WO2015145877A1 - 電池監視装置 - Google Patents

電池監視装置 Download PDF

Info

Publication number
WO2015145877A1
WO2015145877A1 PCT/JP2014/082042 JP2014082042W WO2015145877A1 WO 2015145877 A1 WO2015145877 A1 WO 2015145877A1 JP 2014082042 W JP2014082042 W JP 2014082042W WO 2015145877 A1 WO2015145877 A1 WO 2015145877A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
unit
control unit
signal
identification information
Prior art date
Application number
PCT/JP2014/082042
Other languages
English (en)
French (fr)
Inventor
隆介 長谷
隆広 都竹
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to DE112014006504.8T priority Critical patent/DE112014006504B4/de
Priority to US15/127,255 priority patent/US9739838B2/en
Publication of WO2015145877A1 publication Critical patent/WO2015145877A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for monitoring the state of each of a plurality of batteries.
  • some battery monitoring devices that monitor the state of each battery include a control unit that permits charging / discharging of each battery according to the monitoring result of each battery.
  • a control unit that permits charging / discharging of each battery according to the monitoring result of each battery.
  • each monitoring unit adds information indicating whether or not identification information is set to the packet transmitted from the preceding monitoring unit. Transmitted to a subsequent monitoring unit, and the control unit sets identification information for a monitoring unit for which identification information is not set, specified by information added to a packet transmitted from the last monitoring unit There is. (For example, see Patent Document 1)
  • An object of the present invention is to provide a battery monitoring device capable of proceeding to the next processing.
  • the battery monitoring apparatus includes a plurality of monitoring units that monitor a state of a battery, and the plurality of monitoring units that are connected in series with the plurality of monitoring units and that use identification information set in the plurality of monitoring units. And a control unit that performs communication.
  • the identification information of each of the plurality of monitoring units is not set regardless of the signal transmitted from the monitoring unit or the control unit in the previous stage. Is transmitted to the subsequent monitoring unit or the control unit.
  • control unit shifts to at least one of an identification information setting process and a communication abnormality detection process.
  • each monitoring unit that monitors the state of each of the plurality of batteries and the control unit that communicates with each monitoring unit are connected in series, even if a communication abnormality occurs between the monitoring units. , It is possible to proceed to the next processing.
  • FIG. 1 is a diagram illustrating a battery monitoring apparatus according to an embodiment.
  • the battery monitoring device 1 shown in FIG. 1 includes five battery modules 2 (2-1 to 2-5), a control unit (battery ECU (Electronic Control Unit)) 3, and a main relay 4.
  • the battery monitoring device 1 is mounted on a vehicle such as an electric forklift, a hybrid vehicle, or an electric vehicle. Further, the number of battery modules 2 is not limited to five.
  • the battery modules 2-1 to 2-5 include a battery 5, a relay 6, a voltage detection unit 7, a current detection unit 8, a temperature detection unit 9, and a monitoring unit (monitoring ECU) 10 (10-1). To 10-5). Each battery 5 is connected in parallel to each other and supplies power to the load 11.
  • the battery 5 is a rechargeable battery, for example, a lithium ion secondary battery or a nickel metal hydride battery.
  • the battery 5 may be composed of a plurality of batteries connected in series.
  • the relay 6 is provided between the main relay 4 and the battery 5. When the relay 6 is turned on and the main relay 4 is turned on, power can be supplied from the battery 5 to the load 11.
  • the voltage detector 7 detects the voltage of the battery 5 and is, for example, a voltmeter.
  • the current detection unit 8 detects a current flowing to the battery 5 during charging and a current flowing from the battery 5 during discharging, and is an ammeter, for example.
  • the temperature detection unit 9 detects the ambient temperature of the battery 5 and is, for example, a thermistor.
  • the monitoring units 10-1 to 10-5 each include a relay control unit 12, a storage unit 13, an identification information setting unit 14, and a communication unit 15.
  • the relay control unit 12, the identification information setting unit 14, and the communication unit 15 include, for example, a CPU (Central Processing Unit), a multi-core CPU, a programmable device (FPGA (Field Programmable Gate Array), a PLD (Programmable Logic Device), and the like. ) And the like, and is realized by a CPU, a multi-core CPU, or a programmable device reading and executing a program stored in the storage unit 13.
  • the communication units 15 of the monitoring units 10-1 to 10-5 and the communication unit 19 of the control unit 3 are connected in series (daisy chain) in a ring shape.
  • the relay control unit 12 controls ON / OFF of the relay 6.
  • the storage unit 13 is, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory), and stores various information and various programs.
  • the identification information setting unit 14 sets its own identification information and causes the storage unit 13 to store the identification information. For example, when five pieces of identification information “101”, “102”, “103”, “104”, and “105” are set for the monitoring units 10-1 to 10-5, the leading monitoring unit 10
  • the identification information setting unit 14 of ⁇ 1 sets “101” as its own identification information and stores it in the storage unit 13. Further, the identification information setting unit 14 of the second monitoring unit 10-2 sets “102” as its own identification information and stores it in the storage unit 13.
  • the identification information setting unit 14 of the third monitoring unit 10-3 sets “103” as its own identification information and stores it in the storage unit 13.
  • the identification information setting unit 14 of the fourth monitoring unit 10-4 sets “104” as its own identification information and stores it in the storage unit 13.
  • the identification information setting unit 14 of the last monitoring unit 10-5 sets “105” as its own identification information and stores it in the storage unit 13.
  • the communication unit 15 receives a signal transmitted from the preceding monitoring unit 10 or the control unit 3 via the communication line, or transmits a signal to the subsequent monitoring unit 10 or the control unit 3.
  • the control unit 3 includes a relay control unit 16 that controls on / off of the main relay 4, a storage unit 17, a communication abnormality location specifying unit 18, and a communication unit 19 that communicates with the monitoring units 10-1 to 10-5.
  • the storage unit 17 is, for example, a ROM or a RAM, and stores various information and various programs.
  • the relay control part 16, the communication abnormality location identification part 18, and the communication part 19 are comprised by CPU, multi-core CPU, a programmable device etc., for example, the program memorize
  • control unit 3 receives the identification information transmitted from the monitoring units 10-1 to 10-5 by the communication unit 19, and stores the identification information in the storage unit 17. In addition, the control unit 3 uses the identification information stored in the storage unit 17 to indicate the state of the battery 5 (for example, the voltage, current, and temperature of the battery 5) transmitted from each of the monitoring units 10-1 to 10-5. Etc.) is received by the communication unit 19.
  • the control unit 3 determines that the state of at least one of the batteries 5 of the modules 2-1 to 2-5 is abnormal, and the vehicle is in the evacuation driving mode (for example, after the vehicle is gradually decelerated until a predetermined time has elapsed).
  • An instruction to stop is sent to the host control unit that controls the running of the vehicle, and the process proceeds to a process of turning off the main relay 4 by the relay control unit 16 after a predetermined time has elapsed.
  • the control unit 3 determines that a communication abnormality has occurred, the control unit 3 shifts to the save travel mode.
  • FIG. 2 is a flowchart showing the operation of each of the monitoring units 10-1 to 10-5.
  • each of the monitoring units 10-1 to 10-5 determines whether or not its identification information is not set (S22).
  • each of the monitoring units 10-1 to 10-5 determines that identification information is set for itself (S22: NO)
  • the monitoring unit 10-1 to 10-5 terminates without doing anything, and identification information is not set for itself.
  • S22: YES regardless of the signal transmitted from the preceding monitoring unit 10 or the control unit 3, a fixed unset signal indicating that its own identification information is not set is used as the subsequent monitoring unit. 10 or the control unit 3 (S23).
  • FIG. 3 is a flowchart showing the operation of the control unit 3.
  • the battery monitoring device 1 of the embodiment is configured so that, if no identification information is set for at least the last monitoring unit 10-5, even if a communication abnormality occurs between the monitoring units 10, Since the non-setting signal is transmitted from the monitoring unit 10-5 to the control unit 3, it is possible to proceed to the next processing such as identification information setting processing and communication abnormality detection processing.
  • the battery monitoring device 1 is manufactured using the battery modules 2-1 to 2-5 including the monitoring units 10-1 to 10-5 for which identification information is not set in the manufacturing factory, and is controlled in the manufacturing factory. The case where the power supply of the part 3 is turned on is considered.
  • any battery module 2 is replaced by a serviceman at a store of a vehicle on which the battery monitoring device 1 is mounted, at least the identification information of the monitoring unit 10-5 is cleared using a service tool.
  • a case where the power supply of the control unit 3 is turned on can be considered.
  • the user using the vehicle on which the battery monitoring device 1 is mounted can be prevented from shifting to the identification information setting process. For this reason, since the identification information setting process is not performed after the battery module 2 is replaced by the user, the battery monitoring device 1 may malfunction due to the same identification information being set in the plurality of monitoring units 10. Can be prevented.
  • FIG. 4 is a flowchart showing the operation of the control unit 3 after shifting to the identification information setting process.
  • control unit 3 transmits a setting signal to the head monitoring unit 10-1 (S41).
  • control unit 3 stores the number of monitoring units 10 or the number of battery modules 2 corresponding to the setting signal transmitted from the last monitoring unit 10-5 in the storage unit 17 (S42).
  • control unit 3 receives the identification information transmitted from the monitoring units 10-1 to 10-5, and stores the received identification information in the storage unit 17 (S43).
  • FIG. 5 is a flowchart showing the operation of each of the monitoring units 10-1 to 10-5 after the transition to the identification information setting process.
  • each of the monitoring units 10-1 to 10-5 sets identification information corresponding to a setting signal transmitted from the preceding monitoring unit 10 or the control unit 3 as its own identification information (S51).
  • the signal is changed and transmitted to the subsequent monitoring unit 10 or the control unit 3 (S52).
  • each of the monitoring units 10-1 to 10-5 transmits its own identification information to the control unit 3 (S53).
  • the communication line used when transmitting identification information from the monitoring units 10-1 to 10-5 to the control unit 3 is different from the communication line used when transmitting an unset signal or a set signal. Also good.
  • the information shown in FIG. 6 and the information shown in FIG. 7 are stored in the storage units 13 of the monitoring units 10-1 to 10-5, respectively, and the information shown in FIGS. 6 and 8 are stored in the storage unit 17 of the control unit 3. It shall be remembered. Also, it is assumed that identification information is not set for the monitoring units 10-1 to 10-5. It is assumed that no communication abnormality has occurred between the control unit 3 and the monitoring unit 10 or between the monitoring units 10. Further, when each of the monitoring units 10-1 to 10-5 receives the rectangular wave corresponding to the setting signal, the monitoring unit 10-1 to 10-5 changes the DUTY ratio of the rectangular wave by + 4% and transmits it to the subsequent monitoring unit 10 or the control unit 3. It shall be.
  • each of the monitoring units 10-1 to 10-5 determines that identification information is not set in itself, and generates a rectangular wave with a DUTY ratio of 50% corresponding to an unset signal.
  • the data is transmitted to the monitoring unit 10 or the control unit 3 at the subsequent stage.
  • control unit 3 turns on the monitoring units 10-1 to 10-5 and waits for a predetermined time before transmitting a rectangular wave with a DUTY ratio of 50% transmitted from the last monitoring unit 10-5. Is received, it is determined that the received rectangular wave corresponds to an unset signal with reference to the information shown in FIG. 6, and the process proceeds to the identification information setting process.
  • control unit 3 transmits a rectangular wave having a DUTY ratio of 4% as a predetermined setting signal to the head monitoring unit 10-1.
  • the monitoring unit 10-1 determines that the received rectangular wave having a duty ratio of 4% corresponds to the setting signal with reference to the information illustrated in FIG. 6, the monitoring unit 10-1 refers to the information illustrated in FIG. “101” corresponding to 4% is set as its own identification information, and the DUTY ratio of the received rectangular wave is changed by + 4%, and a rectangular wave having a DUTY ratio of 8% is transmitted to the subsequent monitoring unit 10-2.
  • the monitoring unit 10-2 determines that the received rectangular wave having a duty ratio of 8% corresponds to the setting signal with reference to the information illustrated in FIG. 6, the monitoring unit 10-2 refers to the information illustrated in FIG. “102” corresponding to 8% is set as its own identification information, and the DUTY ratio of the received rectangular wave is changed by + 4%, and a rectangular wave having a DUTY ratio of 12% is transmitted to the subsequent monitoring unit 10-3.
  • the monitoring unit 10-3 determines that the received rectangular wave having a DUTY ratio of 12% corresponds to the setting signal with reference to the information illustrated in FIG. 6, the monitoring unit 10-3 refers to the information illustrated in FIG. “103” corresponding to 12% is set as its own identification information, and the DUTY ratio of the received rectangular wave is changed by + 4%, and a rectangular wave having a DUTY ratio of 16% is transmitted to the subsequent monitoring unit 10-4.
  • the monitoring unit 10-4 determines that the received rectangular wave with a duty ratio of 16% corresponds to the setting signal with reference to the information illustrated in FIG. 6, the monitoring unit 10-4 refers to the information illustrated in FIG. “104” corresponding to 16% is set as its own identification information, and the DUTY ratio of the received rectangular wave is changed by + 4%, and a rectangular wave having a DUTY ratio of 20% is transmitted to the subsequent monitoring unit 10-5.
  • the monitoring unit 10-5 determines that the received rectangular wave with a duty ratio of 20% corresponds to the setting signal with reference to the information illustrated in FIG. 6, the monitoring unit 10-5 refers to the information illustrated in FIG. “105” corresponding to 20% is set as its own identification information, and the DUTY ratio of the received rectangular wave is changed by + 4%, and a rectangular wave having a DUTY ratio of 24% is transmitted to the control unit 3.
  • control unit 3 refers to the information shown in FIG. 6 and determines that the received rectangular wave with a DUTY ratio of 24% corresponds to the setting signal, the control unit 3 refers to the information shown in FIG. 8 and sets the DUTY ratio to 24%.
  • Corresponding “5” is stored in the storage unit 17 as the number of the monitoring units 10. Thereafter, the control unit 3 stores the identification information “101” to “105” transmitted from the monitoring units 10-1 to 10-5 in the storage unit 17.
  • the amount of change in the DUTY ratio of the rectangular wave, which is changed by the monitoring units 10-1 to 10-5, is not limited to 4%.
  • the rectangular wave DUTY ratio corresponding to the unset signal and the rectangular wave DUTY ratio corresponding to the set signal are configured to have different values, but the monitoring unit 10-1
  • the process proceeds to the identification information setting process. Yes, before and after the transition of the identification information setting process are distinguished in time, the rectangular wave DUTY ratio corresponding to the unset signal and the rectangular wave DUTY ratio corresponding to the set signal have the same value.
  • You may comprise as follows.
  • FIG. 9 is a flowchart showing the operation of the control unit 3 after shifting to the identification information setting process and the communication abnormality detection process.
  • control unit 3 transmits a setting signal to the head monitoring unit 10-1 (S91).
  • the control unit 3 when receiving the setting signal transmitted from the last monitoring unit 10-5 (S92: YES), the control unit 3 stores the number of monitoring units 10 corresponding to the received setting signal in the storage unit 17.
  • the identification information transmitted from the monitoring units 10-1 to 10-5 is stored in the storage unit 17 (S94).
  • the control unit 3 identifies the location where the communication abnormality has occurred according to the received abnormal signal (S96). .
  • control unit 3 does not receive a setting signal or an abnormal signal from the last monitoring unit 10 even after a predetermined time has elapsed since the setting signal was transmitted to the first monitoring unit 10-1 (S95: NO, S97: YES), it is determined that a communication abnormality has occurred between the last monitoring unit 10-5 and the control unit 3 (S98).
  • FIG. 10 is a flowchart showing the operations of the monitoring units 10-1 to 10-5 after the transition to the identification information setting process and the communication abnormality detection process.
  • the monitoring units 10-1 to 10-5 each receive a setting signal transmitted from the preceding monitoring unit 10 or the control unit 3 (S101: YES), identification information corresponding to the received setting signal is obtained. It is set as its own identification information (S102), the received setting signal is changed and transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage (S103), and its own identification information is transmitted to the control unit 3 (S104). .
  • each of the monitoring units 10-1 to 10-5 receives the abnormal signal transmitted from the preceding monitoring unit 10 (S101: NO, S105: YES), changes the received abnormal signal to change the subsequent signal. It transmits to the monitoring part 10 or the control part 3 (S106).
  • each of the monitoring units 10-1 to 10-5 does not receive a setting signal from the preceding monitoring unit 10 or the control unit 3 even when a predetermined time elapses after the own power source is turned on, or the own power source If an abnormal signal is not received from the preceding monitoring unit 10 even after a predetermined time has elapsed after turning on (S105: NO, S107: YES), a predetermined abnormal signal is sent to the subsequent monitoring unit 10 or the control unit 3 (S108).
  • the information shown in FIGS. 7 and 11 is stored in each storage unit 13 of the monitoring units 10-1 to 10-5, and the information shown in FIGS. 8, 11 and 12 is stored in the storage unit 17 of the control unit 3. It is assumed that it is stored in Also, it is assumed that identification information is not set for the monitoring units 10-1 to 10-5. Further, it is assumed that the communication line between the monitoring unit 10-2 and the monitoring unit 10-3 is disconnected. Further, when the monitoring units 10-1 to 10-5 each receive a rectangular wave corresponding to the setting signal or the abnormal signal, the monitoring unit 10 or the control unit in the subsequent stage changes the DUTY ratio of the rectangular wave by + 4%. 3 is transmitted.
  • each of the monitoring units 10-1 to 10-5 determines that identification information is not set in itself, and generates a rectangular wave with a DUTY ratio of 50% corresponding to an unset signal.
  • the data is transmitted to the monitoring unit 10 or the control unit 3 at the subsequent stage.
  • control unit 3 turns on the monitoring units 10-1 to 10-5 and waits for a predetermined time before transmitting a rectangular wave with a DUTY ratio of 50% transmitted from the last monitoring unit 10-5.
  • the information shown in FIG. 11 is referred to, and it is determined that the received rectangular wave corresponds to an unset signal, and the process proceeds to the identification information setting process.
  • control unit 3 transmits a rectangular wave having a DUTY ratio of 4% as a predetermined setting signal to the head monitoring unit 10-1.
  • the monitoring unit 10-1 determines that the received rectangular wave having a 4% duty ratio corresponds to the setting signal with reference to the information illustrated in FIG. 11, the monitoring unit 10-1 refers to the information illustrated in FIG. “101” corresponding to 4% is set as its own identification information, and the DUTY ratio of the received rectangular wave is changed by + 4%, and a rectangular wave having a DUTY ratio of 8% is transmitted to the subsequent monitoring unit 10-2.
  • the monitoring unit 10-2 determines that the received rectangular wave having a duty ratio of 8% corresponds to the setting signal with reference to the information illustrated in FIG. 11, the monitoring unit 10-2 refers to the information illustrated in FIG. “102” corresponding to 8% is set as its own identification information, and the DUTY ratio of the received rectangular wave is changed by + 4%, and a rectangular wave having a DUTY ratio of 12% is transmitted to the subsequent monitoring unit 10-3.
  • the monitoring unit 10-4 refers to the information shown in FIG. 11 and determines that the received rectangular wave with a DUTY ratio of 54% corresponds to an abnormal signal
  • the monitoring unit 10-4 changes the DUTY ratio of the received rectangular wave by + 4%.
  • a rectangular wave with a DUTY ratio of 58% is transmitted to the subsequent monitoring unit 10-5.
  • the monitoring unit 10-5 determines that the received rectangular wave with a duty ratio of 58% corresponds to an abnormal signal with reference to the information shown in FIG. 11, the monitoring section 10-5 changes the DUTY ratio of the received rectangular wave by + 4%. Then, a rectangular wave having a DUTY ratio of 62% is transmitted to the control unit 3.
  • control unit 3 refers to the information shown in FIG. 11 and determines that the rectangular wave with a DUTY ratio of 62% transmitted from the last monitoring unit 10-5 corresponds to the abnormal signal
  • control part 3 pinpoints the generation
  • the amount of change in the DUTY ratio of the rectangular wave that is changed by the monitoring units 10-1 to 10-5 is not limited to 4%.
  • the DUTY ratio of the rectangular wave corresponding to the unset signal and the DUTY ratio of the rectangular wave corresponding to the set signal are different from each other, but the monitoring unit 10-1
  • identification information setting processing and communication abnormality detection processing Since the time before and after the transition of the identification information setting process and the communication abnormality detection process are distinguished from each other, the rectangular wave corresponding to the unset signal and the rectangle corresponding to the set signal You may comprise so that the DUTY ratio of a wave may become the same value mutually.
  • the rectangular wave DUTY ratio corresponding to the abnormal signal is not particularly limited as long as it is different from the rectangular wave DUTY ratio corresponding to the unset signal and the rectangular wave DUTY ratio corresponding to the set signal.
  • FIG. 13 is a flowchart showing the operation of the control unit 3 after shifting to the communication abnormality detection process.
  • control unit 3 transmits a detection signal to the head monitoring unit 10-1 (S131).
  • the control unit 3 determines that no communication abnormality has occurred (S133).
  • the control unit 3 identifies the location where the communication abnormality has occurred according to the received abnormal signal. (S135).
  • control unit 3 does not receive a detection signal or an abnormal signal from the last monitoring unit 10-5 even after a predetermined time has elapsed since the detection signal was transmitted to the first monitoring unit 10-1 (S134: NO, S136: YES), it is determined that a communication error has occurred between the last monitoring unit 10-5 and the control unit 3 (S137).
  • FIG. 14 is a flowchart showing the operation of each of the monitoring units 10-1 to 10-5 after the transition to the communication abnormality detection process.
  • the monitoring units 10-1 to 10-5 each receive a detection signal transmitted from the preceding monitoring unit 10 or the control unit 3 (S141: YES), the monitoring signal is sent to the subsequent monitoring unit 10 or the control unit. 3 is transmitted (S142).
  • each of the monitoring units 10-1 to 10-5 receives the abnormal signal transmitted from the preceding monitoring unit 10 (S141: NO, S143: YES), changes the received abnormal signal to change the subsequent signal. It transmits to the monitoring part 10 or the control part 3 (S144).
  • each of the monitoring units 10-1 to 10-5 does not receive a detection signal from the preceding monitoring unit 10 or the control unit 3 even after a predetermined time has elapsed since its own power supply was turned on, If an abnormal signal is not received from the preceding monitoring unit 10 even after a predetermined time has elapsed after turning on (S143: NO, S145: YES), a predetermined abnormal signal is sent to the subsequent monitoring unit 10 or the control unit 3 (S146).
  • the information shown in FIG. 15 is stored in each storage unit 13 of the monitoring units 10-1 to 10-5, and the information shown in FIGS. 12 and 15 is stored in the storage unit 17 of the control unit 3. To do. Also, it is assumed that identification information is not set for the monitoring units 10-1 to 10-5. Further, it is assumed that the communication line between the monitoring unit 10-2 and the monitoring unit 10-3 is disconnected. Further, when each of the monitoring units 10-1 to 10-5 receives a rectangular wave corresponding to the abnormal signal, the monitoring unit 10-1 to 10-5 changes the DUTY ratio of the rectangular wave by + 4%, and transmits it to the subsequent monitoring unit 10 or the control unit 3. It shall be.
  • each of the monitoring units 10-1 to 10-5 determines that identification information is not set in itself, and generates a rectangular wave with a DUTY ratio of 50% corresponding to an unset signal.
  • the data is transmitted to the monitoring unit 10 or the control unit 3 at the subsequent stage.
  • control unit 3 turns on the monitoring units 10-1 to 10-5 and waits for a predetermined time before transmitting a rectangular wave with a DUTY ratio of 50% transmitted from the last monitoring unit 10-5. Is received, it is determined that the received rectangular wave corresponds to an unset signal with reference to the information shown in FIG.
  • control unit 3 transmits a rectangular wave having a DUTY ratio of 10% as a detection signal to the head monitoring unit 10-1.
  • monitoring unit 10-1 determines that the received rectangular wave with a DUTY ratio of 10% corresponds to a detection signal
  • the monitoring unit 10-1 uses the rectangular wave with a DUTY ratio of 10% as a detection signal.
  • monitoring unit 10-2 determines that the received rectangular wave with a DUTY ratio of 10% corresponds to the detection signal
  • the monitoring unit 10-2 outputs the rectangular wave with a DUTY ratio of 10% as a detection signal.
  • the monitoring unit 10-3 To the monitoring unit 10-3.
  • the monitoring unit 10-3 has not received a rectangular wave corresponding to a detection signal or an abnormal signal until a predetermined time has elapsed after the power of the monitoring unit 10-3 is turned on (monitoring with the monitoring unit 10-2).
  • a rectangular wave with a DUTY ratio of 54% is transmitted to the subsequent monitoring unit 10-4 as a predetermined abnormal signal .
  • the monitoring unit 10-4 refers to the information shown in FIG. 15 and determines that the received rectangular wave with a DUTY ratio of 54% corresponds to an abnormal signal
  • the monitoring unit 10-4 changes the DUTY ratio of the received rectangular wave by + 4%.
  • a rectangular wave with a DUTY ratio of 58% is transmitted to the subsequent monitoring unit 10-5.
  • the monitoring unit 10-5 refers to the information shown in FIG. 15 and determines that the received rectangular wave with a DUTY ratio of 58% corresponds to an abnormal signal
  • the monitoring unit 10-5 changes the DUTY ratio of the received rectangular wave by + 4%.
  • a rectangular wave having a DUTY ratio of 62% is transmitted to the control unit 3.
  • the control unit 3 determines that the rectangular wave with a DUTY ratio of 62% transmitted from the last monitoring unit 10-5 corresponds to the abnormal signal with reference to the information illustrated in FIG. 15, the information illustrated in FIG. Referring to FIG. 5, the communication abnormality occurrence location corresponding to the DUTY ratio of 62% of the received rectangular wave is identified as “between monitoring unit 10-2 and monitoring unit 10-3”.
  • control unit 3 refers to the information shown in FIG. 15 and determines that a rectangular wave with a DUTY ratio of 10% transmitted from the last monitoring unit 10-5 is a detection signal, a communication error occurs. Judge that it is not.
  • control section 3 may notify the user of the location where the communication abnormality has occurred.
  • the amount of change in the DUTY ratio of the rectangular wave that is changed by the monitoring units 10-1 to 10-5 is not limited to 4%.
  • the DUTY ratio of the rectangular wave corresponding to the unset signal and the DUTY ratio of the rectangular wave corresponding to the detection signal are set to different values, but the monitoring units 10-1 to 10-5 have different values.
  • the communication error detection process is started. Since the processing before and after the processing is distinguished in terms of time, the rectangular wave DUTY ratio corresponding to the unset signal and the rectangular wave DUTY ratio corresponding to the detection signal may be set to the same value.
  • the battery monitoring device 1 is configured to perform the identification information setting process and the communication abnormality detection process using the rectangular wave whose DUTY ratio is changed by each monitoring unit.
  • the configuration of the monitoring unit 10 can be simplified as compared with the case where the identification information setting process and the communication abnormality detection process are performed using a signal that requires a complicated process such as a process.
  • the identification information setting process and the communication abnormality detection process are performed using the DUTY ratio of the rectangular wave, but the frequency of the oscillation signal including the rectangular wave, the number of pulses per unit time, or An identification information assignment process and a communication abnormality detection process may be performed using numerical values and character information indicated by an oscillation signal including a rectangular wave.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Materials Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Small-Scale Networks (AREA)

Abstract

 監視部10-1~10-5は、それぞれ、自身に識別情報が設定されていない場合、前段の監視部10又は制御部3から送信される信号にかかわらず、自身の識別情報が未設定である旨を示す固定された未設定信号を後段の監視部10又は制御部3へ送信し、制御部3は、最後尾の監視部10-5から送信される未設定信号を受信すると、識別情報設定処理などに移行する。

Description

電池監視装置
 本発明は、複数の電池のそれぞれの状態を監視する技術に関する。
 近年では、電動フォークリフト、ハイブリッド車、又は電気自動車などの車両へ実装されるバッテリとして、負荷へ大きな電力を安定して供給するために、複数の電池が並列接続されるものがある。
 また、それら各電池のそれぞれの状態を監視する電池監視装置として、各電池のそれぞれの監視結果により、各電池の充放電を許可する制御部を備えるものがある。このような電池監視装置において、各電池のそれぞれの状態を監視する複数の監視部から制御部へ監視結果を伝えるために、各監視部に識別情報を設定する必要がある。
 例えば、各監視部と制御部が直列接続されている場合において、各監視部が、自身に識別情報が設定されているか否かを示す情報を前段の監視部から送信されるパケットに付加して後段の監視部に送信し、制御部が、最後尾の監視部から送信されるパケットに付加される情報により特定される、識別情報が設定されていない監視部に対して識別情報を設定するものがある。(例えば、特許文献1参照)
特開2001-203733号公報
 しかしながら、上述のように、各監視部と制御部が直列接続されている場合では、監視部の間で通信異常が発生すると、監視部からの信号が制御部まで届かなくなるため、識別情報設定処理などの次の処理に移行することができない。
 そこで、本発明は、複数の電池のそれぞれの状態を監視する各監視部及び各監視部と通信する制御部が直列接続されている場合において、監視部の間で通信異常が発生していても、次の処理に移行することができる電池監視装置を提供することを目的とする。
 本実施形態の電池監視装置は、電池の状態を監視する複数の監視部と、前記複数の監視部と直列接続され、前記複数の監視部に設定される識別情報を用いて前記複数の監視部と通信を行う制御部とを備える。
 また、前記複数の監視部は、それぞれ、自身に識別情報が設定されていない場合、前段の前記監視部又は前記制御部から送信される信号にかかわらず、自身の識別情報が未設定である旨を示す固定された未設定信号を後段の前記監視部又は前記制御部へ送信する。
 また、前記制御部は、最後尾の前記監視部から送信される前記未設定信号を受信すると、識別情報設定処理及び通信異常検知処理の少なくとも1つの処理に移行する。
 これにより、少なくとも最後尾の監視部に識別情報が設定されていない場合、監視部の間で通信異常が発生していても、最後尾の監視部から制御部へ未設定信号が送信されるため、識別情報設定処理や通信異常検知処理などの次の処理に移行することができる。
 本発明によれば、複数の電池のそれぞれの状態を監視する各監視部及び各監視部と通信する制御部が直列接続されている場合において、監視部の間で通信異常が発生していても、次の処理に移行することができる。
実施形態の電池監視装置を示す図である。 監視部の動作を示すフローチャートである。 制御部の動作を示すフローチャートである。 識別情報設定処理に移行した後の制御部の動作を示すフローチャートである。 識別情報設定処理に移行した後の監視部の動作を示すフローチャートである。 記憶部に記憶される情報の一例を示す図である。 記憶部に記憶される情報の一例を示す図である。 記憶部に記憶される情報の一例を示す図である。 識別情報設定処理及び通信異常検知処理に移行した後の制御部の動作を示すフローチャートである。 識別情報設定処理及び通信異常検知処理に移行した後の監視部の動作を示すフローチャートである。 記憶部に記憶される情報の一例を示す図である。 記憶部に記憶される情報の一例を示す図である。 通信異常検知処理に移行した後の制御部の動作を示すフローチャートである。 通信異常検知処理に移行した後の監視部の動作を示すフローチャートである。 記憶部に記憶される情報の一例を示す図である。
 図1は、実施形態の電池監視装置を示す図である。
 図1に示す電池監視装置1は、5つの電池モジュール2(2-1~2-5)と、制御部(電池ECU(Electronic Control Unit))3と、メインリレー4とを備える。なお、電池監視装置1は、例えば、電動フォークリフト、ハイブリッド車、又は電気自動車などの車両に搭載される。また、電池モジュール2の数は5つに限定されない。
 電池モジュール2-1~2-5は、それぞれ、電池5と、リレー6と、電圧検出部7と、電流検出部8と、温度検出部9と、監視部(監視ECU)10(10-1~10-5)とを備える。なお、各電池5は、互いに並列接続され、負荷11に電力を供給する。
 電池5は、充電可能な電池であり、例えば、リチウムイオン二次電池やニッケル水素電池などとする。なお、電池5は、直列接続された複数の電池により構成されてもよい。
 リレー6は、メインリレー4と電池5との間に設けられている。リレー6がオンしているとき、メインリレー4がオンすると、電池5から負荷11へ電力が供給可能となる。
 電圧検出部7は、電池5の電圧を検出するものであり、例えば、電圧計とする。
 電流検出部8は、充電時の電池5へ流れる電流や放電時の電池5から流れる電流を検出するものであり、例えば、電流計とする。
 温度検出部9は、電池5の周辺温度を検出するものであり、例えば、サーミスタとする。
 監視部10-1~10-5は、それぞれ、リレー制御部12と、記憶部13と、識別情報設定部14と、通信部15とを備える。なお、リレー制御部12、識別情報設定部14、及び通信部15は、例えば、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)、PLD(Programmable Logic Device)など)などにより構成され、記憶部13に記憶されているプログラムをCPU、マルチコアCPU、又はプログラマブルなデバイスなどが読み出して実行することによって実現される。また、監視部10-1~10-5の各通信部15と制御部3の通信部19が環状に直列(デイジーチェーン)接続されている。
 リレー制御部12は、リレー6のオン、オフを制御する。
 記憶部13は、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)などであり、各種情報や各種プログラムを記憶する。
 識別情報設定部14は、自身の識別情報を設定し、その識別情報を記憶部13に記憶させる。例えば、監視部10-1~10-5に対して、「101」、「102」、「103」、「104」、及び「105」の5つの識別情報を設定する場合、先頭の監視部10-1の識別情報設定部14は「101」を自身の識別情報として設定し記憶部13に記憶させる。また、2番目の監視部10-2の識別情報設定部14は「102」を自身の識別情報として設定し記憶部13に記憶させる。また、3番目の監視部10-3の識別情報設定部14は「103」を自身の識別情報として設定し記憶部13に記憶させる。また、4番目の監視部10-4の識別情報設定部14は「104」を自身の識別情報として設定し記憶部13に記憶させる。また、最後尾の監視部10-5の識別情報設定部14は「105」を自身の識別情報として設定し記憶部13に記憶させる。
 通信部15は、通信線を介して、前段の監視部10又は制御部3から送信される信号を受信したり、後段の監視部10又は制御部3へ信号を送信したりする。
 制御部3は、メインリレー4のオン、オフを制御するリレー制御部16と、記憶部17と、通信異常箇所特定部18と、監視部10-1~10-5と通信を行う通信部19とを備える。なお、記憶部17は、例えば、ROMやRAMなどであり、各種情報や各種プログラムを記憶する。また、リレー制御部16、通信異常箇所特定部18、及び通信部19は、例えば、CPU、マルチコアCPU、プログラマブルなデバイスなどに構成され、記憶部17に記憶されているプログラムをCPU、マルチコアCPU、又はプログラマブルなデバイスなどが読み出して実行することによって実現される。また、制御部3は、監視部10-1~10-5からそれぞれ送信される識別情報を通信部19により受信し、それら識別情報を記憶部17に記憶させる。また、制御部3は、記憶部17に記憶させた識別情報を用いて、監視部10-1~10-5からそれぞれ送信される電池5の状態(例えば、電池5の電圧、電流、及び温度など)を示す情報を通信部19で受信する。また、制御部3は、受信した情報に示される電池5の状態が予め決められた状態になるとき(例えば、電池5の電圧、電流、及び温度の少なくとも1つが閾値よりも大きいとき)、電池モジュール2-1~2-5の各電池5のうちの少なくとも1つの電池5の状態が異常であると判断し、待避走行モード(例えば、一定時間経過後までに車両を徐々に減速させてから停止させる指示を、車両の走行を制御する上位制御部に送るとともに、一定時間経過後にリレー制御部16によりメインリレー4をオフさせる処理)に移行する。また、制御部3は、通信異常が発生したと判断すると、待避走行モードに移行する。
 図2は、監視部10-1~10-5のそれぞれの動作を示すフローチャートである。
 まず、監視部10-1~10-5は、それぞれ、自身の電源がオンすると(S21:YES)、自身の識別情報が未設定であるか否かを判断する(S22)。
 次に、監視部10-1~10-5は、それぞれ、自身に識別情報が設定されていると判断すると(S22:NO)、何もせずに終了し、自身に識別情報が設定されていないと判断すると(S22:YES)、前段の監視部10又は制御部3から送信される信号にかかわらず、自身の識別情報が未設定である旨を示す固定された未設定信号を後段の監視部10又は制御部3へ送信する(S23)。
 図3は、制御部3の動作を示すフローチャートである。
 まず、制御部3は、自身の電源がオンすると(S31:YES)、監視部10-1~10-5の電源をオンさせる(S32)。
 次に、制御部3は、監視部10-1~10-5の電源をオンさせてから所定時間経過するまでの間に最後尾の監視部10-5から送信される未設定信号を受信すると(S33:YES)、識別情報設定処理や通信異常検知処理に移行し(S34)、所定時間経過するまでに未設定信号を受信しないと(S33:NO、S35:YES)、最後尾の監視部10-5と制御部3の間で通信異常が発生したと判断する(S36)。
 これにより、実施形態の電池監視装置1は、少なくとも最後尾の監視部10-5に対して識別情報が設定されていない場合、監視部10の間で通信異常が発生していても、最後尾の監視部10-5から制御部3へ未設定信号が送信されるため、識別情報設定処理や通信異常検知処理などの次の処理に移行することができる。例えば、製造工場において識別情報が設定されていない監視部10-1~10-5を備える電池モジュール2-1~2-5が用いられて電池監視装置1が製造され、かつ、製造工場において制御部3の電源がオンされる場合が考えられる。また、電池監視装置1が搭載される車両の販売店においてサービスマンにより何れかの電池モジュール2が交換される際、サービスツールを使用して少なくとも監視部10-5の識別情報がクリアされるとともに、制御部3の電源がオンされる場合が考えられる。これらの場合では、電池監視装置1が搭載される車両を使用するユーザ側で識別情報設定処理などに移行させないようにすることができる。そのため、ユーザによる電池モジュール2の交換後に識別情報設定処理が行われるということが発生しないため、複数の監視部10において同じ識別情報が設定されるなどで電池監視装置1が誤動作してしまうことを防止することができる。
 図4は、識別情報設定処理に移行した後の制御部3の動作を示すフローチャートである。
 まず、制御部3は、先頭の監視部10-1へ設定信号を送信する(S41)。
 次に、制御部3は、最後尾の監視部10-5から送信される設定信号に対応する監視部10の数、または電池モジュール2の数を記憶部17に記憶させる(S42)。
 そして、制御部3は、監視部10-1~10-5から送信される識別情報を受信し、それら受信した識別情報を記憶部17に記憶させる(S43)。
 図5は、識別情報設定処理に移行した後の監視部10-1~10-5のそれぞれの動作を示すフローチャートである。
 まず、監視部10-1~10-5は、それぞれ、前段の監視部10又は制御部3から送信される設定信号に対応する識別情報を自身の識別情報として設定するとともに(S51)、その設定信号を変化させて後段の監視部10又は制御部3へ送信する(S52)。
 次に、監視部10-1~10-5は、それぞれ、自身の識別情報を制御部3へ送信する(S53)。なお、監視部10-1~10-5から制御部3へ識別情報を送信するときに使用される通信線は、未設定信号や設定信号を送信するときに使用される通信線と異なっていてもよい。
 例えば、図6に示す情報及び図7に示す情報が監視部10-1~10-5の各記憶部13にそれぞれ記憶され、図6及び図8に示す情報が制御部3の記憶部17に記憶されているものとする。また、監視部10-1~10-5に対して識別情報が設定されていないものとする。また、制御部3と監視部10の間や監視部10の間において通信異常が発生していないものとする。また、監視部10-1~10-5は、それぞれ、設定信号に相当する矩形波を受信すると、その矩形波のDUTY比を+4%変化させて、後段の監視部10又は制御部3へ送信するものとする。
 このような場合において、まず、電池監視装置1の製造者や電池モジュール2を交換するサービスマンによるスイッチやサービスツールの操作などにより制御部3の電源がオンすると、制御部3は、監視部10-1~10-5の各電源をオンさせる。
 次に、監視部10-1~10-5は、それぞれ、自身の電源がオンすると、自身に識別情報が設定されていないと判断し、未設定信号に相当するDUTY比50%の矩形波を後段の監視部10又は制御部3へ送信する。
 次に、制御部3は、監視部10-1~10-5をオンさせてから所定時間経過するまでの間において、最後尾の監視部10-5から送信されるDUTY比50%の矩形波を受信すると、図6に示す情報を参照して、受信した矩形波が未設定信号に相当すると判断し識別情報設定処理に移行する。
 次に、制御部3は、識別情報設定処理に移行すると、予め決められた設定信号としてDUTY比4%の矩形波を先頭の監視部10-1へ送信する。
 次に、監視部10-1は、図6に示す情報を参照して、受信したDUTY比4%の矩形波が設定信号に相当すると判断すると、図7に示す情報を参照して、DUTY比4%に対応する「101」を自身の識別情報として設定するとともに、受信した矩形波のDUTY比を+4%変化させてDUTY比8%の矩形波を後段の監視部10-2へ送信する。
 次に、監視部10-2は、図6に示す情報を参照して、受信したDUTY比8%の矩形波が設定信号に相当すると判断すると、図7に示す情報を参照して、DUTY比8%に対応する「102」を自身の識別情報として設定するとともに、受信した矩形波のDUTY比を+4%変化させてDUTY比12%の矩形波を後段の監視部10-3へ送信する。
 次に、監視部10-3は、図6に示す情報を参照して、受信したDUTY比12%の矩形波が設定信号に相当すると判断すると、図7に示す情報を参照して、DUTY比12%に対応する「103」を自身の識別情報として設定するとともに、受信した矩形波のDUTY比を+4%変化させてDUTY比16%の矩形波を後段の監視部10-4へ送信する。
 次に、監視部10-4は、図6に示す情報を参照して、受信したDUTY比16%の矩形波が設定信号に相当すると判断すると、図7に示す情報を参照して、DUTY比16%に対応する「104」を自身の識別情報として設定するとともに、受信した矩形波のDUTY比を+4%変化させてDUTY比20%の矩形波を後段の監視部10-5へ送信する。
 次に、監視部10-5は、図6に示す情報を参照して、受信したDUTY比20%の矩形波が設定信号に相当すると判断すると、図7に示す情報を参照して、DUTY比20%に対応する「105」を自身の識別情報として設定するとともに、受信した矩形波のDUTY比を+4%変化させてDUTY比24%の矩形波を制御部3へ送信する。
 そして、制御部3は、図6に示す情報を参照して、受信したDUTY比24%の矩形波が設定信号に相当すると判断すると、図8に示す情報を参照して、DUTY比24%に対応する「5」を監視部10の数として記憶部17に記憶させる。その後、制御部3は、監視部10-1~10-5から送信される識別情報「101」~「105」を記憶部17に記憶させる。
 なお、監視部10-1~10-5により変化される、矩形波のDUTY比の変化量は4%に限定されない。
 また、図6に示す情報では、未設定信号に相当する矩形波のDUTY比と設定信号に相当する矩形波のDUTY比が互いに異なる値になるように構成しているが、監視部10-1~10-5の電源がオンしてから所定時間経過するまでの間に最後尾の監視部10-5から制御部3へ未設定信号が送信されると、識別情報設定処理に移行する構成であり、識別情報設定処理の移行前と移行後が時間的に区別されているため、未設定信号に相当する矩形波のDUTY比と設定信号に相当する矩形波のDUTY比が互いに同じ値になるように構成してもよい。
 図9は、識別情報設定処理及び通信異常検知処理に移行した後の制御部3の動作を示すフローチャートである。
 まず、制御部3は、先頭の監視部10-1へ設定信号を送信する(S91)。
 次に、制御部3は、最後尾の監視部10-5から送信される設定信号を受信すると(S92:YES)、その受信した設定信号に対応する監視部10の数を記憶部17に記憶させ(S93)、監視部10-1~10-5から送信される識別情報を記憶部17に記憶させる(S94)。
 また、制御部3は、最後尾の監視部10-5から異常信号を受信すると(S92:NO、S95:YES)、その受信した異常信号に応じて通信異常の発生箇所を特定する(S96)。
 また、制御部3は、先頭の監視部10-1へ設定信号を送信してから所定時間が経過しても最後尾の監視部10から設定信号又は異常信号を受信しない場合(S95:NO、S97:YES)、最後尾の監視部10-5と制御部3の間で通信異常が発生していると判断する(S98)。
 図10は、識別情報設定処理及び通信異常検知処理に移行した後の監視部10-1~10-5のそれぞれの動作を示すフローチャートである。
 まず、監視部10-1~10-5は、それぞれ、前段の監視部10又は制御部3から送信される設定信号を受信すると(S101:YES)、その受信した設定信号に対応した識別情報を自身の識別情報として設定し(S102)、その受信した設定信号を変化させて後段の監視部10又は制御部3へ送信し(S103)、自身の識別情報を制御部3へ送信する(S104)。
 また、監視部10-1~10-5は、それぞれ、前段の監視部10から送信される異常信号を受信すると(S101:NO、S105:YES)、その受信した異常信号を変化させて後段の監視部10又は制御部3へ送信する(S106)。
 また、監視部10-1~10-5は、それぞれ、自身の電源がオンしてから所定時間が経過しても前段の監視部10又は制御部3から設定信号を受信しない場合又は自身の電源がオンしてから所定時間が経過しても前段の監視部10から異常信号を受信しない場合(S105:NO、S107:YES)、予め決められた異常信号を後段の監視部10又は制御部3へ送信する(S108)。
 例えば、図7及び図11に示す情報が監視部10-1~10-5の各記憶部13にそれぞれ記憶され、図8、図11、及び図12に示す情報が制御部3の記憶部17に記憶されているものとする。また、監視部10-1~10-5に対して識別情報が設定されていないものとする。また、監視部10-2と監視部10-3の間の通信線が断線しているものとする。また、監視部10-1~10-5は、それぞれ、設定信号又は異常信号に相当する矩形波を受信すると、その矩形波のDUTY比を+4%変化させて、後段の監視部10又は制御部3へ送信するものとする。
 このような場合において、まず、電池監視装置1の製造者や電池モジュール2を交換するサービスマンによるスイッチやサービスツールの操作などにより制御部3の電源がオンすると、制御部3は、監視部10-1~10-5の各電源をオンさせる。
 次に、監視部10-1~10-5は、それぞれ、自身の電源がオンすると、自身に識別情報が設定されていないと判断し、未設定信号に相当するDUTY比50%の矩形波を後段の監視部10又は制御部3へ送信する。
 次に、制御部3は、監視部10-1~10-5をオンさせてから所定時間経過するまでの間において、最後尾の監視部10-5から送信されるDUTY比50%の矩形波を受信すると、図11に示す情報を参照して、受信した矩形波が未設定信号に相当すると判断して識別情報設定処理に移行する。
 次に、制御部3は、識別情報設定処理に移行すると、予め決められた設定信号としてDUTY比4%の矩形波を先頭の監視部10-1へ送信する。
 次に、監視部10-1は、図11に示す情報を参照して、受信したDUTY比4%の矩形波が設定信号に相当すると判断すると、図7に示す情報を参照して、DUTY比4%に対応する「101」を自身の識別情報として設定するとともに、受信した矩形波のDUTY比を+4%変化させてDUTY比8%の矩形波を後段の監視部10-2へ送信する。
 次に、監視部10-2は、図11に示す情報を参照して、受信したDUTY比8%の矩形波が設定信号に相当すると判断すると、図7に示す情報を参照して、DUTY比8%に対応する「102」を自身の識別情報として設定するとともに、受信した矩形波のDUTY比を+4%変化させてDUTY比12%の矩形波を後段の監視部10-3へ送信する。
 次に、監視部10-3は、自身の電源がオンしてから所定時間経過するまでの間、設定信号又は異常信号に相当する矩形波を受信していない場合(監視部10-2と監視部10-3の間の通信線の電圧レベルがローレベル又はハイレベルのままである場合)、予め決められた異常信号に相当するDUTY比54%の矩形波を後段の監視部10-4へ送信する。
 次に、監視部10-4は、図11に示す情報を参照して、受信したDUTY比54%の矩形波が異常信号に相当すると判断すると、受信した矩形波のDUTY比を+4%変化させてDUTY比58%の矩形波を後段の監視部10-5へ送信する。
 次に、監視部10-5は、図11に示す情報を参照して、受信したDUTY比58%の矩形波が異常信号に相当すると判断すると、受信した矩形波のDUTY比を+4%変化させてDUTY比62%の矩形波を制御部3へ送信する。
 そして、制御部3は、図11に示す情報を参照して、最後尾の監視部10-5から送信されるDUTY比62%の矩形波が異常信号に相当すると判断すると、図12に示す情報を参照して、受信した矩形波のDUTY比62%に対応する通信異常の発生箇所が「監視部10-2と監視部10-3の間」であると特定する。
 なお、制御部3は、通信異常の発生箇所を特定すると、その旨をユーザに報知してもよい。
 また、監視部10-1~10-5により変化される、矩形波のDUTY比の変化量は4%に限定されない。
 また、図11に示す情報では、未設定信号に相当する矩形波のDUTY比と設定信号に相当する矩形波のDUTY比が互いに異なる値になるように構成しているが、監視部10-1~10-5の電源がオンしてから所定時間経過するまでの間に最後尾の監視部10-5から制御部3へ未設定信号が送信されると、識別情報設定処理及び通信異常検知処理に移行する構成であり、識別情報設定処理及び通信異常検知処理の移行前と移行後が時間的に区別されているため、未設定信号に相当する矩形波のDUTY比と設定信号に相当する矩形波のDUTY比が互いに同じ値になるように構成してもよい。
 また、異常信号に相当する矩形波のDUTY比は、未設定信号に相当する矩形波のDUTY比や設定信号に相当する矩形波のDUTY比と異なる値であれば特に限定されない。
 図13は、通信異常検知処理に移行した後の制御部3の動作を示すフローチャートである。
 まず、制御部3は、先頭の監視部10-1へ検知信号を送信する(S131)。
 次に、制御部3は、最後尾の監視部10-5から送信される検知信号を受信すると(S132:YES)、通信異常が発生していないと判断する(S133)。
 また、制御部3は、最後尾の監視部10-5から送信される異常信号を受信すると(S132:NO、S134:YES)、その受信した異常信号に応じて通信異常の発生箇所を特定する(S135)。
 また、制御部3は、先頭の監視部10-1へ検知信号を送信してから所定時間が経過しても最後尾の監視部10-5から検知信号又は異常信号を受信しない場合(S134:NO、S136:YES)、最後尾の監視部10-5と制御部3の間で通信異常が発生したと判断する(S137)。
 図14は、通信異常検知処理に移行した後の監視部10-1~10-5のそれぞれの動作を示すフローチャートである。
 まず、監視部10-1~10-5は、それぞれ、前段の監視部10又は制御部3から送信される検知信号を受信すると(S141:YES)、検知信号を後段の監視部10又は制御部3へ送信する(S142)。
 また、監視部10-1~10-5は、それぞれ、前段の監視部10から送信される異常信号を受信すると(S141:NO、S143:YES)、その受信した異常信号を変化させて後段の監視部10又は制御部3へ送信する(S144)。
 また、監視部10-1~10-5は、それぞれ、自身の電源がオンしてから所定時間が経過しても前段の監視部10又は制御部3から検知信号を受信しない場合又は自身の電源がオンしてから所定時間が経過しても前段の監視部10から異常信号を受信しない場合(S143:NO、S145:YES)、予め決められた異常信号を後段の監視部10又は制御部3へ送信する(S146)。
 例えば、図15に示す情報が監視部10-1~10-5の各記憶部13にそれぞれ記憶され、図12及び図15に示す情報が制御部3の記憶部17に記憶されているものとする。また、監視部10-1~10-5に対して識別情報が設定されていないものとする。また、監視部10-2と監視部10-3の間の通信線が断線しているものとする。また、監視部10-1~10-5は、それぞれ、異常信号に相当する矩形波を受信すると、その矩形波のDUTY比を+4%変化させて、後段の監視部10又は制御部3へ送信するものとする。
 このような場合において、まず、電池監視装置1の製造者や電池モジュール2を交換するサービスマンによるスイッチやサービスツールの操作などにより制御部3の電源がオンすると、制御部3は、監視部10-1~10-5の各電源をオンさせる。
 次に、監視部10-1~10-5は、それぞれ、自身の電源がオンすると、自身に識別情報が設定されていないと判断し、未設定信号に相当するDUTY比50%の矩形波を後段の監視部10又は制御部3へ送信する。
 次に、制御部3は、監視部10-1~10-5をオンさせてから所定時間経過するまでの間において、最後尾の監視部10-5から送信されるDUTY比50%の矩形波を受信すると、図15に示す情報を参照して、受信した矩形波が未設定信号に相当すると判断して通信異常検知処理に移行する。
 次に、制御部3は、通信異常検知処理に移行すると、検知信号としてDUTY比10%の矩形波を先頭の監視部10-1へ送信する。
 次に、監視部10-1は、図15に示す情報を参照して、受信したDUTY比10%の矩形波が検知信号に相当すると判断すると、検知信号としてDUTY比10%の矩形波を後段の監視部10-2へ送信する。
 次に、監視部10-2は、図15に示す情報を参照して、受信したDUTY比10%の矩形波が検知信号に相当すると判断すると、検知信号としてDUTY比10%の矩形波を後段の監視部10-3へ送信する。
 次に、監視部10-3は、自身の電源がオンしてから所定時間経過するまでの間、検知信号又は異常信号に相当する矩形波を受信していない場合(監視部10-2と監視部10-3の間の通信線の電圧レベルがローレベル又はハイレベルのままである場合)、予め決められた異常信号としてDUTY比54%の矩形波を後段の監視部10-4へ送信する。
 次に、監視部10-4は、図15に示す情報を参照して、受信したDUTY比54%の矩形波が異常信号に相当すると判断すると、受信した矩形波のDUTY比を+4%変化させてDUTY比58%の矩形波を後段の監視部10-5へ送信する。
 次に、監視部10-5は、図15に示す情報を参照して、受信したDUTY比58%の矩形波が異常信号に相当すると判断すると、受信した矩形波のDUTY比を+4%変化させてDUTY比62%の矩形波を制御部3へ送信する。
 そして、制御部3は、図15に示す情報を参照して、最後尾の監視部10-5から送信されるDUTY比62%の矩形波が異常信号に相当すると判断すると、図12に示す情報を参照して、受信した矩形波のDUTY比62%に対応する通信異常の発生箇所が「監視部10-2と監視部10-3の間」であると特定する。
 なお、制御部3は、図15に示す情報を参照して、最後尾の監視部10-5から送信されるDUTY比10%の矩形波が検知信号であると判断すると、通信異常が発生していないと判断する。
 また、制御部3は、通信異常の発生箇所を特定すると、その通信異常の発生箇所をユーザに報知してもよい。
 また、監視部10-1~10-5により変化される、矩形波のDUTY比の変化量は4%に限定されない。
 また、図15に示す情報では、未設定信号に相当する矩形波のDUTY比と検知信号に相当する矩形波のDUTY比を互いに異なる値にしているが、監視部10-1~10-5の電源がオンしてから所定時間経過するまでの間に最後尾の監視部10-5から制御部3へ未設定信号が送信されると、通信異常検知処理に移行する構成であり、通信異常検知処理の移行前と移行後が時間的に区別されているため、未設定信号に相当する矩形波のDUTY比と検知信号に相当する矩形波のDUTY比を互いに同じ値にしてもよい。
 このように、本実施形態の電池監視装置1では、各監視部によりDUTY比が変化される矩形波を用いて識別情報設定処理や通信異常検知処理を行う構成であるため、変調処理や符号化処理などの複雑な処理が必要な信号を用いて識別情報設定処理や通信異常検知処理を行う場合に比べて、監視部10の構成を簡単にすることができる。
 なお、上記実施形態では、矩形波のDUTY比を用いて、識別情報設定処理や通信異常検知処理を行う構成であるが、矩形波を含む発振信号の周波数、単位時間あたりのパルス数、又は、矩形波を含む発振信号により示される数値や文字情報を用いて、識別情報の割当て処理や通信異常検知処理を行うように構成してもよい。
1 電池監視装置
2 電池モジュール
3 制御部
4 メインリレー
5 電池
6 リレー
7 電圧検出部
8 電流検出部
9 温度検出部
10 監視部
11 負荷
12 リレー制御部
13 記憶部
14 識別情報設定部
15 通信部
16 リレー制御部
17 記憶部
18 通信異常箇所特定部
19 通信部

Claims (7)

  1.  電池の状態を監視する複数の監視部と、
     前記複数の監視部と直列接続され、前記複数の監視部に設定される識別情報を用いて前記複数の監視部と通信を行う制御部と、
     を備え、
     前記複数の監視部は、それぞれ、自身に識別情報が設定されていない場合、前段の前記監視部又は前記制御部から送信される信号にかかわらず、自身の識別情報が未設定である旨を示す固定された未設定信号を後段の前記監視部又は前記制御部へ送信し、
     前記制御部は、最後尾の前記監視部から送信される前記未設定信号を受信すると、識別情報設定処理及び通信異常検知処理の少なくとも1つの処理に移行する
     ことを特徴とする電池監視装置。
  2.  請求項1に記載の電池監視装置であって、
     前記識別情報設定処理に移行すると、
     前記制御部は、設定信号を先頭の前記監視部へ送信し、
     前記複数の監視部は、それぞれ、前段の前記監視部又は前記制御部から送信される前記設定信号に対応した識別情報を自身の識別情報として割り当てるとともに、前記設定信号を変化させて後段の前記監視部又は前記制御部へ送信する
     ことを特徴とする電池監視装置。
  3.  請求項2に記載の電池監視装置であって、
     前記複数の監視部は、それぞれ、前記設定信号を受信できない場合、異常信号を後段の前記監視部又は前記制御部へ送信するとともに、前段の前記監視部から前記異常信号を受信すると、その異常信号を変化させて後段の前記監視部又は前記制御部へ送信し、
     前記制御部は、最後尾の前記監視部から送信される前記異常信号に応じて、通信異常の発生箇所を特定する
     ことを特徴とする電池監視装置。
  4.  請求項1に記載の電池監視装置であって、
     前記通信異常検知処理に移行すると、
     前記制御部は、検知信号を先頭の前記監視部へ送信し、
     前記複数の監視部は、それぞれ、前段の前記監視部又は前記制御部から送信される前記検知信号を受信すると、前記検知信号を後段の前記監視部又は前記制御部へ送信し、前記検知信号を受信できない場合、異常信号を後段の前記監視部又は前記制御部へ送信し、前段の前記監視部から送信される前記異常信号を受信すると、その異常信号を変化させて後段の前記監視部又は前記制御部へ送信し、
     前記制御部は、最後尾の前記監視部から送信される前記異常信号に応じて、通信異常の発生箇所を特定する
     ことを特徴とする電池監視装置。
  5.  請求項1に記載の電池監視装置であって、
     前記未設定信号は、固定されたDUTY比、周波数、又は単位時間当たりのパルス数の信号である
     ことを特徴とする電池監視装置。
  6.  請求項2に記載の電池監視装置であって、
     前記複数の監視部は、それぞれ、前記設定信号のDUTY比、周波数、又は単位時間当たりのパルス数を変化させて後段の前記監視部又は前記制御部へ送信する
     ことを特徴とする電池監視装置。
  7.  請求項3又は請求項4に記載の電池監視装置であって、
     前記複数の監視部は、それぞれ、前記異常信号のDUTY比、周波数、又は単位時間当たりのパルス数を変化させて後段の前記監視部又は前記制御部へ送信する
     ことを特徴とする電池監視装置。
     
PCT/JP2014/082042 2014-03-25 2014-12-03 電池監視装置 WO2015145877A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112014006504.8T DE112014006504B4 (de) 2014-03-25 2014-12-03 Batterieüberwachungseinrichtung
US15/127,255 US9739838B2 (en) 2014-03-25 2014-12-03 Battery monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014061020A JP6221879B2 (ja) 2014-03-25 2014-03-25 電池監視装置
JP2014-061020 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015145877A1 true WO2015145877A1 (ja) 2015-10-01

Family

ID=54194445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082042 WO2015145877A1 (ja) 2014-03-25 2014-12-03 電池監視装置

Country Status (4)

Country Link
US (1) US9739838B2 (ja)
JP (1) JP6221879B2 (ja)
DE (1) DE112014006504B4 (ja)
WO (1) WO2015145877A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108973704A (zh) * 2017-06-01 2018-12-11 重庆无线绿洲通信技术有限公司 一种车用电池在位检测方法、车用电池及车载主控单元

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235335B (zh) * 2017-02-10 2023-06-16 本田技研工业株式会社 蓄电池管理系统、移动体及蓄电池管理方法
JP6904226B2 (ja) * 2017-11-16 2021-07-14 トヨタ自動車株式会社 電源制御システムおよび方法
JP2024065629A (ja) * 2022-10-31 2024-05-15 株式会社デンソー 識別情報設定装置、電池システム及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225733A (ja) * 1994-02-10 1995-08-22 Canon Inc ユニットの配置情報設定装置
JPH11177593A (ja) * 1997-12-08 1999-07-02 Yazaki Corp アドレス設定方法、及びこのアドレス設定方法が適用される通信システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750318B2 (ja) * 1997-11-14 2006-03-01 日産自動車株式会社 モジュール充放電器
JP3837987B2 (ja) 2000-01-20 2006-10-25 富士電機機器制御株式会社 リング型ネットワークシステム、情報伝送装置、及びそのアドレス設定方法
JP2003009403A (ja) * 2001-06-22 2003-01-10 Osaka Gas Co Ltd 蓄電装置の管理システム
JP4322071B2 (ja) * 2003-09-04 2009-08-26 株式会社 エニイワイヤ 制御・監視信号伝送システム
EP2194677B1 (en) * 2007-09-28 2012-11-14 Nippon Telegraph and Telephone Corporation Network monitoring device, network monitoring method, and network monitoring program
EP2227065B1 (en) * 2009-03-04 2015-02-18 Fujitsu Limited Improvements to short-range wireless networks
US8908677B2 (en) * 2009-06-09 2014-12-09 Telefonaktiebolaget L M Ericsson (Publ) Communications network and a method in a communications network
KR101156342B1 (ko) 2009-08-03 2012-06-13 삼성에스디아이 주식회사 배터리 id 설정 시스템 및 그 구동 방법
JP5466586B2 (ja) * 2009-10-05 2014-04-09 プライムアースEvエナジー株式会社 組電池の管理装置
JP4935893B2 (ja) * 2009-12-24 2012-05-23 株式会社デンソー 電池異常判定装置
US8258747B2 (en) 2010-05-13 2012-09-04 GM Global Technology Operations LLC Method for automatic battery controller identification and cell indexing via a multi-purpose signal line
US8723481B2 (en) * 2010-06-25 2014-05-13 O2Micro, Inc. Battery pack with balancing management
JP6168803B2 (ja) * 2012-03-30 2017-07-26 ラピスセミコンダクタ株式会社 電池監視システム及び半導体装置
JP5693547B2 (ja) * 2012-11-20 2015-04-01 三菱重工業株式会社 電池管理装置およびその制御方法ならびにプログラム、それを備えた電池監視システム
JP6262475B2 (ja) * 2013-09-10 2018-01-17 ローム株式会社 電圧検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225733A (ja) * 1994-02-10 1995-08-22 Canon Inc ユニットの配置情報設定装置
JPH11177593A (ja) * 1997-12-08 1999-07-02 Yazaki Corp アドレス設定方法、及びこのアドレス設定方法が適用される通信システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108973704A (zh) * 2017-06-01 2018-12-11 重庆无线绿洲通信技术有限公司 一种车用电池在位检测方法、车用电池及车载主控单元

Also Published As

Publication number Publication date
US20170108555A1 (en) 2017-04-20
JP2015186050A (ja) 2015-10-22
DE112014006504B4 (de) 2018-02-15
US9739838B2 (en) 2017-08-22
DE112014006504T5 (de) 2016-12-15
JP6221879B2 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6186813B2 (ja) 電池監視システム及び識別情報設定方法
JP5713094B2 (ja) 電池監視装置
WO2015156210A1 (ja) 電池監視装置
KR101551062B1 (ko) 배터리 셀 불량 진단 장치 및 방법
WO2015145877A1 (ja) 電池監視装置
WO2015156202A1 (ja) 電池監視装置
US9804248B2 (en) Battery monitoring device
US9927493B2 (en) Battery monitor system
JP2010130738A (ja) 二次電池パック
JP6152814B2 (ja) 電池監視装置
TWI610514B (zh) 儲能系統及電池平衡及修復方法
JP7438031B2 (ja) 車載用電池制御装置
JP2014226020A (ja) 電池監視装置
JP6265024B2 (ja) 電池監視装置
JP6229567B2 (ja) 電池監視装置
JP6149784B2 (ja) 電池監視装置
JP2014023362A (ja) 制御装置、被制御装置、制御方法及び制御プログラム
WO2015145878A1 (ja) 電池監視装置
TWM550930U (zh) 儲能系統
JP6323162B2 (ja) 電池監視装置
JP2015184178A (ja) 電池監視装置
WO2015060087A1 (ja) 電池パックおよび電池パックの制御方法
WO2017163358A1 (ja) 蓄電池装置及びその制御方法
JP2016049001A (ja) 電源装置及び電力供給方法
JP2015197999A (ja) 電池監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15127255

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006504

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886679

Country of ref document: EP

Kind code of ref document: A1