WO2015143830A1 - 一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法 - Google Patents

一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法 Download PDF

Info

Publication number
WO2015143830A1
WO2015143830A1 PCT/CN2014/085075 CN2014085075W WO2015143830A1 WO 2015143830 A1 WO2015143830 A1 WO 2015143830A1 CN 2014085075 W CN2014085075 W CN 2014085075W WO 2015143830 A1 WO2015143830 A1 WO 2015143830A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
nano material
labeled
time
antibody
Prior art date
Application number
PCT/CN2014/085075
Other languages
English (en)
French (fr)
Inventor
陈学元
周山勇
郑伟
马恩
黄明东
陈卓
涂大涛
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Priority to JP2017501447A priority Critical patent/JP6563475B2/ja
Priority to EP14887401.9A priority patent/EP3124971A4/en
Priority to US15/128,803 priority patent/US10520495B2/en
Publication of WO2015143830A1 publication Critical patent/WO2015143830A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material
    • G01N2458/40Rare earth chelates

Definitions

  • the present invention relates to a rare earth nano material which can be used for labeling biomolecules, a labeling method thereof and a method for modulating the same, and, in particular, a rare earth nano material which can be used for labeling biomolecules, a labeling method thereof and A method for the dissolution enhancement of rare earth nanomaterials to achieve time-resolved fluorescence immunoassay. Background technique
  • Radioimmunoassay an analytical technique
  • RIA Radioimmunoassay
  • Enzyme-linked immunosorbent assay ELISA
  • ELISA Enzyme-linked immunosorbent assay
  • CLIA Chemiluminescence immunoassay
  • Time-Resolved Immunoassay has high sensitivity, low background, good stability, and wide linear range. It is currently recognized as the most promising non-radioactive immunolabeling technology.
  • the analysis system developed in recent years is as follows :
  • DELFIA Dissociation-enhanced lanthanide time-resolved immunoassay
  • the most widely used consists of a tracer, a bifunctional chelating agent, and an enhancer. Fluorescence enhancement is extremely sensitive One of the important factors. The lanthanide ion forms a micro enthalpy with the reinforcing liquid, which can effectively prevent the quenching of water molecules, thereby greatly enhancing the fluorescence of the system.
  • bifunctional chelating agents are also one of the key factors, and the ratio of cesium ions as a preferred marker to protein is between 10 and 20.
  • the bifunctional chelating agent is susceptible to foreign substances such as exogenous rare earth ions, and anticoagulants such as ethylenediaminetetraacetic acid and heparin.
  • the specimens to be tested must be serum, the operation requirements are very strict, and the price is not Philippines.
  • Solid Phase Time-Resolved Immunoassay (FIAgen)—Time-resolved immunoassay using bifunctional rare earth chelates as markers.
  • FIAgen Solid Phase Time-Resolved Immunoassay
  • fluorescent nanoparticles coated with rare earth chelates are also used in time-resolved immunoassays.
  • Each nanoparticle contains thousands of rare earth chelates, which greatly improves the detection sensitivity, but the presence of rare earth chelates. It is easy to leak and susceptible to unstable factors such as photobleaching.
  • the rare earth nano material has the advantages of stable properties, large specific surface area, strong modification, and low synthesis cost, and is a new generation of fluorescent biomarker materials which are generally optimistic.
  • the luminescence of rare earth nanomaterials is absorbed by sensitized luminescence through the inter-electron transition of rare earth ions 4f.
  • the molar extinction coefficient is small and the luminescence is weak.
  • Direct detection of rare earth nanomaterials as markers has a lower sensitivity and limits its application. Summary of the invention
  • the object of the present invention is to overcome the above deficiencies of the prior art, and to provide a high-sensitivity rare earth nanomaterial labeling biomolecule method which can be used for time-resolved fluorescence immunoassay.
  • Another object of the present invention is to provide a time-resolved fluorescence immunoassay method enhanced by dissolution of rare earth nanomaterials.
  • a rare earth nanomaterial labeled biomolecule for time-resolved fluorescence immunoassay the biomolecule comprising biotin, avidin, antibody or nucleic acid aptamer; the rare earth nano material containing strontium, barium, One or more of ⁇ and ⁇ .
  • the biomolecules are labeled by chemical coordination or physical adsorption.
  • the rare earth nano material is selected from the group consisting of rare earth fluorides, oxides, gas oxides, oxychlorides, rare earth phosphates, borate salts, containing one or more of cerium, lanthanum, cerium, lanthanum, Silicate, molybdate, tungstate, carbonate nanocrystals.
  • the rare earth nano material is XYF 4 nanocrystals
  • the X is selected from one or more of lithium, sodium, potassium, and the like
  • the Y is selected from one or more of lanthanum, cerium, lanthanum, and cerium. .
  • a method for labeling biomolecules of rare earth nanomaterials for time-resolved fluorescence immunoassay the rare earth nanomaterials labeling biomolecules by chemical coordination method or physical adsorption method, the biomolecules including biotin, avidin, Antibody or nucleic acid aptamer.
  • the rare earth nanomaterial contains one or more of ruthenium, osmium, iridium and osmium.
  • the rare earth nano material is selected from the group consisting of rare earth fluorides, oxides, oxyfluorides, oxychlorides, rare earth phosphates, borate salts, containing one or more of cerium, lanthanum, cerium, lanthanum, Silicate, molybdate, tungstate, carbonate nanocrystals.
  • the rare earth nano material is preferably XYF 4 nanocrystals, and the X is selected from one or more of lithium, sodium, potassium, and the like, and the Y is selected from one of lanthanum, cerium, lanthanum, and cerium. Kind or more.
  • the invention also provides the following technical solutions:
  • a time-resolved fluorescence immunoassay method for enhancing rare earth nanomaterials by dissolution characterized in that the method employs the above-mentioned rare earth nanomaterial-labeled biomolecules for time-resolved fluorescence immunoassay.
  • the method comprises: adding the above-mentioned rare earth nano material labeled biomolecule for time-resolved fluorescence immunoassay, forming an immune complex, adding a reinforcing liquid, dissolving the rare earth nano material and presenting it as a rare earth ion, and enhancing
  • the chelate in the liquid forms a molecule with a strong fluorescent signal (rare earth nanomicelle), and the fluorescence signal is detected by time-resolved.
  • the biomolecule when the antigen to be tested is added, the biomolecule is selected from biotin, avidin, antibody or nucleic acid aptamer.
  • the biomolecule when the antibody to be tested is added, the biomolecule is selected from biotin, avidin or a nucleic acid aptamer.
  • the step 4) can be:
  • the above rare earth nanomaterial-labeled antibody for time-resolved fluorescence immunoassay is added to form an immune complex.
  • the step 4) can also be decomposed into the following steps:
  • the step 4) can also be decomposed into the following steps:
  • the rare earth nanomaterial contains one or more of ruthenium, osmium, iridium and osmium.
  • the rare earth nano material is selected from the group consisting of rare earth fluorides, oxides, oxyfluorides, oxychlorides, rare earth phosphates, borate salts, containing one or more of cerium, lanthanum, cerium, lanthanum, Silicate, molybdate, tungstate, carbonate nanocrystals.
  • the rare earth nano material is preferably XYF 4 nanocrystals, and the X is selected from one or more of lithium, sodium, potassium, and the like, and the Y is selected from the group consisting of ruthenium, osmium, iridium, and osmium. One or more of them.
  • the labeling method of the rare earth nano material and the biotin, avidin, antibody or nucleic acid aptamer is: chemical coordination or physical adsorption.
  • the blocking solution is a conventional solution in the art and can be synthesized commercially or by itself.
  • the blocking solution may be a bovine serum albumin (BSA) blocking solution or an ethanol sputum blocking solution.
  • BSA bovine serum albumin
  • the reinforcing liquid may be a conventional reinforcing liquid in the art, but preferably consists mainly of a buffer, a ⁇ -diketone body, a nonionic surfactant and a synergist.
  • the buffer is selected from the group consisting of Triton X-100; the ⁇ -diketone body is selected from trioxane naphthoic acid, the nonionic surfactant is selected from octyl phosphine oxide, and the synergist is selected. From the water.
  • the reinforcing liquid consists essentially of Triton®-100, tri-naphthyl naphthoate, octylphosphine oxide and distilled water.
  • the detection mode includes a sandwich method detection, a direct method detection or a competition method detection.
  • the XYF 4 nanocrystals can be prepared by methods known to those skilled in the art, for example, by the following methods:
  • the biomolecule may be labeled by chemical coordination method, which is a method known to those skilled in the art, and the biotin is labeled by NaEuF 4 nanocrystal chemical coordination method as follows:
  • step 2) Take step 1) Synthesize water-soluble nanocrystals, add biotin and ammonia water, sonicate, centrifuge with deionized water, and finally dissolve in deionized water.
  • the biomolecule may be labeled by a physical adsorption method, which is a method known to those skilled in the art, and is exemplified by a NaEuF 4 nanocrystal physical adsorption method for labeling an antibody as follows:
  • step 1) Take the step 1) synthesized water-soluble nanocrystals, add the antibody, add phosphate buffer, shake at room temperature, collect the nanoparticles by centrifugation, wash with water, dissolve in buffer.
  • the beneficial effects of the invention are: 1) using rare earth nanomaterials as markers to label biomolecules, because the rare earth nanomaterials have stable properties, large specific surface area, strong modification, low cost, and each nanoparticle contains thousands of rare earth ions, which greatly improves The marking ratio of rare earth ions is less affected by the external rare earth ions, and is not affected by the anticoagulant, and has wider applicability.
  • the detection sensitivity of the present invention is 900 times higher than the commercially available time-resolved carcinoembryonic antigen detection kit.
  • FIG 1 (a) Schematic diagram of the traditional dissociation-enhanced time-resolved immunoassay (DELFIA).
  • the antigen to be tested or the antibody to be tested is labeled with (a) rare earth chelate or (b) rare earth nano material by double-anti-sandwich method, and the enhancement solution is added after the immune complex is formed, and the fluorescence signal is detected by time resolution.
  • a single rare earth nanoparticle contains thousands of rare earth ions, which greatly increases the marking ratio of the rare earth ions, and forms a large amount of strong fluorescent signal molecules after adding the reinforcing liquid, thereby significantly enhancing the fluorescence signal and the detection sensitivity.
  • Figure 2 NaEuF 4 nanocrystal transmission electron micrograph, instrument model is JEM-2010, manufacturer is JEOL.
  • Figure 4 Standard curve of carcinoembryonic antigen detection by double-antibody sandwich method of the present invention.
  • Figure 5 Commercially available time-resolved carcinoembryonic antigen assay kit for detection of carcinoembryonic antigen standard curve. detailed description
  • a method for dissolving and enhancing time-resolved fluorescence immunoassay of rare earth nanomaterials the specific steps are as follows:
  • step 1 Weigh 20 mg of NaEuF 4 nanocrystal synthesized in step 1 and dissolve it in 15 ml of Hl. O in ethanolic hydrochloric acid solution, sonicate for 30 min, collect the nanoparticles by centrifugation, and wash it three times with absolute ethanol to remove oleic acid on the surface of the nanocrystal. Add 2ml of deionized water to dissolve, which is 10mg/ml water-soluble nanocrystal;
  • step 2) Add 1 mmol of biotin and 2 drops of ammonia in step 1), sonicate for 20 min, centrifuge three times with deionized water, and finally dissolve in lml of deionized water for use.
  • step A-1) synthesized water-soluble nanocrystal lml, add ⁇ antibody, add ⁇ , ⁇ 8.0 phosphate buffer, room After shaking for 1 h, the nanoparticles were collected by centrifugation, washed three times with water, and dissolved in a buffer of pH 8.0 for use.
  • Blocking Prepare 2% bovine serum albumin with 0.05 mol/L carbonate buffer, add 300 ul per well, incubate for 37 hours at 37 °C, remove the liquid from the well, and wash 3 times with PBST wash buffer.
  • the concentration of carcinoembryonic antigen is linearly related to the fluorescence intensity.
  • step 3 Determination of the sample: In step 3), add the sample to be tested, and the other steps are the same as above, and the fluorescence intensity of the sample to be tested is brought into the standard curve equation to obtain the corresponding concentration value.
  • step 4) can also be implemented as follows:
  • biotin-labeled antibody Prepare/ml biotin-labeled antibody in PBS buffer, add 100 ⁇ 1 per well, incubate for 37 hours at 37", discard the liquid in the well, wash with PBST, buffer Washed 3 times;
  • Blocking Prepare 2% bovine serum albumin with 0.05 mol/L carbonate buffer, add 300 ul per well, incubate for 1 hour at 37"C, remove the liquid in the well, wash with PBST wash buffer 3 Times.
  • a standard solution of 0.0128 ng/mK 0.32 ng/mK 1.6 ng/mK 8 ng/ml was incubated for 1 hour at 37 Torr, and the liquid in the well was discarded and washed 3 times with PBST washing buffer.
  • Biotin-labeled antibody Prepare /ml biotin-labeled antibody in PBS buffer, add 100 ⁇ l per well, incubate for 37 hours at 37 °C, discard the liquid in the well, and wash 3 times with PBST wash buffer.
  • Adding reinforcement solution Add 200ul of enhancement solution per well, and use time-resolved detection of fluorescence signal.
  • the specific parameters are: excitation wavelength 340nm, emission wavelength 615nm, delay time 250 ⁇ .
  • the concentration of carcinoembryonic antigen is linearly related to the fluorescence intensity.
  • Example 3 Example 3:
  • the invention compares the recovery rate of different specimens with the commercially available time-resolved carcinoembryonic antigen detection kit.
  • Blocking Prepare 2% bovine serum albumin with 0.05mol/L carbonate buffer, add 300ul per well, incubate for 1 hour at 37"C, remove the liquid in the well, wash the detergent buffer with PBST Wash 3 times.
  • Enhancement liquid Add 200ul of enhancement solution per well, and use time-resolved to detect fluorescence signal. The specific parameters are: excitation wavelength 340nm, emission wavelength 615nm, delay time 250 ⁇ .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种稀土纳米材料标记生物分子、其标记方法及稀土纳米材料溶解增强时间分辨荧光免疫分析方法,采用稀土纳米材料作为标记物,其性质稳定,比表面积大,可修饰性强,成本低廉,且每个纳米晶含有数千个镧系离子,极大地提高了稀土离子的标记比率,受外源稀土离子的影响小,且不受抗凝剂的影响,适用性广;在稀土纳米材料作为标记物的免疫复合物形成后,加入增强液,使稀土纳米材料溶解成稀土离子,并与增强液中的螯合物形成新的信号分子,产生分子内和分子间能量传递,荧光增强近百万倍,采用时间分辨检测荧光信号,极大提高了检测灵敏度。

Description

说 明 书 一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法 技术领域
本发明涉及一种可用于标记生物分子的稀土纳米材料、 其标记方法 及其介导的荧光免疫分析方法, 具体地说, 涉及一种可用于标记生物分 子的稀土纳米材料、 其标记方法及通过稀土纳米材料溶解增强实现时间 分辨荧光免疫分析的方法。 背景技术
放射免疫分析法(RIA )这一分析技术由于存在放射污染、 半衰期 短、 有效期短等缺陷而即将被淘汰。 酶联免疫分析法(ELISA )的灵敏 度及重复性均不及放射免疫分析法, 其酶活性和显色底物的稳定性有待 提高。 化学发光免疫分析法( CLIA )因发光时间短而不能重复检测, 易 受环境物盾干扰, 且试剂价格昂贵, 无法广泛使用。
相比之下, 时间分辨免疫分析 ( TRFIA )的灵敏度高, 本底低, 稳 定性好, 线性范围宽, 是目前公认的最有 前途的非放射性免疫标记 技术, 近年来开发出的分析系统如下:
解离增强镧系时间分辨免疫分析法(DELFIA ) —―应用最广, 由 示踪剂、 双功能螯合剂和增强剂组成。 荧光增强是其具有极高灵敏度的 重要因素之一。 镧系离子通过与增强液形成微嚢, 可有效防止水分子淬 灭, 从而极大增强体系荧光。 此外, 双功能螯合剂也是关键因素之一, 铕离子作为首选标记物与蛋白质的标记比率在 10到 20之间。 但双功能 螯合剂作为标记物易受外界物质如: 外源性稀土离子, 以及乙二胺四乙 酸、肝素等抗凝剂的干扰,检测的标本必须为血清, 操作要求十分严格, 且价格不菲。
固相时间分辨免疫分析 ( FIAgen ) —―以双功能稀土螯合物作为标 记物进行时间分辨免疫分析。 其优点是不需要加入增强液就可直接检测 荧光, 但检测灵敏度远不及 DELFIA。
此外, 包覆有稀土螯合物的荧光纳米颗粒也被应用于时间分辨免疫 分析中, 每个纳米颗粒中含有数千个稀土螯合物, 极大地提高了检测灵 敏度, 但存在稀土螯合物易泄漏、 易受光漂白等不稳定因素影响。
应该说, 稀土纳米材料具有性质稳定, 比表面积大, 可修饰性强, 合成成本低廉等优点, 是目前普遍看好的新一代荧光生物标记材料。 但 稀土纳米材料的发光是通过稀土离子 4f组态电子间跃迁吸收敏化发光, 摩尔消光系数小, 发光弱。 以稀土纳米材料作为标记物的直接检测, 灵 敏度较低而限制了其应用。 发明内容
本发明的目的在于克服上述现有技术的不足, 提供一种可用于时间 分辨荧光免疫分析、 高灵敏度的稀土纳米材料标记生物分子方法。 本发明的另一个目的在于提供一种通过稀土纳米材料溶解增强的时 间分辨荧光免疫分析方法。
本发明提供如下的技术方案:
一种用于时间分辨荧光免疫分析方法(TRFIA )的稀土纳米材料标 记生物分子, 所述生物分子包括生物素、 亲和素、 抗体或核酸适配体; 所述稀土纳米材料含有铕、 钐、 铽、 镝中的一种或多种。
根据本发明, 通过化学配位法或物理吸附法标记所述生物分子。 根据本发明, 所述稀土纳米材料选自含有铕、 钐、 铽、 镝中的一种 或多种的稀土氟化物、 氧化物、 氣氧化物、 氯氧化物、 稀土磷酸盐、 硼 酸盐、 硅酸盐、 钼酸盐、 钨酸盐、 碳酸盐纳米晶。
优选所述稀土纳米材料为 XYF4纳米晶, 所述 X选自锂、 钠、 钾等 中的一种或多种, 所述 Y选自铕、 钐、 铽、 镝中的一种或多种。
本发明还提供如下技术方案:
一种用于时间分辨荧光免疫分析的稀土纳米材料标记生物分子的标 记方法,所述稀土纳米材料通过化学配位法或物理吸附法标记生物分子, 所述生物分子包括生物素、 亲和素、 抗体或核酸适配体。
根据本发明, 所述稀土纳米材料含有铕、 钐、 铽、 镝中的一种或多 种。
根据本发明, 所述稀土纳米材料选自含有铕、 钐、 铽、 镝中的一种 或多种的稀土氟化物、 氧化物、 氟氧化物、 氯氧化物、 稀土磷酸盐、 硼 酸盐、 硅酸盐、 钼酸盐、 钨酸盐、 碳酸盐纳米晶。 根据本发明, 所述稀土纳米材料优选为 XYF4纳米晶, 所述 X选自 锂、 钠、 钾等中的一种或多种, 所述 Y选自铕、 钐、 铽、 镝中的一种或 多种。 本发明还提供如下技术方案:
一种稀土纳米材料通过溶解增强的时间分辨荧光免疫分析方法, 其 特征在于, 所述方法采用了上述用于时间分辨荧光免疫分析的稀土纳米 材料标记生物分子。
根据本发明, 所述方法包括: 加入上述用于时间分辨荧光免疫分析 的稀土纳米材料标记生物分子, 形成免疫复合物后, 加入增强液, 使稀 土纳米材料溶解并以稀土离子形式存在, 与增强液中的螯合物形成具有 强荧光信号的分子(稀土纳米胶束), 采用时间分辨检测荧光信号。
根据本发明, 所述方法的具体步骤如下:
1 )将捕获抗体或抗原以物理吸附或共价偶联的方式固定在微孔板 上;
2 )封闭液封闭;
3 )加入含有待测抗原或待测抗体的样品;
4 )加入上述用于时间分辨荧光免疫分析的稀土纳米材料标记生物分 子, 形成免疫复合物;
5 )加入增强液, 采用时间分辨检测荧光信号。
根据本发明, 当加入待测抗原时, 所述生物分子选自生物素、 亲和 素、 抗体或核酸适配体。 根据本发明, 当加入待测抗体时, 所述生物分子选自生物素、 亲和 素或核酸适配体。
根据本发明, 所述的步骤 4 )可以是:
加入上述用于时间分辨荧光免疫分析的稀土纳米材料标记抗体, 形 成免疫复合物。
根据本发明, 所述的步驟 4 )还可以分解为以下步骤:
( a )加入生物素标记的抗体;
( b )加入上述的用于时间分辨荧光免疫分析的稀土纳米材料标记亲 和素, 形成免疫复合物。
根据本发明, 所述的步骤 4 )还可以分解为以下步骤:
( a, )加入生物素标记的抗体;
( b,)加入亲和素;
( c, )加入上述的用于时间分辨荧光免疫分析的稀土纳米材料标记 生物素, 形成免疫复合物。
根据本发明, 所述的稀土纳米材料含有铕、 钐、 铽、 镝中的一种或 多种。
根据本发明, 所述稀土纳米材料选自含有铕、 钐、 铽、 镝中的一种 或多种的稀土氟化物、 氧化物、 氟氧化物、 氯氧化物、 稀土磷酸盐、 硼 酸盐、 硅酸盐、 钼酸盐、 钨酸盐、 碳酸盐纳米晶。
根据本发明, 所述稀土纳米材料优选为 XYF4纳米晶, 所述 X选自 锂、 钠、 钾等中的一种或多种, 所述 Y选自铕、 钐、 铽、 镝四种元素中 的一种或多种。 根据本发明, 所述的稀土纳米材料与生物素、 亲和素、 抗体或核酸 适配体的标记方法为: 化学配位或物理吸附。
根据本发明, 所述封闭液为本领域的常规溶液, 可以通过商购或自 行合成。 所述封闭液可以为牛血清蛋白(BSA )封闭液或乙醇 纣闭液。
根据本发明, 所述的增强液可以为本领域常规的增强液, 但优选主 要由緩冲液、 β-二酮体, 非离子表面活性剂和协同剂组成。
根据本发明, 所述緩冲液选自 Triton X-100; 所述 β-二酮体选自萘 甲酸三氣丙酮, 所述非离子表面活性剂选自 辛基氧膦, 所述协同剂 选自水。
根据本发明, 所述增强液主要由 Triton Χ-100、 萘甲酸三氣丙酮、 辛基氧膦和蒸馏水组成。
根据本发明, 其检测模式包括夹心法检测、 直接法检测或竟争法检 测。
本发明中,所述 XYF4纳米晶,具体如 NaEuF4纳米晶可以用本领域 技术人员已知的方法制备, 例如, 可通过如下方法制备:
1 )称取 Eu(Ac)3, 加入到油酸和十八烯的混合溶剂中, 在氮气氛中 160Ό搅拌溶解, 为 A液;
2 )称取 NH4F和 NaOH, 加入甲醇溶解, 为 B液;
3 ) A液降至室温后, 用滴管将 B液緩' 滴加入 A液中, 排净空气, 在氮气氛中升温至 搅袢, 除去甲醇;
4 )升温至 120*C, 搅袢反应, 除去残留水分;
5 )升温至 300 , 搅袢反应; 6 )冷却至室温后, 加入无水乙醇, 析出纳米晶;
7 )任选地, 离心, 用无水乙醇洗涤; 优选地, 洗涤三次。
其他 XYF4纳米晶的制备方法可以参考上述方法进行。
根据本发明, 可以用化学配位法标记所述生物分子, 所述化学配位 法为本领域技术人员已知的方法, 以 NaEuF4纳米晶化学配位法标记生 物素为例, 方法如下:
1 )称取油溶性 NaEuF4纳米晶溶于盐酸乙醇溶液中, 超声, 离心收 集纳米颗粒, 再用无水乙醇洗涤, 除去纳米晶表面的油酸, 加入去离子 水溶解, 得水溶性纳米晶;
2 )取步骤 1 )合成的水溶性纳米晶, 加入生物素和氨水, 超声, 用 去离子水离心洗涤, 最后溶于去离子水中即可。
根据本发明, 可以用物理吸附法标记所述生物分子, 所述物理吸附 法为本领域技术人员已知的方法, 以 NaEuF4纳米晶物理吸附法标记抗 体为例, 方法如下:
1 )称取油溶性 NaEuF4纳米晶溶于盐酸乙醇溶液中, 超声, 离心收 集纳米颗粒, 再用无水乙醇洗涤, 除去纳米晶表面的油酸, 加入去离子 水溶解, 得水溶性纳米晶;
2 )取步骤 1 )合成的水溶性纳米晶,加入抗体,加入磷酸盐緩冲液, 室温震荡, 离心收集纳米颗粒, 水洗涤, 溶于緩冲液中即可。 本发明的有益效果在于: 1 )采用稀土纳米材料作为标记物标记生物分子, 由于所述稀土纳米 材料的性质稳定、 比表面积大、 可修饰性强、 成本低廉且每个纳米颗粒 含有数千个稀土离子, 极大提高了稀土离子的标记比率, 受外源稀土离 子的影响小, 且不受抗凝剂的影响, 适用性更广。
2 )在含有稀土纳米材料标记生物分子形成免疫复合物后,加入增强 液, 使稀土纳米材料溶解成稀土离子, 并与增强液中的螯合物形成新的 信号分子, 产生分子内和分子间能量传递, 荧光增强近百万倍, 极大地 提高了检测灵敏度, 具体地, 本发明的检测灵敏度比市售时间分辨癌胚 抗原检测试剂盒高 900倍。
3 )如图 1的对比所示, 通过本发明的方法, 由于单个稀土纳米颗粒 含有数千个稀土离子, 极大地提高了稀土离子的标记比率, 从而显著增 强荧光信号与检测灵敏度。 附图说明
图 1: ( a )传统的解离增强镧系时间分辨免疫分析法(DELFIA ) 原理示意图。
其中显示, 采用双抗夹心法用 (a )稀土螯合物或(b )稀土纳米材 料对待测抗原或待测抗体进行标记, 待形成免疫复合物后加入增强液, 利用时间分辨检测荧光信号。 由图 1可见, 单个稀土纳米颗粒含有数千个稀土离子, 极大地提高 了稀土离子的标记比率, 加入增强液后形成大量强荧光信号分子, 从而 显著增强荧光信号与检测灵敏度。
图 2: NaEuF4纳米晶透射电镜图, 仪器型号为 JEM-2010, 厂家为 JEOL。
图 3: NaEuF4纳米晶粉末衍射图, 仪器型号为 MiniFlex2, 厂家为 Rigaku, 铜耙辐射波长为 λ = 0.154187 nm。
图 4: 本发明双抗夹心法检测癌胚抗原标准曲线。
图 5: 市售时间分辨癌胚抗原检测试剂盒检测癌胚抗原标准曲线。 具体实施方式
以下结合附图和实施例对本发明作进一步的详细说明, 但本发明的 保护范围不仅限于以下实施例。 根据本发明公开的内容, 本领域技术人 员将认识到在不脱离本发明技术方案所给出的技术特征和范围的情况 下, 对以上所述实施例做出许多变化和修改都属于本发明的保护范围。 实施例
实施例 1:
一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法, 具体步骤 如下:
1.合成 NaEuF4纳米晶 1 )称取 lmmol Eu(Ac)3, 加入到 6ml油酸和 15ml十八烯混合溶剂 中, 排净空气, 在氮气氛中 160 C搅袢 30min溶解, 为 A液;
2 )称取 150mg NH4F和 lOOmg NaOH, 加入 10ml曱醇溶解, 为 B 液;
3 ) A液降至室温后, 用滴管将 B液緩' ϋ滴加入 A液中, 排净空气, 在氮气氛中升温至 60*Ό, 搅拌 30min, 除去曱醇;
4 )升温至 120Ό , 搅拌反应 lOmin, 除去残留水分;
5 )升温至 300Ό, 搅拌反应 0.5h;
6 )冷却至室温后, 加入 2倍体积的无水乙醇, 析出纳米晶;
7 ) 离心, 用无水乙醇洗涤纳米晶三次, 备用。
图 2和图 3分别给出了合成的 NaEuF4纳米晶的透射电镜图和粉末 衍射图。
2.NaEuF4纳米晶标记生物素或抗体
A、 NaEuF4纳米晶化学配位法标记生物素
1 )称取步骤 1合成的 NaEuF4纳米晶 20mg溶于 15ml, Hl.O的盐 酸乙醇溶液中, 超声 30min, 离心收集纳米颗粒, 再用无水乙醇洗涤三 次, 除去纳米晶表面的油酸, 加入 2ml去离子水溶解, 为 10mg/ml水溶 性纳米晶;
2 )在步骤 1 )中加入 lmmol的生物素和 2滴氨水, 超声 20min, 用 去离子水离心洗涤三次, 最后溶于 lml去离子水中备用。
B、 NaEuF4纳米晶物理吸附法标记抗体: 取步骤 A-1 )合成的水溶 性纳米晶 lml, 加入 ΙΟΟμ^抗体, 加入 ΙΟΟμΙ, ρΗ8.0磷酸盐緩冲液, 室 温震荡 lh, 离心收集纳米颗粒, 水洗涤三次, 溶于 pH8.0的緩冲液中备 用。
3.配制增强液
称取 lg Triton X-100, 26.6mg萘甲酰三氣丙酮, 193mg ^JE辛基氧 膦, 加入蒸镏水定容至 1L, 用稀 HC1调节 pH至 2.0, 备用。
4. NaEuF4纳米晶双抗夹心法检测癌胚抗原
1 ) 包被: 用 0.05mol/L的碳酸盐緩冲液将癌胚抗原的抗体稀释至 10ug/ml, 在 96孔聚苯乙烯板中, 每孔加入 ΙΟΟμΙ, 37"Ό孵育 1小时, 弃去孔内液体, 用 PBST洗、涤緩冲液洗 3次。
2 )封闭: 用 0.05mol/L的碳酸盐緩冲液配制 2%的牛血清白蛋白, 每孔加入 300ul, 37Ό孵育 1小时,去孔内液体, 用 PBST洗涤緩冲液洗 3次。
3 )加样: 用 PBS緩冲液配制 0.00256-1000ng/ml的癌胚抗原系列标 准溶液, 使其浓度分别为: 0ng/ml、 0.00256ng/mK 0.064ng/mK
0.0128ng/mK 0.32ng/mK 1.6ng/mK 8ng/ml的标准品, 37\:孵育 1小时, 弃去孔内液体, 用 PBST洗'涤緩冲液洗 3次。
4 )加 NaEuF4纳米晶标记的抗体: 用 PBS緩冲液配制 g/ml的 NaEuF4纳米晶标记的抗体(上述步骤 2中制备的), 每孔加入 ΙΟΟμΙ, 37Ό孵育 1小时, 弃去孔内液体, 用 PBST洗'涤緩冲液洗 6次。
5 )加增强液:每孔加入 200μ1增强液,采用时间分辨检测荧光信号, 具体参数为: 激发波长 340nm, 发射波长 615nm, 延迟时间 250μβ。 6 )绘制标准曲线: 以癌胚抗原标准溶液浓度为横坐标, 以每一浓度 标准溶液的对应的荧光强度为纵坐标, 绘制标准曲线, 见图 4, 在
0.00256-8ng/ml范围内, 癌胚抗原的浓度与荧光强度成线性相关,
y=480.87x+425, R=0.9987, 以空白平均值加 3倍 SD计, 最低检测限为 0.1pg/mle
7 )样品的测定: 在步骤 3 )加入 ΙΟΟμΙ待测样品, 其他步骤同上, 将待测样品的荧光强度带入标准曲线方程, 求得相应的浓度值。
8 )所述的步骤 4 )还可以这样实现:
( 1 )加生物素标记的抗体: 用 PBS緩冲液配制 /ml的生物素标 记的抗体, 每孔加入 100μ1, 37"Ό孵育 1小时, 弃去孔内液体, 用 PBST 洗、涤緩冲液洗 3次;
( 2 )加亲和素:用 PBS緩冲液配制 5μ^ιη1的亲和素,每孔加入 ΙΟΟμΙ, 37*Ό孵育 0.5小时, 弃去孔内液体, 用 PBST洗涤緩冲液洗 3次;
( 3 )加 NaEuF4纳米晶标记的生物素: 用 PBS緩冲液配制 ΙΟμ^ιηΙ 的 NaEuF4纳米晶标记的生物素(上述步骤 2中制备的),每孔加入 ΙΟΟμΙ, 37Ό孵育 0.5小时, 弃去孔内液体, 用 PBST洗涤緩冲液洗 6次。 实施例 2: 本发明与市售时间分辨癌胚抗原检测试剂盒比较
1 ) 包被: 用 0.05mol/L的碳酸盐緩冲液将癌胚抗原的抗体稀释至
10ug/ml, 在 96孔聚苯乙烯板中, 每孔加入 ΙΟΟμΙ, 37Ό孵育 1小时, 弃去孔内液体, 用 PBST洗涤緩冲液洗 3次。 2 )封闭: 用 0.05mol/L的碳酸盐緩冲液配制 2%的牛血清白蛋白, 每孔加入 300ul, 37"C孵育 1小时,去孔内液体, 用 PBST洗涤緩冲液洗 3次。
3 )加样: 用 PBS緩冲液配制 0.00256-1000ng/ml的癌胚抗原系列标 准溶液, 使其浓度分别为: 0ng/ml、 0.00256ng/mK 0.064ng/mK
0.0128ng/mK 0.32ng/mK 1.6ng/mK 8ng/ml的标准溶液, 37Ό孵育 1小 时, 弃去孔内液体, 用 PBST洗涤緩冲液洗 3次。
4 )加生物素标记的抗体: 用 PBS緩冲液配制 /ml的生物素标记 的抗体,每孔加入 100μ1, 37Ό孵育 1小时, 弃去孔内液体, 用 PBST洗 涤緩冲液洗 3次。
5 )加亲和素:用 PBS緩冲液配制 5μ^ιη1的亲和素,每孔加入 ΙΟΟμΙ, 37*Ό孵育 0.5小时, 弃去孔内液体, 用 PBST洗涤緩冲液洗 3次。
6 )加 NaEuF4纳米晶标记的生物素: 用 PBS緩冲液配制 ΙΟμ^ιηΙ 的 NaEuF4纳米晶标记的生物素(上述实施例 1的步骤 2中制备的), 每孔加入 ΙΟΟμΙ, 37 C孵育 0.5小时, 弃去孔内液体, 用 PBST洗'涤緩冲 液洗 6次。
7 )加增强液:每孔加入 200ul增强液,采用时间分辨检测荧光信号, 具体参数为: 激发波长 340nm, 发射波长 615nm, 延迟时间 250μβ。
8 )绘制标准曲线: 以癌胚抗原标准溶液浓度为横坐标, 以每一浓度 标准溶液的对应的荧光强度为纵坐标, 绘制标准曲线, 见图 4, 在
0.00256-8ng/ml范围内, 癌胚抗原的浓度与荧光强度成线性相关, y=480.87x+425, R=0.9987, 以空白平均值加 3倍标准差计, 最低检测限 为 0.1pg/ml.
9 )时间分辨癌胚抗原检测试剂盒测定癌胚抗原: 按说明书操作, 绘 制标准曲线, 见图 5, 在 0.1-800ng/ml范围内, 癌胚抗原的浓度与荧光 强度成线性相关, y = 12.732x + 223.98, R = 0.9989, 以空白平均值加 3 倍标准差计,最低检测限为 90pg/ml,本发明的检测灵敏度比市售时间分 辨癌胚抗原检测试剂盒高 900倍。 实施例 3:
本发明与市售时间分辨癌胚抗原检测试剂盒测定不同标本的回收率 比较
1 ) 包被: 用 0.05mol/L的碳酸盐緩冲液将癌胚抗原的抗体稀释至 10ug/ml, 在 96孔聚苯乙烯板中, 每孔加入 ΙΟΟμΙ, 37Ό孵育 1小时, 弃去孔内液体, 用 PBST洗、涤緩冲液洗 3次。
2 )封闭: 用 0.05mol/L的碳酸盐緩冲液配制 2%的牛血清白蛋白, 每孔加入 300ul, 37"C孵育 1小时,去孔内液体, 用 PBST洗'涤緩冲液洗 3次。
3 )加样: 用 PBS緩冲液配制 0.00256-1000ng/ml的癌胚抗原系列标 准溶液, 使其浓度分别为: 0ng/ml、 0.00256ng/mK 0.064ng/mK
0.0128ng/mK 0.32ng/mK 1.6ng/mK 8ng/ml的标准品, 37*C孵育 1小时, 弃去孔内液体, 用 PBST洗涤緩冲液洗 3次。 4 )加 NaEuF4纳米晶标记的抗体: 用 PBS緩沖液配制 g/ml的生 NaEuF4纳米晶标记的抗体 (上述实施例 1的步骤 2中制备的),每孔加 入 ΙΟΟμΙ, 37 孵育 1小时,弃去孔内液体,用 PBST洗涤緩冲液洗 6次。
5 )加增强液:每孔加入 200ul增强液,采用时间分辨检测荧光信号, 具体参数为: 激发波长 340nm, 发射波长 615nm, 延迟时间 250μβ。
6 )绘制标准曲线: 以癌胚抗原标准溶液浓度为横坐标, 以每一浓度 标准溶液的对应的荧光强度为纵坐标,绘制标准曲线,在 0.00256-8ng/ml 范围内, 癌胚抗原的浓度与荧光强度成线性相关, y=480.87x+425, R=0.9987。
7 )本发明对血清和血浆基盾的回收率测定: 将同一份血清和含有 EDTA抗凝剂的血浆分别分成两份,其中一份加入 2ng/ml的癌胚抗原标 准溶液, 在步骤 3 )加入 ΙΟΟμΙ待测标本, 其他步骤同上,每个标本分别 测定 3次, 将待测样品的荧光强度带入标准曲线方程, 求得相应的浓度 值。
8 )市售时间分辨癌胚抗原检测试剂盒对血清和血浆基盾的回收率测 定: 按说明书操作, 绘制标准曲线, 在 0.1-800ng/ml范围内, 癌胚抗原 的浓度与荧光强度成线性相关, y = 12.732x + 223.98, R = 0.9989, 血清 和血浆基质的回收率测定同步骤 7 ) 。
9 )结论: 由表 1可知, 本发明和市售时间分辨癌胚抗原检测试剂盒 对血清基质的回收率都在 95%以上, 而对含 EDTA抗凝剂的血浆基质, 回收率分别为 95.2%和 85%, 说明以螯合物标记的市售时间分辨癌胚抗 原检测试剂盒对含 EDTA抗凝剂的标 在负干扰, 而本发明无干扰, 适用性更广。 表 1本发明与市售时间分辨癌胚抗原检测试剂盒测定不同标本回收率的 比较
Figure imgf000018_0001

Claims

权利 要求
1. 一种用于时间分辨荧光免疫分析的稀土纳米材料标记生物分子, 所述生物分子包括生物素、 亲和素、 抗体或核酸适配体。
优选地, 所述稀土纳米材料通过化学配位法或物理吸附法标记所述 生物分子。
2.根据权利要求 1所述的稀土纳米材料标记生物分子, 其特征在于, 所述稀土纳米材料含有铕、 钐、 铽、 镝四种元素中的一种或多种; 优选 地, 所述稀土纳米材料选自含有铕、 钐、 铽、 镝中的一种或多种的稀土 氣化物、 氧化物、 氟氧化物、 氯氧化物、 稀土磷酸盐、 硼酸盐、 硅酸盐、 钼酸盐、钨酸盐、碳酸盐纳米晶; 更优选地, 所述稀土纳米材料为 XYF4 纳米晶, 所述 X选自锂、钠、钟等中的一种或多种, 所述 Y选自铕、钐、 铽、 镝四种元素中的一种或多种。
3.—种权利要求 1或 2所述的用于时间分辨荧光免疫分析的稀土纳米 材料标记生物分子的标记方法, 其通过化学配位法或物理吸附法用所述 稀土纳米材料标记所述生物分子, 所述生物分子包括生物素、 亲和素、 抗体或核酸适配体。
4.一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法 ,所述方法 料标记生物分子。
5.根据权利要求 4所述的方法,其特征在于,所述方法包括:加入上 述用于时间分辨荧光免疫分析的稀土纳米材料标记生物分子, 形成免疫 复合物后, 加入增强液, 使稀土纳米材料溶解成稀土离子, 并与增强液 中的螯合物形成具有强荧光信号的分子, 采用时间分辨检测荧光信号。
6.根据权利要求 5所述的方法,其特征在于,所述方法的具体步骤如 下:
1 )将捕获抗体或抗原以物理吸附或共价偶联的方式固定在微孔板 上;
2 )封闭液封闭;
3 )加入含有待测抗原或待测抗体的样品;
4 )加入上述用于时间分辨荧光免疫分析的稀土纳米材料标记生物分 子, 形成免疫复合物;
5 )加入增强液, 采用时间分辨检测荧光信号。
优选地, 当加入待测抗原时, 所述生物分子选自生物素、 亲和素、 抗体或核酸适配体。
优选地, 当加入待测抗体时, 所述生物分子选自生物素、 亲和素或 核酸适配体。
7.根据权利要求 6所述的方法, 所述的步骤 4 )为:
加入上述用于时间分辨荧光免疫分析的稀土纳米材料标记抗体, 形 成免疫复合物。
8.根据权利要求 6所述的方法, 所述的步骤 4 )还可以分解为以下步 ( a )加入生物素标记的抗体; ( b )加入上述的用于时间分辨荧光免疫分析的稀土纳米材料标记亲 和素, 形成免疫复合物。
更优选地, 所述的步骤 4 )还可以分解为以下步骤:
( a, )加入生物素标记的抗体;
( b,)加入亲和素;
( c, )加入上述的用于时间分辨荧光免疫分析的稀土纳米材料标记 生物素, 形成免疫复合物。
9.根据权利要求 5至 8中任一项所述的方法,所述的增强液主要由緩 冲液、 β-二酮体, 非离子表面活性剂和协同剂组成。
10.根据权利要求 4至 9中任一项所述的方法, 其检测模式包括夹心 法检测、 直接法检测或竟争法检测。
PCT/CN2014/085075 2014-03-27 2014-08-22 一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法 WO2015143830A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017501447A JP6563475B2 (ja) 2014-03-27 2014-08-22 希土ナノマテリアル溶解・増強時間分解蛍光免疫測定法
EP14887401.9A EP3124971A4 (en) 2014-03-27 2014-08-22 Dissolution enhancing time-resolved fluorescence immunoassay for rare earth nano material
US15/128,803 US10520495B2 (en) 2014-03-27 2014-08-22 Dissolution-enhanced time-resolved fluoroimmunoassay based on rare earth nanomaterial

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410118864.3A CN103969432B (zh) 2014-03-27 2014-03-27 一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法
CN201410118864.3 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015143830A1 true WO2015143830A1 (zh) 2015-10-01

Family

ID=51239182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085075 WO2015143830A1 (zh) 2014-03-27 2014-08-22 一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法

Country Status (5)

Country Link
US (1) US10520495B2 (zh)
EP (1) EP3124971A4 (zh)
JP (1) JP6563475B2 (zh)
CN (1) CN103969432B (zh)
WO (1) WO2015143830A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115326770A (zh) * 2022-09-01 2022-11-11 福州大学 一种肾可清除的时间分辨荧光稀土探针及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969432B (zh) * 2014-03-27 2016-02-17 中国科学院福建物质结构研究所 一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法
CN105372418A (zh) * 2014-08-25 2016-03-02 常州博闻迪医药科技有限公司 一种信号放大免疫检测方法
CN107012210A (zh) * 2017-03-22 2017-08-04 中国科学院福建物质结构研究所 一种基于稀土纳米材料荧光放大的microRNA检测方法
WO2020047735A1 (zh) * 2018-09-04 2020-03-12 广州源起健康科技有限公司 一种基于磁微粒的时间分辨荧光免疫检测方法
CN112034160B (zh) * 2019-06-03 2022-10-11 中国科学院福建物质结构研究所 一种基于稀土纳米材料荧光放大的循环肿瘤细胞检测试剂盒及其应用
CN110180031A (zh) * 2019-06-05 2019-08-30 上海纳米技术及应用国家工程研究中心有限公司 一种稀土席夫碱类发光材料用于标记可降解椎间融合器的制备方法
CN110286224B (zh) * 2019-06-06 2022-09-13 江苏大学 一种基于上转换-金纳米-磁性纳米特异性体系的茶叶中铅含量检测方法
KR102464243B1 (ko) * 2020-04-01 2022-11-08 프리시젼바이오 주식회사 외상성 뇌손상 바이오마커 검출용 시분해 형광분석 측방유동 분석장치 및 이를 이용한 외상성 뇌손상 바이오마커 측정방법
CN114675026A (zh) * 2022-04-13 2022-06-28 复旦大学 一种溶解增强长余辉发光检测方法
CN115097117A (zh) * 2022-06-28 2022-09-23 四川大学 基于铽离子荧光核酸探针及汞离子均相免标记检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236020A (zh) * 2010-04-20 2011-11-09 上海新波生物技术有限公司 丙型肝炎病毒抗体时间分辨免疫荧光分析法及试剂盒
CN102305854A (zh) * 2011-07-20 2012-01-04 汤凌霄 一种超灵敏、定量免疫层析装置及检测方法
CN102604637A (zh) * 2012-02-10 2012-07-25 中国科学院福建物质结构研究所 生物素修饰稀土掺杂无机荧光纳米颗粒的制备方法
CN103224787A (zh) * 2013-04-19 2013-07-31 中国科学院福建物质结构研究所 稀土掺杂碱土金属氟化物纳米材料及其制备与应用
CN103969432A (zh) * 2014-03-27 2014-08-06 中国科学院福建物质结构研究所 一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE425439B (sv) * 1981-04-30 1982-09-27 Wallac Oy Immunologisk analys med lantanidkelatkomplex som markor
CA1340527C (en) * 1988-05-31 1999-05-04 Lidia Vallarino Macrocyclic complexes of yttrium, the lanthanides and the actinides having peripheral coupling functionalities
US5696240A (en) * 1991-03-15 1997-12-09 Vallarino; Lidia M. Macrocyclic complexes of yttrium, the lanthanides and the actinides having peripheral coupling functionalities
US6030840A (en) * 1998-06-15 2000-02-29 Nen Life Sciences, Inc. Neutral enhancement of lanthanides for time resolved fluorescence
JP2004279429A (ja) * 1999-09-29 2004-10-07 Japan Science & Technology Agency 高感度イムノアッセイ法
US7211440B2 (en) * 2002-03-08 2007-05-01 Wallac Oy Dissociative fluorescence enhancement assay
WO2004099383A2 (en) * 2003-05-02 2004-11-18 Access Bio, Inc. Chromatographic assay system
DE112005002567T5 (de) * 2004-10-19 2007-11-22 Wallac Oy Eine neue Sonde und deren Verwendung in Bioaffinitäts-Analysen
US8216856B2 (en) * 2006-08-18 2012-07-10 Abacus Diagnostica Oy Luminescent lanthanide labelling reagents and their use
US20110059467A1 (en) * 2007-06-26 2011-03-10 Massachusetts Institute Of Technology Controlled modification of semiconductor nanocrystals
CN102140345B (zh) * 2010-02-03 2014-07-09 中国科学院福建物质结构研究所 一种用于时间分辨多色荧光标记的稀土掺杂氟化钆纳米发光材料及其制备方法
US20120225491A1 (en) * 2010-12-30 2012-09-06 Ayal Ram Portable detection devices and methods for detection of biomarkers and other analytes
CN103308489B (zh) * 2012-01-02 2016-05-04 何爱民 利用时间分辨上转换发光技术的侧向流动免疫测定法
CN102735845A (zh) * 2012-06-12 2012-10-17 上海沪晶生物科技有限公司 一种同步检测游离kappa轻链和游离lambda轻链浓度的新型检测方法及试剂盒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236020A (zh) * 2010-04-20 2011-11-09 上海新波生物技术有限公司 丙型肝炎病毒抗体时间分辨免疫荧光分析法及试剂盒
CN102305854A (zh) * 2011-07-20 2012-01-04 汤凌霄 一种超灵敏、定量免疫层析装置及检测方法
CN102604637A (zh) * 2012-02-10 2012-07-25 中国科学院福建物质结构研究所 生物素修饰稀土掺杂无机荧光纳米颗粒的制备方法
CN103224787A (zh) * 2013-04-19 2013-07-31 中国科学院福建物质结构研究所 稀土掺杂碱土金属氟化物纳米材料及其制备与应用
CN103969432A (zh) * 2014-03-27 2014-08-06 中国科学院福建物质结构研究所 一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NICHKOVA, M. ET AL.: "Microarray Immunoassay for Phenoxybenzoic Acid Using Polymer Encapsulated Eu:Gd203 Nanoparticles as Fluorescent Labels", ANALYTICAL CHEMISTRY, vol. 77, no. 21, 1 November 2005 (2005-11-01), pages 6864 - 6873, XP055225252, ISSN: 0003-2700 *
See also references of EP3124971A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115326770A (zh) * 2022-09-01 2022-11-11 福州大学 一种肾可清除的时间分辨荧光稀土探针及其制备方法

Also Published As

Publication number Publication date
EP3124971A1 (en) 2017-02-01
CN103969432A (zh) 2014-08-06
JP2017509902A (ja) 2017-04-06
US20170108491A1 (en) 2017-04-20
US10520495B2 (en) 2019-12-31
JP6563475B2 (ja) 2019-08-21
EP3124971A4 (en) 2017-10-25
CN103969432B (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2015143830A1 (zh) 一种稀土纳米材料溶解增强时间分辨荧光免疫分析方法
CN102680456B (zh) 一种电化学发光免疫测定方法
Tan et al. Development of functionalized fluorescent europium nanoparticles for biolabeling and time-resolved fluorometric applications
Luo et al. Fluorescent silicon nanoparticles-based ratiometric fluorescence immunoassay for sensitive detection of ethyl carbamate in red wine
CN110658177B (zh) 一种苯酚识别sers探针及其制备、应用和基于sers通用超灵敏免疫分析方法
Hagan et al. Lanthanide-based time-resolved luminescence immunoassays
Zhao et al. Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay
Li et al. Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement
Zhou et al. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg 2+ and biothiols in complex matrices
Ye et al. Development of functionalized terbium fluorescent nanoparticles for antibody labeling and time-resolved fluoroimmunoassay application
Matsumoto et al. Simultaneous determination of α-fetoprotein and carcinoembryonic antigen in human serum by time-resolved fluoroimmunoassay
Sun et al. Silver-amplified fluorescence immunoassay via aggregation-induced emission for detection of disease biomarker
Li et al. Gold nanoparticle labeling with tyramide signal amplification for highly sensitive detection of alpha fetoprotein in human serum by ICP-MS
US20140287527A1 (en) Method and apparatus for time-resolved fluorescence immunoassay testing
Yuan et al. A biosensor based on self-clickable AIEgen: a signal amplification strategy for ultrasensitive immunoassays
Zhang et al. Enzyme-free amplified SERS immunoassay for the ultrasensitive detection of disease biomarkers
Ortega et al. Electrochemical immunoassay for the detection of IgM antibodies using polydopamine particles loaded with PbS quantum dots as labels
CN106053802B (zh) 一种肺炎支原体抗体双标记纳米时间分辨荧光免疫层析定量试纸及其制备方法
CN115343484B (zh) 一种超快速与高灵敏检测促甲状腺激素的化学发光免疫分析方法
Zhu et al. Colorimetric and fluorometric dual-channel detection of α-fetoprotein based on the use of ZnS-CdTe hierarchical porous nanospheres
JP2012032263A (ja) 蛍光微粒子含有免疫測定用試薬
CN108872608A (zh) 一种用于检测犬瘟热病毒抗体的时间分辨荧光免疫试剂盒
CN104515855A (zh) 检测Galectin-3的纳米磁珠分选-时间分辨免疫荧光试剂盒
Dong et al. Ultrasensitive Electrochemiluminescent competitive immunoassay for β-Adrenergic agonist salbutamol based on quantum dots and enzymatic amplification
CN115572596B (zh) 一种双通道检测生物标志物的上转换纳米颗粒组及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15128803

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017501447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014887401

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887401

Country of ref document: EP