WO2015141809A1 - 防振装置 - Google Patents

防振装置 Download PDF

Info

Publication number
WO2015141809A1
WO2015141809A1 PCT/JP2015/058373 JP2015058373W WO2015141809A1 WO 2015141809 A1 WO2015141809 A1 WO 2015141809A1 JP 2015058373 W JP2015058373 W JP 2015058373W WO 2015141809 A1 WO2015141809 A1 WO 2015141809A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting bracket
protrusion
vibration
enlarged
recess
Prior art date
Application number
PCT/JP2015/058373
Other languages
English (en)
French (fr)
Inventor
宏和 門脇
Original Assignee
山下ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山下ゴム株式会社 filed Critical 山下ゴム株式会社
Priority to DE112015000248.0T priority Critical patent/DE112015000248T5/de
Priority to CN201580004406.XA priority patent/CN105899838A/zh
Priority to US15/102,942 priority patent/US9926999B2/en
Publication of WO2015141809A1 publication Critical patent/WO2015141809A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • B60K5/1216Resilient supports characterised by the location of the supports relative to the motor or to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3842Method of assembly, production or treatment; Mounting thereof
    • F16F1/3849Mounting brackets therefor, e.g. stamped steel brackets; Restraining links
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3863Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type characterised by the rigid sleeves or pin, e.g. of non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/387Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions

Definitions

  • the present invention relates to a vibration isolator used for an engine mount for automobiles.
  • FIG. 1 An example of a conventional engine mount is shown in FIG.
  • (A) is a front view
  • (B) is a cross section taken along line 13B-13B in (A).
  • the engine mount 110 includes a first mounting bracket 120 to which the engine is mounted, a second mounting bracket 140 to be mounted on the vehicle body, and a vibration-proof elastic body 130 that connects the first mounting bracket 120 and the second mounting bracket 140.
  • the direction in which the engine static load is applied to the first mounting bracket 120 is Z
  • the two orthogonal directions in the plane orthogonal to the first mounting bracket 120 are X and Y, of which X and Y are the mounting axes of the first mounting bracket 120.
  • the direction along is Y.
  • An outer stopper 111 is provided around the first mounting bracket 120 so as to surround the first mounting bracket 120 in a substantially U-shape, and both ends bent toward the second mounting bracket 140 are overlapped with the second mounting bracket 140 so as to be integrated.
  • the stopper 111 is disposed long along the X direction perpendicular to the Y direction.
  • the outer stopper 111 and the first mounting bracket 120 are connected by an X-direction elastic leg 135.
  • the anti-vibration elastic body 130 is made of rubber or the like, and a Y-direction elastic leg 133 that expands in a bifurcated manner in the Y direction and an X-direction elastic leg 135 that expands in the X direction are formed at intervals in the Z direction.
  • the X-direction elastic leg 135 extends in the X direction in a C shape when viewed from the front, the first mounting bracket 120 is integrated at the center, and both ends are side portions of the outer stopper 111. Integrated into the unit.
  • the protrusion 150 which protrudes below from the 1st attachment metal fitting 120 is inserted in the center part of the Y direction elastic leg 133, and is integrated. Both end portions of the Y-direction elastic leg 133 are coupled and integrated with a standing wall portion 141 provided on the second mounting bracket 140.
  • the upright wall portions 141 form a pair facing each other at both ends in the Y direction of the second mounting bracket 140, and are provided to be bent upward integrally with the second mounting bracket 140.
  • a space 134 is formed by being surrounded by the vibration-proof elastic body 130, the second mounting bracket 140 and the outer stopper 111. This space 134 is closed in the X direction at the side of the outer stopper 111 facing in the X direction, and closed in the Y direction by the standing wall 141 in the Y direction.
  • the X-direction spring constant is set by the X-direction elastic leg 135 between the first mounting bracket 120 and the outer stopper 111, and deformation of the first mounting bracket 120 in the X direction is restricted by the outer stopper 111. Can do.
  • the Y-direction elastic leg 133 is compressed between the standing wall 141 and the protrusion 150.
  • the direction spring constant can also be increased to some extent. If this standing wall 141 does not exist, the elastic leg 133 is mainly subjected to shear deformation, and the spring constant in the Y direction is remarkably reduced.
  • the X-direction elastic leg 135 is provided to form the X-direction spring. Therefore, the outer stopper 111 for supporting the X-direction elastic leg 135 is required. Moreover, the outer stopper 111 is indispensable for restricting movement of the first mounting bracket 120 in the X direction. However, when the anti-vibration elastic body 130 is formed, the outer stopper 111 makes it difficult to mold using a mold.
  • the outer stopper 111 is assembled and integrated with the second mounting bracket 140 in advance, and the outer stopper 111 is put into a mold. Further, a space surrounded by the outer stopper 111 and the second mounting bracket 140 (a space including the space 134). ), The first mounting bracket 120 is disposed, and then a predetermined rubber material or the like is injected around the first mounting bracket 120 to integrally form the vibration-proof elastic body 130.
  • the X-direction elastic leg 135 is connected to the outer stopper 111 in the X direction, and the Y-direction elastic leg 133 is connected to the standing wall portion 141 of the second mounting bracket 140 in the Y direction.
  • the space 134 is partially closed in the X direction and the Y direction. For this reason, it cannot be simply punched from one direction, for example, the Y direction, and a complicated split mold must be used, so that molding becomes difficult. Therefore, a structure that can be easily manufactured is desired.
  • the entire apparatus is increased in size and the number of parts is increased. Therefore, it is desirable to omit the outer stopper 111 and at least to prevent the vibration-proof elastic body 130 from being connected even when the outer stopper 111 is provided.
  • the present invention aims to realize such a demand.
  • the invention described in claim 1 includes a first mounting bracket (20) attached to either the vibration source or the vibration receiving side, a second mounting bracket (40) attached to the other, An anti-vibration elastic body (30) for connecting the first mounting bracket (20) and the second mounting bracket (40) is provided,
  • the direction of static load applied to the first mounting bracket (20) is Z, two directions orthogonal to each other in this orthogonal plane are X and Y, and Y is made to coincide with the mounting axis direction of the first mounting bracket (20).
  • the anti-vibration elastic body (30) When In the Y direction, the anti-vibration elastic body (30) includes a pair of elastic legs (33) that expand from the first mounting bracket (20) into a bifurcated shape, The extended end portion of each elastic leg (33) is connected to the standing wall portion (41) formed at the Y direction end portion of the second mounting bracket (40), and the first mounting bracket 20 side of the elastic leg 33 is further connected.
  • the anti-vibration device which is connected to each other, and inserts the protrusion 50 protruding integrally from the first mounting bracket 20 into the connecting portion (32).
  • the protrusion (50) is disposed between the pair of standing wall portions (41),
  • the second mounting bracket (40) includes an X-direction restricting portion (44) that restricts the protrusion (50) from moving in the X direction.
  • the X-direction regulating portion (44) is provided as a pair facing each other in the Z-direction view, and the protrusion (50) in the X-direction view. It is characterized by overlapping.
  • the X direction restricting portion has an enlarged concave portion (44) that bulges outward in the Y direction, and the protruding portion (50) is disposed in the enlarged concave portion (44). It is characterized by being included.
  • a part (32) of the elastic leg (33) is integrally formed around the protrusion (50) in the enlarged recess (44). It is provided in.
  • a spring adjustment recess (53) is provided on the lower surface (52) of the protrusion (50), and the spring adjustment recess (53) is arranged along the Y direction.
  • the spring adjustment recess (53) is filled with a part (32) of the elastic leg (33) while opening to the outer side in the Y direction and the bottom side of the second mounting bracket (40).
  • a spring adjustment part (32a) is provided.
  • the standing wall portion (41) is inclined in the Y-direction cross section, and the Y-direction width of the enlarged concave portion (44) is set to the protrusion.
  • the intrusion side of the portion (50) is widened.
  • the vertical wall portion (41) is vertical in the Y-direction cross section, and the Y-direction width of the enlarged concave portion (44) is Z. It is characterized by being constant in the direction.
  • the X direction restricting portion (44) for restricting the protrusion (50) from moving in the X direction is provided integrally with the second mounting bracket (40)
  • the movement of the first mounting bracket (20) can be restricted.
  • Manufacture is facilitated when the vibroelastic body (30) is formed integrally with the first mounting bracket (20) and the second mounting bracket (40).
  • the X-direction restricting portion (44) is provided integrally with the second mounting bracket (40), the second mounting bracket (40) and the separate outer stopper 111 can be omitted, so the number of parts can be reduced.
  • the apparatus can be downsized and the second mounting bracket (40) can be easily assembled.
  • the X direction restricting portion (44) is provided as a pair facing each other in the Z direction view, and overlaps the protrusion (50) in the X direction view.
  • the movement in the X direction of (50) can be reliably regulated.
  • the X-direction restricting portion (44) forms an enlarged concave portion (44) that swells outward in the X direction, the protrusion (50) contained in the enlarged concave portion (44) The movement can be restricted even if the X / Y direction and the diagonal direction intersecting the X or Y direction are moved.
  • the part (32) of the elastic leg (33) is integrally provided around the protrusion (50) in the enlarged recess (44), the protrusion By the movement of (50), the elastic leg (33) is compressed between the protrusion (50) and the enlarged recess (44) around the protrusion (50). Therefore, since compression deformation is applied, the spring constant in the X direction can be increased.
  • the spring adjustment recess (53) is provided on the lower surface (52) along the Y direction, the spring adjustment recess (53) is opened outward in the Z direction and the Y direction, and the spring adjustment recess is provided.
  • the spring adjustment portion (32a) in which a part of the elastic leg (33) is continuously filled is provided, the free length of the elastic leg (33) becomes longer with respect to vibration in the Z direction.
  • the spring constant can be lowered accordingly.
  • the spring adjustment portion (32a) hardly deforms and thus does not affect the spring constant. For this reason, the spring constants in the X, Y, and Z3 directions can be adjusted with a simple structure in which the spring adjustment recess (53) is provided and the spring adjustment portion (32a) is provided therein.
  • the vertical wall portion (41) is inclined so that the Y-direction width of the enlarged concave portion (44) is widened on the intrusion side of the protrusion (50). 50) makes it easy to move forward and backward in the Z direction between the standing wall portions (41) facing each other.
  • the width of the enlarged concave portion (44) in the Y direction can be made constant in the Z direction. For this reason, even if the protrusion (50) has a simple shape in which the outer peripheral surface facing the standing wall (41) is vertical, the protrusion (50) regardless of the amount of advancement / retraction of the protrusion (50) in the Z direction. Since the distance between the wall and the standing wall portion (41) can be made constant, the movement restriction in the X direction can be made constant.
  • FIG. 8 The same figure as FIG. 8 according to the second embodiment
  • FIG. 8 The same figure as FIG. 8 according to the third embodiment
  • FIG. 1 The same figure as FIG. 1 according to the fourth embodiment
  • FIG. 2 The same figure as FIG. 2 according to the fourth embodiment Figure showing a conventional engine mount
  • the vertical direction in FIGS. 2 and 3 is the vertical direction (Z direction) of the engine mount
  • the orthogonal biaxial directions in the plane perpendicular to the Z direction are the X and Y directions, as shown in FIG.
  • the X direction is the front-rear direction
  • the Y direction is the left-right direction (however, it is arbitrary that the X direction is the left-right direction and the Y direction is the front-rear direction).
  • These up / down / left / right and front / rear directions correspond to the up / down / front / back / left / right directions of the vehicle in the vehicle-mounted state.
  • the Z direction is also a direction in which a stationary load of the engine is applied when the vehicle is mounted.
  • FIG. 1 is a plan view of the engine mount 10
  • FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1
  • FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. .
  • the mount main body 12 corresponds to a portion obtained by removing the outer stopper 11 from the conventional engine mount 10.
  • the engine mount 10 includes a mount body 12.
  • the mount main body 12 is obtained by integrating the first mounting bracket 20, the vibration-proof elastic body 30, and the second mounting bracket 40.
  • the first mounting bracket 20 is a metal or resin member having a rectangular tube shape.
  • an engine (not shown) is mounted on the mount body 12.
  • the static load of the engine is applied to the mount body 12 in the Z direction.
  • the direction in which the bracket is passed into the cylindrical hole 21 is referred to as an attachment direction A (FIGS. 3 and 4). This mounting direction coincides (parallel) with the Y direction.
  • the anti-vibration elastic body 30 is made of an appropriate elastic body such as rubber, and is an elastic member that is the main anti-vibration in the engine mount 10.
  • the anti-vibration elastic body 30 connects the first mounting bracket 20 and the second mounting bracket 40 in an up and down direction by an appropriate method such as vulcanization bonding, and forms a constricted neck portion below the first mounting bracket 20. It continues to the lower elastic leg 33 via the connecting portion 32.
  • the connecting portion 32 is also formed integrally with the upper elastic cover 31.
  • the elastic legs 33 extend in both directions in the Y direction so as to expand downward in the Y direction, and are connected to the standing wall portion 41 of the second mounting bracket 40.
  • the upright wall portion 41 is inclined to oppose so as to open outward greatly toward the both ends in the Y direction, and a lower end portion of the elastic leg 33 is coupled thereto.
  • the upper end portion of the standing wall portion 41 forms an outer flange 47 that is bent substantially horizontally in the Y direction, and a part of the end portion of the elastic leg 33 is also covered thereon.
  • the elastic legs 33 are formed as a pair of opposing ones with a tick hole 34 as a space of the present application interposed therebetween.
  • the straight hole 34 is formed at a position below the protrusion 50, penetrates the lower part of the vibration-proof elastic body 30 in the X direction, and the straight hole 34 is opened in the X direction.
  • a lower stopper 35 projects upward from below in the straight hole 34.
  • the lower stopper 35 is a protrusion that protrudes in a small hill shape toward the center of the protrusion 50, and a part of the bottom 42 protrudes upward, and the periphery thereof is an elastic covering portion that is continuously integrated with the elastic leg 33.
  • the elastic portion covering portion is coupled and integrated with the bottom portion 42 of the second mounting bracket 40 together with the lower end portion of the elastic leg 33.
  • a lower cover 37 is formed continuously and integrally below the elastic legs 33.
  • the lower cover 37 is a covering portion that covers the opposing surface of the standing wall portion 41, the outer flange 47, and the bottom portion 42 (see FIG. 4).
  • FIG. 5 is a perspective view of the first mounting bracket 20, and FIG. 6 is a bottom view of the protrusion 50.
  • the protrusion 50 is a cylindrical protrusion that protrudes continuously and integrally from the center of the lower surface of the first mounting bracket 20, and a spring adjustment recess 53 is formed on the lower surface 52 as a pair on both sides in the Y direction.
  • the spring adjusting recess 53 extends from the radially outer side to the inner side along the Y direction so as to carve the lower surface 52, and is opened radially outward. The lower side is also open.
  • the center side portion of the lower surface 52 has a closed dead end shape.
  • the protrusion 50 is inserted into the connecting portion 32, and the spring adjusting recess 53 is partially filled with the connecting portion 32 to provide a spring adjusting portion 32a (see FIG. 3).
  • the spring adjusting portion 32a is also a part of the connecting portion 32, that is, a part of the elastic leg 33.
  • FIG. 7 is a plan view (viewed in the Z direction) of the second mounting bracket 40.
  • the standing wall portion 41 is formed along the X direction as a pair of wall portions facing each other in the Y direction.
  • An inter-standing wall concave portion 43 is formed so as to be surrounded by the compatible wall portion 41 and the bottom portion 42 and open upward and both sides in the X direction.
  • the intermediate portion in the X direction is enlarged. That is, in the plan view, the intermediate portion in the X direction of the standing wall portion 41 forms an arc-shaped enlarged concave portion 44 that enters outward in the Y direction.
  • the enlarged recess 44 is an example of an X-direction restricting portion in the present application, and a substantially circular enlarged portion 48 is formed between a pair of the enlarged recesses 44 facing in the Y direction.
  • the enlarged portion 48 accommodates a protrusion 50, a straight hole 34, a lower stopper 35, and the like.
  • the protrusion 50 protrudes upward from the standing wall portion 41, but this figure shows a state before the engine static load is applied. 1
  • the mounting bracket 20 and the protrusion 50 move downward, enter the inside of the enlarged recess 44, and overlap the standing wall 41 in the X and Y directions.
  • a part of the elastic leg 33 including the connecting portion 32 together with the protrusion 50 also enters the inside of the enlarged recess 44.
  • FIG. 8 is a view showing a state in which the protrusion 50 has entered the enlarged portion 48, and is a view in which the protrusion 50 is overlapped in the enlarged recess 44 of the second mounting bracket 40 in the state shown in FIG. 7. .
  • the protrusion 50 the portion corresponding to the line 8-8 in FIG. 3 is shown.
  • the respective intervals are different between the upper part and the lower part, and among the maximum widths between the opposing enlarged concave parts 44, If the upper maximum interval between the uppermost portions is W1, and the lower maximum interval between the lowermost portions is W2, the lower maximum interval W2 is smaller than the upper maximum interval W1.
  • a lower interval W3 that is an interval between the lowermost portions in the general portion of the inter-standing wall recess 43 is smaller than the lower maximum interval W2.
  • the magnitude relationship between W1 to W3 is W3 ⁇ W2 ⁇ W1.
  • the overlap mode includes a state in which the interval between the protrusion 50 and the enlarged recess 44 is zero.
  • the elastic member of the connecting portion 32 that is, a part of the elastic leg 33 is compressed by the enlarged recess 44.
  • it compresses in the connection part (namely, minimum width part of the enlarged recessed part 44) with the recessed part 43 between standing walls of the X direction both ends in the enlarged recessed part 44.
  • FIG. Furthermore, if it moves diagonally like the arrow B direction, it will be pressed between the maximum width part and the minimum width part of the expansion recessed part 44, and compression deformation will mainly arise.
  • the operation will be described. 2 and 3, when the first mounting bracket 20 is mounted on the engine, the first mounting bracket 20 and the protrusion 50 sink downward while elastically deforming the elastic leg 33 with a static load of the engine, and the protrusion 50 is an enlarged recess. Enter inside 44.
  • the elastic leg 33 mainly includes shear deformation.
  • the connecting portion 32 also performs elastic deformation mainly including shear deformation.
  • the width of the enlarged recess 44 in the Y direction is made wider on the intrusion side of the projection 50, so that the projection 50 moves forward and backward in the Z direction between the standing walls 41 facing each other. To make it easier.
  • the elastic legs 33 move while elastically deforming between the standing wall portions 41 facing both sides.
  • the elastic legs 33 since the enlarged concave portions 44 of the standing wall portions 41 on both sides form a concave curved surface along the projecting portion 50, the elastic legs 33 mainly have a compressive deformation compressed between the projecting portion 50 and the standing wall portion 41.
  • the spring value in the Y direction can be controlled by performing elastic deformation and increasing the spring constant in the Y direction.
  • the protrusion 50 When vibration is input in the X direction, the protrusion 50 tries to move in the X direction. However, as shown in FIG. 8, the enlarged recess 44 is provided, and the protrusion 50 is inserted into the inside, so that the movement of the protrusion 50 in the X direction is restricted by overlapping the enlargement recess 44. At this time, a part of the elastic leg 33 is formed as a connecting portion 32 around the protruding portion 50, and the elastic member portion of the connecting portion 32 is subjected to compressive deformation between the enlarged recessed portion 44 and the protruding portion 50. For this reason, by adding compressive deformation to the shear deformation, the spring constant in the X direction can be increased, and the first mounting bracket 20 can be reliably prevented from moving in the X direction beyond a predetermined level.
  • the enlarged recess 44 (X direction restricting portion) for restricting the protrusion 50 from moving in the X direction is provided integrally with the second mounting bracket 40, a separate outer stopper 111 (FIG. 13) is provided. Even if not provided, the movement of the first mounting bracket 20 can be regulated. For this reason, the X-direction elastic leg 135 (FIG. 13) connected to the outer stopper 111 is unnecessary, and the vibration-proof elastic body 30 only needs to be connected to the second mounting bracket 40 in the Y direction. Need not be connected to the outer stopper, and the vibration-proof elastic body 30 can be easily manufactured when the first mounting bracket 20 and the second mounting bracket 40 are integrally formed.
  • the anti-vibration elastic body 30 can be integrated with the enlarged concave portion 44 in a state in which the straight hole (space) 34 is opened in the X direction, the mold can be removed only from the X direction, and the mold structure is simplified. .
  • the X-direction restricting portion (44) is provided integrally with the second mounting bracket 40, the outer stopper 111 which is separate from the second mounting bracket 40 can be omitted, so the number of parts can be reduced and the apparatus can be reduced in size. And assembly on the second mounting bracket 40 side is facilitated.
  • the enlarged concave portion 44 is only provided as the X direction restricting portion, the structure is simplified.
  • the enlarged recess 44 is provided integrally with the second mounting bracket 40, the number of parts can be reduced, the apparatus can be downsized, and the assembly on the second mounting bracket 40 side is facilitated.
  • the enlarged recess 44 (X direction restricting portion) is provided as a pair facing each other when viewed in the Z direction, and overlaps the protruding portion 50 when viewed in the Y direction, so that the X direction movement of the protruding portion 50 is ensured. Can be regulated.
  • the elastic leg 33 since a part of the elastic leg 33 is integrally provided as the connecting portion 32 around the protrusion 50 in the enlarged recess 44, the elasticity of the periphery of the protrusion 50 due to the movement of the protrusion 50 is provided. The leg 33 is compressed between the protrusion 50 and the enlarged recess 44. Therefore, since the compression deformation is applied, the spring value can be controlled by increasing the spring constant in the X direction.
  • the elastic legs 33 are pressed against the curved surface having an arc shape in plan view (viewed in the Z direction) of the enlarged recess 44. It is done. As a result, the elastic leg 33 undergoes compressive deformation and shear deformation, and in this case as well, the spring constant can be increased. In addition, since the enlarged recess 44 has an arc shape, it can be reliably compressed and deformed even if the angle in the direction indicated by the arrow B changes.
  • the enlarged concave portion 44 (X-direction restricting portion) forms an enlarged concave portion 44 that swells outward in the Y direction
  • the protrusion 50 contained in the enlarged concave portion 44 intersects the X / Y direction and the X or Y direction. Even if it moves in any of the diagonal directions, the movement can be reliably controlled.
  • a spring adjustment recess 53 is provided on the lower surface 52 of the protrusion 50.
  • the spring adjusting recess 53 is filled with a part of the elastic leg 33 to form the spring adjusting portion 32a, and the spring adjusting recess 53 is formed to be long in the radial direction along the Y direction, and opens radially outward. Therefore, the spring constant for each of the X, Y, and Z directions is changed. That is, in the Z direction, the spring constant is lowered by the amount that the volume of the elastic leg 33 is increased by the spring adjustment portion 32 a in the spring adjustment recess 53.
  • the spring adjustment portion 32a entering the spring adjustment recess 53 of the connecting portion 32 is compressed at the dead end portion of the spring adjustment recess 53 on the center side of the lower surface 52.
  • the spring constant can be increased.
  • the spring adjustment portion 32a entering the spring adjustment recess 53 of the connecting portion 32 is hardly deformed, so that the spring constant is not affected.
  • the spring constant in the X, Y, and Z3 directions can be adjusted with a simple structure in which the spring adjustment recess 53 is provided and the spring adjustment portion 32a is provided therein.
  • FIG. 9 shows the same part as FIG. 8 according to another embodiment (second embodiment).
  • symbol is used and duplication description is abbreviate
  • the enlarged concave portion 44 does not form an arc shape in a plan view, but forms a rectangular concave portion that is bent in a substantially U shape. Even if it does in this way, overlapping with the protrusion 50 in the X direction is the same, and the movement in the X direction can be effectively restricted as in the previous embodiment.
  • the standing wall 41 is a vertical surface parallel to the Z direction (the same applies to FIG. 10). As described above, when the standing wall 41 is vertical, the width in the Y direction of the enlarged recess 44 can be made constant in the Z direction. For this reason, even if the protrusion 50 has a simple shape in which the outer peripheral surface facing the upright wall portion 41 is vertical, the distance between the protrusion 50 and the upright wall portion 41 is independent of the amount of advancement and retreat of the protrusion 50 in the Z direction. Since it can be made constant, movement restrictions in the X direction can be made constant.
  • FIG. 10 shows the same part as FIG. 9 according to another embodiment (third embodiment).
  • the X-direction restricting portion is formed as a restricting protrusion 60 that protrudes from the opposing standing wall 41 side to the inter-standing-wall recess 43 along the Y direction.
  • the restricting protrusions 60 are formed as a pair with an interval in the X direction.
  • the protrusion 50 enters between the restricting protrusions 60 facing in the X direction, and the protrusion 50 and the restricting protrusion 60 overlap in the X direction. is doing. Even in this case, the movement in the X direction can be effectively restricted as in the previous embodiments.
  • the restricting protrusion 60 may be formed integrally with the standing wall 41 or may be formed separately.
  • a separate member is attached to the standing wall portion 41 by welding or the like so as to protrude to the facing standing wall portion 41 side, or separated from the standing wall portion 41 and attached to the bottom portion 42 at the lower end, You may form so that it may protrude from 42 upwards.
  • the protrusion 50 has a circular cross section similar to that of the first embodiment, and even if the movement direction of the protrusion 50 is inclined with respect to the X and Y directions, there is always one.
  • the portion can come into contact with the wall surface of the enlarged recess 44. However, this can be freely made into a non-circular cross section such as a square cross section.
  • the elastic member of the connection part 32 is formed in the circumference
  • FIG. 11 and 12 relate to the fourth embodiment, FIG. 11 corresponds to FIG. 1, and FIG. 12 corresponds to FIG.
  • the outer stopper 11 is provided with respect to the mount main-body part 12 of 1st Embodiment.
  • the outer stopper 11 In the X direction, the outer stopper 11 has a substantially U-shaped central portion including a top portion 13 and a side portion 14 surrounding the first mounting bracket 20 and a mounting flange 15 bent in a direction away from the lower end of the side portion 14. It is a metal fitting that is integrally provided, and functions as a stopper that restricts the first mounting metal fitting 20 when it moves excessively in the X direction or when it moves greatly in the Z direction.
  • a mounting hole 16 is formed in the mounting flange 15.
  • the mounting flange 15 is overlapped with the mounting portion 45 that is the end portion in the longitudinal direction of the second mounting bracket 40 and integrated by an appropriate method (caulking in this example).
  • the mounting hole 16 coincides with the mounting hole 46 of the mounting portion 45, and is attached to the vehicle body (not shown) with a bolt (not shown) through the mounting hole 16 and the mounting hole 46.
  • the outer stopper 11 is also a constituent member of the second mounting bracket 40 by being integrated with the second mounting bracket 40.
  • the outer stopper 11 By providing this outer stopper 11, excessive vibration input upward in the Z direction is prevented by the first mounting bracket 20 coming into contact with the top portion 13.
  • the outer stopper 11 has a first state when the protrusion 50 is restricted by the X-direction restricting means such as the enlarged recessed portion 44 and is excessively vibrated such that the upper first mounting bracket 20 is further tilted and moved.
  • the elastic cover 31 covering the first mounting bracket 20 cushions an impact when the first mounting bracket 20 moves upward in the drawing and comes into contact with the top portion 13. The shock is also buffered when the first mounting member 20 moves excessively in the X direction and contacts the side portion 14.
  • the outer stopper 11 can be provided to prevent excessive movement, and the outer stopper 11 can more reliably prevent excessive movement. Can be regulated. That is, the outer stopper 11 is provided to restrict an abnormal excessive displacement that cannot be regulated by the X direction regulating means such as the enlarged recess 44, and normal X direction movement is regulated by the X direction regulating means.
  • the outer stopper 11 is additionally provided, and the anti-vibration elastic body 30 is separated from the outer stopper 11 without being coupled to the outer stopper 11 and is detachable from the mount body 12.
  • the anti-vibration elastic body 30 it is not necessary to provide the anti-vibration elastic body 30 with an upper elastic leg (see the X-direction elastic leg 135 in FIG. 13) that connects the first mounting bracket 20 and the outer stopper 11 separately from the elastic leg 33.
  • the upper elastic leg can be omitted and the whole can be reduced in weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Vibration Prevention Devices (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

エンジンに連結される第1取付金具と車体へ取付けられる第2取付金具とこれらを連結する防振弾性体を設け、エンジンの静止荷重方向をZ、この直交平面内にて直交する2方向をX・Yとし、Y方向にて、防振弾性体から延出する弾性脚を第2取付金具に設けられた対向する立壁部間にて支持すると、第1取付金具のY方向移動を規制できるが、X方向を移動規制できない。仮にX方向へ別の弾性脚を延出させてX方向の移動を規制しようとすれば防振弾性体の成形が困難になる。 対向する各立壁部41の中間部を凹曲面にして、対向する立壁部41間に拡大凹部44を設ける。この拡大凹部44に第1取付金具20に設けられた突部50を収容し、突部50をX方向で拡大凹部44とオーバーラップさせ、第1取付金具のX方向移動を規制する。X方向移動を規制するX方向の弾性脚を設けないので、X方向で型抜きすることにより成形可能になる。

Description

防振装置
この発明は、自動車用エンジンマウント等に用いられる防振装置に関する。
従来のエンジンマウントの一例を図13に示す。図中の(A)は正面図、(B)は(A)における13B-13B線断面である。このエンジンマウント110は、エンジンが取付けられる第1取付金具120と、車体へ取付けられる第2取付金具140と、第1取付金具120及び第2取付金具140を連結する防振弾性体130を備える。
ここで、第1取付金具120に対するエンジンの静止荷重が加わる方向をZ、これと直交する平面内における直交2方向をX・Yとし、X・Yのうち、第1取付金具120の取付軸線に沿う方向をYとする。
第1取付金具120の周囲にはこれを略コ字状に囲む外側ストッパ111を設け、第2取付金具140側へ屈曲した両端部を第2取付金具140に重ねて一体化することにより、外側ストッパ111はY方向と直交してX方向に沿って長く配置される。
この外側ストッパ111と第1取付金具120をX方向弾性脚135で連結してある。
防振弾性体130はゴム等からなり、Y方向へ二股状に拡開するY方向弾性脚133と、X方向へ拡開するX方向弾性脚135が、Z方向に間隔をもって形成されている。
(A)に示すように、X方向弾性脚135は正面視でハの字状にX方向へ広がり、中央部に第1取付金具120が一体化されるとともに、両端は外側ストッパ111の側部へ結合一体化されている。
(B)に示すように、Y方向弾性脚133の中央部には、第1取付金具120から下方へ突出する突部150がインサートされて一体化されている。Y方向弾性脚133の両端部は、第2取付金具140に設けられた立壁部141に結合一体化されている。
立壁部141は、第2取付金具140のY方向両端にて対向する一対をなし、第2取付金具140と一体に上方へ屈曲して設けられている。
防振弾性体130、第2取付金具140及び外側ストッパ111で囲まれて空間134が形成されている。この空間134は、X方向において対向する外側ストッパ111の側部でX方向が閉じられ、Y方向では対向する立壁部141でY方向が閉じられる。
このようにすると、第1取付金具120と外側ストッパ111間のX方向弾性脚135でX方向のバネ定数を設定するとともに、外側ストッパ111により第1取付金具120におけるX方向の変形規制をすることができる。
また、第1取付金具120及び突部150がY方向へ移動すると、Y方向弾性脚133は
立壁部141と突部150の間で圧縮されるようになるので、Y方向弾性脚133側におけるY方向のバネ定数もある程度高くすることが可能である。
この立壁部141が存在しないと、弾性脚133はせん断変形を主体とするものになり、Y方向のバネ定数が著しく低くなる。
特許第3723633号公報
ところで、上記従来例の場合、X方向のバネを形成するためにX方向弾性脚135を設けるので、このX方向弾性脚135を支持する外側ストッパ111が必要になる。しかも、この外側ストッパ111は、第1取付金具120のX方向移動を規制するために必須となっている。しかし、防振弾性体130を形成するときにはこの外側ストッパ111が金型を用いた成形を困難にしていた。
すなわち、外側ストッパ111を予め第2取付金具140と組立て一体化しておき、これを金型内へ入れ、さらに、外側ストッパ111と第2取付金具140に囲まれた空間(前記空間134を含む空間)内に第1取付金具120を配置し、その後、第1取付金具120の周囲へ所定のゴム材料等を注入して防振弾性体130を一体に形成する。
しかし、成形後の状態において、X方向弾性脚135がX方向にて外側ストッパ111と連結し、Y方向弾性脚133がY方向にて第2取付金具140の立壁部141と連結することにより、空間134は部分的にX方向及びY方向が閉じられている。このため、一方向、例えば、Y方向から単純に型抜きできず、複雑な割り型を使用しなければならないので成形が難しくなる。したがって製造を容易にできる構造が望まれる。
そのうえ、第2取付金具140と別体の外側ストッパ111を設けると、装置全体が大型化するとともに、部品点数も増大する。したがって、外側ストッパ111を省略することが望ましく、少なくとも、外側ストッパ111を設けた場合でも、防振弾性体130を連結しないようにすることが望まれる。
本願発明は、このような要請の実現を目的とする。
上記課題を解決するため請求項1に記載した発明は、振動源又は振動受け側のいずれか一方に取付けられる第1取付金具(20)と、他方に取付けられる第2取付金具(40)と、これら第1取付金具(20)と第2取付金具(40)を連結する防振弾性体(30)を備え、
前記第1取付金具(20)へ加わる静止荷重方向をZ、この直交平面内にて互いに直交する2方向をX・Yとし、Yを前記第1取付金具(20)の取付軸線方向と一致させたとき、
Y方向にて、前記防振弾性体(30)は前記第1取付金具(20)から二股状に拡開する一対の弾性脚(33)を備え、
各弾性脚(33)の延出端部を第2取付金具(40)のY方向端部に形成された立壁部(41)へ連結し、さらに、弾性脚33の第1取付金具20側を相互に連結し、この連結部(32)内へ第1取付金具20から一体に突出する突部50をインサートした防振装置において、
前記突部(50)は、前記一対の立壁部(41)間に配置されるとともに、
前記第2取付金具(40)は、前記突部(50)がX方向へ移動することを規制するX方向規制部(44)を一体に有することを特徴とする。
請求項2に記載した発明は、上記請求項1において、前記X方向規制部(44)は、Z方向視において、対向して一対で設けられ、X方向視にて、前記突部(50)とオーバーラップすることを特徴とする。
請求項3に記載した発明は、上記請求項2において、前記X方向規制部はY方向外方へ膨らむ拡大凹部(44)をなし、この拡大凹部(44)内に前記突部(50)が入っていることを特徴とする。
請求項4に記載した発明は、上記請求項3において、前記拡大凹部(44)内に入っている前記突部(50)の周囲に、前記弾性脚(33)の一部(32)が一体に設けられていることを特徴とする。
請求項5に記載した発明は、上記請求項4において、前記突部(50)の下面(52)にバネ調整凹部(53)を設け、このバネ調整凹部(53)をY方向に沿って配置し、Y方向外方側及び前記第2取付金具(40)の底部側へ開放させるとともに、このバネ調整凹部(53)内に前記弾性脚(33)の一部(32)を充填してなるバネ調整部(32a)を設けたことを特徴とする。
請求項6に記載した発明は、上記請求項3~5のいずれか1項において、前記立壁部(41)はY方向断面にて傾斜し、前記拡大凹部(44)のY方向幅を前記突部(50)の侵入側が広くなるようにしていることを特徴とする。
請求項7に記載した発明は、上記請求項3~5のいずれか1項において、前記立壁部(41)はY方向断面にて垂直であり、前記拡大凹部(44)のY方向幅がZ方向にて一定であることを特徴とする。
請求項1の発明によれば、突部(50)がX方向へ移動することを規制するX方向規制部(44)を第2取付金具(40)へ一体に設けたので、前記従来例における別体の外側ストッパ111(図13)を設けなくても、第1取付金具(20)の移動を規制できるようになる。このため、外側ストッパ111と連結するX方向弾性脚135(図13)を不要とし、防振弾性体(30)はY方向にて第2取付金具(40)と連結するだけで済むので、防振弾性体(30)を第1取付金具(20)及び第2取付金具(40)と一体に成形する際における製造が容易になる。
しかも、X方向規制部(44)は第2取付金具(40)と一体に設けられるので、第2取付金具(40)と別体の外側ストッパ111を省略可能になるから、部品点数を削減でき、装置の小型化が可能になるとともに、第2取付金具(40)側の組立も容易になる。
請求項2の発明によれば、X方向規制部(44)は、Z方向視において、対向して一対で設けられ、X方向視にて、突部(50)とオーバーラップするので、突部(50)のX方向移動を確実に規制できる。
請求項3の発明によれば、X方向規制部(44)がX方向外方へ膨らむ拡大凹部(44)をなすので、この拡大凹部(44)内に入っている突部(50)が、X・Y方向並びにXまたはY方向と交わる斜め方向のいずれかへ移動しても移動を規制できる。
請求項4の発明によれば、拡大凹部(44)内に入っている突部(50)の周囲に、弾性脚(33)の一部(32)が一体に設けられているので、突部(50)の移動により、突部(50)の周囲にて弾性脚(33)が突部(50)と拡大凹部(44)の間で圧縮される。したがって、圧縮変形が加わるため、X方向のバネ定数を高くすることができる。
請求項5の発明によれば、下面(52)にバネ調整凹部(53)をY方向に沿って設け、バネ調整凹部(53)をZ方向及びY方向外方へ開放させるとともに、バネ調整凹部(53)内へ弾性脚(33)の一部を連続させて充填したバネ調整部(32a)を設けたので、Z方向の振動に対して、弾性脚(33)の自由長が長くなり、それだけバネ定数を低くすることができる。
X方向の振動に対しては、バネ調整部(32a)はほとんど変形しないので、バネ定数に影響しない。このため、バネ調整凹部(53)を設け、その内部へバネ調整部(32a)を設けるという簡単な構造で、X・Y・Z3方向のバネ定数を調整可能となる。
請求項6に記載した発明によれば、立壁部(41)を傾斜させることにより、拡大凹部(44)のY方向幅を突部(50)の侵入側が広くなるようにしたので、突部(50)が対向する立壁部(41)間をZ方向へ進退移動することを容易にする。
請求項7に記載した発明によれば、立壁部(41)を垂直にしたので、Z方向にて拡大凹部(44)のY方向幅を一定にできる。このため、突部(50)が立壁部(41)に対面する外周面を垂直にした単純形状であっても、Z方向における突部(50)の進退量に関係なく、突部(50)と立壁部(41)との間隔を一定にできるので、X方向における移動規制を一定にできる。
第1実施形態(図1~図8)に係るエンジンマウントの平面図 図1の2-2線断面図 図1の3-3線断面図 エンジンマウント本体部の斜視図 第1取付金具の斜視図 突部の下面図 第2取付金具の平面図 拡大部へ突部が入り込んだ状態を示す断面 第2実施形態に係る図8と同様の図 第3実施形態に係る図8と同様の図 第4実施形態に係る図1と同様の図 第4実施形態に係る図2と同様の図 従来のエンジンマウントを示す図
以下、図面に基づいてエンジンマウントとして構成された一実施形態を説明する。
以下の説明において、図2及び図3の上下方向をエンジンマウントの上下方向(Z方向)とし、このZ方向と直交する平面内における直交2軸方向をX・Y方向とし、図1に示すように、例えば、X方向を前後方向、Y方向を左右方向とする(但し、X方向を左右方向、Y方向を前後方向とすることは任意である)。
これら上下・左右・前後の各方向は、車両搭載状態における車両の上下・前後・左右の各方向に対応している。またZ方向は、車両搭載時にエンジンの静止荷重が負荷される方向でもある。
図1は、このエンジンマウント10の平面図、図2は図1の2-2線断面図、図3は図1の3-3線断面図、図4はマウント本体部12の斜視図である。マウント本体部12は、前記従来のエンジンマウント10から外側ストッパ11を除去した部分に相当する。
このエンジンマウント10は、マウント本体部12を備える。マウント本体部12は第1取付金具20、防振弾性体30、第2取付金具40を一体化したものである。
第1取付金具20は角筒状をなす金属製もしくは樹脂製の部材であり、Y方向に貫通する筒穴21内へ図示省略のブラケットを通して固定することにより、マウント本体部12で図示しないエンジンを支持する。第1取付金具20へブラケットの一端を取付け、他端をエンジンへ取付けることにより、エンジンの静止荷重はZ方向にマウント本体部12へ加わることになる。筒穴21内へブラケットを通す方向を取付方向A(図3及び図4)とする。この取付方向はY方向に一致(平行)する。
防振弾性体30はゴム等の適宜弾性体からなり、エンジンマウント10における防振主体となる弾性部材である。防振弾性体30は、第1取付金具20と第2取付金具40を上下方向に加硫接着等、適宜方法により連結しており、第1取付金具20の下方にて、くびれた首部をなす連結部32を介して下方の弾性脚33へ連続している。なお、連結部32は上方の弾性カバー31とも連続一体に形成されている。
図3に明らかなように、弾性脚33はY方向において、下方へ拡開するようY方向両側へ広がり、第2取付金具40の立壁部41へ連結されている。
立壁部41はY方向両端部側へ向かって上方ほど大きく外側へ外開きするように対向傾斜し、ここに弾性脚33の下端部が結合されている。
なお、立壁部41の上端部は略水平にY方向外側へ曲がった外フランジ47をなし、この上にも弾性脚33の端部の一部が被さっている。
Y方向において、弾性脚33は、本願の空間であるすぐり穴34を挟んで対向する一対のものとして形成されている。すぐり穴34は突部50の下方となる位置に形成され、防振弾性体30の下部をX方向へ貫通し、すぐり穴34はX方向へ開放されている。
すぐり穴34内には、下部ストッパ35が下方から上方へ突出している。下部ストッパ35は、突部50の中心部へ向かって小丘状に突出する突部であり、底部42の一部を上方へ突出させてその周囲を弾性脚33と連続一体の弾性被覆部で覆ったものであり、この弾性部被覆部は弾性脚33の下端部とともに、第2取付金具40の底部42へ結合一体化している。
なお、弾性脚33の下部には、下部カバー37が連続一体に形成されている。下部カバー37は、立壁部41の対向面、外フランジ47及び底部42上を覆う被覆部である(図4参照)。
図5は第1取付金具20の斜視図、図6は突部50の下面図である。これらの図において、突部50は第1取付金具20の下面中央から連続一体に突出する円柱状突起であり、その下面52には、バネ調整凹部53がY方向両側に一対で形成されている。
バネ調整凹部53は、下面52を彫り込むようにして、Y方向に沿って径方向外方から内方へ延び、径方向外方へ開放されている。また下方側も開放されている。バネ調整凹部53のうち、下面52の中心側部分は閉じられた行き止まり状をなしている。
突部50は連結部32内へインサートされており、バネ調整凹部53内へも連結部32の一部が充填されてバネ調整部32aが設けられている(図3参照)。なお、バネ調整部32aも連結部32の一部、すなわち弾性脚33の一部である。
図7は第2取付金具40の平面図(Z方向視図)である。この図に示すように、立壁部41はY方向において対向する一対の壁部としてX方向に沿って形成されている。
両立壁部41と底部42に囲まれて、上方及びX方向両側へ開放された立壁間凹部43が形成されている。この立壁間凹部43は、X方向中間部が拡大されている。すなわち、平面視にて、立壁部41のX方向中間部は、Y方向外方へ入り込む円弧状の拡大凹部44をなしている。この拡大凹部44は本願におけるX方向規制部の一例であり、Y方向にて対向する一対の拡大凹部44間が略円形の拡大部48をなしている。
この拡大部48内には、図3に示すように、突部50、すぐり穴34、下部ストッパ35等が収容される。
なお、図3において、突部50は立壁部41より上方へ出ているが、この図はエンジンの静止荷重が負荷される前の状態であり、エンジンが取付けられると、その静止荷重により、第1取付金具20及び突部50が下方へ移動し、拡大凹部44の内側へ入り込み、立壁部41とX・Y方向にて重なるようになる。
このとき、突部50と共に連結部32を含む弾性脚33の一部も拡大凹部44の内側へ入り込む。
図8は、拡大部48へ突部50が入り込んだ状態を示す図であり、図7に示す状態の第2取付金具40の拡大凹部44内へ突部50を断面にして重ねた図である。突部50については、図3の8-8線相当部位を示す。立壁間凹部43及び拡大凹部44は、それぞれ上方へ向かってY方向へ拡開するように傾いているため、それぞれの間隔は上部と下部で異なり、対向する拡大凹部44間における最大幅のうち、最上部間の上部最大間隔をW1、最下部間の下部最大間隔をW2とすれば、下部最大間隔W2は上部最大間隔W1より小さい。
立壁間凹部43の一般部における最下部間の間隔である下部間隔W3は、下部最大間隔W2よりも小さい。なお、W1~W3の大小関係は、W3<W2<W1である。
このため、連結部32(弾性脚33の一部)は拡大凹部44の内側へ入り込んだとき、X方向視にて突部50と拡大凹部44がオーバーラップしている。図3及び図8中のOVがオーバーラップ部分である。
なお、オーバーラップの態様は、突部50と拡大凹部44の間における間隔が0となるような状態も含むものとする。
この状態で突部50がY方向へ移動すると、連結部32の弾性部材すなわち弾性脚33の一部が拡大凹部44により圧縮される。また、X方向へ移動すると、拡大凹部44におけるX方向両端の立壁間凹部43との接続部分(すなわち拡大凹部44の最小幅部)近傍にて圧縮される。
さらに、矢示B方向のように斜めに移動すると、拡大凹部44の最大幅部と最小幅部間へ押しつけられ、主として圧縮変形が生じる。
次に、作用を説明する。
図2、3において、第1取付金具20をエンジンへ取付けると、第1取付金具20及び突部50がエンジンの静止荷重で弾性脚33を弾性変形しながら下方へ沈み、突部50が拡大凹部44の内側へ入り込む。この状態で、エンジンから第1取付金具20へ振動が伝達されると、Z方向では、第1取付金具20及び突部50が弾性脚33を弾性変形させて上下動する。このときの弾性脚33はせん断変形を主体とする。また、連結部32もせん断変形を主体とする弾性変形をおこなう。
より大きな振動が入力すると、すぐり穴34をつぶしながら突部50が下方へ大きく移動して、下部ストッパ35へ当接することにより、底部42に対する底突きを緩衝される。
また、立壁部41を傾斜させることにより、拡大凹部44のY方向幅を突部50の侵入側が広くなるようにしたので、突部50が対向する立壁部41間をZ方向へ進退移動することを容易にする。
Y方向へ振動が入力すると、図3に示すように、弾性脚33が両側に対向する立壁部41間で弾性変形しながら移動する。このとき、両側の立壁部41の拡大凹部44は、突部50に沿った凹曲面をなしているから、弾性脚33は突部50と立壁部41間で圧縮される圧縮変形を主体とする弾性変形をおこない、Y方向のバネ定数を高くして、Y方向のバネ値を制御できる。
X方向へ振動が入力すると、突部50がX方向へ移動しようとする。ところが図8に示すように、拡大凹部44を設け、この内側へ突部50を入り込ませてあるので、突部50のX方向移動が拡大凹部44とオーバーラップすることによって規制される。このとき、突部50の周囲には弾性脚33の一部が連結部32として形成されており、この連結部32の弾性部材部分が拡大凹部44と突部50の間で圧縮変形を受ける。このため、せん断変形に圧縮変形が加わることにより、X方向のバネ定数をより高くすることができるとともに、第1取付金具20における所定以上のX方向移動を確実に阻止できる。
このように、突部50がX方向へ移動することを規制する拡大凹部44(X方向規制部)を第2取付金具40へ一体に設けたので、別体の外側ストッパ111(図13)を設けなくても、第1取付金具20の移動を規制できるようになる。
このため、外側ストッパ111と連結するX方向弾性脚135(図13)を不要とし、防振弾性体30はY方向にて第2取付金具40と連結するだけで済むので、防振弾性体30を外側ストッパへ連結する必要がなく、防振弾性体30を第1取付金具20及び第2取付金具40と一体に成形する際における製造が容易になる。このとき、防振弾性体30はすぐり穴(空間)34がX方向へ開放された状態で拡大凹部44と一体化できるから、X方向からだけで型抜き可能になり、型構造が簡単になる。
しかも、X方向規制部(44)は第2取付金具40と一体に設けられるので、第2取付金具40と別体の外側ストッパ111を省略可能になるから、部品点数を削減でき、装置の小型化が可能になるとともに、第2取付金具40側の組立も容易になる。
そのうえ、X方向規制部として拡大凹部44を設けるだけなので構造が簡単になる。また、拡大凹部44は第2取付金具40と一体に設けられるので、部品点数を削減でき、装置の小型化が可能になるとともに、第2取付金具40側の組立も容易になる。
さらに、拡大凹部44(X方向規制部)は、Z方向視において、対向して一対で設けられ、Y方向視にて、突部50とオーバーラップするので、突部50のX方向移動を確実に規制できる。
しかも、拡大凹部44内に入っている突部50の周囲に、弾性脚33の一部が連結部32として一体に設けられているので、突部50の移動により、突部50の周囲の弾性脚33が突部50と拡大凹部44の間で圧縮される。したがって、圧縮変形が加わるため、X方向のバネ定数を高くして、バネ値を制御できる。
次に、図8のB矢示方向、すなわちX・Y方向に対して斜め方向に振動が加わると、弾性脚33は拡大凹部44の平面視(Z方向視)で円弧状をなす曲面へ押しつけられる。
これにより、弾性脚33は圧縮変形とせん断変形を生じるので、この場合にもバネ定数を高くすることができる。しかも、拡大凹部44が円弧状をなすことにより、B矢示方向の角度が変化しても確実に圧縮変形することが可能になる。
すなわち、拡大凹部44(X方向規制部)がY方向外方へ膨らむ拡大凹部44をなすので、この拡大凹部44内に入っている突部50が、X・Y方向並びにXまたはY方向と交わる斜め方向のいずれかへ移動しても確実に移動を規制できる。そのうえ、突部50と拡大凹部44の間で連結部32に対する圧縮変形を生じさせることができ、X・Y方向並びに斜め方向の振動に対しても、バネ定数を高くすることができる。
また、突部50の下面52にバネ調整凹部53を設けてある。このバネ調整凹部53内には、弾性脚33の一部が充填されてバネ調整部32aをなし、かつバネ調整凹部53がY方向に沿って径方向へ長く形成され、径方向外方を開放されているため、X・Y・Z各方向に対するバネ定数を変化させる。
すなわち、Z方向においては、バネ調整凹部53内におけるバネ調整部32aにより弾性脚33のボリュームが増大する分だけ、バネ定数が低くなる。
一方、Y方向の振動に対しては、連結部32のバネ調整凹部53内へ入り込んでいるバネ調整部32aが、下面52の中心側におけるバネ調整凹部53の行き止まり部分で圧縮されるから、若干バネ定数を高くすることができる。
X方向の振動に対しては、連結部32のバネ調整凹部53内へ入り込んでいるバネ調整部32aはほとんど変形しないので、バネ定数に影響しない。
このため、バネ調整凹部53を設け、その内部にバネ調整部32aを設けるという簡単な構造で、X・Y・Z3方向のバネ定数を調整可能となる。
図9は、別実施形態(第2実施形態)に係る図8と同様部位を示す。なお、前実施形態(第1実施形態)との共通部分については同一符号を用い重複説明を省略する(以下も同じ)。
この実施形態において、拡大凹部44は平面視で円弧状をなさず、略コ字状に屈曲する角形の凹部をなしている。このようにしても、突部50とX方向にてオーバーラップすることは同じであり、前実施形態同様に、X方向の移動を効果的に規制できる。
なお、立壁部41はZ方向に平行する垂直な面としてある(図10も同様)。
このように、立壁部41を垂直にすると、Z方向にて拡大凹部44のY方向幅を一定にできる。このため、突部50が立壁部41に対面する外周面を垂直にした単純形状であっても、Z方向における突部50の進退量に関係なく、突部50と立壁部41との間隔を一定にできるので、X方向における移動規制を一定にできる。
図10は、さらに別実施形態(第3実施形態)に係る図9と同様部位を示す。
この実施形態において、X方向規制部は、対向する立壁部41側からY方向に沿って立壁間凹部43へ突出する規制突部60として形成されている。規制突部60はX方向に間隔を持って一対で形成され、X方向にて対向する規制突部60間に突部50が入りこみ、X方向にて突部50と規制突部60がオーバーラップしている。このようにしても、前各実施形態同様に、X方向の移動を効果的に規制できる。
なお、規制突部60は立壁部41と一体に形成しても別体に形成したものでもよい。別体の場合は、別部材を立壁部41へ溶接等で取付けて対向する立壁部41側へ突出させるようにしたり、立壁部41と分離して下端を底部42へ取付けるとともに、上部側を底部42から上方へ突出するようにして形成してもよい。
また、図9及び図10の例では、突部50を第1実施形態と同様の円形断面としてあり、突部50の移動方向がX・Y方向に対して傾く場合であっても、必ず一部が拡大凹部44の壁面へ当接できるようになっている。しかし、これを角形断面等の非円形断面にすることは自由にできる。
さらに、突部50の周囲には連結部32の弾性部材が全周に形成されているが、これを部分的にオーバーラップ部分のみに設けてもよい。このようにすると、弾性部材の使用量を少なくして全体を軽量化できるとともに、オーバーラップ部分においては金属等の硬質部同士の直接接触を防ぎ、騒音の発生を抑制できる。
図11及び図12は第4実施形態に係り、図11は図1に対応し、図12は図2に対応している。
この例では、第1実施形態のマウント本体部12に対して外側ストッパ11を設けてある。
外側ストッパ11は、X方向において、第1取付金具20を囲む、頂部13、側部14からなる略コ字状をなす中央部と、側部14の下端から離反方向へ屈曲する取付フランジ15を一体に有する金具であり、第1取付金具20がX方向へ過大移動するとき、又はZ方向へ大きく移動するときこれを規制するストッパとして機能する。取付フランジ15には、取付穴16が形成されている。
図12に示すように、取付フランジ15は、第2取付金具40の長手方向端部である取付部45に重ねられて適宜方法(本例ではカシメ)により一体化されている。取付穴16は取付部45の取付穴46と一致し、これら取付穴16及び取付穴46を通して、図示しないボルトにより図示省略の車体へ取付けられる。外側ストッパ11は第2取付金具40と一体化することにより、第2取付金具40の構成部材でもある。
この外側ストッパ11を設けることにより、Z方向上方への過大振動入力は、第1取付金具20が頂部13へ当接することにより阻止される。
また、外側ストッパ11は、突部50が拡大凹部44等のX方向規制手段により規制された状態で、上方の第1取付金具20がさらに傾いて移動するような過大な振動のとき、第1取付金具20が側方の側部14へ当接することにより、さらなる傾きを阻止して過大移動を規制できる。
このとき、第1取付金具20を覆う弾性カバー31は、第1取付金具20が図の上方へ移動して頂部13へ当接するときの衝撃を緩衝する。また、第1取付金具20がX方向へ過大移動して側部14へ当接するときも衝撃を緩衝する。
このように、突部50を拡大凹部44等のX方向規制手段により規制している場合でも、過大移動防止のために外側ストッパ11を設けることができ、外側ストッパ11により過大移動をより確実に規制することができる。
すなわち、外側ストッパ11は拡大凹部44等のX方向規制手段により規制できない異常な過大変位を規制するために設けられ、通常のX方向移動はX方向規制手段で規制される。
このため、外側ストッパ11は付加的に設けられ、防振弾性体30は外側ストッパ11と結合せず分離されており、マウント本体部12に対して着脱可能になっている。
その結果、弾性脚33と別に、第1取付金具20と外側ストッパ11を結合する上部弾性脚(図13のX方向弾性脚135参照)を防振弾性体30に設ける必要がなくなるため、このような上部弾性脚を省略して全体を軽量化できる。
10:エンジンマウント、11:外側ストッパ、12:マウント本体部、20:第1取付金具、30:防振弾性体、33:弾性脚、40:第2取付金具、41:立壁部、43:立壁間凹部、44:拡大凹部(X方向規制部)、50:突部、53:バネ調整凹部

Claims (7)

  1. 振動源又は振動受け側のいずれか一方に取付けられる第1取付金具(20)と、他方に取付けられる第2取付金具(40)と、これら第1取付金具(20)と第2取付金具(40)を連結する防振弾性体(30)を備え、
    前記第1取付金具(20)へ加わる静止荷重方向をZ、この直交平面内にて互いに直交する2方向をX・Yとし、Yを前記第1取付金具(20)の取付軸線方向と一致させたとき、
    Y方向にて、前記防振弾性体(30)は前記第1取付金具(20)から二股状に拡開する一対の弾性脚(33)を備え、
    各弾性脚(33)の延出端部を第2取付金具(40)のY方向端部に形成された立壁部(41)へ連結し、さらに、弾性脚33の第1取付金具20側を相互に連結し、この連結部(32)内へ第1取付金具20から一体に突出する突部50をインサートした防振装置において、
    前記突部(50)は、前記一対の立壁部(41)間に配置されるとともに、
    前記第2取付金具(40)は、前記突部(50)がX方向へ移動することを規制するX方向規制部(44)を一体に有することを特徴とする防振装置。
  2. 上記請求項1において、前記X方向規制部(44)は、Z方向視において、対向して一対で設けられ、X方向視にて、前記突部(50)とオーバーラップすることを特徴とする防振装置。
  3. 上記請求項2において、前記X方向規制部はY方向外方へ膨らむ拡大凹部(44)をなし、この拡大凹部(44)内に前記突部(50)が入っていることを特徴とする防振装置。
  4. 上記請求項3において、前記拡大凹部(44)内に入っている前記突部(50)の周囲に、前記弾性脚(33)の一部(32)が一体に設けられていることを特徴とする防振装置。
  5. 上記請求項4において、前記突部(50)の下面(52)にバネ調整凹部(53)を設け、このバネ調整凹部(53)をY方向に沿って配置し、Y方向外方側及び第2取付金具(40)の底部側へ開放させるとともに、このバネ調整凹部(53)内に前記弾性脚(33)の一部(32)を充填してなるバネ調整部(32a)を設けたことを特徴とする防振装置。
  6. 上記請求項3~5のいずれか1項において、前記立壁部(41)はY方向断面にて傾斜し、前記拡大凹部(44)のY方向幅を前記突部(50)の侵入側が広くなるようにしていることを特徴とする防振装置。
  7. 上記請求項3~5のいずれか1項において、前記立壁部(41)はY方向断面にて垂直であり、前記拡大凹部(44)のY方向幅がZ方向にて一定であることを特徴とする防振装置。
PCT/JP2015/058373 2014-03-19 2015-03-19 防振装置 WO2015141809A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015000248.0T DE112015000248T5 (de) 2014-03-19 2015-03-19 Schwingungsisoliervorrichtung
CN201580004406.XA CN105899838A (zh) 2014-03-19 2015-03-19 防振装置
US15/102,942 US9926999B2 (en) 2014-03-19 2015-03-19 Vibrating isolating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014057305A JP6444037B2 (ja) 2014-03-19 2014-03-19 防振装置
JP2014-057305 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015141809A1 true WO2015141809A1 (ja) 2015-09-24

Family

ID=54144771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058373 WO2015141809A1 (ja) 2014-03-19 2015-03-19 防振装置

Country Status (5)

Country Link
US (1) US9926999B2 (ja)
JP (1) JP6444037B2 (ja)
CN (1) CN105899838A (ja)
DE (1) DE112015000248T5 (ja)
WO (1) WO2015141809A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358747B2 (ja) * 2014-10-03 2018-07-18 株式会社ブリヂストン 防振装置
JP6704807B2 (ja) * 2016-07-04 2020-06-03 株式会社ブリヂストン 防振装置
JP6456339B2 (ja) * 2016-11-17 2019-01-23 東洋ゴム工業株式会社 防振装置
KR102479485B1 (ko) * 2016-12-13 2022-12-19 현대자동차주식회사 분산된 스토퍼들을 가지는 자동차의 트랜스미션 마운트
KR102540392B1 (ko) * 2017-11-17 2023-06-07 현대자동차주식회사 Tm마운트의 스토퍼
KR20210153256A (ko) * 2020-06-10 2021-12-17 현대자동차주식회사 자동차용 트랜스미션 마운트
FR3119654B1 (fr) * 2021-02-09 2023-05-26 Hutchinson Support antivibratoire et véhicule comportant un tel support antivibratoire.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303459A (ja) * 1996-05-08 1997-11-25 Bridgestone Corp 防振装置
JP2011214626A (ja) * 2010-03-31 2011-10-27 Bridgestone Corp 防振装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710957B1 (fr) * 1993-10-05 1995-12-08 Hutchinson Perfectionnements aux supports antivibratoires hydrauliques.
US7055811B2 (en) * 2004-05-03 2006-06-06 Toyo Tire And Rubber Co., Ltd. Vibration isolating device
JP4135719B2 (ja) * 2004-08-31 2008-08-20 東海ゴム工業株式会社 エンジンマウント
JP5085107B2 (ja) * 2006-11-28 2012-11-28 株式会社ブリヂストン エンジンマウント構造
JP5409513B2 (ja) * 2010-05-26 2014-02-05 東海ゴム工業株式会社 防振装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303459A (ja) * 1996-05-08 1997-11-25 Bridgestone Corp 防振装置
JP2011214626A (ja) * 2010-03-31 2011-10-27 Bridgestone Corp 防振装置

Also Published As

Publication number Publication date
US20160305505A1 (en) 2016-10-20
CN105899838A (zh) 2016-08-24
US9926999B2 (en) 2018-03-27
JP2015178883A (ja) 2015-10-08
DE112015000248T5 (de) 2016-09-08
JP6444037B2 (ja) 2018-12-26

Similar Documents

Publication Publication Date Title
WO2015141809A1 (ja) 防振装置
JP6339472B2 (ja) 防振装置
JP6813998B2 (ja) 防振装置
JP6355255B2 (ja) 防振装置
JP2008286345A (ja) 筒型防振装置
JP6157000B2 (ja) 防振装置
US9382961B2 (en) Vibration damping device
WO2018070504A1 (ja) 防振装置
JP2005036845A (ja) ダイナミックダンパ
JP2009115136A (ja) 防振装置
JP2007010005A (ja) ストラットマウントおよびその製造方法
JP6537958B2 (ja) ブラケット付き防振装置
JP6681189B2 (ja) クッション体を有するアッパーサポート
JP2006250209A (ja) 防振装置
JP2003202053A (ja) 防振装置
CN109790894B (zh) 防振装置
JP6207320B2 (ja) 防振装置
JP5562821B2 (ja) 防振装置
JP4304054B2 (ja) 円筒形ブッシュ
JP6332351B2 (ja) 自動車の防振装置および自動車の防振構造
JP6704812B2 (ja) 防振装置
JP2004291795A (ja) キャブマウント
US20240326572A1 (en) Mounting rubber member
JP6985156B2 (ja) 防振装置
JP4412616B2 (ja) 防振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15102942

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015000248

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765442

Country of ref document: EP

Kind code of ref document: A1