WO2015145878A1 - 電池監視装置 - Google Patents

電池監視装置 Download PDF

Info

Publication number
WO2015145878A1
WO2015145878A1 PCT/JP2014/082044 JP2014082044W WO2015145878A1 WO 2015145878 A1 WO2015145878 A1 WO 2015145878A1 JP 2014082044 W JP2014082044 W JP 2014082044W WO 2015145878 A1 WO2015145878 A1 WO 2015145878A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification information
monitoring
unit
information
control unit
Prior art date
Application number
PCT/JP2014/082044
Other languages
English (en)
French (fr)
Inventor
隆介 長谷
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2015145878A1 publication Critical patent/WO2015145878A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a technique for monitoring the state of each of a plurality of batteries.
  • a battery pack in which a plurality of batteries are connected in parallel is used as a battery mounted on a vehicle such as an electric forklift, a hybrid vehicle, or an electric vehicle in order to stably supply a large amount of power to a load.
  • a battery pack provided with a higher-level control unit that permits or prohibits charging / discharging of each battery according to the monitoring result of each monitoring unit that monitors each battery Is used.
  • identification information that functions as address information is transmitted from each monitoring unit for each battery that monitors the state of each battery to one control unit to transmit the monitoring result for each battery. It is necessary to allocate and recognize each monitoring unit.
  • Patent Document 1 a technique for automatically assigning identification information in the order of arrangement of each unit is known, for example, from Patent Document 1.
  • the n-th unit generates its own identification information by adding a predetermined value (for example, 1) to the n ⁇ 1-th identification information (numerical value) notified from the n ⁇ 1-th unit.
  • a technique is described in which identification information is assigned by notifying the (n + 1) th unit of the identification information.
  • Patent Document 2 a technique for automatically assigning a station address for recognizing each communication station connected to a ring network by using a transmission frame transmitted through the network is known from Patent Document 2, for example. .
  • each communication station sequentially adds its own station configuration information including station number setting information indicating whether a station address has been set or not set to a transmission frame and transmits it to a downstream communication station.
  • each monitoring is performed at the time of manufacturing a battery pack including a battery monitored by the battery monitoring device, at the time of battery replacement, or other factors.
  • An identification information recognition process is performed in which each piece of identification information is assigned to a unit for recognition.
  • identification information recognition processing is inadvertently performed in a battery monitoring device including each monitoring unit that monitors the state of each of a plurality of batteries and a control unit that communicates with each of the monitoring units.
  • the purpose is to reduce the frequency of malfunctions caused by the identification information recognition process.
  • the battery monitoring apparatus includes a plurality of monitoring units that monitor the state of the battery, and the plurality of monitoring units that recognize and determine their own identification information and use the identification information to identify the plurality of monitoring units.
  • a control unit that communicates with each other, wherein each of the plurality of monitoring units and the control unit are connected in a ring shape in series with a communication line, and each of the plurality of monitoring units is a preceding stage received from the communication line. It is determined based on information included in a signal from the monitoring unit or the control unit and indicating whether the identification information has been determined or not determined and information indicating whether the identification information of itself has been determined or not determined.
  • the control unit determines whether or not all the identification information has been confirmed in each monitoring unit. It is possible to prohibit the process of recognizing the identification information from the part, and to prevent the identification information recognition process from being performed carelessly.
  • the control unit prohibits the process of causing each monitoring unit to recognize the identification information, and the identification information recognition process is performed carelessly. This can be suppressed and the frequency of malfunctions due to the identification information recognition process can be reduced.
  • FIG. 1 shows the structural example of the battery monitoring apparatus of this embodiment. It is a flowchart of the example of operation
  • FIG. 1 shows a configuration example of the battery monitoring device of the present embodiment.
  • the battery monitoring device 1 includes five battery modules 2 (2-1 to 2-5), one control unit (battery ECU (Electronic Control Unit)) 3, a main relay 4, Is provided.
  • the battery monitoring device 1 is mounted on a vehicle such as an electric forklift, a hybrid vehicle, or an electric vehicle, for example, and these vehicles are driven by the battery 5 of the battery module 2 (2-1 to 2-5).
  • the number of battery modules 2 is not limited to five, and an arbitrary number of battery modules 2 are appropriately provided according to a required power supply amount.
  • Each battery module 2 (2-1 to 2-5) includes a battery 5, a relay 6, a voltage detection unit 7, a current detection unit 8, a temperature detection unit 9, and a monitoring unit (monitoring ECU) 10 respectively. (10-1 to 10-5).
  • the battery modules 2 (2-1 to 2-5) are connected in parallel to each other and supply power to the load 11 in the vehicle.
  • Each battery 5 is a rechargeable battery, and for example, a lithium ion secondary battery or a nickel metal hydride battery can be used. Each battery 5 may be configured by a combination of a plurality of batteries connected in series.
  • Each relay 6 is provided in each power supply path of each battery 5, each relay 6 is turned on, and the main relay 4 provided in one power supply path in which each power supply path of each battery 5 is connected in parallel. When is turned on, power can be supplied from each battery 5 to the load 11.
  • Each voltage detection unit 7 includes a sensor that detects the voltage of each battery 5, and each current detection unit 8 includes a sensor that detects a charging current flowing to each battery 5 and a discharging current flowing from each battery 5.
  • Each temperature detection unit 9 includes a sensor that detects the ambient temperature of each battery 5.
  • Each monitoring unit 10 (10-1 to 10-5) includes a relay control unit 12, a storage unit 13, an identification information setting unit 14, and a communication unit 15.
  • the relay control unit 12, the identification information setting unit 14, and the communication unit 15 are, for example, a CPU (Central Processing Unit), a multi-core CPU, a programmable device (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device)), or the like.
  • a program configured and stored in the storage unit 13 is read and the procedure of the program is executed.
  • Each relay control unit 12 controls on / off of each relay 6.
  • Each storage unit 13 is, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory), and stores various information and various programs.
  • the identification information setting unit 14 sets its own identification information and causes the storage unit 13 to store the identification information. For example, when five pieces of identification information “101” to “105” are set for the monitoring units 10-1 to 10-5, the identification information setting unit 14 of the first monitoring unit 10-1 sets “101”. Is set as its own identification information and stored in the storage unit 13.
  • the identification information setting unit 14 of the second monitoring unit 10-2 sets “102” as its own identification information and stores it in the storage unit 13.
  • the identification information setting unit 14 of the third monitoring unit 10-3 sets “103” as its own identification information and stores it in the storage unit 13.
  • the identification information setting unit 14 of the fourth monitoring unit 10-4 sets “104” as its own identification information and stores it in the storage unit 13.
  • the identification information setting unit 14 of the last monitoring unit 10-5 sets “105” as its own identification information and stores it in the storage unit 13.
  • the communication unit 15 of each of the monitoring units 10-1 to 10-5 is connected in series with the communication unit 15 of the other monitoring units 10-1 to 10-5 and the communication unit 19 of the control unit 3 in a ring shape via a communication line ( Daisy chain) connected.
  • Each communication unit 15 receives a signal transmitted from the upstream monitoring unit 10 or the control unit 3, and transmits a signal to the subsequent monitoring unit 10 or the control unit 3.
  • the control unit 3 includes a relay control unit 16 that controls on / off of the main relay 4, a storage unit 17, a communication abnormality location specifying unit 18, and a communication unit 19 that communicates with the monitoring units 10-1 to 10-5.
  • a relay control unit 16 that controls on / off of the main relay 4
  • a storage unit 17 that stores information
  • a communication abnormality location specifying unit 18 that specifies the communication unit 19 that communicates with the monitoring units 10-1 to 10-5.
  • the storage unit 17 is configured using a nonvolatile memory (for example, ROM, flash memory, magnetic storage medium (hard disk, floppy disk, etc.), optical disk, etc.), and stores various information and various programs.
  • a nonvolatile memory for example, ROM, flash memory, magnetic storage medium (hard disk, floppy disk, etc.), optical disk, etc.
  • the relay control unit 16, the communication abnormality location specifying unit 18, and the communication unit 19 are configured by, for example, a CPU, a multi-core CPU, a programmable device, and the like. To do.
  • the control unit 3 receives the identification information transmitted from the monitoring units 10-1 to 10-5 by the communication unit 19, and stores the identification information in the storage unit 17. In addition, the control unit 3 uses the identification information stored in the storage unit 17 to indicate the state of the battery 5 (for example, the voltage, current, and temperature of the battery 5) transmitted from each of the monitoring units 10-1 to 10-5. Etc.) is received by the communication unit 19.
  • the control unit 3 determines that the state of the battery 5 has changed to a predetermined state based on the received information (for example, the voltage, current, temperature, or the like of the battery 5 has exceeded a threshold value)
  • the battery 5 Is sent to the host control unit that controls the traveling of the vehicle for a certain period of time and an instruction to shift to the save traveling mode (for example, an operation mode in which the vehicle is gradually decelerated and then stopped) is sent.
  • the relay control unit 16 executes a process of turning off the main relay 4. Further, even when it is determined that a communication abnormality has occurred, the control unit 3 shifts to the save travel mode.
  • a plurality of monitoring units 10-1 to 10-5 and one control unit 3 are provided. Are connected in series in a ring shape, and each of the adjacent monitoring units 10-1 to 10-5 and the control unit 3 are connected by each communication line, and each of the adjacent monitoring units 10-1 to 10-5.
  • Each of the monitoring units 10-1 to 10-5 receives the identification information by sequentially changing the signal of the amount of electricity corresponding to the identification information between the control unit 3 and transmitting it to the subsequent stage. Assign and recognize. Details of this operation will be described later.
  • FIG. 2 shows a flow of an operation example of the control unit 3 in the first embodiment.
  • the control unit 3 is turned on by operating the switch or service tool by the manufacturer of the battery monitoring device 1 or a service person replacing the battery module 2, or whether or not the identification information is confirmed.
  • the control unit 3 turns on the power to all the monitoring units 10-1 to 10-5, and the first monitoring unit monitoring unit 10-
  • the confirmation signal Sd is transmitted to 1 (S201).
  • the control unit 3 confirms the identification information in all the monitoring units 10-1 to 10-5. (S203), the recognition processing of the identification information for all the monitoring units 10-1 to 10-5 is prohibited (S204).
  • control unit 3 When the control unit 3 receives the non-deterministic signal Sn transmitted from the last monitoring unit 10-5 (S202: NO, S205: YES), the control unit 3 responds to the received non-deterministic signal Sn.
  • the identification information recognition process for 10-1 to 10-5 is performed (S206).
  • control unit 3 does not receive the confirmation signal Sd or the non-confirmation signal Sn from the last monitoring unit 10 even after a predetermined time has passed since the confirmation signal Sd was transmitted to the first monitoring unit 10-1.
  • S202: NO, S205: NO, S207: YES) it is determined that a communication abnormality has occurred between the last monitoring unit 10-5 and the control unit 3 (S208).
  • FIG. 3 shows a flow of an operation example of each of the monitoring units 10-1 to 10-5 in the first embodiment.
  • each of the monitoring units 10-1 to 10-5 receives a confirmation signal Sd transmitted from the preceding monitoring unit 10 or the control unit 3 (S301: YES), it determines whether or not its own identification information has been confirmed. If it is determined (S302) and has been confirmed (S302: YES), a confirmation signal Sd is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage (S303).
  • the non-deterministic signal Sn is transmitted to the subsequent monitoring unit 10 or the control unit 3 (S305).
  • each of the monitoring units 10-1 to 10-5 receives the non-deterministic signal Sn transmitted from the preceding monitoring unit 10 (S301: NO, S304: YES)
  • each of the monitoring units 10-1 to 10-5 receives the non-deterministic signal Sn. Or it transmits to the control part 3 (S305).
  • Each of the monitoring units 10-1 to 10-5 does not receive the confirmation signal Sd from the preceding monitoring unit 10 or the control unit 3 even after a predetermined time has elapsed since the power source of the monitoring unit 10-1 to 10-5 is turned on.
  • the non-deterministic signal Sn is not received from the preceding monitoring unit 10 (S301: NO, S304: NO, S306: YES)
  • it is determined that a communication abnormality has occurred (S307).
  • FIG. 4 shows a flow of an operation example of the control unit 3 in the second embodiment.
  • the control unit 3 turns on the power to all the monitoring units 10-1 to 10-5, and the first monitoring unit monitoring unit 10- A start signal Ss is transmitted to 1 (S401).
  • control unit 3 upon receiving the confirmation signal Sd transmitted from the last monitoring unit 10-5 (S402: YES), the control unit 3 confirms the identification information in all the monitoring units 10-1 to 10-5. (S403) and prohibits recognition processing of identification information for all the monitoring units 10-1 to 10-5 (S404).
  • the control unit 3 receives the mixed signal Sm transmitted from the last monitoring unit 10-5 (S402: NO, S405: YES), the identification information of some of the monitoring units 10 is indefinite. The determination is made (S406), and the identification information is once reset for all the monitoring units 10-1 to 10-5 (S407). Thereafter, a process for assigning identification information to all the monitoring units 10-1 to 10-5 and recognizing them is performed (S408).
  • control unit 3 When the control unit 3 receives the unconfirmed signal Sy transmitted from the last monitoring unit 10-5 (S402: NO, S405: NO, S409: YES), all the monitoring units 10-1 to 10- 5, it is determined that the identification information is unconfirmed (S 410), and a process of assigning identification information to all the monitoring units 10-1 to 10-5 and recognizing them is performed (S 408).
  • control unit 3 sends the confirmation signal Sd, the mixed signal Sm, or the unconfirmed signal Sy from the last monitoring unit 10 even after a predetermined time has elapsed after transmitting the start signal Ss to the first monitoring unit 10-1. If not received (S402: NO, S405: NO, S409: NO, S411: YES), it is determined that a communication abnormality has occurred between the last monitoring unit 10-5 and the control unit 3 (S412). .
  • FIG. 5 shows a flow of an operation example of each of the monitoring units 10-1 to 10-5 in the second embodiment.
  • each of the monitoring units 10-1 to 10-5 receives the start signal Ss transmitted from the preceding monitoring unit 10 or the control unit 3 (S501: YES), whether or not its own identification information has been confirmed. If it is determined (S502) and confirmed (S502: YES), a confirmation signal Sd is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage (S503), and its own identification information is not confirmed (S502: NO) ), The indeterminate signal Sy is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage (S506).
  • each of the monitoring units 10-1 to 10-5 receives the confirmation signal Sd transmitted from the preceding monitoring unit 10 (S501: NO, S504: YES), whether or not its own identification information has been confirmed. If it is determined (S505) and confirmed (S505: YES), a confirmation signal Sd is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage (S503), and its identification information is not confirmed (S505: NO) ), The mixed signal Sm is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage (S510).
  • each of the monitoring units 10-1 to 10-5 receives the unconfirmed signal Sy transmitted from the preceding monitoring unit 10 (S501: NO, S504: NO, S507: YES), its own identification information is confirmed. If it is determined (S508: YES), the mixed signal Sm is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage (S510), and its own identification information is not determined. In the case (S508: NO), the unconfirmed signal Sy is transmitted to the subsequent monitoring unit 10 or the control unit 3 (S506).
  • each of the monitoring units 10-1 to 10-5 receives the mixed signal Sm transmitted from the preceding monitoring unit 10 (S501: NO, S504: NO, S507: NO, S509: YES), the mixed signal Sm Is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage (S510).
  • each of the monitoring units 10-1 to 10-5 does not receive the start signal Ss from the control unit 3 in the previous stage even after a predetermined time has elapsed since the power supply of the monitoring unit 10-1 to 10-5 is turned on, or the monitoring in the previous stage
  • the confirmation signal Sd, the unconfirmed signal Sy, or the mixed signal Sm is not received from the unit 103 (S501: NO, S504: NO, S507: NO, S509: No, S511: YES)
  • S512 determines a communication abnormality has occurred.
  • identification information is assigned to each of the monitoring units 10-1 to 10-5, and it is confirmed whether or not the identification information has already been confirmed, and the identification information has been confirmed. If the identification information recognition process is prohibited, the control unit 3 and the monitoring units 10-1 to 10-5 are prohibited from executing the identification information recognition process. In addition, it is possible to reduce the frequency of malfunctions in which duplicated identification information or incorrect identification information is assigned to the monitoring unit 10, and to improve the reliability of the battery monitoring device 1.
  • each of the plurality of monitoring units 10-1 to 10-5 determines whether the identification information included in the signal from each previous monitoring unit 10 or control unit 3 received from the communication line has been determined or not determined. And a signal including information on the confirmed state of the identification information determined based on information indicating whether the identification information of itself is confirmed or not confirmed to each monitoring unit 10 or control unit 3 in the subsequent stage.
  • the control unit 3 recognizes the identification information in each of the monitoring units 10-1 to 10-5 based on the information on the confirmation state of the identification information included in the signal transmitted from the last monitoring unit 10-5. It is determined whether or not to execute the processing.
  • the information indicating whether or not the identification information is unconfirmed includes whether the identification information in the preceding monitoring unit 10 is all unconfirmed, or whether the identification information in the preceding monitoring unit 10 is confirmed or not confirmed. It is information indicating whether they are mixed.
  • each of the plurality of monitoring units 10-1 to 10-5 when the information included in the signal received from the previous monitoring unit 10 is information indicating that the identification information has been confirmed, When the identification information is confirmed, the information including the information of the confirmed state indicating that the identification information is confirmed is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage, and the identification information is mixed when the identification information is not confirmed. Then, a signal including information on the confirmed state indicating that is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage.
  • Each of the plurality of monitoring units 10-1 to 10-5 has its own information when the information included in the signal received from the preceding monitoring unit 10 is information indicating that the identification information is indeterminate.
  • a signal including information on the confirmed state indicating that the identification information is mixed is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage, and when the identification information of the identification information is not confirmed, the identification is performed.
  • a signal including information on a confirmed state indicating that the information is unconfirmed is transmitted to the subsequent monitoring unit 10 or the control unit 3.
  • each of the plurality of monitoring units 10-1 to 10-5 has the identification information included when the information included in the signal received from the preceding monitoring unit 10 is information indicating that the identification information is mixed.
  • a signal including information on a definite state indicating that they are mixed is transmitted to the monitoring unit 10 or the control unit 3 in the subsequent stage.
  • control unit 3 can determine whether the monitoring unit 10 whose identification information is undetermined is all or a part. As a result, when the identification information of all the monitoring units 10 is not set, the operation for resetting the identification information can be omitted.
  • This operation example is an operation example in which identification information is assigned to each of the monitoring units 10-1 to 10-5 so as to be recognized, and the number of each monitoring unit 10 and an abnormal part of the communication line can be specified.
  • FIG. 6 shows a flow showing an operation example of identification information recognition processing in the control unit 3.
  • the control unit 3 transmits a setting signal S1 (first setting signal) for the identification information recognition process to the head monitoring unit 10-1 (S601).
  • control unit 3 when the control unit 3 receives the setting signal S1 transmitted from the last monitoring unit 10-5 (S602: YES), the control unit 3 stores confirmed information indicating that the identification information is confirmed in the storage unit 17. (S603). For example, the control unit 3 rewrites the identification information confirmation determination flag as the confirmation information stored in the storage unit 17 from off to on.
  • control unit 3 stores the number of monitoring units 10 corresponding to the received setting signal S1 in the storage unit 17 (S604), and stores the identification information transmitted from the monitoring units 10-1 to 10-5 in the storage unit 17 (S605).
  • control unit 3 When the control unit 3 receives the setting signal S2 (second setting signal) transmitted from the last monitoring unit 10-5 and indicating that a communication abnormality has occurred (S602: NO, S606: YES) Then, the occurrence location of the communication abnormality is specified according to the received setting signal S2 (S607).
  • S2 second setting signal
  • control unit 3 does not receive the setting signal S1 or the setting signal S2 from the last monitoring unit 10 even after a predetermined time has elapsed since the setting signal S1 was transmitted to the first monitoring unit 10-1 (S606). : NO, S608: YES), it is determined that a communication error has occurred between the last monitoring unit 10-5 and the control unit 3 (S609).
  • FIG. 7 shows a flow of an operation example of identification information setting processing in each of the monitoring units 10-1 to 10-5.
  • the monitoring units 10-1 to 10-5 each receive the setting signal S2 transmitted from the preceding monitoring unit 10 (S701: NO, S705: YES), the monitoring units 10-1 to 10-5 change the received setting signal S2.
  • the data is transmitted to the subsequent monitoring unit 10 or the control unit 3 (S706).
  • Each of the monitoring units 10-1 to 10-5 does not receive the setting signal S1 from the preceding monitoring unit 10 or the control unit 3 even after a predetermined time has elapsed from the start of the identification information recognition process, or When the setting signal S2 is not received from the monitoring unit 10 (S705: NO, S707: YES), the predetermined setting signal S2 is transmitted to the subsequent monitoring unit 10 or the control unit 3 (S708).
  • the correspondence information between the duty ratio and the setting signal shown in FIG. 8 and the correspondence information between the duty ratio and the identification information shown in FIG. 9 are stored in the storage units 13 of the monitoring units 10-1 to 10-5, respectively. It is assumed that Also, correspondence information between the duty ratio and the setting signal shown in FIG. 8, correspondence information between the duty ratio and the number of monitoring parts shown in FIG. 10, and correspondence information between the duty ratio and the location where the communication abnormality occurs as shown in FIG. It is assumed that it is stored in the storage unit 17 of the control unit 3. Further, when each of the monitoring units 10-1 to 10-5 receives the rectangular wave corresponding to the setting signal S1 or the setting signal S2, the monitoring unit 10 or the control unit in the subsequent stage changes the duty ratio of the rectangular wave by + 4%. It is assumed that it is transmitted to part 3.
  • the control unit 3 transmits a rectangular wave having a duty ratio of 4% to the head monitoring unit 10-1 as a predetermined setting signal S1.
  • the monitoring unit 10-1 determines that the received rectangular wave having a duty ratio of 4% corresponds to the setting signal S1 with reference to the information illustrated in FIG. 8, and refers to the information illustrated in FIG. “101” corresponding to the ratio of 4% is assigned to its own identification information and determined, and the duty ratio of the received rectangular wave is changed by + 4%, and the rectangular wave with the duty ratio of 8% is sent to the monitoring unit 10-2 in the subsequent stage. Send.
  • the monitoring unit 10-2 refers to the information shown in FIG. 8, determines that the received rectangular wave with a duty ratio of 8% corresponds to the setting signal S1, and refers to the information shown in FIG. “102” corresponding to the ratio of 8% is assigned to its own identification information and determined, and the duty ratio of the received rectangular wave is changed by + 4%, and the rectangular wave with a duty ratio of 12% is sent to the monitoring unit 10-3 in the subsequent stage. Send.
  • the monitoring unit 10-3 refers to the information illustrated in FIG. 8 and determines that the received rectangular wave having a duty ratio of 12% corresponds to the setting signal S1, and refers to the information illustrated in FIG. “103” corresponding to the ratio of 12% is assigned to its own identification information and determined, and the duty ratio of the received rectangular wave is changed by + 4%, and the rectangular wave with the duty ratio of 16% is sent to the monitoring unit 10-4 in the subsequent stage. Send.
  • the monitoring unit 10-4 determines that the received rectangular wave with a duty ratio of 16% corresponds to the setting signal S1 with reference to the information illustrated in FIG. 8, and refers to the information illustrated in FIG. “104” corresponding to the ratio of 16% is assigned to its own identification information and determined, and the duty ratio of the received rectangular wave is changed by + 4%, and the rectangular wave with a duty ratio of 20% is sent to the monitoring unit 10-5 in the subsequent stage. Send.
  • the monitoring unit 10-5 determines that the received rectangular wave having a duty ratio of 20% corresponds to the setting signal S1 with reference to the information illustrated in FIG. 8, and refers to the information illustrated in FIG. “105” corresponding to the ratio of 20% is assigned to its own identification information to be confirmed, and the duty ratio of the received rectangular wave is changed by + 4% and a rectangular wave with a duty ratio of 24% is transmitted to the control unit 3.
  • the control unit 3 refers to the information shown in FIG. 8, determines that the received rectangular wave with a duty ratio of 24% corresponds to the setting signal S ⁇ b> 1, and the identification information as the determination information stored in the storage unit 17.
  • the confirmation determination flag is rewritten from off to on, and “5” corresponding to the duty ratio of 24% is stored in the storage unit 17 as the number of monitoring units 10 with reference to the information shown in FIG.
  • the control unit 3 stores the identification information “101” to “105” transmitted from the monitoring units 10-1 to 10-5 in the storage unit 17.
  • control unit 3 sets a predetermined setting signal.
  • S1 a rectangular wave with a duty ratio of 4% is transmitted to the head monitoring unit 10-1.
  • the monitoring unit 10-1 determines that the received rectangular wave having a duty ratio of 4% corresponds to the setting signal S1 with reference to the information illustrated in FIG. 8, and refers to the information illustrated in FIG. “101” corresponding to the ratio 4% is determined as its own identification information, and the duty ratio of the received rectangular wave is changed by + 4%, and a rectangular wave with a duty ratio of 8% is transmitted to the subsequent monitoring unit 10-2. .
  • the monitoring unit 10-2 refers to the information shown in FIG. 8, determines that the received rectangular wave with a duty ratio of 8% corresponds to the setting signal S1, and refers to the information shown in FIG. “102” corresponding to the ratio 8% is determined as its own identification information, and the duty ratio of the received rectangular wave is changed by + 4%, and the rectangular wave with a duty ratio of 12% is transmitted to the monitoring unit 10-3 at the subsequent stage. .
  • the monitoring unit 10-3 does not receive a rectangular wave corresponding to the setting signal S1 or the setting signal S2 until a predetermined time has elapsed since the power source of the monitoring unit 10-3 is turned on (the monitoring unit 10-2).
  • the voltage level of the communication line between the monitoring unit 10-3 and the monitoring unit 10-3 is low level or high level
  • a rectangular wave with a duty ratio of 54% corresponding to a predetermined setting signal S2 is output to the subsequent monitoring unit 10 -4.
  • the monitoring unit 10-4 determines that the received rectangular wave with a duty ratio of 54% corresponds to the setting signal S2, and changes the duty ratio of the received rectangular wave by + 4%. Then, a rectangular wave with a duty ratio of 58% is transmitted to the monitoring unit 10-5 at the subsequent stage.
  • the monitoring unit 10-5 determines that the received rectangular wave with a duty ratio of 58% corresponds to the setting signal S2, and changes the duty ratio of the received rectangular wave by + 4%. Then, a rectangular wave having a duty ratio of 62% is transmitted to the control unit 3.
  • the control unit 3 determines that the rectangular wave with a duty ratio of 62% transmitted from the last monitoring unit 10-5 corresponds to the setting signal S2, and shows in FIG. With reference to the information, it is determined that the communication abnormality occurrence location corresponding to the duty ratio of 62% of the received rectangular wave is “between the monitoring unit 10-2 and the monitoring unit 10-3”.
  • control part 3 is good also as a structure which alert
  • the amount of change in the duty ratio of the rectangular wave that is changed by the monitoring units 10-1 to 10-5 is not limited to 4%, and may be any amount of change that identifies the change in the duty ratio. Further, the duty ratio of the rectangular wave corresponding to the setting signals S1 and S2 only needs to be different from each other.
  • the setting signal S2 is changed in the monitoring unit 10 located downstream from the location where the communication abnormality occurs, and the communication error is detected by the setting signal S2 transmitted from the last monitoring unit 10-5 to the control unit 3. Since the occurrence location is specified, the communication abnormality detection process can be performed even when the control unit 3 and the monitoring units 10-1 to 10-5 are connected in series in a ring shape. Further, since the communication abnormality detection process and the identification information setting process are performed at the same time, the identification information setting process can be performed quickly when no communication abnormality occurs.
  • rectangular waves having different duty ratios are used as the deterministic signal Sd, the non-deterministic signal Sn, the undetermined signal Sy, the mixed signal Sm, the first setting signal S1, and the second setting signal S2.
  • processing includes the frequency of an oscillation signal including a rectangular wave, the number of pulses per unit time, or It can also be configured to determine the amount of electricity such as the voltage of the communication line.
  • control part 3 memorize
  • the number of battery modules corresponding to the setting signal S1 is stored in the memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Small-Scale Networks (AREA)

Abstract

 複数の電池のそれぞれの状態を監視する各監視部と各監視部と通信する制御部3とを備えた電池監視装置において、識別情報認識処理が不用意に実施されることを抑制する。 複数の監視部10は電池の状態を監視し、制御部3は各監視部10に自身の識別情報を認識させて確定させるとともに、識別情報を用いて各監視部10と通信を行う。各監視部10と制御部3とは直列に環状に通信線で接続され、各監視部10は通信線から受信される前段の監視部10からの信号に含まれる、識別情報が確定済みか非確定かを示す情報と、自身の前記識別情報が確定済みか非確定かを示す情報とに基づいて決定される識別情報の確定状態の情報を含む信号を、後段の監視部10又は制御部3へ送信し、制御部3は、最後尾の監視部10から送信される信号に含まれる情報に基づいて、複数の監視部10に識別情報を認識させる処理を実施させるか否かを決定する。

Description

電池監視装置
 本発明は、複数の電池のそれぞれの状態を監視する技術に関する。
 近年では、電動フォークリフト、ハイブリッド車、又は電気自動車などの車両へ実装されるバッテリとして、負荷へ大きな電力を安定して供給するために、複数の電池が並列接続された電池パックが使用される。
 また、それら各電池のそれぞれの状態を監視する電池監視装置として、各電池を監視する各監視部の監視結果により、各電池の充放電を許可し又は禁止する上位の制御部を備えた電池パックが使用される。このような電池パックの電池監視装置において、各電池のそれぞれの状態を監視する電池毎の各監視部から一つの制御部へ電池毎の監視結果を伝えるために、アドレス情報として機能する識別情報を各監視部に割り当てて認識させる必要がある。
 複数のユニットが相互に接続された装置において、識別情報を各ユニットの配列順に自動的に割り当てる技術は、例えば特許文献1等により知られている。該特許文献1には、n番目のユニットにおいて、n-1番目のユニットから通知されたn-1番目の識別情報(数値)に所定値(例えば1)を加算して自身の識別情報を生成して割り当て、該識別情報をn+1番目のユニットに通知することにより、識別情報の割り当て処理を行う技術が記載されている。
 また、リング型ネットワークに接続された各通信局を認識するための局アドレスを、該ネットワークで伝送される伝送フレームを利用して自動的に割り当てる技術が、例えば特許文献2等により知られている。該特許文献2には、局アドレスが設定済みか未設定を示す局番設定情報を含む自局構成情報を、各通信局が伝送フレームに順次付加して下流の通信局へ送信し、マスタ局Aは、一巡した伝送フレームから、局アドレスが未設定の通信局を判別し、局アドレスが未設定の通信局のみに局アドレスを設定する技術が開示されている。
特開平7-225733号公報 特開2001-203733号公報
 前述の複数の監視部と一つの制御部とを備えた電池監視装置において、該電池監視装置で監視される電池を含む電池パックの製造時や電池の交換時やその他の要因等で、各監視部にそれぞれの識別情報を割り当てて認識させる識別情報認識処理が実施される。
 該識別情報認識処理により識別情報が一旦確定したにも拘わらず、識別情報認識処理が不用意に実施されると、各監視部と制御部とを接続する通信線に重畳されるノイズ等によって、監視部に重複した識別情報や誤った識別情報が割り当てられてしまう誤動作発生頻度が増えることとなる。
 そこで、本発明は、複数の電池のそれぞれの状態を監視する各監視部とそれら各監視部と通信する制御部とを備えた電池監視装置において、識別情報認識処理が不用意に実施されることを抑制し、識別情報認識処理による誤動作発生頻度を低減させることを目的とする。
 本実施形態の電池監視装置は、電池の状態を監視する複数の監視部と、前記複数の監視部に自身の識別情報を認識させて確定させるとともに、前記識別情報を用いて前記複数の監視部と通信を行う制御部と、を備え、前記複数の各監視部と前記制御部とが直列に環状に通信線で接続され、前記複数の各監視部は、前記通信線から受信される前段の前記監視部又は前記制御部からの信号に含まれる、前記識別情報が確定済みか非確定かを示す情報と、自身の前記識別情報が確定済みか非確定かを示す情報とに基づいて決定される識別情報の確定状態の情報を含む信号を、後段の前記監視部又は前記制御部へ送信し、前記制御部は、最後尾の前記監視部から送信される前記信号に含まれる識別情報の確定状態の情報に基づいて、前記複数の監視部に前記識別情報を認識させる処理を実施させるか否かを決定することを特徴とする。
 これにより、各監視部における識別情報の確定状態の情報を基に、制御部では、各監視部で識別情報が全て確定済みか否かを判定し、識別情報が全て確定済みの場合、各監視部に識別情報を認識させる処理を禁止させることができ、識別情報認識処理が不用意に実施されることを抑制することができる。
 本発明によれば、各監視部における識別情報の確定状態の情報を基に、制御部では、各監視部に識別情報を認識させる処理を禁止し、識別情報認識処理が不用意に実施されることを抑制し、識別情報認識処理による誤動作発生頻度を低減させることができる。
本実施形態の電池監視装置の構成例を示す図である。 第1の実施形態における制御部の動作例のフローチャートである。 第1の実施形態における監視部の動作例のフローチャートである。 第2の実施形態における制御部の動作例のフローチャートである。 第2の実施形態における監視部の動作例のフローチャートである。 制御部における識別情報認識処理の動作例のフローチャートである。 監視部における識別情報認識処理の動作例のフローチャートである。 デューティ比と設定信号との対応の一例を示す図である。 デューティ比と識別情報との対応の一例を示す図である。 デューティ比と監視部の数との対応の一例を示す図である。 デューティ比と通信異常の発生個所との対応の一例を示す図である。
 図1は、本実施形態の電池監視装置の構成例を示す。図1に示す構成例において、電池監視装置1は、5つの電池モジュール2(2-1~2-5)と、1つの制御部(電池ECU(Electronic Control Unit))3と、メインリレー4とを備える。電池監視装置1は、例えば、電動フォークリフト、ハイブリッド車、又は電気自動車などの車両に搭載され、それらの車両は、電池モジュール2(2-1~2-5)の電池5によって駆動される。なお、電池モジュール2の数は5つに限定されず、要求される給電量に応じて適宜任意の数の電池モジュール2が備えられる。
 各電池モジュール2(2-1~2-5)は、それぞれ、電池5と、リレー6と、電圧検出部7と、電流検出部8と、温度検出部9と、監視部(監視ECU)10(10-1~10-5)とを備える。各電池モジュール2(2-1~2-5)は、互いに並列接続され、車両内の負荷11に電力を供給する。
 各電池5は、充電可能な電池であり、例えば、リチウムイオン二次電池やニッケル水素電池などを用いることができる。なお、各電池5は、直列接続された複数の電池の組み合わせにより構成されたものでもよい。
 各リレー6は、各電池5の各給電路に設けられ、各リレー6がオンとなり、かつ、各電池5の各給電路が並列に接続された1本の給電路に設けられたメインリレー4がオンとなったとき、各電池5から負荷11への電力供給が可能となる。
 各電圧検出部7は、各電池5の電圧を検出するセンサを備え、各電流検出部8は、各電池5へ流れる充電電流や各電池5から流れる放電電流を検出するセンサを備える。各温度検出部9は、各電池5の周辺温度を検出するセンサを備える。
 各監視部10(10-1~10-5)は、それぞれ、リレー制御部12と、記憶部13と、識別情報設定部14と、通信部15とを備える。リレー制御部12、識別情報設定部14、及び通信部15は、例えば、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)、PLD(Programmable Logic Device))等により構成され、記憶部13に記憶されているプログラムを読み出して該プログラムの手順を実行する。
 各リレー制御部12は、各リレー6のオン、オフを制御する。各記憶部13は、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)などであり、各種情報や各種プログラムを記憶する。
 識別情報設定部14は、自身の識別情報を設定し、その識別情報を記憶部13に記憶させる。例えば、監視部10-1~10-5に対して、「101」~「105」の5つの識別情報を設定する場合、先頭の監視部10-1の識別情報設定部14は、「101」を自身の識別情報として設定し記憶部13に記憶させる。
 2番目の監視部10-2の識別情報設定部14は、「102」を自身の識別情報として設定し記憶部13に記憶させる。3番目の監視部10-3の識別情報設定部14は、「103」を自身の識別情報として設定し記憶部13に記憶させる。4番目の監視部10-4の識別情報設定部14は、「104」を自身の識別情報として設定し記憶部13に記憶させる。最後尾の監視部10-5の識別情報設定部14は、「105」を自身の識別情報として設定し記憶部13に記憶させる。
 各監視部10-1~10-5の通信部15は、他の監視部10-1~10-5の通信部15及び制御部3の通信部19と、通信線を介して環状に直列(デイジーチェーン)接続される。各通信部15は、前段の監視部10又は制御部3から送信される信号を受信し、後段の監視部10又は制御部3へ信号を送信する。
 制御部3は、メインリレー4のオン、オフを制御するリレー制御部16と、記憶部17と、通信異常箇所特定部18と、監視部10-1~10-5と通信を行う通信部19とを備える。
 記憶部17は、不揮発性メモリ(例えば、ROM、フラッシュメモリ、磁気記憶媒体(ハードディスクやフロッピーディスクなど)、光ディスクなど)を用いて構成され、各種情報や各種プログラムを記憶する。
 リレー制御部16、通信異常箇所特定部18、及び通信部19は、例えば、CPU、マルチコアCPU、プログラマブルなデバイスなどにより構成され、記憶部17に記憶されたプログラムを読み出して該プログラムの手順を実行する。
 制御部3は、監視部10-1~10-5からそれぞれ送信される識別情報を通信部19により受信し、それら識別情報を記憶部17に記憶させる。また、制御部3は、記憶部17に記憶させた識別情報を用いて、監視部10-1~10-5からそれぞれ送信される電池5の状態(例えば、電池5の電圧、電流、及び温度など)を示す情報を通信部19により受信する。
 また、制御部3は、受信した情報を基に電池5の状態が予め決められた状態に変移した(例えば、電池5の電圧、電流又は温度等が閾値を超えた)と判定すると、電池5の状態が異常であると判断し、待避走行モード(例えば、車両を徐々に減速させてから停止させる動作モード)に移行させる指示を、車両の走行を制御する上位制御部に送るとともに、一定時間経過後にリレー制御部16によりメインリレー4をオフさせる処理などを実行する。また、制御部3は、通信異常が発生したと判断した場合でも、待避走行モードに移行させる。
 図1の構成により、複数の監視部10-1~10-5と一つの制御部3とを備えた電池監視装置1において、複数の監視部10-1~10-5と一つの制御部3とが直列に環状に接続され、隣接する各監視部10-1~10-5と制御部3との各間が各通信線で接続され、隣接する各監視部10-1~10-5と制御部3との各間で、識別情報に対応させた電気量の信号を各監視部で順次変化させて後段に伝送することにより、各監視部10-1~10-5にそれぞれの識別情報を割り当てて認識させる。この動作の詳細については後述する。
 図2は、第1の実施形態における制御部3の動作例のフローを示す。まず、電池監視装置1の製造者や電池モジュール2を交換するサービスマンによるスイッチやサービスツールの操作などにより、制御部3の電源が投入されると、又は、識別情報が確定しているか否かの判断を行うための指示が制御部3へ入力されると、制御部3は、全ての監視部10-1~10-5に対して電源をオン状態にし、先頭の監視部監視部10-1へ確定信号Sdを送信する(S201)。
 次に、制御部3は、最後尾の監視部10-5から送信される確定信号Sdを受信すると(S202:YES)、全ての監視部10-1~10-5において識別情報が確定していると判断し(S203)、全ての監視部10-1~10-5に対する識別情報の認識処理を禁止させる(S204)。
 また、制御部3は、最後尾の監視部10-5から送信される、非確定信号Snを受信すると(S202:NO、S205:YES)、その受信した非確定信号Snに応じて、監視部10-1~10-5に対する識別情報の認識処理を実施させる(S206)。
 また、制御部3は、先頭の監視部10-1へ確定信号Sdを送信してから所定時間が経過しても最後尾の監視部10から確定信号Sd又は非確定信号Snを受信しない場合(S202:NO、S205:NO、S207:YES)、最後尾の監視部10-5と制御部3との間で通信異常が発生していると判断する(S208)。
 図3は、第1の実施形態における各監視部10-1~10-5の動作例のフローを示す。まず、各監視部10-1~10-5は、前段の監視部10又は制御部3から送信される確定信号Sdを受信すると(S301:YES)、自身の識別情報が確定済みか否かを判定し(S302)、確定済みの場合(S302:YES)、確定信号Sdを後段の監視部10又は制御部3へ送信する(S303)。
 また、各監視部10-1~10-5は、自身の識別情報が確定していない場合(S302:NO)、非確定信号Snを後段の監視部10又は制御部3へ送信する(S305)。また、各監視部10-1~10-5は、前段の監視部10から送信される非確定信号Snを受信すると(S301:NO、S304:YES)、非確定信号Snを後段の監視部10又は制御部3へ送信する(S305)。
 また、各監視部10-1~10-5は、自身の電源がオン状態になってから所定時間が経過しても、前段の監視部10若しくは制御部3から確定信号Sdを受信しない場合、又は前段の監視部10から非確定信号Snを受信しない場合(S301:NO、S304:NO、S306:YES)、通信異常が発生したと判断する(S307)。
 図4は、第2の実施形態における制御部3の動作例のフローを示す。まず、電池監視装置1の製造者や電池モジュール2を交換するサービスマンによるスイッチやサービスツールの操作などにより、制御部3の電源が投入されると、又は、識別情報が確定しているか否かの判断を行うための指示が制御部3へ入力されると、制御部3は、全ての監視部10-1~10-5に対して電源をオン状態にし、先頭の監視部監視部10-1へ開始信号Ssを送信する(S401)。
 次に、制御部3は、最後尾の監視部10-5から送信される確定信号Sdを受信すると(S402:YES)、全ての監視部10-1~10-5において識別情報が確定していると判断し(S403)、全ての監視部10-1~10-5に対する識別情報の認識処理を禁止させる(S404)。
 また、制御部3は、最後尾の監視部10-5から送信される混在信号Smを受信すると(S402:NO、S405:YES)、一部の監視部10の識別情報が未確定であると判断し(S406)、全ての監視部10-1~10-5に対して、一旦、識別情報をリセットさせる(S407)。その後、全ての監視部10-1~10-5に対して、識別情報を割り当てて認識させる処理を実施する(S408)。
 また、制御部3は、最後尾の監視部10-5から送信される未確定信号Syを受信すると(S402:NO、S405:NO、S409:YES)、全ての監視部10-1~10-5において識別情報が未確定であると判断し(S410)、全ての監視部10-1~10-5に対して、識別情報を割り当てて認識させる処理を実施する(S408)。
 また、制御部3は、先頭の監視部10-1へ開始信号Ssを送信してから所定時間が経過しても最後尾の監視部10から確定信号Sd、混在信号Sm又は未確定信号Syを受信しない場合(S402:NO、S405:NO、S409:NO、S411:YES)、最後尾の監視部10-5と制御部3との間で通信異常が発生していると判断する(S412)。
 図5は、第2の実施形態における各監視部10-1~10-5の動作例のフローを示す。まず、各監視部10-1~10-5は、前段の監視部10又は制御部3から送信される開始信号Ssを受信すると(S501:YES)、自身の識別情報が確定済みか否かを判定し(S502)、確定済みの場合(S502:YES)、確定信号Sdを後段の監視部10又は制御部3へ送信し(S503)、自身の識別情報が確定していない場合(S502:NO)、未確定信号Syを後段の監視部10又は制御部3へ送信する(S506)。
 また、各監視部10-1~10-5は、前段の監視部10から送信される確定信号Sdを受信すると(S501:NO、S504:YES)、自身の識別情報が確定済みか否かを判定し(S505)、確定済みの場合(S505:YES)、確定信号Sdを後段の監視部10又は制御部3へ送信し(S503)、自身の識別情報が確定していない場合(S505:NO)、混在信号Smを後段の監視部10又は制御部3へ送信する(S510)。
 また、各監視部10-1~10-5は、前段の監視部10から送信される未確定信号Syを受信すると(S501:NO、S504:NO、S507:YES)、自身の識別情報が確定済みか否かを判定し(S508)、確定済みの場合(S508:YES)、混在信号Smを後段の監視部10又は制御部3へ送信し(S510)、自身の識別情報が確定していない場合(S508:NO)、未確定信号Syを後段の監視部10又は制御部3へ送信する(S506)。
 また、各監視部10-1~10-5は、前段の監視部10から送信される混在信号Smを受信すると(S501:NO、S504:NO、S507:NO、S509:YES)、混在信号Smを後段の監視部10又は制御部3へ送信する(S510)。
 また、各監視部10-1~10-5は、自身の電源がオン状態になってから所定時間が経過しても、前段の制御部3から開始信号Ssを受信しない場合、又は前段の監視部103から確定信号Sd、未確定信号Sy、若しくは混在信号Smを受信しない場合(S501:NO、S504:NO、S507:NO、S509:No、S511:YES)、通信異常が発生したと判断する(S512)。
 このように、本実施形態の電池監視装置1では、各監視部10-1~10-5に識別情報が割り当てられ、該識別情報が既に確定済みか否かを確認し、識別情報が確定済みであると判断された場合、識別情報認識処理の実行を禁止するようにしたことにより、制御部3と各監視部10-1~10-5とを接続する通信線に重畳されるノイズなどによって、監視部10に重複した識別情報や誤った識別情報が割り当てられる誤動作発生頻度を低減させることができ、電池監視装置1の信頼性を向上させることができる。
 このように、複数の各監視部10-1~10-5は、通信線から受信される前段の各監視部10又は制御部3からの信号に含まれる、識別情報が確定済みか非確定かを示す情報と、自身の前記識別情報が確定済みか非確定かを示す情報とに基づいて決定される識別情報の確定状態の情報を含む信号を、後段の各監視部10又は制御部3へ送信し、制御部3は、最後尾の監視部10-5から送信される信号に含まれる識別情報の確定状態の情報に基づいて、各監視部10-1~10-5に識別情報を認識させる処理を実施させるか否かを決定する。
 また、識別情報が非確定かを示す情報は、前段の監視部10における識別情報が全て未確定であるか、又は前段の監視部10における識別情報が確定済みのものと未確定のものとが混在しているか、の何れかを示す情報である。
 また、複数の各監視部10-1~10-5は、前段の監視部10から受信される信号に含まれる情報が、識別情報が確定済みを示す情報である場合、自身の前記識別情報が確定済みのとき、識別情報が確定済みを示す確定状態の情報を含む信号を後段の監視部10又は制御部3へ送信し、自身の識別情報が未確定のとき、識別情報が混在していることを示す確定状態の情報を含む信号を後段の監視部10又は制御部3へ送信する。
 また、複数の各監視部10-1~10-5は、前段の監視部10から受信される信号に含まれる情報が、識別情報が未確定であることを示す情報である場合、自身の前記識別情報が確定済みのとき、識別情報が混在していることを示す確定状態の情報を含む信号を後段の監視部10又は制御部3へ送信し、自身の識別情報が未確定のとき、識別情報が未確定であることを示す確定状態の情報を含む信号を後段の監視部10又は制御部3へ送信する。
 また、複数の各監視部10-1~10-5は、前段の監視部10から受信される信号に含まれる情報が、識別情報が混在していることを示す情報である場合、識別情報が混在していることを示す確定状態の情報を含む信号を後段の監視部10又は制御部3へ送信する。
 また、第2の実施形態では、制御部3が、識別情報が未確定の監視部10が全てなのか一部なのか判別することができる。その結果、全ての監視部10の識別情報が未設定の場合に、識別情報をリセットさせる動作を省略することができる。
 次に、識別情報が未確定の監視部10が存在する場合の、識別情報認識処理の動作例について図6~図11を参照して説明する。この動作例は、各監視部10-1~10-5に識別情報を割り当てて認識させるとともに、各監視部10の個数及び通信線の異常個所を特定することが可能な動作例である。
 図6に制御部3における識別情報認識処理の動作例を示すフローを示す。まず、制御部3は、識別情報認識処理が開始されると、先頭の監視部10-1へ識別情報認識処理のための設定信号S1(第1の設定信号)を送信する(S601)。
 次に、制御部3は、最後尾の監視部10-5から送信される設定信号S1を受信すると(S602:YES)、識別情報が確定していることを示す確定情報を記憶部17に記憶させる(S603)。例えば、制御部3は、記憶部17に記憶されている確定情報としての識別情報確定判断フラグをオフからオンに書き換える。
 次に、制御部3は、受信した設定信号S1に対応する監視部10の数を記憶部17に記憶させ(S604)、監視部10-1~10-5から送信される識別情報を記憶部17に記憶させる(S605)。
 また、制御部3は、最後尾の監視部10-5から送信される、通信異常が発生したことを示す設定信号S2(第2の設定信号)を受信すると(S602:NO、S606:YES)、その受信した設定信号S2に応じて通信異常の発生箇所を特定する(S607)。
 また、制御部3は、先頭の監視部10-1へ設定信号S1を送信してから所定時間が経過しても最後尾の監視部10から設定信号S1又は設定信号S2を受信しない場合(S606:NO、S608:YES)、最後尾の監視部10-5と制御部3の間で通信異常が発生していると判断する(S609)。
 図7は、各監視部10-1~10-5における識別情報設定処理の動作例のフローを示す。まず、各監視部10-1~10-5は、前段の監視部10又は制御部3から送信される設定信号S1を受信すると(S701:YES)、その受信した設定信号S1に対応する識別情報を自身の識別情報として割り当て(S702)、その受信した設定信号S1を変化させて後段の監視部10又は制御部3へ送信し(S703)、自身の識別情報を制御部3へ送信する(S704)。
 また、監視部10-1~10-5は、それぞれ、前段の監視部10から送信される設定信号S2を受信すると(S701:NO、S705:YES)、その受信した設定信号S2を変化させて後段の監視部10又は制御部3へ送信する(S706)。
 また、監視部10-1~10-5は、それぞれ、識別情報認識処理の開始から所定時間が経過しても、前段の監視部10若しくは制御部3から設定信号S1を受信しない場合、又は前段の監視部10から設定信号S2を受信しない場合(S705:NO、S707:YES)、予め決められた設定信号S2を後段の監視部10又は制御部3へ送信する(S708)。
 一例として、図8に示すデューティ比と設定信号との対応情報及び図9に示すデューティ比と識別情報との対応情報が、各監視部10-1~10-5の各記憶部13にそれぞれ記憶されているものとする。また、図8に示すデューティ比と設定信号との対応情報、図10に示すデューティ比と監視部の数との対応情報、及び図11に示すデューティ比と通信異常の発生個所との対応情報が制御部3の記憶部17に記憶されているものとする。また、各監視部10-1~10-5は、設定信号S1又は設定信号S2に相当する矩形波を受信すると、その矩形波のデューティ比を+4%変化させて、後段の監視部10又は制御部3へ送信するものとする。
 このような場合において、識別情報認識処理が開始されると、制御部3は、予め決められた設定信号S1としてデューティ比4%の矩形波を先頭の監視部10-1へ送信する。
 次に、監視部10-1は、図8に示す情報を参照して、受信したデューティ比4%の矩形波が設定信号S1に相当すると判断し、図9に示す情報を参照して、デューティ比4%に対応する「101」を自身の識別情報に割り当てて確定するとともに、受信した矩形波のデューティ比を+4%変化させてデューティ比8%の矩形波を後段の監視部10-2へ送信する。
 次に、監視部10-2は、図8に示す情報を参照して、受信したデューティ比8%の矩形波が設定信号S1に相当すると判断し、図9に示す情報を参照して、デューティ比8%に対応する「102」を自身の識別情報に割り当てて確定するとともに、受信した矩形波のデューティ比を+4%変化させてデューティ比12%の矩形波を後段の監視部10-3へ送信する。
 次に、監視部10-3は、図8に示す情報を参照して、受信したデューティ比12%の矩形波が設定信号S1に相当すると判断し、図9に示す情報を参照して、デューティ比12%に対応する「103」を自身の識別情報に割り当てて確定するとともに、受信した矩形波のデューティ比を+4%変化させてデューティ比16%の矩形波を後段の監視部10-4へ送信する。
 次に、監視部10-4は、図8に示す情報を参照して、受信したデューティ比16%の矩形波が設定信号S1に相当すると判断し、図9に示す情報を参照して、デューティ比16%に対応する「104」を自身の識別情報に割り当てて確定するとともに、受信した矩形波のデューティ比を+4%変化させてデューティ比20%の矩形波を後段の監視部10-5へ送信する。
 次に、監視部10-5は、図8に示す情報を参照して、受信したデューティ比20%の矩形波が設定信号S1に相当すると判断し、図9に示す情報を参照して、デューティ比20%に対応する「105」を自身の識別情報に割り当てて確定するとともに、受信した矩形波のデューティ比を+4%変化させてデューティ比24%の矩形波を制御部3へ送信する。
 そして、制御部3は、図8に示す情報を参照して、受信したデューティ比24%の矩形波が設定信号S1に相当すると判断し、記憶部17に記憶されている確定情報としての識別情報確定判断フラグをオフからオンに書き換え、図10に示す情報を参照して、デューティ比24%に対応する「5」を監視部10の数として記憶部17に記憶させる。その後、制御部3は、監視部10-1~10-5から送信される識別情報「101」~「105」を記憶部17に記憶させる。
 次に、監視部10-2と監視部10-3との間の通信線が断線している場合の制御部3及び各監視部10-1~10-5の動作例について説明する。まず、電池監視装置1の製造者や電池モジュール2を交換するサービスマンによるスイッチやサービスツールの操作などにより、識別情報認識の処理が開始されると、制御部3は、予め決められた設定信号S1としてデューティ比4%の矩形波を先頭の監視部10-1へ送信する。
 次に、監視部10-1は、図8に示す情報を参照して、受信したデューティ比4%の矩形波が設定信号S1に相当すると判断し、図9に示す情報を参照して、デューティ比4%に対応する「101」を自身の識別情報として確定するとともに、受信した矩形波のデューティ比を+4%変化させてデューティ比8%の矩形波を後段の監視部10-2へ送信する。
 次に、監視部10-2は、図8に示す情報を参照して、受信したデューティ比8%の矩形波が設定信号S1に相当すると判断し、図9に示す情報を参照して、デューティ比8%に対応する「102」を自身の識別情報として確定するとともに、受信した矩形波のデューティ比を+4%変化させてデューティ比12%の矩形波を後段の監視部10-3へ送信する。
 次に、監視部10-3は、自身の電源がオン状態になってから所定時間経過するまでの間、設定信号S1又は設定信号S2に相当する矩形波を受信しない場合(監視部10-2と監視部10-3の間の通信線の電圧レベルがローレベル又はハイレベルのままである場合)、予め決められた設定信号S2に相当するデューティ比54%の矩形波を後段の監視部10-4へ送信する。
 次に、監視部10-4は、図8に示す情報を参照して、受信したデューティ比54%の矩形波が設定信号S2に相当すると判断し、受信した矩形波のデューティ比を+4%変化させてデューティ比58%の矩形波を後段の監視部10-5へ送信する。
 次に、監視部10-5は、図8に示す情報を参照して、受信したデューティ比58%の矩形波が設定信号S2に相当すると判断し、受信した矩形波のデューティ比を+4%変化させてデューティ比62%の矩形波を制御部3へ送信する。
 そして、制御部3は、図8に示す情報を参照して、最後尾の監視部10-5から送信されるデューティ比62%の矩形波が設定信号S2に相当すると判断し、図11に示す情報を参照して、受信した矩形波のデューティ比62%に対応する通信異常の発生箇所が「監視部10-2と監視部10-3の間」であると判断する。
 なお、制御部3は、通信異常の発生箇所を特定すると、その旨をユーザに報知する構成としてもよい。また、監視部10-1~10-5が変化させる矩形波のデューティ比の変化量は4%に限定されるものではなく、デューティ比の変化が識別される任意の変化量であればよい。また、設定信号S1、S2に相当する矩形波のデューティ比は、互いに異なる値であればよい。
 このように、通信異常の発生箇所よりも下流に位置する監視部10において、設定信号S2が変化され、最後尾の監視部10-5から制御部3へ送信される設定信号S2により通信異常の発生箇所が特定されるため、制御部3と監視部10-1~10-5が環状に直列接続される場合であっても、通信異常検知処理を行うことができる。また、通信異常検知処理と識別情報設定処理とが同時に行われるため、通信異常が発生していない場合、識別情報設定処理をスピーディに実施することができる。
 なお、上記実施形態において、確定信号Sd、非確定信号Sn、未確定信号Sy、混在信号Sm、第1の設定信号S1、第2の設定信号S2として、デューティ比が異なる矩形波を用いて、識別情報の確定確認処理、並びに識別情報認識処理及び通信異常検知処理を行う構成とすることができるが、それらの処理は、矩形波を含む発振信号の周波数、単位時間当たりのパルス数、又は、通信線の電圧等の電気量を判別して行うように構成することもできる。
 また、上記実施形態において、制御部3は、受信した設定信号S1に対応する監視部10の数を記憶部17に記憶させたが、設定信号S1に対応する電池モジュールの数を記憶部17に記憶させても良い。
1 電池監視装置
2 電池モジュール
3 制御部
4 メインリレー
5 電池
6 リレー
7 電圧検出部
8 電流検出部
9 温度検出部
10 監視部
11 負荷
12 リレー制御部
13 記憶部
14 識別情報設定部
15 通信部
16 リレー制御部
17 記憶部
18 通信異常箇所特定部
19 通信部

Claims (3)

  1.  電池の状態を監視する複数の監視部と、
     前記複数の監視部に自身の識別情報を認識させて確定させるとともに、前記識別情報を用いて前記複数の監視部と通信を行う制御部と、
     を備え、
     前記複数の各監視部と前記制御部とが直列に環状に通信線で接続され、
     前記複数の各監視部は、前記通信線から受信される前段の前記監視部又は前記制御部からの信号に含まれる、前記識別情報が確定済みか非確定かを示す情報と、自身の前記識別情報が確定済みか非確定かを示す情報とに基づいて決定される識別情報の確定状態の情報を含む信号を、後段の前記監視部又は前記制御部へ送信し、前記制御部は、最後尾の前記監視部から送信される前記信号に含まれる識別情報の確定状態の情報に基づいて、前記複数の監視部に前記識別情報を認識させる処理を実施させるか否かを決定する
     ことを特徴とする電池監視装置。
  2.  請求項1に記載の電池監視装置であって、
     前記識別情報が非確定かを示す前記情報は、前段の前記監視部における前記識別情報が全て未確定であるか、又は前段の前記監視部における前記識別情報が確定済みのものと未確定のものとが混在しているか、の何れかを示す情報である
     ことを特徴とする電池監視装置。
  3.  請求項2に記載の電池監視装置であって、
     前記複数の各監視部は、前段の前記監視部から受信される信号に含まれる情報が、前記識別情報が確定済みを示す情報である場合、自身の前記識別情報が確定済みのとき、前記識別情報が確定済みを示す前記確定状態の情報を含む信号を後段の前記監視部又は前記制御部へ送信し、自身の前記識別情報が未確定のとき、前記識別情報が混在していることを示す前記確定状態の情報を含む信号を後段の前記監視部又は前記制御部へ送信し、
     前記複数の各監視部は、前段の前記監視部から受信される信号に含まれる情報が、前記識別情報が未確定であることを示す情報である場合、自身の前記識別情報が確定済みのとき、前記識別情報が混在していることを示す前記確定状態の情報を含む信号を後段の前記監視部又は前記制御部へ送信し、自身の前記識別情報が未確定のとき、前記識別情報が未確定であることを示す前記確定状態の情報を含む信号を後段の前記監視部又は前記制御部へ送信し、
     前記複数の各監視部は、前段の前記監視部から受信される信号に含まれる情報が、前記識別情報が混在していることを示す情報である場合、前記識別情報が混在していることを示す前記確定状態の情報を含む信号を後段の前記監視部又は前記制御部へ送信する
     ことを特徴とする電池監視装置。
PCT/JP2014/082044 2014-03-25 2014-12-03 電池監視装置 WO2015145878A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-061479 2014-03-25
JP2014061479A JP2015186076A (ja) 2014-03-25 2014-03-25 電池監視装置

Publications (1)

Publication Number Publication Date
WO2015145878A1 true WO2015145878A1 (ja) 2015-10-01

Family

ID=54194446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082044 WO2015145878A1 (ja) 2014-03-25 2014-12-03 電池監視装置

Country Status (2)

Country Link
JP (1) JP2015186076A (ja)
WO (1) WO2015145878A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047748B2 (ja) * 2018-12-19 2022-04-05 株式会社デンソー 通信システム
US11316711B2 (en) * 2020-07-29 2022-04-26 Astec International Limited Systems, devices and methods for automatically addressing serially connected slave devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177593A (ja) * 1997-12-08 1999-07-02 Yazaki Corp アドレス設定方法、及びこのアドレス設定方法が適用される通信システム
JP2001203733A (ja) * 2000-01-20 2001-07-27 Fuji Electric Co Ltd リング型ネットワークシステム、情報伝送装置、及びそのアドレス設定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177593A (ja) * 1997-12-08 1999-07-02 Yazaki Corp アドレス設定方法、及びこのアドレス設定方法が適用される通信システム
JP2001203733A (ja) * 2000-01-20 2001-07-27 Fuji Electric Co Ltd リング型ネットワークシステム、情報伝送装置、及びそのアドレス設定方法

Also Published As

Publication number Publication date
JP2015186076A (ja) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6320544B2 (ja) 電源アダプター、端末及び充電回路のインピーダンス異常の処理方法
JP6186813B2 (ja) 電池監視システム及び識別情報設定方法
JP5713094B2 (ja) 電池監視装置
JP6574952B2 (ja) 配線診断装置、電池システム、および電力システム
JP6901989B2 (ja) 電池監視装置、電池監視システム、および電池監視方法
JPWO2016063760A1 (ja) 電源装置、保護装置、及び保護方法
WO2015145878A1 (ja) 電池監視装置
JP6221879B2 (ja) 電池監視装置
JP6654518B2 (ja) 情報処理システム、電池モジュール、制御方法、及びプログラム
JP6160532B2 (ja) 電池監視装置
KR101704787B1 (ko) 제어기의 이중화 시스템
CN106873504B (zh) Plc系统
JP2015177234A (ja) 電池モジュール及びcan通信識別子設定方法
JP6152814B2 (ja) 電池監視装置
JP6229567B2 (ja) 電池監視装置
JP6265024B2 (ja) 電池監視装置
JP6413314B2 (ja) 電池監視装置
US20180248230A1 (en) Battery control apparatus and battery system
JP2015197393A (ja) 電池監視装置および電池監視方法
JP2014241477A (ja) 通信システム
JP2015184178A (ja) 電池監視装置
RU152467U1 (ru) Устройство системы управления и мониторинга потребителей электрической энергии
US11244554B1 (en) Method and a device for signal transmission from wired security sensors and/or fire annunciators
JP6172033B2 (ja) 電池監視装置および電池監視方法
JP2015197999A (ja) 電池監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887635

Country of ref document: EP

Kind code of ref document: A1