component holding unit 8 to the predetermined position S by PID control.
  • PID control By performing PID control, the electronic component holding unit 8 can be accurately moved to the predetermined position S.
  • the electronic component electrode M1 of the electronic component M and the substrate electrode P1 of the substrate P are not in contact with each other, but are extremely close to each other. As described above, they are arranged with an interval of the distance D1.
  • the operation of bringing the electronic component electrode M1 into contact with the substrate electrode P1 from the state where the electronic component holding unit 8 is disposed at the predetermined position S reduces the slight movement of the electronic component holding unit 8 by the piezo drive unit 7 as will be described later. Do with load. Therefore, the distance D1 is as narrow as possible within a range where the electronic component electrode M1 does not contact the substrate electrode P1, and the electronic component holding portion 8 is moved from the predetermined position S to a position where the electronic component electrode M1 and the substrate electrode P1 are in contact with each other. Process time can be shortened.
  • the distance D1 is small considering the accuracy of movement control of the electronic component holding unit 8 by the motor 9, the change in tolerance due to the environment such as the temperature of the electronic component bonding apparatus 1, and the individual difference between the electronic component M and the substrate P. If it is too high, the electronic component electrode M1 may come into contact with the substrate electrode P1 when the electronic component holding portion 8 is lowered by the motor 9. Accordingly, although the distance D1 is preferably smaller, in consideration of the accuracy of movement control of the electronic component holding unit 8 described above, the change in tolerance of the electronic component bonding apparatus 1, the individual difference between the electronic component M and the substrate P, and the like, It is preferable that the distance is such that the electronic component electrode M1 and the substrate electrode P1 do not contact each other.
  • the control unit 4 determines whether or not the electronic component electrode M1 is in contact with the substrate electrode P1 based on the load correction signal V5.
  • the load correction signal V5 is a voltage signal obtained by removing (cancelling) the noise signal V3 detected by the noise detection sensor 20 from the load sensor signal V2 of the load sensor 22 as described above. That is, the load correction signal V5 is a signal indicating a load acting on the electronic component holding unit 8 from below.
  • the piezo drive unit 7 moves the electronic component holding unit 8 downward by a displacement amount corresponding to the magnitude of the piezo application signal V1.
  • the control unit 4 determines that the electronic component electrode M1 is in contact with the substrate electrode P1 (Yes in Step S50).
  • the control part 4 moves the electronic component holding part 8 by PID control so that the load correction signal V5 becomes the predetermined voltage VA.
  • Step S60 the voltage VB of the displacement sensor signal V4 when the load correction signal V5 becomes the predetermined voltage VA is the predetermined position when the electronic component holding unit 8 is driven by the motor 9.
  • the voltage corresponds to the distance moved further downward by the piezo drive unit 7 after being lowered to S.
  • This distance is the actual distance (distance) between the electronic component electrode M1 and the substrate electrode P1 when the electronic component holding portion 8 is moved to the predetermined position S.
  • the search operation (steps S40 and S50)
  • the voltage of the displacement sensor signal V4 corresponding to the search distance is stored as a search distance corresponding voltage VB in a memory provided in the control unit 4 (step S60).
  • step S40 when joining the electronic component M and the substrate P, the descending speed of the electronic component holding unit 8 is increased to a predetermined distance within the range of the search distance. That is, until the displacement sensor signal V4 becomes a predetermined voltage with respect to the search distance corresponding voltage VB, the increasing speed of the piezo application signal V1 is increased and the descending speed of the electronic component holding unit 8 is increased. Thereby, the time for performing the search operation (steps S40 and S50) can be shortened.
  • the increase rate of the piezo application signal V1 is increased until the displacement sensor signal V4 reaches 40% of the search distance corresponding voltage VB.
  • the actual distance between the electronic component electrode M1 and the substrate electrode P1 when the electronic component holding portion 8 is moved to the predetermined position S changes due to a change in the difference due to the temperature of the electronic component bonding apparatus 1 or the curvature of the substrate P. . Therefore, if the predetermined distance that increases the increase rate of the piezo application signal V1 is made too long, the electronic component electrode M1 and the substrate electrode P1 may collide.
  • Step S40 By setting the predetermined voltage to 30% or more and 70% or less of the search distance corresponding voltage VB, it is possible to sufficiently reduce the possibility that the electronic component electrode M1 and the substrate electrode P1 collide with each other.
  • the time for performing (Step S40) can be effectively shortened.
  • the search distance may be reflected in the predetermined position S. That is, the predetermined position S is set prior to the start of the bonding operation, but the electronic component holding unit 8 is moved to the predetermined position S due to a change in tolerance of the electronic component bonding apparatus 1 and individual differences between the electronic component M and the substrate P.
  • the distance when moved to may not be the distance D1.
  • the distance when the electronic component holding unit 8 is moved to the predetermined position S is longer than the distance D1, it is not preferable in that the process time becomes long. Conversely, if the distance is shorter, the electronic component electrode M1 May come into contact with the substrate electrode P1 with an excessive pressing force and damage the electronic component M or the substrate P.
  • the predetermined position S based on the distance (the search distance) moved by the piezoelectric drive unit 7 after the electronic component holding unit 8 is lowered to the predetermined position S by driving the motor 9, It is possible to shorten the time or prevent the electronic component electrode M1 from contacting the substrate electrode P1 with an excessive pressing force.
  • the signal V1 is once lowered.
  • the predetermined load has a magnitude that does not damage the electronic component M and the substrate P, and holds the electronic component when the electronic component electrode M1 and the substrate electrode P1 are melted, as will be described later. This is a size that can be detected by the displacement sensor 21 as a downward displacement of the portion 8.
  • the piezo application signal V1 is controlled so that the predetermined load is maintained as shown at t4 (step S80).
  • the piezo application signal V1 is controlled so that the load correction signal V5 is held at the voltage VC (step S80).
  • the value of the displacement sensor signal V4 at the position of the electronic component holding unit 8 when it is determined that the predetermined load is reached (hereinafter referred to as a predetermined load position) is stored in the memory as a predetermined load voltage VD.
  • the control part 4 moves the electronic component holding part 8 by PID control so that the load correction signal V5 becomes the voltage VC.
  • the component-side solder layer M2 and the board-side solder layer P2 are heated by the heat generated by the ceramic heater 23 and the heater 26, and melting starts.
  • the reaction force when the electronic component electrode M1 presses the board electrode P1 is reduced.
  • the pressing force of the electronic component holding unit 8 is held constant (step S80). Therefore, the electronic component holding part 8 moves downward (sinks).
  • Whether or not the component-side solder layer M2 and the board-side solder layer P2 are melted is determined by a predetermined amount of movement (sinking amount) of the electronic component holding portion 8 in which the pressing force is held constant (step S80). A determination can be made based on whether or not (for example, 1 ⁇ m) is exceeded (step S100).
  • control unit 4 controls the piezo application signal V1 so that the load correction signal V5 is held at the voltage VC, while corresponding to the predetermined load position (corresponding to the predetermined load voltage VD) of the electronic component holding unit 8.
  • the movement distance (the amount of sinking of the electronic component holding unit 8) from the position where the displacement is detected is measured based on the amount of change of the displacement sensor signal V4 (step S90). Then, it is determined whether or not the moving distance (the amount of sinking of the electronic component holding unit 8) has reached a predetermined distance (for example, 1 ⁇ m) (step S100).
  • the displacement sensor signal V4 increases from the predetermined load voltage VD by the predetermined potential difference ⁇ V4 to become the sink voltage VE, it is determined that the sink amount of the electronic component holding unit 8 has reached the predetermined distance. (Yes in step S100).
  • the potential difference ⁇ V4 is set in advance as a potential difference corresponding to a predetermined sinking amount and stored in the memory of the control unit 4.
  • Step S120 The controller 4 starts the cooling operation of the molten component-side solder layer M2 and substrate-side solder layer P2 in a state where the lowering of the electronic component holding unit 8 is stopped and the position thereof is held (step S110) (step S120). .
  • this cooling operation step S120
  • energization to the ceramic heater 23 and the heater 26 is turned off, and air is passed through the cooling pipe 27 provided in the stage 25 to cool the electronic component M and the substrate P. Thereby, the melted component-side solder layer M2 and substrate-side solder layer P2 are cooled and solidified.
  • Step S130 and S140 By the way, when the molten solder is cooled, it thermally shrinks. Therefore, there is a possibility that the electronic component electrode M1 of the electronic component M and the substrate electrode P1 of the substrate P are pulled by the heat-shrinkable solder and damaged. Therefore, the control unit 4 drives the piezo drive unit 7 so that the electronic component holding unit 8 descends in accordance with the thermal contraction of the solder to be cooled, and makes the electronic component holding unit 8 follow the thermal contraction of the solder. An operation is performed (step S140). In the thermal contraction following operation (step S140), the piezo driving unit 7 is driven and the electronic component holding unit 8 is moved so that the load (load correction signal V5) detected by the load sensor 22 is constant. Since the melted component-side solder layer M2 and substrate-side solder layer P2 are cooled and thermally contracted, the piezoelectric drive signal 7 is applied to the piezoelectric drive unit 7 so that the electronic component holding unit 8 is slightly lowered.
  • step S140 The thermal contraction following operation (step S140) is not executed immediately after the cooling operation (step S120), and it is determined whether or not the melted component-side solder layer M2 and substrate-side solder layer P2 are cooled to a predetermined temperature (step S130) is preferably performed after cooling to a predetermined temperature (Yes in step S130). This is due to the following reason.
  • step S140 the thermal contraction following operation is performed by capturing the timing just before the solder starts to harden.
  • the predetermined temperature in step S130 is a temperature immediately before the solder starts to harden, and is 220 ° C., for example.
  • Steps S150 and S160 the control unit 4 detects the solder temperatures of the component-side solder layer M2 and the board-side solder layer P2 while causing the electronic component holding unit 8 to follow the heat shrinkage (step S150).
  • the control unit 4 releases the suction of the electronic component M from the electronic component holding unit 8 and drives the motor 9 to drive the electronic component holding unit. 8 is moved upward (step S160). The joining operation is thus completed, and the substrate P to which the electronic component M is joined is removed from the stage 25.
  • solder temperatures of the component-side solder layer M2 and the board-side solder layer P2 are detected by, for example, the temperature of the electronic component holding unit 8 using a temperature detection sensor (not shown), and the temperature of the solder is determined based on the detected temperature. Can be guessed. Further, instead of detecting (estimating) the temperature of the solder, a heat shrink follow-up operation (step S140) or an operation of moving the electronic component holding unit 8 upward (step S160) depending on the cooling time may be performed. Good.
  • the electronic component bonding apparatus 1 includes the electronic component lifting mechanism 2 that moves the electronic component holding portion 8 that holds the electronic component M up and down toward the substrate P, and separates the electronic component M from the substrate P.
  • the electronic component electrode M1 of the electronic component M and the substrate electrode P1 of the substrate P are moved to a position where the electronic component electrode M1 of the electronic component M and the substrate electrode P1 of the substrate P are in contact with each other. It can be joined via solder.
  • the electronic component lifting mechanism 2 is a high-speed moving mechanism that moves the electronic component lifting mechanism 2 at a high speed until the distance between the electronic component electrode M1 of the electronic component M and the substrate electrode P1 of the substrate P reaches a predetermined distance D1.
  • a piezo drive unit 7 serving as a drive source
  • the electronic component bonding apparatus 1 includes a load sensor 22 that detects a load acting on the electronic component M held by the electronic component holding unit 8 from the side on which the substrate P is disposed, and a noise that acts on the load sensor 22. And a control unit 4 as noise signal removing means for removing noise from the load sensor signal V2 detected by the load sensor 22 based on the noise signal V3 detected by the noise detection sensor 20. Have.
  • the use of the piezo drive unit 7 increases the accuracy of control of the movement amount and load amount of the electronic component holding unit 8, while the load sensor 22 is affected by noise, thereby controlling the piezo drive unit 7.
  • the accuracy of will decrease. Therefore, a noise detection sensor 20 is provided, and noise is removed from the load sensor signal V2 detected by the load sensor 22 based on the noise signal V3 detected by the noise detection sensor 20, thereby controlling the piezo drive unit 7. Accuracy can be improved.
  • the noise detection sensor 20, the load sensor 22, and the piezo drive unit 7 are arranged along the moving direction of the electronic component holding unit 8.
  • the detection accuracy of the load sensor 22 for detecting the load acting on the electronic component holding unit 8 is improved by arranging the piezo driving unit 7 and the load sensor 22 along the moving direction of the electronic component holding unit 8. Can do. For example, when the arrangement direction of the piezoelectric drive unit 7 and the load sensor 22 is oblique with respect to the moving direction of the electronic component holding unit 8, the load acting on the electronic component holding unit 8 is sufficiently applied to the load sensor 22. There is a possibility that it will not be transmitted, and the detection accuracy of the load sensor 22 may be reduced. On the other hand, the detection accuracy of the load sensor 22 can be improved by arranging the piezo drive unit 7 and the load sensor 22 along the moving direction of the electronic component holding unit 8.
  • the load sensor 22 detects a load acting from the moving direction of the electronic component holding unit 8. Therefore, it is preferable to remove as much as possible the noise applied to the load sensor 22 from the moving direction of the electronic component holding unit 8. Therefore, by arranging the noise detection sensor 20 along the moving direction of the electronic component holding unit 8 with respect to the load sensor 22, noise close to noise acting on the load sensor 22 can be easily detected by the noise detection sensor 20. Thereby, the detection accuracy of the load sensor 22 which detects the load which acts on the electronic component holding part 8 can be improved.
  • the high-speed moving mechanism 6 moves the first moving unit 14.
  • the piezo drive unit 7 is attached to a second moving unit 18 that is attached to the first moving unit 14 so as to be movable in the vertical direction.
  • the second moving unit 18 is supported by the first moving unit 14 via the load cell 17 while being biased downward by a spring 30 as a biasing means.
  • the spring 30 presses the second moving part 18 downward, for example, with 50 kg.
  • the pressing force with which the piezoelectric drive unit 7 presses the electronic component electrode M1 against the substrate electrode P1 is, for example, about 0.5N. That is, the pressing force with which the spring 30 presses the second moving portion 18 downward is extremely large compared to the pressing force with which the piezoelectric drive unit 7 presses the electronic component electrode M1 against the substrate electrode P1.
  • the contact of the electronic component electrode M1 to the substrate electrode P1 by the load cell 17 can be detected while the electronic component electrode M1 is reliably pressed against the substrate electrode P1, and the displacement by the displacement sensor 21 and the load sensor 22 is detected. And a decrease in load detection accuracy can be prevented.
  • the magnitude of the force by which the spring 30 urges (presses) the second moving portion 18 downward is such that the second moving portion 18 does not move even when the piezoelectric drive unit 7 presses the electronic component electrode M1 against the substrate electrode P1. 1 is a size that does not move (can be immovable) relative to the moving unit 14.
  • the electronic component joining apparatus 1 joins the electronic component electrode M1 of the electronic component M and the substrate electrode P1 of the substrate P via solder (component-side solder layer M2, substrate-side solder layer P2) that is a heat-meltable metal.
  • solder component-side solder layer M2, substrate-side solder layer P2
  • the electronic component M and the substrate P are heated, and the electronic component M is moved downward in a state where a predetermined load is constantly applied from the electronic component M to the substrate P (step 80).
  • step 80 By detecting the amount (steps S90 and S100), it is determined whether or not the solder is melted.
  • the electronic component bonding apparatus 1 includes a band stop filter 40 as a predetermined frequency signal removing unit, and the electronic component bonding apparatus 1 has a specific frequency as a signal of a predetermined frequency from the load sensor signal output from the load sensor 22. It is good also as a structure which removes the signal of the frequency of vibration.
  • the inventor of the present invention has found from analysis that most of the noise components of the load sensor signal are due to the natural vibration of the electronic component joining apparatus 1. Specifically, as a result of analyzing the frequency component of the load sensor signal V2 shown in FIG. 8, the frequency component shown in FIG. 9 was detected. As shown in FIG. 9, the load sensor signal V2 (FIG. 8) has many frequency components of 130 Hz and 330 Hz. On the other hand, when the natural vibration of the electronic component bonding apparatus 1 was analyzed, it was found that there was natural vibration in the vicinity of 130 Hz and 330 Hz.
  • FIG. 11 is a diagram showing a load sensor signal V2-1 obtained by removing a 130 Hz signal from the load sensor signal V2 shown in FIG.
  • FIG. 12 is a diagram showing a load sensor signal V2-2 obtained by removing a 330 Hz signal from the load sensor signal V2 shown in FIG. Note that the frequency of the signal removed from the load sensor signal varies depending on the structure of the electronic component bonding apparatus, the motor used, and the like, and the above 130 Hz and 330 Hz are examples.
  • the frequency signal to be removed from the load sensor signal includes the frequency of the natural vibration generated in the environment in which the electronic component bonding apparatus 1 is installed, in addition to the signal of the natural vibration frequency of the electronic component bonding apparatus 1. Signals can also be targeted.
  • SYMBOLS 1 Electronic component joining apparatus 2 ... Electronic component raising / lowering mechanism 4 ... Control part (noise signal removal means) 6 ... High-speed movement mechanism 7 ... Piezo drive unit (low-speed movement mechanism) DESCRIPTION OF SYMBOLS 8 ... Electronic component holding part 14 ... 1st moving part 17 ... Load cell 18 ... 2nd moving part 20 ... Noise detection sensor 22 ... Load sensor 30 ... Spring (biasing means) 40: Band stop filter (predetermined frequency signal removing means) V2 ... Load sensor signal (load signal) V3 ... Noise signal M ... Electronic component M1 ... Electronic component electrode (Electronic component electrode) M2 ... Component side solder layer P ... Substrate P1 ... Substrate electrode (substrate electrode) P2 ... Board side solder layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Operations Research (AREA)
  • Wire Bonding (AREA)

Abstract

 電子部品保持部の押圧力と移動量を高い精度で制御できる電子部品接合装置を提供すること。 電子部品Mを保持する電子部品保持部8を基板Pに向けて昇降移動する電子部品昇降機構2を有し、電子部品Mを、基板Pから離間した位置から電子部品Mの電子部品電極M1と基板Pの基板電極P1とが接触する位置まで移動させ、電子部品電極M1と基板電極P1とを熱溶融可能な金属を介して接合する電子部品接合装置1において、電子部品昇降機構2は、電子部品電極M1と基板電極P1との間の距離が、所定の距離D1になるまで電子部品保持部8を高い速度で移動させる高速移動機構6と、電子部品電極M1と基板電極P1との間の距離が所定の距離D1になった後、駆動源がピエゾ素子であるピエゾ駆動部7により高い速度よりも低い速度で移動させること。

Description

電子部品接合装置
 本発明は、電子部品を基板等に接合する電子部品接合装置に関する。
 たとえば、特許文献1に開示されるように、電子部品の電極と基板の電極とを熱溶融させた半田によって接合(実装)する装置が、従来より知られている。かかる装置は、電子部品保持部に保持した電子部品の電極を基板の電極に押圧するとともに、電子部品および基板を加熱して、電極に積層された半田を溶融させ、電極同士を半田接合する。この接合に当たって、電子部品の電極と基板の電極との間に過度の押圧力が掛かると、電極が傷つられてしまう虞もある。また、半田が溶融した後も押圧を続けると、溶融した半田が押し潰され流れ出てしまい、隣接する電極同士が流れ出た半田で短絡してしまう虞がある。そのため、電子部品の電極と基板の電極との間の押圧力を適正にすると共に、半田の溶融状態に合せて電子部品の基板への移動の制御が行われる。
特開2011-254032号
 しかしながら、電極に積層される半田の厚さは数十μm程度であるため、電子部品接合装置は、電子部品保持部の押圧力および移動量の制御に高い精度を求められる。そこで、本発明は、電子部品保持部の押圧力と移動量を高い精度で制御できる電子部品接合装置を提供することを目的とする。
 上述の課題を解決するため、本発明の電子部品接合装置は、電子部品を保持する電子部品保持部を基板に向けて昇降移動する電子部品昇降機構を有し、電子部品を、基板から離間した位置から電子部品の電極と基板の電極とが接触する位置まで移動させ、電子部品の電極と基板の電極とを熱溶融可能な金属を介して接合し、電子部品昇降機構は、電子部品の電極と基板の電極との間の距離が所定の距離になるまで電子部品保持部を高い速度で移動させる高速移動機構と、電子部品の電極と基板の電極との間の距離が所定の距離になった後、高い速度よりも低い速度で移動させる低速移動機構とを有し、低速移動機構の駆動源はピエゾ素子であることとする。
 また、他の発明は、電子部品保持部に保持された電子部品に対して、基板が配置される側から作用する荷重を検出する荷重センサと、荷重センサに作用するノイズを検出するノイズ検出センサと、ノイズ検出センサにより検出されるノイズ信号に基づき荷重センサにより検出される荷重信号からノイズを除去するノイズ信号除去手段とを有することとする。
 また、他の発明は、ノイズ検出センサと、荷重センサと、低速移動機構とは、電子部品保持部の移動方向に沿って配列されていることとする。
 また、他の発明は、高速移動機構は、第1移動部を移動させ、低速移動機構は、第1移動部に対して上下方向に移動可能に取り付けられる第2移動部に取り付けられ、第2移動部は、付勢手段により下方に付勢された状態でロードセルを介して第1移動部に支持されていることとする。
 また、他の発明は、電子部品保持部に保持された電子部品に対して、基板が配置される側から作用する荷重を検出する荷重センサと、荷重センサにより検出される荷重信号から所定周波数の信号を除去する所定周波数信号除去手段とを有することとする。
 上述の課題を解決するため、電子部品の電極と基板の電極とを熱溶融可能な金属を介して接合する電子部品接合方法において、電子部品および基板を加熱すると共に、電子部品から基板に対して所定の荷重が一定に付加された状態で、電子部品の下方への移動量を検出することにより、金属の溶融の有無を判断することとする。
 本発明は、電子部品保持部の押圧力と移動量を高い精度で制御できる電子部品接合装置を提供することを目的とする。
本発明の実施形態である電子部品接合装置の概略の構成を示す図である。 電子部品接合装置の電気的な構成を概略的に示すブロック図である。 図1に示すA部分の拡大図である。 本発明の実施形態である電子部品接合装置の動作を示すフローチャートである。 本発明の実施形態である電子部品接合装置の動作中のピエゾ印加信号、荷重センサ信号、ノイズ信号、変位センサ信号、荷重補正信号の変化を示す説明図である。 電子部品保持部を所定位置まで高速下降動作させる際の該所定位置および電子部品と基板との間隔を示す図である。 本発明の他の実施形態に係る電子部品接合装置の電気的な構成を概略的に示すブロック図である。 荷重センサ信号の例を示す図である。 図8に示される荷重センサ信号の周波数成分を解析した結果を示す図である。 図8に示される荷重センサ信号から130Hzおよび330Hzの信号を除去した信号を示す図である。 図8に示される荷重センサ信号から130Hzの信号を除去した荷重センサ信号を示す図である。 図8に示される荷重センサ信号から330Hzの信号を除去した荷重センサ信号を示す図である。
(本実施形態の電子部品接合装置1)
 以下、本発明の実施の形態にかかる電子部品接合装置1ついて図面を参照しながら説明する。以下の説明において、矢示X1方向を電子部品接合装置1の上方、矢示X2方向を下方とし、また、矢示Y1方向を左方、矢示Y2方向を右方として説明する。そして、図面に向かって手前側が、電子部品接合装置1を操作するオペレータの立ち位置となる前方として説明する。
(電子部品接合装置1の全体構成)
 図1は、電子部品接合装置1の全体構成を概略的に示す図である。図2は、電子部品接合装置1の電気的な構成を概略的に示すブロック図である。図3は、図1に示すA部分の拡大図である。図1に示すように電子部品接合装置1は、電子部品昇降機構2と、基板載置部3とを有し、また、図2に示すように、制御部4を有する。図3に示すように、基板載置部3には基板Pが載置され、また、電子部品昇降機構2には基板Pに対して接合される電子部品Mが保持される。電子部品Mは、半導体チップ、トランジスタ、ダイオード等を含むものである。
(電子部品昇降機構2)
 電子部品昇降機構2は、ベース板5と、高速移動機構6と、低速移動機構としてのピエゾ駆動部7と、電子部品保持部8とを有する。ベース板5は、床面等に設置される図示を省略するフレームあるいは筐体に対して取り付けられている。
(高速移動機構6)
 高速移動機構6は、モータ9と、ボールねじ10と、ボールねじナット11とを有している。ボールねじ10は、カップリング(連結部)12を介してモータ9の出力軸13に結合されている。ボールねじナット11は、第1移動部14に固定されている。また、ボールねじナット11は、ボールねじ10にねじ結合している。第1移動部14は、ベース板5に固定される第1ガイド部15を介してベース板5に取り付けられている。第1ガイド部15は、第1移動部14を上下方向に移動可能にガイドする。つまり、上述の構成を有する高速移動機構6は、モータ9の駆動により第1移動部14を上下方向に移動することができる。
 高速移動機構6は、変位センサ16を有し、第1移動部14の上下方向の移動量、すなわち、高速移動機構6による電子部品保持部8の上下方向の移動量を検出することができる。変位センサ16は、たとえば、リニアエンコーダーにより構成することができる。
(第2移動部18)
 第1移動部14には、ロードセル17を介して第2移動部18が支持されている。また、第1移動部14と第2移動部18との間には付勢手段としてのバネ30が備えられている。バネ30は、第1移動部14に反力をとり、第2移動部18を下方に付勢している。第2移動部18は、第1移動部14に固定される第2ガイド部19を介して第1移動部14に取り付けられている。第2ガイド部19は、第2移動部18を上下方向に移動可能にガイドする。つまり、第2移動部18は、第2ガイド部19を介して第1移動部14に対して上下方向に移動可能に支持されている。第2ガイド部19は、たとえば、クロスローラーガイドを用いる構成とすることができる。この構成とすることにより、第2移動部18を第1移動部14に対して高い剛性で保持させることができる。第2ガイド部19は、エアスライドガイドを用いることもできる。この構成とした場合には、クロスローラーガイドを用いた場合に比べて、高精度かつ低い摺動抵抗で第2移動部18を第1移動部14に対して上下方向に移動可能に支持することができる。
 第2移動部18に下方から押し上げ力が作用すると、第2移動部18は第1移動部14に対して相対的に上方に変位し、ロードセル17により、第2移動部18に作用する押し上げ力を測定することができる。
 第2移動部18には、上方(第1移動部14側)から順に、ノイズ検出センサ20と、荷重センサ22と、変位センサ21と、ピエゾ駆動部7と、セラミックヒータ23と、電子部品保持部8とが取り付けられている。また、ノイズ検出センサ20と、荷重センサ22と、ピエゾ駆動部7とは、電子部品保持部8の移動方向、すなわち上下方向に沿って配列されている。
(ピエゾ駆動部7)
 ピエゾ駆動部7は、図示を省略するピエゾ素子を有し、このピエゾ素子に印加されるピエゾ印加信号V1(図5参照)に応じて電子部品保持部8を下方に向けて移動する。ピエゾ駆動部7は、ピエゾ素子の変形量をそのまま電子部品保持部8に伝える構成であってもよいし、ピエゾ素子の変形量を変位量拡大機構を介して拡大して電子部品保持部8に伝える構成であってもよい。
(変位センサ21)
 変位センサ21は、電子部品保持部8の変位量を検出するセンサである。検出精度は概ね0.01μmレベルであり、たとえば、静電容量式変位センサを用いることができる。静電容量式変位センサは、第2移動部18に対して変位しない図示外の固定電極と、ピエゾ駆動部7により変位する電子部品保持部8の変位量に対応して変位する図示外の変位電極とが対向して備えられ、この2つの電極の相対的な動きに起因する静電容量の変化を利用して電子部品保持部8の変位量を計測するセンサである。
(荷重センサ22、ノイズ検出センサ20)
 荷重センサ22は、電子部品保持部8に対して下方から掛る荷重を検出するセンサである。検出精度は概ね0.01~5Nレベルであり、たとえば、ピエゾ素子を用いることができる。ノイズ検出センサ20は、荷重センサ22に作用するノイズを検出するセンサであり、検出精度は荷重センサ22と同等であり、荷重センサ22と同等のセンサを用いることが好ましい。
(電子部品保持部8)
 電子部品保持部8は、電子部品Mを吸着することができる。つまり、電子部品保持部8の下面には、不図示の吸引機構により負圧とされる不図示の孔部が設けられ、この孔部に発生する負圧により電子部品Mを吸着できる構成となっている。
(セラミックヒータ23)
 セラミックヒータ23は、電子部品保持部8に保持される電子部品Mの電極(以下、電子部品電極と記載する)M1(図6参照)を熱し、この電子部品電極M1に形成されている半田層(以下、部品側半田層と記載する)M2(図6参照)を溶融させることができる。
 第2移動部18には、モータ24が備えられている。ノイズ検出センサ20から下方の電子部品保持部8までの部材は一体的に移動される構成であり、モータ24の駆動により、電子部品保持部8を水平面内で回転させることができる。
(基板載置部3)
 基板載置部3は、基板Pが載置されるステージ25と、ステージ25を介して基板Pの電極部(以下、基板電極と記載する)P1を加熱するヒータ26とを有する。基板載置部3は、左右方向(Y1-Y2方向)および前後方向に移動させることができる図示を省略する可動ステージ機構を有し、ステージ25およびヒータ26は、この可動ステージ機構上に組み付けられている。つまり、ステージ25およびヒータ26は左右方向および前後方向に移動することができる。
 制御部4(図2参照)は、信号処理を行うCPUおよびメモリ等を有するコンピュータである。メモリには、電子部品接合装置1の制御を行うための制御プログラムおよび制御データ等が記憶されている。図2に示すように、制御部4は、変位センサ16、ロードセル17、変位センサ21、および荷重センサ22等からの信号に基づき、モータ9、ピエゾ駆動部7、セラミックヒータ23およびヒータ26等の動作を制御する。
 図6に示すように、電子部品保持部8の先端に保持される電子部品Mは、表面に部品側半田層M2が形成される複数の電子部品電極M1が設けられている。また、ステージ25に載置される基板Pには、表面に半田層(以下、基板側半田層と記載する)P2が形成される複数の基板電極P1が設けられている。電子部品電極M1と基板電極P1とは、一対一で接続可能に配置されている。電子部品電極M1の部品側半田層M2の層厚および基板電極P1の基板側半田層P2の層厚は共に数十μm程度である。そのため、部品側半田層M2と基板側半田層P2とを溶融させ、電子部品電極M1と基板電極P1とを電気的に接続する際に、電子部品電極M1と基板電極P1とが接触し電子部品電極M1あるいは基板電極P1を傷つけたり、溶融した半田が隣接する電子部品電極M1の間、あるいは基板電極P1の間を短絡させないように、電子部品電極M1と基板電極P1との間隔を高い精度で管理する必要がある。
 電子部品接合装置1は、上述の構成を備えると共に、図4,5を参照して説明する接合動作を行うことで、電子部品電極M1と基板電極P1との間隔を高い精度で管理することができる。図4は、電子部品接合装置1の動作のフローを示す図である。図5は、ピエゾ印加信号V1、荷重センサ信号V2、ノイズ信号V3、変位センサ信号V4および荷重補正信号V5の変化の状態を模式的に示す図である。
 ピエゾ印加信号V1は、ピエゾ駆動部7に印加される電圧信号である。荷重センサ信号V2は、荷重センサ22に作用する荷重に応じて出力される電圧信号である。ノイズ信号V3は、ノイズ検出センサ20に作用するノイズに応じて出力される電圧信号である。変位センサ信号V4は、変位センサ21から、ピエゾ素子の変位量、すなわち、電子部品保持部8の変位量に応じて出力される電圧信号である。荷重補正信号V5は、荷重センサ信号V2をノイズ信号V3により補正した電圧信号である。すなわち、荷重補正信号V5は、荷重センサ信号V2からノイズ成分を除去した電圧信号である。
 制御部4は、荷重センサ22により検出された荷重センサ信号V2からノイズ検出センサ20により検出されたノイズ信号V3に基づきノイズを除去した荷重補正信号V5を生成し、この荷重補正信号V5に基づき、電子部品保持部8に対して下方から作用する荷重を測定する。
(電子部品接合装置1の動作)
 以下に電子部品接合装置1の動作について説明する。図1は、電子部品保持部8が、電子部品昇降機構2により下降を開始される前の待機位置に配置されている状態を示している。この状態において、電子部品Mの各電子部品電極M1と各基板Pの基板側半田層P2とは、それぞれ互いに前後および左右方向における位置合わせが行われた状態となっている。この位置合わせは、図示を省略する可動ステージによるステージ25の前後左右への移動と、モータ24による電子部品保持部8の水平面内の回転により行うことができる。
(ステップS10)
 制御部4は、モータ9を駆動し、電子部品保持部8を図1に示す待機位置から下方に向けて高速で移動させる高速下降動作を実行する(ステップS10)。モータ9の回転によりボールねじ10が回転させられる。ボールねじ10にねじ結合するボールねじナット11が第1移動部14に固定されている。そのため、ボールねじ10の回転にボールねじナット11がリードされ、第1移動部14が下方向に移動し、電子部品保持部8も第1移動部14の下降に併せて下降する。下降速度は、後述するピエゾ駆動部7による電子部品Mの下降速度に比べて高速であり、たとえば、500mm/秒である。
(ステップS20,S30)
 制御部4は、変位センサ16によって降下位置を検出し、電子部品保持部8を所定位置S(図6参照)まで下降させる(ステップS20,S30)。この所定位置Sは、電子部品Mの電子部品電極M1と基板Pの基板側半田層P2とが接触しない位置であって、できるだけ近い位置である。モータ9は、作業の効率を上げるため、電子部品Mをできるだけ高速で下降できるように高トルクで駆動される。そのため、高トルクで駆動されるモータ9により下降される電子部品Mの電子部品電極M1が、基板Pの基板電極P1に衝突すると、電子部品Mあるいは基板Pを損傷させてしまう虞がある。そこで、電子部品接合装置1は、電子部品保持部8を所定位置Sまでは高速で下降させ、所定位置Sからさらに電子部品保持部8を下降する動作は、後述するように、ピエゾ駆動部7の駆動力により低負荷で行うこととしている(ステップS40,S50)。
 図6に示すように、所定位置Sは、電子部品Mの電子部品電極M1が基板Pの基板電極P1よりも、距離D1(たとえば、100μm)だけ上方に配置される位置である。この所定位置Sは、次のようにして接合動作の開始に先立って設定される。
 電子部品保持部8に電子部品Mを保持し、ステージ25に載置された基板Pに向けて下降させ、電子部品電極M1を基板電極P1に接触させる。制御部4は、電子部品電極M1が基板電極P1に接触したか否かを、ロードセル17の出力信号に基づき検出し、接触したときの位置を変位センサ16により測定する。変位センサ16により測定される接触位置は、電子部品Mを下降させる前の初期位置からの電子部品保持部8の移動距離、あるいは基板Pの基板電極P1のステージ25からの高さとして検出することができる。そして、接触位置に基づき、それより距離D1だけ上方の位置を所定位置Sとして設定し、制御部4のメモリに記憶する。複数枚、たとえば、3,4枚の基板Pについて電子部品電極M1が基板電極P1に接触する位置を測定し、その平均値に基づいて所定位置Sを設定することが好ましい。
 なお、バネ30は、たとえば、50kgで第2移動部18を下方に付勢している。したがって、電子部品電極M1を基板電極P1に確実に押圧させた状態で、電子部品電極M1の基板電極P1への接触をロードセル17により検出することができる。バネ30の付勢力は、ピエゾ駆動部7の駆動力に比べて極めて大きい。そのため、ピエゾ駆動部7の駆動力により低負荷で電子部品保持部8を下降させる際には、第2移動部18は第1移動部14に対して移動しない。したがって、変位センサ21および荷重センサ22による変位や荷重の検出精度の低下を防ぐことができる。
 ピエゾ駆動部7が電子部品電極M1を基板電極P1に押圧する押圧力に対してバネ30が第2移動部18を下方に付勢する押圧力は、たとえば、500から1500倍程度とすることで、電子部品電極M1を基板電極P1に確実に押圧させた状態で、ロードセル17による電子部品電極M1の基板電極P1への接触を検出することができると共に、変位センサ21および荷重センサ22による変位や荷重の検出精度の低下を防ぐことができる。ピエゾ駆動部7が電子部品電極M1を基板電極P1に押圧する押圧力に対してバネ30が第2移動部18を下方に付勢する押圧力を、700から1200倍とすることで、より好適にロードセル17による電子部品電極M1の基板電極P1への接触を検出することができると共に、変位センサ21および荷重センサ22による変位や荷重の検出精度の低下を防ぐことができる。
 制御部4は、電子部品保持部8を所定位置Sまで下降させ(ステップS20においてYes)、モータ9の駆動を停止する(ステップS30)。なお、制御部4は、PID制御にて電子部品保持部8を所定位置Sまで下降させる。PID制御を行うことで、所定位置Sに電子部品保持部8を精度よく移動させることができる。電子部品保持部8が所定位置Sに下降された状態(ステップS30)では、電子部品Mの電子部品電極M1と基板Pの基板電極P1とは、接触はしていないが、きわめて接近した距離として、上述のように、距離D1の間隔を開けて配置されている。
 電子部品保持部8が所定位置Sに配置されている状態から電子部品電極M1を基板電極P1に接触させる動作は、後述するようにピエゾ駆動部7による電子部品保持部8の微少な移動を低負荷で行う。したがって、距離D1は、電子部品電極M1が基板電極P1に接触しない範囲でできるだけ狭い方が、電子部品保持部8を所定位置Sから電子部品電極M1と基板電極P1とが接触する位置まで移動させるための工程時間を短縮できる。しかしながら、モータ9による電子部品保持部8の移動制御の精度、電子部品接合装置1の温度等の環境による公差の変化、および電子部品Mおよび基板Pの個体差等を考慮すると、距離D1が小さすぎると、モータ9による電子部品保持部8を下降させる際に、電子部品電極M1が基板電極P1に接触してしまう虞がある。したがって、距離D1は、小さい方が好ましいものの、上述の電子部品保持部8の移動制御の精度、電子部品接合装置1の公差の変化、および電子部品Mおよび基板Pの個体差等を踏まえて、電子部品電極M1と基板電極P1とが接触しない距離とすることが好ましい。
(ステップS40,S50)
 続いて、制御部4は、図5の時間T=0以降に示すように、ピエゾ駆動部7にピエゾ印加信号V1を印加し、電子部品電極M1が基板電極P1に接触する位置を検出するサーチ動作を実行する(ステップS40,S50)。ピエゾ印加信号V1の大きさに応じて電子部品保持部8が変位し、この変位量は変位センサ21により変位センサ信号V4として検出される。
 制御部4は、電子部品電極M1が基板電極P1に接触したか否かを、荷重補正信号V5に基づき判断する。荷重補正信号V5は、上述したように、荷重センサ22の荷重センサ信号V2からノイズ検出センサ20により検出されるノイズ信号V3を除去(キャンセル)した電圧信号である。つまり、荷重補正信号V5は、電子部品保持部8に下方から作用する荷重を示す信号である。
 図5に示すように、時間T=0からピエゾ印加信号V1の電圧を徐々に高くしていく。ピエゾ駆動部7は、ピエゾ印加信号V1の大きさに応じた変位量で電子部品保持部8を下方に移動させる。そして、電子部品電極M1が基板側半田層P2に接触すると、電子部品保持部8に下方から荷重が作用するため、時間T=t1に示すように荷重補正信号V5に立ち上がり部が発生する。制御部4は、荷重補正信号V5が所定の電圧VAとなったときに、電子部品電極M1が基板電極P1に接触したと判断する(ステップS50においてYes)。なお、制御部4は、荷重補正信号V5が所定の電圧VAとなるように、PID制御にて電子部品保持部8を移動させる。
(ステップS60)
 ここで、図5の時間T=t1に示すように、荷重補正信号V5が所定電圧VAになったときの変位センサ信号V4の電圧VBは、電子部品保持部8がモータ9の駆動により所定位置Sに下降された後、ピエゾ駆動部7によりさらに下方に移動された距離に対応する電圧である。この距離は、電子部品保持部8が所定位置Sに移動されたときの電子部品電極M1と基板電極P1との実際の間隔(距離)であり、サーチ動作(ステップS40,S50)において、電子部品保持部8が下降されるサーチ距離である。このサーチ距離に対応する変位センサ信号V4の電圧をサーチ距離対応電圧VBとして制御部4に備えられるメモリに記憶する(ステップS60)。
 そして、次回の電子部品Mと基板Pとを接合する際のサーチ動作(ステップS40)においては、該サーチ距離の範囲で所定の距離まで電子部品保持部8の下降速度を速くする。すなわち、変位センサ信号V4が、サーチ距離対応電圧VBに対して所定の電圧になるまでは、ピエゾ印加信号V1の増加速度を速くし、電子部品保持部8の下降速度を速くする。これにより、サーチ動作(ステップS40,S50)を行う時間の短縮を図ることができる。
 たとえば、変位センサ信号V4が、サーチ距離対応電圧VBの40%に到達するまでは、ピエゾ印加信号V1の増加速度を速くする。電子部品接合装置1の温度等による較差の変化や基板Pの湾曲等により、電子部品保持部8が所定位置Sに移動したときの電子部品電極M1と基板電極P1との実際の間隔は変化する。そのため、ピエゾ印加信号V1の増加速度を速くする該所定の距離をあまり長くすると、電子部品電極M1と基板電極P1とが衝突してしまう虞がある。該所定の電圧は、サーチ距離対応電圧VBの30%以上70%以下とすることで、電子部品電極M1と基板電極P1とが衝突する可能性を十分低くすることができ、加えて、サーチ動作(ステップS40)を行う時間の短縮を効果的に図ることができる。
 なお、該サーチ距離は、所定位置Sに反映させてもよい。つまり、接合動作の開始に先立って所定位置Sは設定されるが、電子部品接合装置1の公差の変化、および電子部品Mおよび基板Pの個体差等により、電子部品保持部8を所定位置Sに移動させたときの距離が距離D1にならない場合がある。
 電子部品保持部8を所定位置Sに移動させたときの距離が距離D1よりも長くなっている場合は工程時間が長くなる点で好ましくなく、逆に短くなっている場合は、電子部品電極M1が基板電極P1に過剰な押圧力で接触し、電子部品Mあるいは基板Pを損傷させてしまう虞がある。これに対し、電子部品保持部8がモータ9の駆動により所定位置Sに下降させてからピエゾ駆動部7により移動された距離(該サーチ距離)に基づき、所定位置Sを更新することで、工程時間の短縮化あるいは電子部品電極M1の基板電極P1への過剰な押圧力での接触を防止できる。
 荷重補正信号V5が所定の電圧VAとなったとき、すなわち、電子部品電極M1が基板電極P1に接触したと判断されたとき、図5の時間T=t1~t2間に示すように、ピエゾ印加信号V1を一旦低下させる。これにより、電子部品電極M1が基板電極P1に接触した時に、電子部品保持部8のオーバーシュートが防止でき、電子部品電極M1および基板電極P1が損傷してしまうことを防止できる。
(ステップS70,S80,S90,S100)
 制御部4は、電子部品電極M1と基板電極P1との接触(ステップS50においてYes)に併せて、セラミックヒータ23およびヒータ26の加熱を開始する。そして、制御部4は、電子部品電極M1を基板電極P1に接触させた状態で、図5の時間T=t2~t3に示すようにピエゾ印加信号V1を徐々に大きくし、電子部品電極M1から基板電極P1に対して所定の荷重(たとえば、0.5N)を付加する(ステップ70)。電子部品電極M1から基板電極P1に対して所定の荷重が付加されたか否かは、荷重補正信号V5に基づいて判断する。たとえば、荷重補正信号V5が電圧VCになったときに、電子部品電極M1から基板電極P1に対して所定の荷重が付加されたと判断する。
 この所定の荷重は、電子部品Mおよび基板Pに対して損傷を与えない大きさであると共に、後述するように、電子部品電極M1および基板電極P1が溶融したときに、この溶融を電子部品保持部8の下方への変位として変位センサ21により検出できる大きさである。そして、制御部4は、電子部品電極M1の基板電極P1に対する荷重が所定の荷重(荷重補正信号V5が電圧VC)に到達したと判断したら(ステップS70においてYes)、図5の時間T=t3~t4に示すようにその所定の荷重が保持されるようにピエゾ印加信号V1を制御する(ステップS80)。すなわち、荷重補正信号V5が電圧VCに保持されるように、ピエゾ印加信号V1を制御する(ステップS80)。これに合わせて、所定の荷重となったと判断されたときの電子部品保持部8の位置(以下、所定荷重時位置と記載する)における変位センサ信号V4の値を所定荷重時電圧VDとしてメモリに記憶する(ステップS80)。なお、制御部4は、荷重補正信号V5が電圧VCとなるように、PID制御にて電子部品保持部8を移動させる。
 セラミックヒータ23およびヒータ26の発熱により、部品側半田層M2および基板側半田層P2が加熱され溶融が開始する。部品側半田層M2および基板側半田層P2が溶融すると、電子部品電極M1が基板電極P1を押圧する際の反力が低減する。一方、電子部品保持部8の押圧力は一定に保持されている(ステップS80)。そのため、電子部品保持部8は下方に移動する(沈み込む)。部品側半田層M2および基板側半田層P2が溶融されたか否かは、押圧力が一定に保持(ステップS80)された電子部品保持部8の下方への移動量(沈み込み量)が所定値(たとえば、1μm)を超えたか否かにより判断(ステップS100)することができる。
 具体的には、制御部4は、荷重補正信号V5が電圧VCに保持されるようにピエゾ印加信号V1を制御しながら、電子部品保持部8の所定荷重時位置(所定荷重時電圧VDに対応する位置)から移動距離(電子部品保持部8の沈み込み量)を変位センサ信号V4の変化量に基づき測定する(ステップS90)。そして、この移動距離(電子部品保持部8の沈み込み量)が所定距離(たとえば、1μm)に到達したか否かを判断する(ステップS100)。この判断は、変位センサ信号V4が所定荷重時電圧VDから所定の電位差ΔV4だけ増加し沈込電圧VEになったときに、電子部品保持部8の沈み込み量が所定距離に到達したと判断する(ステップS100においてYes)。電位差ΔV4は、所定の沈み込み量に相当する電位差として予め設定され制御部4のメモリに記憶されている。
(ステップS110)
 部品側半田層M2および基板側半田層P2が溶融と判断された場合(ステップS100においてYes)には、制御部4は、図5の時間T=t4~t5に示すように電子部品保持部8の下降を停止しその位置(部品側半田層M2および基板側半田層P2が溶融したと判断されたときの電子部品保持部8の位置)を保持する(ステップS110)。つまり、部品側半田層M2および基板側半田層P2が溶融と判断されたた場合には(ステップS100)、ピエゾ印加信号V1の電圧をその時の電圧に保持する(ステップS110)。
(ステップS120)
 制御部4は、電子部品保持部8の下降を停止しその位置を保持(ステップS110)した状態で、溶融した部品側半田層M2および基板側半田層P2の冷却動作を開始する(ステップS120)。この冷却動作(ステップS120)は、セラミックヒータ23およびヒータ26への通電をオフとするとともに、ステージ25に備えられる冷却パイプ27に空気を流し電子部品Mおよび基板Pを冷却する。これにより、溶融した部品側半田層M2および基板側半田層P2が冷却され固化を開始する。
(ステップS130,S140)
 ところで、溶融した半田は冷却する際に熱収縮する。そのため、電子部品Mの電子部品電極M1と基板Pの基板電極P1とが、熱収縮する半田に引っ張られ破損してしまう虞がある。そこで、制御部4は、冷却する半田の熱収縮に併せて電子部品保持部8が下降するようにピエゾ駆動部7を駆動し、電子部品保持部8を半田の熱収縮に追従させる熱収縮追従動作を行う(ステップS140)。熱収縮追従動作(ステップS140)は、荷重センサ22により検出される荷重(荷重補正信号V5)が一定になるように、ピエゾ駆動部7を駆動し電子部品保持部8を移動させる。溶融した部品側半田層M2および基板側半田層P2は、冷却され熱収縮するので、ピエゾ駆動部7には、電子部品保持部8をやや下降させるようにピエゾ印加信号V1が印加される。
 熱収縮追従動作(ステップS140)は、冷却動作(ステップS120)直後に実行せず、溶融した部品側半田層M2および基板側半田層P2が所定の温度に冷却されているか否かを判断し(ステップS130)、所定の温度に冷却された後(ステップS130においてYes)に、実行することが好ましい。これは次の理由による。
 半田は溶融状態の場合、温度変化による熱収縮の割合が小さく、また、極めて微小な力で変形してしまう恐れがある。そのため、半田が溶融状態のときは、ピエゾ印加信号V1を一定に保持し(ステップS110)、電子部品保持部8が移動しないようにする。したがって、熱収縮追従動作(ステップS140)は、半田が固まり始める寸前のタイミングを捉えて行う。ステップS130における所定温度は、半田が固まり始める直前の温度であり、たとえば、220℃である。図5に示す時間T=t4~t5の間は、冷却動作が開始されても、熱収縮追従動作(ステップS140)は実行されない。
(ステップS150,S160)
 そして、制御部4は、電子部品保持部8を熱収縮追従動作させながら部品側半田層M2および基板側半田層P2の半田の温度を検出する(ステップS150)。制御部4は、半田が十分に固まる温度になったことが検出されたら(ステップS150においてYes)、電子部品保持部8の電子部品Mの吸引を解除し、モータ9を駆動し電子部品保持部8を上方に移動させる(ステップS160)。以上で接合動作を完了し、ステージ25から電子部品Mが接合された基板Pを取り除く。
 なお、部品側半田層M2および基板側半田層P2の半田の温度は、図示外の温度検出センサにより、たとえば、電子部品保持部8の温度を検出し、この検出温度に基づき、半田の温度を推測することができる。また、半田の温度を検出(推測)する代わりに、冷却時間により熱収縮追従動作(ステップS140)の開始や、電子部品保持部8を上方に移動させる動作(ステップS160)の開始を行ってもよい。
(本実施の形態の主な効果)
 上述したように、電子部品接合装置1は、電子部品Mを保持する電子部品保持部8を基板Pに向けて昇降動する電子部品昇降機構2を有し、電子部品Mを、基板Pから離間した位置から電子部品Mの電子部品電極M1と基板Pの基板電極P1とが接触する位置まで移動させ、電子部品Mの電子部品電極M1と基板Pの基板電極P1とを熱溶融可能な金属としての半田を介して接合することができる。電子部品昇降機構2は、電子部品Mの電子部品電極M1と基板Pの基板電極P1との間の距離が、所定の距離D1になるまで電子部品昇降機構2を高い速度で移動させる高速移動機構6と、電子部品Mの電子部品電極M1と基板Pの基板電極P1との間の距離が所定の距離D1になった後、高い速度よりも低い速度で移動させる低速移動機構としてのピエゾ素子を駆動源とするピエゾ駆動部7とを有する。
 このように電子部品接合装置1を構成し、ピエゾ駆動部7を用いることで、電子部品Mの電子部品電極M1と基板Pの基板電極P1とが所定距離D1になった後の電子部品保持部8の移動量や荷重量の制御の精度を高いものとすることができる。
 電子部品接合装置1は、電子部品保持部8に保持された電子部品Mに対して、基板Pが配置される側から作用する荷重を検出する荷重センサ22と、この荷重センサ22に作用するノイズを検出するノイズ検出センサ20と、このノイズ検出センサ20により検出されるノイズ信号V3に基づき荷重センサ22により検出される荷重センサ信号V2からノイズを除去するノイズ信号除去手段としての制御部4とを有する。
 ピエゾ駆動部7を用いることで、電子部品保持部8の移動量や荷重量の制御の精度が高いものとなる一方で、荷重センサ22がノイズの影響を受けることで、ピエゾ駆動部7の制御の精度が低下してしまう。そこで、ノイズ検出センサ20を備え、このノイズ検出センサ20により検出されるノイズ信号V3に基づき、荷重センサ22により検出される荷重センサ信号V2からノイズを除去することで、ピエゾ駆動部7の制御の精度を向上させることができる。
 ノイズ検出センサ20と、荷重センサ22と、ピエゾ駆動部7とは、電子部品保持部8の移動方向に沿って配列されている。
 ピエゾ駆動部7と荷重センサ22とが電子部品保持部8の移動方向に沿って配列されていることで、電子部品保持部8に作用する荷重を検出する荷重センサ22の検出精度を向上させることができる。たとえば、電子部品保持部8の移動方向に対して、ピエゾ駆動部7と荷重センサ22との配列方向が斜めである場合には、電子部品保持部8に作用する荷重が荷重センサ22に十分に伝わらない虞があり、荷重センサ22の検出精度が低下する虞がある。これに対し、ピエゾ駆動部7と荷重センサ22とを電子部品保持部8の移動方向に沿って配列されていることで、荷重センサ22の検出精度を向上させることができる。
 荷重センサ22は、電子部品保持部8の移動方向から作用する荷重を検出する。したがって、電子部品保持部8の移動方向から荷重センサ22に加わるノイズをできるだけ除去することが好ましい。したがって、ノイズ検出センサ20を荷重センサ22に対して電子部品保持部8の移動方向に沿って配列することで、荷重センサ22に作用するノイズに近いノイズをノイズ検出センサ20により検出し易くなる。これにより、電子部品保持部8に作用する荷重を検出する荷重センサ22の検出精度を向上させることができる。
 高速移動機構6は、第1移動部14を移動させる。ピエゾ駆動部7は、第1移動部14に対して上下方向に移動可能に取り付けられる第2移動部18に取り付けられる。第2移動部18は、付勢手段としてのバネ30により下方に付勢された状態でロードセル17を介して第1移動部14に支持されている。
 バネ30は、第2移動部18を下方に、たとえば、50kgで押圧している。一方、ピエゾ駆動部7が電子部品電極M1を基板電極P1に押圧する押圧力は、たとえば、0.5N前後である。つまり、バネ30が第2移動部18を下方に押圧する押圧力は、ピエゾ駆動部7が電子部品電極M1を基板電極P1に押圧する押圧力に比べて極めて大きい。
 そのため、電子部品電極M1を基板電極P1に確実に押圧させた状態で、ロードセル17による電子部品電極M1の基板電極P1への接触を検出することができると共に、変位センサ21および荷重センサ22による変位や荷重の検出精度の低下を防ぐことができる。バネ30が、第2移動部18を下方に付勢(押圧)する力の大きさは、ピエゾ駆動部7が電子部品電極M1を基板電極P1に押圧した場合でも、第2移動部18が第1移動部14に対して移動しない(不動とできる)大きさである。
 電子部品接合装置1は、電子部品Mの電子部品電極M1と基板Pの基板電極P1とを熱溶融可能な金属である半田(部品側半田層M2,基板側半田層P2)を介して接合する電子部品接合方法において、電子部品Mおよび基板Pを加熱すると共に、電子部品Mから基板Pに対して所定の荷重が一定に付加された状態(ステップ80)で、電子部品Mの下方への移動量を検出(ステップS90,S100)することにより、半田の溶融の有無を判断する。
(他の実施の形態)
 電子部品接合装置1は、図7に示すように所定周波数信号除去手段としてのバンドストップフィルタ40を備え、荷重センサ22から出力される荷重センサ信号から所定周波数の信号として電子部品接合装置1の固有振動の周波数の信号を除去する構成としてもよい。
 本願発明の発明者は、解析により、荷重センサ信号のノイズ成分の多くが電子部品接合装置1の固有振動に起因するものであることをつきとめた。具体的には、図8に示される荷重センサ信号V2の周波数成分を解析した結果、図9に示される周波数成分が検出された。図9に示すように、荷重センサ信号V2(図8)には130Hzおよび330Hzの周波数成分が多い。一方、電子部品接合装置1の固有振動を解析したところ、130Hzおよび330Hz付近に固有振動があることが判った。
 そこで、図7に示すようにバンドストップフィルタ40を用いることにより、図8に示される荷重センサ信号V2から130Hzおよび330Hzの信号を除去したところ、図10に示す荷重センサ信号V6のように、荷重センサ22の実際の荷重に好適に沿った荷重センサ信号を得ることができた。図11は、図8に示される荷重センサ信号V2から130Hzの信号を除去した荷重センサ信号V2-1を示す図である。図12は、図8に示される荷重センサ信号V2から330Hzの信号を除去した荷重センサ信号V2-2を示す図である。なお、荷重センサ信号から除去される信号の周波数は、電子部品接合装置の構造や使用されるモータ等により異なり、上記の130Hzおよび330Hzは一例である。
 なお、バンドストップフィルタ40にノッチフィルタを用いることで、電子部品接合装置1の固有振動の周波数である130Hzおよび330Hzだけを精度よく除去することができる。荷重センサ信号から除去する周波数の信号としては、上記のように、電子部品接合装置1の固有振動の周波数の信号の他、電子部品接合装置1が設置される環境で発生する固有振動の周波数の信号を対象とすることもできる。
 1 … 電子部品接合装置
 2 … 電子部品昇降機構
 4 … 制御部(ノイズ信号除去手段)
 6 … 高速移動機構
 7 … ピエゾ駆動部(低速移動機構)
 8 … 電子部品保持部
 14 … 第1移動部
 17 … ロードセル
 18 … 第2移動部
 20 … ノイズ検出センサ
 22 … 荷重センサ
 30 … バネ(付勢手段)
 40 … バンドストップフィルタ(所定周波数信号除去手段)
 V2 … 荷重センサ信号(荷重信号)
 V3 … ノイズ信号
 M … 電子部品
 M1 … 電子部品電極(電子部品の電極)
 M2 … 部品側半田層
 P … 基板
 P1 … 基板電極(基板の電極)
 P2 … 基板側半田層

Claims (6)

  1.  電子部品を保持する電子部品保持部を基板に向けて昇降移動する電子部品昇降機構を有し、前記電子部品を、基板から離間した位置から前記電子部品の電極と前記基板の電極とが接触する位置まで移動させ、前記電子部品の電極と前記基板の電極とを熱溶融可能な金属を介して接合する電子部品接合装置において、
     前記電子部品昇降機構は、
     前記電子部品の電極と前記基板の電極との間の距離が、所定の距離になるまで前記電子部品保持部を高い速度で移動させる高速移動機構と、
     前記電子部品の電極と前記基板の電極との間の距離が前記所定の距離になった後、前記高い速度よりも低い速度で移動させる低速移動機構とを有し、
     前記低速移動機構の駆動源はピエゾ素子である、
    ことを特徴とする電子部品接合装置。
  2.  請求項1に記載の電子部品接合装置において、
     前記電子部品保持部に保持された前記電子部品に対して、前記基板が配置される側から作用する荷重を検出する荷重センサと、
     前記荷重センサに作用するノイズを検出するノイズ検出センサと、
     前記ノイズ検出センサにより検出されるノイズ信号に基づき前記荷重センサにより検出される荷重信号からノイズを除去するノイズ信号除去手段と、
    を有することを特徴とする電子部品接合装置。
  3.  請求項2に記載の電子部品接合装置において、
     前記ノイズ検出センサと、前記荷重センサと、前記低速移動機構とは、前記電子部品保持部の移動方向に沿って配列されている、
    ことを特徴とする電子部品接合装置。
  4.  請求項1から3のいずれか1項に記載の電子部品接合装置において、
     前記高速移動機構は、第1移動部を移動させ、
     前記低速移動機構は、前記第1移動部に対して上下方向に移動可能に取り付けられる第2移動部に取り付けられ、
     前記第2移動部は、付勢手段により下方に付勢された状態でロードセルを介して第1移動部に支持されている、
    ことを特徴とする電子部品接合装置。
  5.  請求項1に記載の電子部品接合装置において、
     前記電子部品保持部に保持された前記電子部品に対して、前記基板が配置される側から作用する荷重を検出する荷重センサと、
     前記荷重センサにより検出される荷重信号から所定周波数の信号を除去する所定周波数信号除去手段と、
    を有することを特徴とする電子部品接合装置。
  6.  電子部品の電極と基板の電極とを熱溶融可能な金属を介して接合する電子部品接合方法において、
     前記電子部品および前記基板を加熱すると共に、前記電子部品から前記基板に対して所定の荷重が一定に付加された状態で、前記電子部品の下方への移動量を検出することにより、前記金属の溶融の有無を判断することを特徴とする電子部品接合方法。
     
PCT/JP2015/055441 2014-03-28 2015-02-25 電子部品接合装置および電子部品接合方法 WO2015146442A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015553686A JP5964520B2 (ja) 2014-03-28 2015-02-25 電子部品接合装置および電子部品接合方法
KR1020157028214A KR101775448B1 (ko) 2014-03-28 2015-02-25 전자 부품 접합 장치 및 전자 부품 접합 방법
CN201580000563.3A CN105230138B (zh) 2014-03-28 2015-02-25 电子部件接合装置和电子部件接合方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014070053 2014-03-28
JP2014-070053 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146442A1 true WO2015146442A1 (ja) 2015-10-01

Family

ID=54194975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055441 WO2015146442A1 (ja) 2014-03-28 2015-02-25 電子部品接合装置および電子部品接合方法

Country Status (4)

Country Link
JP (2) JP5964520B2 (ja)
KR (1) KR101775448B1 (ja)
CN (1) CN105230138B (ja)
WO (1) WO2015146442A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656882A (zh) * 2018-03-07 2020-09-11 株式会社富士 元件安装系统
US20210183809A1 (en) * 2019-12-16 2021-06-17 Asm Technology Singapore Pte Ltd Die bond head apparatus with die holder motion table

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6883528B2 (ja) * 2016-01-19 2021-06-09 株式会社Fuji 部品実装機
JP7207152B2 (ja) 2019-05-16 2023-01-18 株式会社デンソー スリーブはんだ付け装置および電子装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246953A (ja) * 1990-02-26 1991-11-05 Toshiba Corp フェイスダウンボンディング装置
JPH0871975A (ja) * 1994-08-30 1996-03-19 Sony Corp 部品装着装置
JPH11121479A (ja) * 1997-10-17 1999-04-30 Fujitsu Ltd 半導体部品の実装方法および実装装置
JP2002231766A (ja) * 2001-02-07 2002-08-16 Kaijo Corp フリップチップボンダーのワークタッチ検出回路
JP2010219334A (ja) * 2009-03-17 2010-09-30 Nec Corp 電子部品製造装置、方法及びプログラム
JP2011254032A (ja) * 2010-06-04 2011-12-15 Shinkawa Ltd 電子部品実装装置及びその方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246430B2 (en) * 2003-06-03 2007-07-24 Matsushita Electric Industrial Co., Ltd. Electronic component mounting apparatus and electronic component mounting method
JP4736355B2 (ja) * 2004-06-08 2011-07-27 パナソニック株式会社 部品実装方法
JP4359545B2 (ja) * 2004-09-01 2009-11-04 パナソニック株式会社 電子部品実装装置のコンタクト荷重制御方法
JP5317753B2 (ja) * 2009-02-23 2013-10-16 アルファーデザイン株式会社 ボンダ装置
JP4808283B1 (ja) * 2010-06-30 2011-11-02 株式会社新川 電子部品実装装置及び電子部品実装方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246953A (ja) * 1990-02-26 1991-11-05 Toshiba Corp フェイスダウンボンディング装置
JPH0871975A (ja) * 1994-08-30 1996-03-19 Sony Corp 部品装着装置
JPH11121479A (ja) * 1997-10-17 1999-04-30 Fujitsu Ltd 半導体部品の実装方法および実装装置
JP2002231766A (ja) * 2001-02-07 2002-08-16 Kaijo Corp フリップチップボンダーのワークタッチ検出回路
JP2010219334A (ja) * 2009-03-17 2010-09-30 Nec Corp 電子部品製造装置、方法及びプログラム
JP2011254032A (ja) * 2010-06-04 2011-12-15 Shinkawa Ltd 電子部品実装装置及びその方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656882A (zh) * 2018-03-07 2020-09-11 株式会社富士 元件安装系统
US20210183809A1 (en) * 2019-12-16 2021-06-17 Asm Technology Singapore Pte Ltd Die bond head apparatus with die holder motion table
EP3840026A1 (en) * 2019-12-16 2021-06-23 ASM Technology Singapore Pte Ltd. Die bond head apparatus with die holder motion table
JP2021097234A (ja) * 2019-12-16 2021-06-24 エーエスエム・テクノロジー・シンガポール・ピーティーイー・リミテッド ダイホルダーモーションテーブルを備えたダイボンドヘッド装置
JP7209680B2 (ja) 2019-12-16 2023-01-20 エーエスエムピーティー・シンガポール・ピーティーイー・リミテッド ダイホルダーモーションテーブルを備えたダイボンドヘッド装置
TWI794682B (zh) * 2019-12-16 2023-03-01 新加坡商先進科技新加坡有限公司 具有晶片固持器運動台的晶片鍵合頭設備
US11776930B2 (en) 2019-12-16 2023-10-03 Asmpt Singapore Pte. Ltd. Die bond head apparatus with die holder motion table

Also Published As

Publication number Publication date
KR101775448B1 (ko) 2017-09-06
JP5964520B2 (ja) 2016-08-03
JP2016184760A (ja) 2016-10-20
JPWO2015146442A1 (ja) 2017-04-13
CN105230138B (zh) 2019-07-30
KR20150128909A (ko) 2015-11-18
CN105230138A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
US9603262B2 (en) Electronic component mounting apparatus and method
JP5014151B2 (ja) チップ実装装置およびチップ実装方法
JP5964520B2 (ja) 電子部品接合装置および電子部品接合方法
JP2014123731A (ja) 基板上に半導体チップを実装するための熱圧着ボンディング方法および装置
TWI376754B (en) Automatic level adjustment for die bonder
US20160336291A1 (en) Semiconductor device manufacturing apparatus and method
JP5797368B2 (ja) 半導体チップのボンディング装置及びボンディング方法
TW201922996A (zh) 接合時之半導體晶片的加熱條件設定方法以及非導電性膜之黏度測量方法以及接合裝置
JP6325053B2 (ja) 接合システム、接合方法、および半導体デバイスの製造方法
JP6083041B2 (ja) 接合方法、接合システム、および半導体デバイスの製造方法
US20160079200A1 (en) Apparatus and method for manufacturing semiconductor device
JP5801526B2 (ja) チップ実装装置
JP5847390B2 (ja) 実装装置および実装方法
JP2014143442A (ja) チップ実装装置
JP6345819B2 (ja) チップ実装装置
JP6636567B2 (ja) チップ実装装置
JP4357985B2 (ja) 平行測定方法と調整方法及び平行測定装置並びに部品実装装置
JPWO2015045997A1 (ja) 実装装置および実装方法
JP2010067715A (ja) 電子部品の実装装置及び実装方法
JP4264734B2 (ja) 部品装着装置及び部品装着方法
JP2017011137A (ja) 加圧加熱冷却装置及びフリップチップ実装装置並びにフリップチップ実装方法及び半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000563.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20157028214

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015553686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767937

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15767937

Country of ref document: EP

Kind code of ref document: A1