WO2015137324A1 - 結晶成長制御剤、p型半導体微粒子又はp型半導体微粒子膜の形成方法、正孔輸送層形成用組成物、及び太陽電池 - Google Patents

結晶成長制御剤、p型半導体微粒子又はp型半導体微粒子膜の形成方法、正孔輸送層形成用組成物、及び太陽電池 Download PDF

Info

Publication number
WO2015137324A1
WO2015137324A1 PCT/JP2015/056979 JP2015056979W WO2015137324A1 WO 2015137324 A1 WO2015137324 A1 WO 2015137324A1 JP 2015056979 W JP2015056979 W JP 2015056979W WO 2015137324 A1 WO2015137324 A1 WO 2015137324A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
hole transport
transport layer
crystal growth
solar cell
Prior art date
Application number
PCT/JP2015/056979
Other languages
English (en)
French (fr)
Inventor
亮正 仲村
篤史 山之内
浅井 隆宏
薫 石川
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014052497A external-priority patent/JP6059166B2/ja
Priority claimed from JP2014052498A external-priority patent/JP6059167B2/ja
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to EP15762215.0A priority Critical patent/EP3116019A4/en
Priority to KR1020167028180A priority patent/KR101760633B1/ko
Priority to CN201580012573.9A priority patent/CN106104773B/zh
Priority to US15/124,087 priority patent/US20170018369A1/en
Publication of WO2015137324A1 publication Critical patent/WO2015137324A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a crystal growth control agent for controlling crystal growth of a p-type semiconductor, a method for forming p-type semiconductor fine particles or a p-type semiconductor fine particle film using the crystal growth control agent, and a composition for forming a hole transport layer of a solar cell. And a solar cell using the composition for forming a hole transport layer.
  • the dye-sensitized solar cell includes a working electrode, a porous n-type semiconductor layer containing a porous n-type semiconductor (for example, titanium dioxide) adsorbed with a dye as a sensitizing material, and an electrolytic solution containing a redox mediator such as iodine. And a counter electrode.
  • a dye-sensitized solar cell there was a risk of leakage of the electrolyte. Therefore, development of an all-solid-state dye-sensitized solar cell (hereinafter also referred to as sDSSC) using a p-type semiconductor capable of transporting holes instead of the electrolytic solution is underway.
  • sDSSC all-solid-state dye-sensitized solar cell
  • various organic and inorganic semiconductors are listed as candidates for the p-type semiconductor, copper iodide is mainly used as the inorganic p-type semiconductor.
  • a p-type semiconductor into the pores of a porous n-type semiconductor adsorbed with a dye.
  • the filling of the p-type semiconductor into the pores is performed by dropping a p-type semiconductor solution onto the porous n-type semiconductor layer containing the porous n-type semiconductor and drying it. At this time, if a solution containing only the p-type semiconductor as a solute is used, it becomes difficult for the p-type semiconductor to be filled into the pores of the porous n-type semiconductor.
  • Non-Patent Document 1 when a solution containing only copper iodide as a solute is dropped onto a porous titanium dioxide layer and dried, a copper iodide crystal having a size of about 10 ⁇ m grows, and iodine into the titanium dioxide pores. It has been shown that copper filling was difficult to occur.
  • Non-Patent Documents 1 and 2 and Patent Documents 1 and 2 an organic salt (ionic liquid) having thiocyanate ions as anions is added to a copper iodide solution, or thiocyanate is added to a copper iodide solution. It has been reported that, by adding, crystal growth of copper iodide is suppressed, and a copper iodide crystal having a small size is formed and filled into the titanium dioxide pores. The crystal growth suppression effect by thiocyanate ions is said to be due to sulfur in thiocyanate ions binding to copper on the surface of the copper iodide crystal (Non-Patent Document 2). In recent years, a solar cell using a lead halide perovskite which is an organic-inorganic composite material has also been reported (Non-patent Document 3).
  • Organic salts can freely change ionic conductivity, viscosity, etc. by freely selecting a cation and an anion. If an organic salt having an anion other than thiocyanate ion is selected and an sDSSC showing a good conversion efficiency is obtained, various chemical modifications on the surface of the p-type semiconductor fine particle when using an organic salt having a thiocyanate ion as an anion The above problem of not being able to solve is solved.
  • Patent Document 3 all solid-state dye-sensitized solar cells were obtained by fixing the cation of the ionic liquid to 1-ethyl-3-methylimidazolium and changing the type of anion of the ionic liquid.
  • the conversion efficiency was high, and when the other anion was used, the conversion efficiency was less than half that when the thiocyanate ion was used.
  • the present invention relates to a crystal growth control agent that suppresses an increase in crystal size of a p-type semiconductor and enables chemical modification of the surface of the p-type semiconductor fine particle, and a p-type semiconductor using the crystal growth control agent
  • the object is to provide a method for forming a fine particle or p-type semiconductor fine particle film, a composition for forming a hole transport layer of a solar cell, and a solar cell using the composition for forming a hole transport layer (Problem 1). .
  • the present invention promotes crystallization and miniaturization of a p-type semiconductor even when an organic salt (ionic liquid) having an anion other than thiocyanate ion is used, and the p-type semiconductor It aims at providing the composition for positive hole transport layer formation which enables the chemical modification of the surface of microparticles
  • the present inventors have found that the above-mentioned problem 1 can be solved by using a sulfur-containing compound having a functional group that is strongly bonded to a p-type semiconductor and can be chemically modified, thereby completing the present invention. It came to.
  • the first aspect of Embodiment 1 of the present invention is at least one sulfur-containing compound selected from the group consisting of a compound that generates a thiolate anion by dissociation of a proton or cation and a disulfide compound (excluding thiocyanate) And a crystal growth controlling agent for controlling crystal growth of the p-type semiconductor.
  • the second aspect of Embodiment 1 of the present invention is a method for forming p-type semiconductor fine particles or p-type semiconductor fine particle films, which includes a step of crystallizing a p-type semiconductor in the presence of the crystal growth controlling agent.
  • the third aspect of Embodiment 1 of the present invention is a composition for forming a hole transport layer of a solar cell, which contains a p-type semiconductor and the crystal growth control agent.
  • a fourth aspect of Embodiment 1 of the present invention is a solar comprising a photoelectric conversion layer and a hole transport layer formed from the above composition for forming a hole transport layer, between a conductive substrate and a counter electrode layer. It is a battery.
  • a fifth aspect of Embodiment 1 of the present invention is a conductive substrate, a porous n-type semiconductor provided on the conductive substrate and having pores, and a sensitizing material adsorbed on the porous n-type semiconductor.
  • a solar cell in which the hole transport layer is formed from the composition for forming a hole transport layer (hereinafter sometimes referred to as “sensitized solar cell”).
  • the present inventors used an organic salt having an anion other than thiocyanate ion by using a sulfur-containing compound having a functional group that is strongly bonded to a p-type semiconductor and can be chemically modified. Even in this case, crystallization of the p-type semiconductor was promoted, and it was found that the above problem 2 could be solved, and the present invention was completed. Further, it was found that even when an organic salt having thiocyanate ion as an anion was used, the above sulfur-containing compound was bonded to the p-type semiconductor, and various chemical modifications on the surface of the p-type semiconductor fine particles became possible.
  • the first aspect of Embodiment 2 of the present invention is a p-type semiconductor, an organic salt, at least one sulfur-containing compound selected from the group consisting of a compound that generates a thiolate anion by dissociation of protons or cations and a disulfide compound.
  • a composition for forming a hole transport layer of a solar cell comprising a compound (however, excluding thiocyanate) and containing a crystal growth controlling agent for controlling crystal growth of a p-type semiconductor.
  • a second aspect of Embodiment 2 of the present invention is a solar comprising a photoelectric conversion layer and a hole transport layer formed from the above composition for forming a hole transport layer, between a conductive substrate and a counter electrode layer.
  • a third aspect of Embodiment 2 of the present invention is a conductive substrate, a porous n-type semiconductor provided on the conductive substrate and having pores, and a sensitizing material adsorbed on the porous n-type semiconductor.
  • a photoelectric conversion layer Including a photoelectric conversion layer, a hole transport layer provided on the photoelectric conversion layer and filling at least a part of the holes, and a counter electrode layer provided on the hole transport layer, In the solar cell, the hole transport layer is formed from the hole transport layer forming composition.
  • a crystal growth control agent that suppresses an increase in the crystal size of the p-type semiconductor and enables chemical modification of the surface of the p-type semiconductor fine particles, and p using this crystal growth control agent.
  • a method for forming a p-type semiconductor fine particle or a p-type semiconductor fine particle film, a composition for forming a hole transport layer of a solar cell, and a solar cell using the composition for forming a hole transport layer can be provided.
  • the crystallization of the p-type semiconductor is promoted and the surface of the p-type semiconductor fine particle is chemically modified. It is possible to provide a composition for forming a hole transport layer that can be made, and a solar cell using the composition.
  • the longitudinal cross-sectional view which shows the solar cell (sensitized solar cell) which concerns on the 5th aspect of Embodiment 1 of this invention, or the solar cell (sensitized solar cell) which concerns on the 3rd aspect of Embodiment 2 of this invention. It is. It is a graph which shows the relationship between the density
  • the crystal growth controlling agent according to the present invention comprises at least one sulfur-containing compound selected from the group consisting of a compound that generates a thiolate anion (—S ⁇ ) by dissociation of protons or cations and a disulfide compound (however, a thiocyanate salt) And the crystal growth of the p-type semiconductor is controlled.
  • the thiolate anion is coordinated to the p-type semiconductor surface and surrounds the p-type semiconductor, whereby crystal growth hardly occurs on the p-type semiconductor surface, and an increase in crystal size is suppressed.
  • the disulfide compound generates a thiolate anion by cleavage of the disulfide bond, and as a result, an increase in crystal size is suppressed in the same manner as described above. Further, by appropriately selecting the functional group possessed by the crystal growth controlling agent, chemical modification corresponding to the functional group can be applied to the p-type semiconductor surface through the crystal growth controlling agent coordinated to the p-type semiconductor surface. .
  • the sulfur-containing compound is not particularly limited as long as it is at least one selected from the group consisting of a compound that generates a thiolate anion by dissociation of protons or cations and a disulfide compound, and is other than thiocyanate.
  • compounds that generate thiolate anions by dissociation of protons or cations include, for example, thiol compounds, dithiocarboxylic acid compounds, dithiocarbamic acid compounds, thioamide compounds or tautomers thereof, thiourea compounds or tautomers thereof. Examples include mutants.
  • a sulfur-containing compound may be used independently and may be used in combination of 2 or more type.
  • R 1 -SH (1) (In the formula, R 1 represents a monovalent hydrocarbon group which may have a substituent.)
  • R 1 for example, an optionally substituted alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and optionally having 1 carbon atom.
  • -20 preferably 1-10, more preferably 1-6 alkenyl group, optionally substituted 6-20 carbon atoms, preferably 6-10, more preferably 6-8 aryl groups, substituted
  • Preferred examples include 7-8 alkylaryl groups. Examples of the substituent include a hydroxyl group, a thiol group, a carboxyl group, and an amino group. When it has a substituent, the number may be one or more.
  • thiol compound examples include thioglycerol, 2-mercaptoethanol, thioglycolic acid, 2,3-dimercapto-1-propanol, 1-propanethiol, 2-propanethiol, 2-methyl-2-propanethiol, 1 , 2-ethanedithiol, cyclohexanethiol, octanethiol, and other aliphatic thiol compounds, and thiophenol, p-toluenethiol, and aromatic thiol compounds such as aminobenzenethiol.
  • Examples of the dithiocarboxylic acid compound include those represented by the following formula (2-1) or (2-2).
  • R 2 represents a hydrogen atom or a monovalent hydrocarbon group or alkoxy group which may have a substituent
  • X + represents a cation of a Group 1 element (eg, H + , Li + , Na + or K + ) or an ammonium ion represented by the following formula (3):
  • (R 2A ) + represents a monovalent organic group having N +.
  • N + R 3 4 (3) In the formula, R 3 independently represents a hydrogen atom or a monovalent hydrocarbon group which may have a substituent. However, at least one R 3 may have a substituent. Valent hydrocarbon group.)
  • R 2 is a monovalent hydrocarbon group which may have a substituent
  • examples of R 2 include the groups exemplified for R 1 . Examples and numbers of substituents are as described above.
  • R 2 is an alkoxy group, those having 1 to 6 carbon atoms can be mentioned.
  • examples of R 3 include the groups exemplified for R 1 . Examples and numbers of substituents are as described above.
  • the (R 2A) + imidazolidinium ring-containing monovalent hydrocarbon group, quinolinium ring-containing monovalent hydrocarbon group, pyridinium ring-containing monovalent hydrocarbon group, such as piperazinium group-containing monovalent hydrocarbon group, an N +
  • dithiocarboxylic acid compound examples include salts of 2-dithionaphthoate with an alkylammonium ion of the above formula (3), and 2,6-difluorobenzenecarbodithionate with an alkylammonium ion of the above formula (3).
  • R 2 in Formula (4) is preferably a monovalent hydrocarbon group which may have a substituent, and the monovalent hydrocarbon group which may have a substituent is the same as described above.
  • X m + that is, X +
  • m 2 or more, any metal ion can be used.
  • dithiocarbamic acid compound examples include salts of diethyldithiocarbamic acid and ammonium ion of the above formula (3) (particularly diethylammonium diethyldithiocarbamate), 1-pyrrolidinecarbodithioic acid and alkylammonium ion of the above formula (3) Salt of dibenzyldithiocarbamic acid and alkylammonium ion of the above formula (3), salt of dimethyldithiocarbamic acid and alkylammonium ion of the above formula (3), dibutyldithiocarbamic acid and alkylammonium of the above formula (3) Examples include salts with ions.
  • dithiocarbamic acid compound a salt with a monovalent, divalent, or trivalent metal ion can also be used.
  • a salt with a monovalent, divalent, or trivalent metal ion can also be used.
  • sodium diethyldithiocarbamate, silver diethyldithiocarbamate, copper diethyldithiocarbamate, zinc diethyldithiocarbamate, iron diethyldithiocarbamate, nickel dibutyldithiocarbamate can be used.
  • Examples of the thioamide compound include those represented by the following formula (5).
  • R 2 -CS-NHR 2 (5) (Wherein R 2 is as defined above and may be the same as or different from each other, and may be bonded to each other to form a ring.)
  • the thioamide compound of the above formula (5) is deprotonated, and the resulting deprotonated product has one of the resonance structures having a thiolate anion as shown below.
  • thioamide compound examples include thioacetamide, thiobenzamide, thioisonicotinamide, 2-piperidinethione, 2-pyrrolidinethione, N-phenylpropanethioamide and the like.
  • Examples of the tautomer of the thioamide compound include those represented by the following formula (6).
  • R 2 -C (SH) NR 2 (6) (Wherein R 2 is as defined above and may be the same as or different from each other, and may be bonded to each other to form a ring.)
  • R 2 NH-CS-NHR 2 (7) (Wherein R 2 is as defined above and may be the same as or different from each other, and may be bonded to each other to form a ring.)
  • the thiourea compound of the above formula (7) is deprotonated, and the resulting deprotonated product has one of the resonance structures having a thiolate anion as shown below.
  • thiourea compound examples include thiourea, 1,3-dibutyl-2-thiourea, 1,3-dimethylthiourea, 1,3-diethyl-2-thiourea, and 1,3-diisopropyl-2-thio.
  • examples include urea, 2-imidazolidinethione, 1,3-dimethylthiourea, trimethylthiourea, ethylenethiourea, 1,3-di (p-tolyl) thiourea, 2-thiouracil, dithiopyrimidine and the like.
  • Examples of the tautomer of the thiourea compound include those represented by the following formula (8).
  • R 2 NH—C (SH) ⁇ NR 2 (8) (Wherein R 2 is as defined above and may be the same as or different from each other, and may be bonded to each other to form a ring.)
  • R 2 S—S—R 2 (9)
  • R 2 is as described above, and may be the same as or different from each other.
  • disulfide compound examples include linear or branched alkyl disulfides having 1 to 10 carbon atoms, diallyl disulfide, cyclohexyl disulfide, phenyl disulfide, benzyl disulfide, p-tolyl disulfide, p-dichlorodiphenyl sulfide, di ( 3,4-dichlorophenyl) disulfide, 2,2'-dithiobis (5-chloroaniline), 4,4'-dithiopyridine, 2,2'-dithiopyridine, 2,4-xylyl disulfide, 2,3-xyl Examples thereof include silyl disulfide, 3,5-xylyl disulfide, 2,4-xylyl 2,6-xylyl disulfide, 2,2′-dithiosalicylic acid, 2,2′-dithiobis (4-tert-butylphenol) and the like.
  • the compound semiconductor containing copper is mentioned, It is preferable that it is a compound semiconductor containing monovalent copper.
  • Specific examples of the p-type semiconductor include copper iodide and copper thiocyanate. Copper iodide is preferable from the viewpoint of conductivity, ionization potential, diffusion length, and the like.
  • the copper iodide here shall also contain the solid solution which replaced a part of iodine with chlorine or bromine in arbitrary ratios.
  • a p-type semiconductor may be used independently and may be used in combination of 2 or more type.
  • the method for forming a p-type semiconductor fine particle or p-type semiconductor fine particle film according to the present invention includes a step of crystallizing a p-type semiconductor in the presence of the crystal growth controlling agent of the present invention.
  • a p-type semiconductor is crystallized by evaporating the organic solvent from a solution containing an organic solvent, a crystal growth controlling agent dissolved in the organic solvent, and a p-type semiconductor. Fine particles or a p-type semiconductor fine particle film can be formed.
  • organic solvents include nitrogen-containing solvents such as acetonitrile, methoxyacetonitrile, methoxypropionitrile, and pyridine, lactone solvents such as ⁇ -butyrolactone and valerolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, and di-n-propyl.
  • lactone solvents such as ⁇ -butyrolactone and valerolactone
  • carbonate solvents such as ethylene carbonate and propylene carbonate
  • di-n-propyl examples thereof include sulfide solvents such as sulfide, and nitrile solvents such as acetonitrile are preferable.
  • sulfide solvents such as sulfide
  • nitrile solvents such as acetonitrile are preferable.
  • Each of the crystal growth controlling agent, the p-type semiconductor, and the organic solvent may be used alone or in combination of two or more.
  • the p-type semiconductor fine particles in the p-type semiconductor fine particles formed by the formation method of the present invention or the p-type semiconductor fine particle film formed by the formation method of the present invention have a particle diameter measured from a scanning electron microscope (SEM) image, It has a very small value of preferably 1 to 3000 nm, more preferably 5 to 100 nm.
  • This p-type semiconductor fine particle is a porous n-type used in sensitized solar cells such as formation of flat p-type semiconductor layers in solar cells, all-solid-state dye-sensitized solar cells, and quantum dot-sensitized solar cells. It can be suitably used for filling vacancies in semiconductors, etc.
  • the p-type semiconductor fine particles in the p-type semiconductor fine particle film formed by the forming method of the present invention also have a particle diameter measured from a scanning electron microscope (SEM) image, preferably 1 to 3000 nm, more preferably 5 to 100 nm. It has a very small value.
  • the p-type semiconductor can be crystallized in the pores in the porous n-type semiconductor having pores, and at least a part of the pores can be filled with the p-type semiconductor.
  • a porous n-type semiconductor with a solution containing an organic solvent, a crystal growth control agent and a p-type semiconductor dissolved in the organic solvent, and evaporating the organic solvent from the solution
  • the p-type semiconductor can be crystallized in the vacancies, and at least a part of the vacancies can be filled with the p-type semiconductor.
  • N-type semiconductor Although it does not specifically limit as an n-type semiconductor, for example, a metal oxide semiconductor is mentioned. Specific examples of the n-type semiconductor include TiO 2 , SnO 2 , ZnO, Nb 2 O 5 , In 2 O 3 and the like. From the viewpoint of efficiency of charge separation, TiO 2 or ZnO is preferable.
  • An n-type semiconductor may be used independently and may be used in combination of 2 or more type.
  • a porous n-type semiconductor is preferably used as the n-type semiconductor. The diameter of the pores possessed by is about 5 nm to 1000 nm, preferably about 10 nm to 500 nm.
  • the composition 1 for forming a positive hole transport layer of a solar cell according to the present invention contains a p-type semiconductor and the crystal growth controlling agent of the present invention.
  • the hole transport layer of a solar cell can be formed from the composition 1 for forming a hole transport layer of the present invention.
  • Each of the p-type semiconductor and the crystal growth controlling agent is as described above, and may be used alone or in combination of two or more.
  • the content of the crystal growth controlling agent is not particularly limited as long as it is an effective amount capable of suppressing the crystal growth of the p-type semiconductor.
  • the content is 0 for 100 parts by mass of the p-type semiconductor. 0.0001 to 15 parts by mass is preferable.
  • the composition 1 of the present invention is usually used in a state containing an organic solvent.
  • the organic solvent include those exemplified above.
  • the concentration of the crystal growth controlling agent is preferably 0.01 to 20 mM, more preferably 0.1 to 15 mM.
  • the content of the crystal growth controlling agent is preferably 0.002 to 10 parts by mass with respect to 100 parts by mass of the p-type semiconductor, for example.
  • the composition 1 for forming a hole transport layer of the present invention may contain an organic salt (ionic liquid) or the like as other components.
  • the content of the organic salt in the whole composition for forming a hole transport layer 1 is preferably 0 to 10% by mass, more preferably 0 to 1% by mass, and still more preferably 0% by mass.
  • the solar cell according to the fourth aspect of Embodiment 1 of the present invention is a hole transport formed from a photoelectric conversion layer and the composition 1 for forming a hole transport layer between a conductive substrate and a counter electrode layer.
  • a solar cell comprising a layer.
  • Examples of such solar cells include sensitized solar cells such as all-solid-state dye-sensitized solar cells and quantum dot-sensitized solar cells; organic thin film solar cells; and perovskite solar cells. Among these, first, an organic thin film type solar cell and a perovskite type solar cell will be described. The sensitized solar cell will be described later.
  • Such a solar cell further includes a support substrate on the main surface of the conductive substrate opposite to the main surface in contact with the n-type semiconductor layer, and the p-type of the main surface of the counter electrode layer.
  • a support substrate may be provided on the main surface opposite to the main surface in contact with the semiconductor layer.
  • the n-type semiconductor layer is provided on the conductive substrate and is made of an n-type semiconductor.
  • the n-type semiconductor is as described in the above [n-type semiconductor] section.
  • the thickness of the n-type semiconductor layer is preferably about 10 nm to 30 ⁇ m.
  • the photoelectric conversion layer is a solid layer that converts light energy into electrical energy.
  • examples of the material for the photoelectric conversion layer include organic-inorganic hybrid perovskites (for example, lead halide perovskites).
  • the photoelectric conversion layer is provided on the n-type semiconductor layer and can be formed by a known deposition method, a solution method (a dropping method or a coating method), or the like.
  • the thickness of the photoelectric conversion layer is preferably about 10 to 2000 nm.
  • the p-type semiconductor layer is provided on the photoelectric conversion layer and is formed from the hole transport layer forming composition 1 of the present invention.
  • the p-type semiconductor is as described in the above section [p-type semiconductor].
  • the thickness of the p-type semiconductor layer is preferably about 100 to 3000 nm.
  • the p-type semiconductor layer can be formed on the photoelectric conversion layer by a known coating method or deposition method using, for example, the hole transport layer forming composition 1 of the present invention. In the case of using the coating method, the composition 1 for forming a hole transport layer preferably contains an organic solvent.
  • FIG. 1 is a longitudinal cross-sectional view which shows the sensitized solar cell which concerns on the 5th aspect of Embodiment 1 of this invention, or the sensitized solar cell which concerns on the 3rd aspect of Embodiment 2 of this invention.
  • a sensitized solar cell 1 according to a fifth aspect of Embodiment 1 of the present invention includes a conductive substrate 2, a porous n-type semiconductor 3 provided on the conductive substrate 2 and having pores, and a porous substrate.
  • the sensitized solar cell 1 further includes a support substrate 8 on the main surface of the conductive substrate 2 opposite to the main surface in contact with the photoelectric conversion layer 5, and the main surface of the counter electrode layer 7. Of these, the support substrate 9 is provided on the main surface opposite to the main surface in contact with the hole transport layer 6.
  • the conductive substrate 2 is a substrate made of a conductive material.
  • the conductive material include metals such as platinum and gold, carbon, and conductive metal oxides such as fluorine-doped tin oxide (FTO) and indium tin oxide (ITO).
  • the support substrate 8 include a glass substrate and a plastic substrate.
  • the plastic substrate include a polyethylene terephthalate (PET) substrate. Both the conductive substrate 2 and the support substrate 8 are transparent.
  • the thickness of the conductive substrate 2 is preferably about 100 nm to 2 ⁇ m.
  • the thickness of the support substrate 8 is preferably about 1 ⁇ m to 3 mm.
  • the conductive substrate 2 can be obtained by forming a conductive material into a flat plate shape.
  • the conductive substrate 2 can be obtained by laminating a conductive material on the support substrate 8.
  • the support substrate 8 may not be provided.
  • the photoelectric conversion layer 5 is provided on the conductive substrate 2 and includes a porous n-type semiconductor 3 having pores and a sensitizing material 4 adsorbed on the porous n-type semiconductor 3.
  • the porous n-type semiconductor 3 is as described in the above [n-type semiconductor] section.
  • the thickness of the photoelectric conversion layer 5 is preferably about 100 nm to 30 ⁇ m.
  • the sensitized solar cell 1 is an all-solid-state dye-sensitized solar cell
  • a dye is used as the sensitizing material 4 adsorbed on the porous n-type semiconductor 3.
  • the dye used as the sensitizing material 4 is not particularly limited as long as it is used for a dye-sensitized solar cell.
  • the dye examples include organometallic complex dyes, methine dyes, porphyrin dyes, and phthalocyanine dyes described in Patent Document 1, phthalocyanine pigments, azo pigments, anthraquinone pigments, azomethine pigments described in Patent Document 2, Organic pigments such as quinophthalone pigments, isoindoline pigments, nitroso pigments, perinone pigments, quinacridone pigments, perylene pigments, pyrrolopyrrole pigments, dioxazine pigments, carbon pigments, chromate pigments, sulfides Pigments, oxide pigments, hydroxide pigments, ferrocyanide pigments, silicate pigments, phosphate pigments and other inorganic pigments, cyan dyes, xanthene dyes, azo dyes, hibiscus dyes , Blackberry pigment, raspberry pigment, pomegranate juice pigment, chlorophyll pigment, JP2011-2047 And an organic dye molecule represented by the
  • R 4 represents a monovalent hydrocarbon group which may have a substituent.
  • R 4 include the groups exemplified for R 1 . Examples and numbers of substituents are as described above.
  • the sensitized solar cell 1 is a quantum dot sensitized solar cell
  • the sensitizing material 4 adsorbed on the porous n-type semiconductor 3 include sulfides such as antimony sulfide, cadmium sulfide, lead sulfide, Examples of the selenide include lead selenide and cadmium selenide.
  • the sensitizing material 4 may be used alone or in combination of two or more.
  • sensitizing solar cell 1 is an all-solid-state dye-sensitized solar cell or a quantum dot-sensitized solar cell
  • sensitizing material 4 in a solar cell having a different sensitizing function, Other sensitizing materials are appropriately selected and adsorbed on the porous n-type semiconductor 3.
  • the photoelectric conversion layer 5 is obtained by applying a porous n-type semiconductor 3 on the conductive substrate 2, drying and baking, and then immersing the obtained laminate in the sensitizing material 4 solution to form a porous n-type semiconductor. It can be obtained by adsorbing the sensitizing material 4 to the semiconductor 3 and then removing the excess sensitizing material 4.
  • the hole transport layer 6 is provided on the photoelectric conversion layer 5 and fills at least a part of the holes, and is formed from the composition 1 for forming a hole transport layer of the present invention. .
  • the p-type semiconductor contained in the hole transport layer is as described in the above section [p-type semiconductor].
  • the thickness of the hole transport layer 6 is preferably about 100 to 3000 nm.
  • the hole transport layer 6 is, for example, by repeating the operation of dropping a predetermined amount of the composition 1 for forming a hole transport layer of the present invention containing an organic solvent into the predetermined number of times and drying it on the photoelectric conversion layer 5. It is provided on the photoelectric conversion layer 5 and fills at least a part of the pores of the porous n-type semiconductor 3.
  • the counter electrode layer 7 is provided on the hole transport layer 6.
  • Examples of the material of the counter electrode layer 7 include metals such as platinum and gold, carbon, and conductive metal oxides such as fluorine-doped tin oxide (FTO) and indium tin oxide (ITO).
  • the counter electrode layer 7 may be transparent. Although the thickness of the counter electrode layer 7 is not specifically limited, For example, about 15 micrometers is preferable.
  • the counter electrode layer 7 can be formed by vacuum-depositing the metal or by placing a metal foil on the hole transport layer 6 and attaching it.
  • the material of the layer 7 is a conductive metal oxide
  • the conductive metal oxide is formed into a film by sputtering, MOCVD or the like, or the conductive metal oxide is applied on the hole transport layer 6. It can be obtained by drying.
  • the material and thickness of the support substrate 9 are the same as those of the support substrate 8.
  • the support substrate 9 may be transparent. For example, when sufficient strength can be obtained with only the counter electrode layer 7, the support substrate 9 may not be provided.
  • the present invention relates to a p-type semiconductor, an organic salt, and at least one sulfur-containing compound selected from the group consisting of a compound that generates a thiolate anion by dissociation of protons or cations and a disulfide compound (excluding thiocyanate)
  • a composition for forming a hole transport layer of a solar cell comprising a crystal growth control agent for controlling crystal growth of a p-type semiconductor.
  • the hole transport layer of a solar cell can be formed from the composition 2 for forming a hole transport layer of the present invention.
  • Organic salts are sometimes referred to as ionic liquids. It does not specifically limit as organic salt, A well-known thing can be used.
  • Examples of the cation contained in the organic salt include 1-ethyl-3-methylimidazolium ion, 1-methyl-3-propylimidazolium ion, 1-methyl-3-octylimidazolium ion, and 1-methyl-3- Perfluorooctylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1-hexyl-3-methylimidazolium ion, 1-dodecyl-3-methylimidazolium ion, 1-allyl-3-methylimidazolium ion 1-benzyl-3-methylimidazolium ion, 1-butyl-1-perfluorooctylimidazolium ion, 1,3-dimethylimidazolium ion, 1,2,3-trimethylimida
  • 1-ethyl-3-methylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1-hexyl-3-methylimidazolium ion, and tributylmethylammonium ion are preferable.
  • anion contained in the organic salt examples include dicyanamide ion, fluoride ion, chloride ion, bromide ion, iodide ion, thiocyanate ion, methanesulfonate ion, tetrachloroaluminate ion, acetate ion, and nitrate ion.
  • bromide ion, chloride ion, iodide ion, dicyanamide ion and hexafluorophosphate ion are preferable, and bromide ion, chloride ion, iodide ion and dicyanamide ion are more preferable.
  • Examples of the organic salt include those having a melting point of less than 200 ° C. at 1 atmosphere.
  • Specific examples of the organic salt include 1-ethyl-3-methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, 1-ethyl-3-methylimidazolium chloride, -Ethyl-3-methylimidazolium iodide, 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium phosphate, 1-butyl-3-methylimidazolium dicyanamide, 1-butyl- 3-methylimidazolium chloride, 1-butyl-3-methylimidazolium iodide, 1-butyl-3-methylimidazolium bromide, 1-hexyl-3-methylimidazolium dicyanamide, 1-hexyl-3-methylimidazole Muchloride, 1-hexyl-3
  • the crystal growth controlling agent used in the present invention is at least one sulfur-containing compound selected from the group consisting of a compound that generates a thiolate anion (—S ⁇ ) by dissociation of a proton or a cation and a disulfide compound (however, a thiocyanate salt) And the crystal growth of the p-type semiconductor is controlled.
  • the thiolate anion is coordinated on the crystallized p-type semiconductor surface and surrounds the p-type semiconductor, whereby crystal growth hardly occurs on the p-type semiconductor surface, and an increase in crystal size is suppressed. Further, the disulfide compound generates a thiolate anion by cleavage of the disulfide bond, and as a result, an increase in crystal size is suppressed in the same manner as described above. Further, by appropriately selecting the functional group possessed by the crystal growth controlling agent, chemical modification corresponding to the functional group can be applied to the p-type semiconductor surface through the crystal growth controlling agent coordinated to the p-type semiconductor surface. .
  • the thiolate anion generated from the crystal growth control agent can be coordinated to the p-type semiconductor, and various chemical modifications can be applied to the surface of the p-type semiconductor fine particles. Can be applied.
  • the sulfur-containing compound, thiol compound, dithiocarboxylic acid compound, dithiocarbamic acid compound, thioamide compound or tautomer thereof, thiourea compound or tautomer thereof, and disulfide compound are as described above.
  • the content of the crystal growth controlling agent is not particularly limited as long as it is an effective amount capable of promoting crystallization and refinement of the p-type semiconductor.
  • 100 parts by mass of the p-type semiconductor The amount is preferably 0.001 to 15 parts by mass.
  • the composition 2 of the present invention is usually used in a state containing an organic solvent.
  • organic solvents include nitrogen-containing solvents such as acetonitrile, methoxyacetonitrile, methoxypropionitrile, and pyridine, lactone solvents such as ⁇ -butyrolactone and valerolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, and di-n-propyl.
  • nitrogen-containing solvents such as acetonitrile, methoxyacetonitrile, methoxypropionitrile, and pyridine
  • lactone solvents such as ⁇ -butyrolactone and valerolactone
  • carbonate solvents such as ethylene carbonate and propylene carbonate
  • di-n-propyl examples thereof include sulfide solvents such as sulfide, and nitrile solvents such as acetonitrile are preferable.
  • the concentration of the organic salt is preferably 0.5 to 20 mM, more preferably 1 to 15 mM, and the concentration of the crystal growth controlling agent is preferably 0.5 to 10 mM. More preferably, it is 0.7 to 7 mM.
  • the composition 2 of the present invention may contain other components for the purpose of improving the electrical characteristics of the hole transport layer.
  • amines such as t-butylpyridine, pyridine, polyvinylpyridine, 2-picoline and 2,6-lutidine; imidazoles such as N-methylbenzimidazole and N-butylbenzimidazole; Nitrogen-containing polar compounds such as dimethylformamide and N-methylpyrrolidone may be added.
  • a lithium ion salt or a sodium ion salt lithium iodide, lithium (iso) thiocyanate, sodium (iso) thiocyanate, etc.
  • a salt of guanidinium ion iodinated guanidine, guanidine thiocyanate, N-methylguanidine thiocyanate
  • cholic acids such as cholic acid, deoxycholic acid, chenodeoxycholic acid and the like may be added as a co-adsorbent for the dye described later.
  • the sensitized solar cell according to the third aspect includes a solar cell according to the fourth aspect of Embodiment 1 of the present invention and a sensitized solar cell according to the fifth aspect of Embodiment 1 of the present invention, respectively. It is the same.
  • the hole transport layer 6 is dried by dropping a predetermined amount of the composition 2 for forming a hole transport layer of the present invention containing an organic solvent onto the photoelectric conversion layer 5 in a predetermined number of times. By repeating the operation, at least a part of the pores provided on the photoelectric conversion layer 5 and in the porous n-type semiconductor 3 are filled.
  • the p-type semiconductor fine particles formed at this time have a very small value of 1 to 3000 nm, more preferably 5 to 100 nm, as measured from a scanning electron microscope (SEM) image.
  • This p-type semiconductor fine particle is a porous n-type used in sensitized solar cells such as formation of flat p-type semiconductor layers in solar cells, all-solid-state dye-sensitized solar cells, and quantum dot-sensitized solar cells. It can be suitably used for filling vacancies in semiconductors, etc. Even when a flat film is formed, the use of a crystal growth control agent forms a copper iodide film with a smaller surface roughness than when no additive is added. it can.
  • a titanium dioxide paste is screen-printed on an FTO layer of a transparent conductive support composed of a glass substrate (thickness: 1100 ⁇ m) and an FTO layer (thickness: 0.8 ⁇ m) covering one main surface, at 150 ° C. After drying, it was heated to 450 ° C. in an electric furnace to produce a porous titanium dioxide substrate comprising a transparent conductive support and a porous titanium dioxide layer provided thereon.
  • This substrate was immersed in an acetonitrile / tert-butyl alcohol solution in which a commercially available indoline dye D149 was dissolved to a concentration of 0.4 mM, and the dye was adsorbed onto porous titanium dioxide.
  • the substrate was washed with acetonitrile to remove excess dye, and then the substrate was dried to obtain a dye-adsorbing porous titanium dioxide substrate.
  • 10 ⁇ L of a copper iodide coating solution was dropped, and after drying, the next 10 ⁇ L was dropped.
  • the resulting secondary electron image (image magnified 8000 to 10000 times) was converted to white / black with the image processing software Image J (National Institute of Health, USA), and the number of pixels in the white and black portions was measured.
  • the ratio of (number of pixels in the white portion) / (number of pixels in the white portion + number of pixels in the black portion) was defined as the copper iodide filling rate.
  • Table 1 filling rate when no crystal growth control agent is added is 1). It should be noted that the gradation setting was performed using the automatic setting of the software.
  • a copper iodide layer is formed on the surface of the porous titanium dioxide layer, and the form of copper iodide crystals on the surface of this layer also varies greatly depending on the presence or absence of a crystal growth control agent. .
  • a crystal growth control agent In the case of no addition of a crystal growth control agent and in the case of an additive that does not improve the filling rate, there was a tendency for copper iodide crystals having a size exceeding 5 ⁇ m to grow, but the crystal growth control with improved filling rate was observed.
  • the size of the surface copper iodide crystal tended to be reduced to about 50 to 100 nm. From this, it was found that the improvement in the filling rate of copper iodide was due to the reduction in the size of the copper iodide crystal with the crystal growth control agent.
  • sulfur-containing compounds that generate thiolate anions by dissociation of protons or cations such as thiol compounds, dithiocarbamic acid compounds, thiocyanate, thioamide compounds, and thiourea compounds, exhibit a crystal growth inhibitory effect. all right.
  • the absorbance A 530 of the liquid was measured.
  • Absorbance A 700 of the acetonitrile solution in the 700nm also measured to calculate the difference in absorbance relative to the A 700 delta a (A 530 -A 700). The results are shown in FIG.
  • thioglycerol, octanethiol, or aminobenzenethiol is used as the crystal growth control agent, it can be seen that if the crystal growth control agent concentration is 1 mM or less, the dye elimination can be suppressed to the same level or lower than the conventional method. It was. It was found that thioacetamide has a smaller absorbance gradient with respect to the concentration than the above three thiols, that is, it has a low dye detachment ability and is suitable as a crystal growth control agent.
  • Example 1-14 using the crystal growth control agent the efficiency Eff increased by 16.4 times compared to the case where no crystal growth control agent was added (Comparative Example 1-1).
  • the short circuit current J sc increased 13.6 times.
  • a titanium dioxide paste is screen-printed on an FTO layer of a transparent conductive support composed of a glass substrate (thickness: 1100 ⁇ m) and an FTO layer (thickness: 0.8 ⁇ m) covering one main surface, at 150 ° C. After drying, it was heated to 450 ° C. in an electric furnace to produce a porous titanium dioxide substrate comprising a transparent conductive support and a porous titanium dioxide layer provided thereon.
  • This substrate was immersed in an acetonitrile / tert-butyl alcohol solution in which a commercially available indoline dye D149 was dissolved to a concentration of 0.4 mM, and the dye was adsorbed onto porous titanium dioxide.
  • the substrate was washed with acetonitrile to remove excess dye, and then the substrate was dried to obtain a dye-adsorbing porous titanium dioxide substrate.
  • 10 ⁇ L of a copper iodide coating solution was dropped, and after drying, the next 10 ⁇ L was dropped.
  • the resulting secondary electron image (image magnified 8000 to 10000 times) was converted to white / black with the image processing software Image J (National Institute of Health, USA), and the number of pixels in the white and black portions was measured.
  • the ratio of (number of pixels in the white portion) / (number of pixels in the white portion + number of pixels in the black portion) was defined as the copper iodide filling rate. It should be noted that the gradation setting was performed using the automatic setting of the software.
  • Comparative Example 2-4 using 1-ethyl-3-methylimidazolium dicyanamide as the ionic liquid and no crystal growth controller, and 1-ethyl-3-methylimidazolium bis (trifluoro) as the ionic liquid
  • Comparative Example 2-5 using romethanesulfonyl) imide and no crystal growth control agent, no white portion corresponding to the copper iodide crystal was seen in the SEM image, and the titanium dioxide pores appeared to be black. It was filled. This seems to be an ionic liquid in which copper iodide is dissolved.
  • Example 2-4 using 1-ethyl-3-methylimidazolium dicyanamide as the ionic liquid and 1,3-dibutylthiourea as the crystal growth controlling agent, the dye-adsorbed titanium dioxide that appears black in the SEM image It was confirmed that white copper iodide crystals were filled in the pores.
  • the filling rate of copper iodide was determined from image analysis of the SEM image.
  • the filling factor in Example 2-4 was about 2 when the filling factor obtained under the conditions of adding no ionic liquid and no crystal growth accelerator was 1.
  • Example 2-4 when 1-ethyl-3-methylimidazolium thiocyanate, which is a conventionally used ionic liquid, is used and the filling rate in Comparative Example 2-1 without using a crystal growth control agent is 1, The filling rate in Example 2-4 was about 0.8, and it was found that the filling rate of copper iodide close to the conventional method was obtained.
  • Table 4 shows the open electromotive force V oc and short circuit in Comparative Example 2-1, which uses 1-ethyl-3-methylimidazolium thiocyanate, which is a conventionally used ionic liquid, and does not use a crystal growth control agent. The results are shown assuming that the current J sc and the fill factor FF are 1, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

 第一に、p型半導体の結晶サイズの増大を抑制し、かつ、p型半導体微粒子表面の化学修飾を可能とする結晶成長制御剤、この結晶成長制御剤を用いたp型半導体微粒子又はp型半導体微粒子膜の形成方法、太陽電池の正孔輸送層形成用組成物、及びこの正孔輸送層形成用組成物を用いた太陽電池を提供する。第二に、チオシアン酸イオン以外のアニオンを有する有機塩(イオン性液体)を用いた場合であっても、p型半導体の結晶化及び微細化を促進し、かつ、p型半導体微粒子表面の化学修飾を可能とする正孔輸送層形成用組成物、及びそれを用いた太陽電池を提供する。 本発明に係る結晶成長制御剤は、プロトン又はカチオンの解離によりチオラートアニオンを生成する化合物及びジスルフィド化合物からなる群より選択される少なくとも1種の含硫黄化合物(但し、チオシアン酸塩を除く。)からなり、p型半導体の結晶成長を制御する。

Description

結晶成長制御剤、p型半導体微粒子又はp型半導体微粒子膜の形成方法、正孔輸送層形成用組成物、及び太陽電池
 本発明は、p型半導体の結晶成長を制御する結晶成長制御剤、この結晶成長制御剤を用いたp型半導体微粒子又はp型半導体微粒子膜の形成方法、太陽電池の正孔輸送層形成用組成物、及びこの正孔輸送層形成用組成物を用いた太陽電池に関する。
・背景技術1
 色素増感型太陽電池は、作用極、増感材料としての色素が吸着した多孔質n型半導体(例えば、二酸化チタン)を含む多孔質n型半導体層、ヨウ素等の酸化還元メディエーターを含む電解液、及び対極から構成されている。このような色素増感型太陽電池では、電解液の漏出のおそれがあった。そこで、上記電解液の代わりに、正孔の輸送が可能なp型半導体を用いる全固体型色素増感型太陽電池(以下、sDSSCともいう。)の開発が進められている。p型半導体の候補としては、様々な有機系及び無機系のものが挙げられているが、無機系のp型半導体としては、主にヨウ化銅が用いられている。
 高効率のsDSSCを作製するには、色素が吸着した多孔質n型半導体の細孔内にp型半導体を充填する必要がある。上記細孔内へのp型半導体の充填は、上記の多孔質n型半導体を含む多孔質n型半導体層にp型半導体の溶液を滴下し乾燥させることにより行われる。この際、p型半導体のみを溶質として含む溶液を用いると、多孔質n型半導体の細孔内へのp型半導体の充填が起こりにくくなる。例えば、非特許文献1では、ヨウ化銅のみを溶質として含む溶液を多孔質二酸化チタン層に滴下し乾燥させたところ、約10μmサイズのヨウ化銅結晶が成長し、二酸化チタン細孔へのヨウ化銅の充填が起こりにくかったことが示されている。
 非特許文献1及び2並びに特許文献1及び2では、チオシアン酸イオンをアニオンとする有機塩(イオン性液体)をヨウ化銅溶液に添加することで、又は、チオシアン酸塩をヨウ化銅溶液に添加することで、ヨウ化銅の結晶成長が抑制されて、サイズの小さいヨウ化銅結晶が形成され、二酸化チタン細孔に充填されることが報告されている。チオシアン酸イオンによる結晶成長抑制効果は、チオシアン酸イオン中の硫黄がヨウ化銅結晶表面の銅に結合することによるとされている(非特許文献2)。
 また近年、有機-無機複合物質であるハロゲン化鉛系ペロブスカイトを利用した太陽電池も報告されている(非特許文献3)。
・背景技術2
 ヨウ化銅等のp型半導体と有機塩(イオン性液体、常温溶融塩)とを用いた全固体型色素増感型太陽電池では、p型半導体結晶を微細化して、二酸化チタン等の多孔質n型半導体の細孔に充填することが必要である。イオン性液体としてチオシアン酸塩を用いたとき、チオシアン酸イオンが結晶成長抑制剤として機能し、ヨウ化銅の結晶が微細化されて二酸化チタン細孔内に充填され、良好な変換効率を示すsDSSCが得られることが報告されている。
 高性能のsDSSCを得るには、ヨウ化銅結晶等のp型半導体微粒子表面の化学修飾が重要な要素の1つと考えられる。また、sDSSC用途に限らず、固体正孔輸送層を有する太陽電池において、p型半導体微粒子の表面を化学修飾することで、p型半導体微粒子の機能を向上させ又は拡大することができると期待される。チオシアン酸イオンを用いてヨウ化銅等のp型半導体の微粒子を得る従来の方法では、p型半導体微粒子の表面にチオシアン酸イオンが結合する。チオシアン酸イオンは化学修飾を行いうる官能基としてシアノ基しか有しないため、上記従来法ではp型半導体微粒子の表面に多様な化学修飾を施すことは難しい。
 有機塩(イオン性液体)は、カチオンとアニオンとを自由に選択してイオン伝導性、粘度等を自在に変化させることができる。チオシアン酸イオン以外のアニオンを有する有機塩を選択し、良好な変換効率を示すsDSSCが得られれば、アニオンとしてチオシアン酸イオンを有する有機塩を用いたときにp型半導体微粒子表面の多様な化学修飾ができないという上記の問題は解決する。
 しかし、特許文献3では、イオン性液体のカチオンを1-エチル-3-メチルイミダゾリウムに固定し、イオン性液体のアニオンの種類を変えて、全固体型色素増感型太陽電池を得たところ、アニオンとしてチオシアン酸イオンを用いた場合で変換効率が高く、他のアニオンを用いた場合の変換効率は、チオシアン酸イオンを用いた場合の半分以下であった。
特開2001-230435号公報 特開2003-218371号公報 特開2001-230434号公報
「色素増感型固体太陽電池:正孔コレクタを析出させるための結晶成長抑制剤の使用(Dye-sensitized solid state solar cells: Use of crystal growth inhibitors for deposition of the hole collector)」、ケミストリー・オブ・マテリアルズ(Chemistry of Materials)、(米国)、2002年、第14巻、p.954-955 「ヨウ化銅の結晶成長阻害剤としてトリエチルアミンヒドロチオシアン酸塩を用いた色素増感型太陽電池の作製(Fabrication of Dye-sensitized solar cell using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor)」、ラングミュア(Langmuir)、(米国)、2002年、第18巻、p.10493-10495 「Efficient planar heterojunction perovskite solar cells by vapour deposition」、ネイチャー(Nature)、2013年、第501巻、p.395‐398
・背景技術1について
 高性能のsDSSCを得るには、ヨウ化銅結晶等のp型半導体微粒子表面の化学修飾が重要な要素の1つと考えられる。また、sDSSC用途に限らず、固体正孔輸送層を有する太陽電池において、p型半導体微粒子の表面を化学修飾することで、p型半導体微粒子の機能を向上させ又は拡大することができると期待される。チオシアン酸イオンを用いてヨウ化銅等のp型半導体の微粒子を得る従来の方法では、p型半導体微粒子の表面にチオシアン酸イオンが結合する。チオシアン酸イオンは化学修飾を行いうる官能基としてシアノ基しか有しないため、上記従来法ではp型半導体微粒子の表面に多様な化学修飾を施すことは難しい。
 第一に、本発明は、p型半導体の結晶サイズの増大を抑制し、かつ、p型半導体微粒子表面の化学修飾を可能とする結晶成長制御剤、この結晶成長制御剤を用いたp型半導体微粒子又はp型半導体微粒子膜の形成方法、太陽電池の正孔輸送層形成用組成物、及びこの正孔輸送層形成用組成物を用いた太陽電池を提供することを目的とする(課題1)。
・背景技術2について
 本発明者らが検討したところ、チオシアン酸イオン以外のアニオンを有する有機塩を用いた場合には、p型半導体の結晶化が起きていないことが判明した。
 第二に、本発明は、チオシアン酸イオン以外のアニオンを有する有機塩(イオン性液体)を用いた場合であっても、p型半導体の結晶化及び微細化を促進し、かつ、p型半導体微粒子表面の化学修飾を可能とする正孔輸送層形成用組成物、及びそれを用いた太陽電池を提供することを目的とする(課題2)。
 第一に、本発明者らは、p型半導体に強く結合し、かつ、化学修飾が可能な官能基を有する含硫黄化合物を用いることにより上記課題1を解決できることを見出し、本発明を完成するに至った。
 本発明の実施形態1の第一の態様は、プロトン又はカチオンの解離によりチオラートアニオンを生成する化合物及びジスルフィド化合物からなる群より選択される少なくとも1種の含硫黄化合物(但し、チオシアン酸塩を除く。)からなり、p型半導体の結晶成長を制御する結晶成長制御剤である。
 本発明の実施形態1の第二の態様は、上記結晶成長制御剤の存在下でp型半導体を結晶化させる工程を含むp型半導体微粒子又はp型半導体微粒子膜の形成方法である。
 本発明の実施形態1の第三の態様は、p型半導体と、上記結晶成長制御剤とを含有する、太陽電池の正孔輸送層形成用組成物である。
 本発明の実施形態1の第四の態様は、導電性基板と対極層との間に、光電変換層と、上記正孔輸送層形成用組成物から形成された正孔輸送層とを備える太陽電池である。
 本発明の実施形態1の第五の態様は、導電性基板と、上記導電性基板上に設けられ、空孔を有する多孔質n型半導体及び上記多孔質n型半導体に吸着した増感材料を含む光電変換層と、上記光電変換層上に設けられ、かつ、上記空孔の少なくとも一部を充填する正孔輸送層と、上記正孔輸送層上に設けられた対極層と、を備え、上記正孔輸送層が上記正孔輸送層形成用組成物から形成されたものである太陽電池(以下、「増感型太陽電池」ということがある。)である。
 第二に、本発明者らは、p型半導体に強く結合し、かつ、化学修飾が可能な官能基を有する含硫黄化合物を用いることにより、チオシアン酸イオン以外のアニオンを有する有機塩を用いた場合でも、p型半導体の結晶化が促進され、上記課題2を解決できることを見出し、本発明を完成するに至った。また、アニオンとしてチオシアン酸イオンを有する有機塩を用いた場合でも、上記の含硫黄化合物がp型半導体に結合し、p型半導体微粒子の表面の多様な化学修飾が可能となることがわかった。
 本発明の実施形態2の第一の態様は、p型半導体と、有機塩と、プロトン又はカチオンの解離によりチオラートアニオンを生成する化合物及びジスルフィド化合物からなる群より選択される少なくとも1種の含硫黄化合物(但し、チオシアン酸塩を除く。)からなり、p型半導体の結晶成長を制御する結晶成長制御剤と、を含有する、太陽電池の正孔輸送層形成用組成物である。
 本発明の実施形態2の第二の態様は、導電性基板と対極層との間に、光電変換層と、上記正孔輸送層形成用組成物から形成された正孔輸送層とを備える太陽電池である。
 本発明の実施形態2の第三の態様は、導電性基板と、上記導電性基板上に設けられ、空孔を有する多孔質n型半導体及び上記多孔質n型半導体に吸着した増感材料を含む光電変換層と、上記光電変換層上に設けられ、かつ、前記空孔の少なくとも一部を充填する正孔輸送層と、上記正孔輸送層上に設けられた対極層と、を備え、上記正孔輸送層が上記正孔輸送層形成用組成物から形成されたものである太陽電池である。
 第一に、本発明によれば、p型半導体の結晶サイズの増大を抑制し、かつ、p型半導体微粒子表面の化学修飾を可能とする結晶成長制御剤、この結晶成長制御剤を用いたp型半導体微粒子又はp型半導体微粒子膜の形成方法、太陽電池の正孔輸送層形成用組成物、及びこの正孔輸送層形成用組成物を用いた太陽電池を提供することができる。
 第二に、本発明によれば、チオシアン酸イオン以外のアニオンを有する有機塩を用いた場合であっても、p型半導体の結晶化を促進し、かつ、p型半導体微粒子表面の化学修飾を可能とする正孔輸送層形成用組成物、及びそれを用いた太陽電池を提供することができる。
本発明の実施形態1の第五の態様に係る太陽電池(増感型太陽電池)又は本発明の実施形態2の第三の態様に係る太陽電池(増感型太陽電池)を示す縦断面図である。 結晶成長制御剤の濃度と色素吸着多孔質二酸化チタン基板から脱離する色素の量との関係を示すグラフである。
 以下、本発明の実施形態1について詳細に説明する。
<結晶成長制御剤>
 本発明に係る結晶成長制御剤は、プロトン又はカチオンの解離によりチオラートアニオン(-S)を生成する化合物及びジスルフィド化合物からなる群より選択される少なくとも1種の含硫黄化合物(但し、チオシアン酸塩を除く。)からなり、p型半導体の結晶成長を制御する。上記のチオラートアニオンは、p型半導体表面に配位し、p型半導体を取り囲むことにより、p型半導体表面では結晶成長が起こりにくくなって、結晶サイズの増大が抑制される。また、ジスルフィド化合物は、ジスルフィド結合の開裂により、チオラートアニオンを生じ、その結果、上記と同様にして、結晶サイズの増大が抑制される。また、結晶成長制御剤が有する官能基を適宜選択することにより、その官能基に応じた化学修飾を、p型半導体表面に配位した結晶成長制御剤を通じて、p型半導体表面に施すことができる。
 含硫黄化合物は、プロトン又はカチオンの解離によりチオラートアニオンを生成する化合物及びジスルフィド化合物からなる群より選択される少なくとも1種であり、かつ、チオシアン酸塩以外のものであれば、特に限定されない。含硫黄化合物のうち、プロトン又はカチオンの解離によりチオラートアニオンを生成する化合物としては、例えば、チオール化合物、ジチオカルボン酸化合物、ジチオカルバミン酸化合物、チオアミド化合物又はその互変異性体、チオ尿素化合物又はその互変異性体等が挙げられる。含硫黄化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 チオール化合物としては、例えば、下記式(1)で表されるものが挙げられる。
   R-SH   (1)
(式中、Rは、置換基を有していてもよい1価炭化水素基を表す。)
 Rとしては、例えば、置換基を有していてもよい炭素数1~20、好ましくは1~10、より好ましくは1~6のアルキル基、置換基を有していてもよい炭素数1~20、好ましくは1~10、より好ましくは1~6のアルケニル基、置換基を有してもよい炭素数6~20、好ましくは6~10、より好ましくは6~8のアリール基、置換基を有してもよい炭素数7~20、好ましくは7~10、より好ましくは7~8のアラルキル基、置換基を有してもよい炭素数7~20、好ましくは7~10、より好ましくは7~8のアルキルアリール基等が挙げられる。置換基としては、例えば、水酸基、チオール基、カルボキシル基、アミノ基等が挙げられる。置換基を有する場合、その数は1個でも複数個でもよい。
 チオール化合物の具体例としては、チオグリセロール、2-メルカプトエタノール、チオグリコール酸、2,3-ジメルカプト-1-プロパノール、1-プロパンチオール、2-プロパンチオール、2-メチル-2-プロパンチオール、1,2-エタンジチオール、シクロヘキサンチオール、オクタンチオール等の脂肪族チオール化合物、チオフェノール、p-トルエンチオール、アミノベンゼンチオール等の芳香族チオール化合物等が挙げられる。
 ジチオカルボン酸化合物としては、例えば、下記式(2-1)又は(2-2)で表されるものが挙げられる。
   R-CS-S   (2-1)
   (R2A-CS-S   (2-2)
(式(2-1)中、Rは、水素原子又は置換基を有していてもよい1価炭化水素基又はアルコキシ基を表し、Xは、第一族元素のカチオン(例えば、H、Li、Na又はK)又は下記式(3)で表されるアンモニウムイオンを表す。式(2-2)中、(R2Aは、Nを有する1価有機基を表す。)
   N    (3)
(式中、Rは、独立に、水素原子又は置換基を有していてもよい1価炭化水素基を表す。但し、少なくとも1個のRは置換基を有していてもよい1価炭化水素基である。)
 Rが置換基を有していてもよい1価炭化水素基である場合、Rとしては、例えば、Rについて例示した基が挙げられる。置換基の例及び数は上記のとおりである。Rがアルコキシ基の場合、炭素数1~6のものが挙げられる。
 Rが置換基を有していてもよい1価炭化水素基である場合、Rとしては、例えば、Rについて例示した基が挙げられる。置換基の例及び数は上記のとおりである。
 (R2Aとしては、イミダゾリジニウム環含有1価炭化水素基、キノリニウム環含有1価炭化水素基、ピリジニウム環含有1価炭化水素基、ピペラジニウム基含有1価炭化水素基等、Nを有する複素環式基が挙げられる。
 ジチオカルボン酸化合物の具体例としては、2-ジチオナフトエートと上記式(3)のアルキルアンモニウムイオンとの塩、2,6-ジフルオロベンゼンカルボジチオネートと上記式(3)のアルキルアンモニウムイオンとの塩、Nsc160482、Nsc273908、Nsc273909等、Rがアルコキシ基の化合物としては、エチルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸カリウム、ブチルキサントゲン酸カリウム、アミルキサントゲン酸カリウムが挙げられる。
 ジチオカルバミン酸化合物としては、例えば、下記式(4)で表されるものが挙げられる。
    (R N-CS-Sm+  (4)
(式中、Rは、上記のとおりであり、Rは、互いに同一でも異なっていてもよい。n及びmは価数を示しn=mである。Xm+は、価数mのカチオンを表す。)
 式(4)におけるRとしては、置換基を有していてもよい1価炭化水素基が好ましく、置換基を有していてもよい1価炭化水素基は、上記と同様である。mが1の場合、Xm+(つまりX)は上記と同様のものが挙げられる。mが2以上の場合は任意の金属イオンを用いることができる。
 ジチオカルバミン酸化合物の具体例としては、ジエチルジチオカルバミン酸と上記式(3)のアンモニウムイオンとの塩(特にジエチルジチオカルバミン酸ジエチルアンモニウム)、1-ピロリジンカルボジチオ酸と上記式(3)のアルキルアンモニウムイオンとの塩、ジベンジルジチオカルバミン酸と上記式(3)のアルキルアンモニウムイオンとの塩、ジメチルジチオカルバミン酸と上記式(3)のアルキルアンモニウムイオンとの塩、ジブチルジチオカルバミン酸と上記式(3)のアルキルアンモニウムイオンとの塩等が挙げられる。また、ジチオカルバミン酸化合物としては、1価、2価、又は3価の金属イオンとの塩を用いることもできる。例えば、ジエチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸銀、ジエチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸鉄、ジブチルジチオカルバミン酸ニッケルを用いることができる。
 チオアミド化合物としては、例えば、下記式(5)で表されるものが挙げられる。
   R-CS-NHR   (5)
(式中、Rは、上記のとおりであり、互いに同一でも異なっていてもよく、互いに結合して環を形成してもよい。)
 上記式(5)のチオアミド化合物は、脱プロトン化し、生じた脱プロトン化体は、以下に示すとおり、共鳴構造の1つがチオラートアニオンを有する。
Figure JPOXMLDOC01-appb-C000001
 チオアミド化合物の具体例としては、チオアセトアミド、チオベンズアミド、チオイソニコチンアミド、2-ピペリジンチオン、2-ピロリジンチオン、N-フェニルプロパンチオアミド等が挙げられる。
 チオアミド化合物の互変異性体としては、例えば、下記式(6)で表されるものが挙げられる。
   R-C(SH)=NR   (6)
(式中、Rは、上記のとおりであり、互いに同一でも異なっていてもよく、互いに結合して環を形成してもよい。)
 チオ尿素化合物としては、例えば、下記式(7)で表されるものが挙げられる。
   RNH-CS-NHR   (7)
(式中、Rは、上記のとおりであり、互いに同一でも異なっていてもよく、互いに結合して環を形成してもよい。)
 上記式(7)のチオ尿素化合物は、脱プロトン化し、生じた脱プロトン化体は、以下に示すとおり、共鳴構造の1つがチオラートアニオンを有する。
Figure JPOXMLDOC01-appb-C000002
 チオ尿素化合物の具体例としては、チオ尿素、1,3-ジブチル-2-チオ尿素、1,3-ジメチルチオ尿素、1,3-ジエチル-2-チオ尿素、1,3-ジイソプロピル-2-チオ尿素、2-イミダゾリヂンチオン、1,3-ジメチルチオ尿素、トリメチルチオ尿素、エチレンチオ尿素、1,3-ジ(p-トリル)チオ尿素、2-チオウラシル、ジチオピリミジン等が挙げられる。
 チオ尿素化合物の互変異性体としては、例えば、下記式(8)で表されるものが挙げられる。
   RNH-C(SH)=NR   (8)
(式中、Rは、上記のとおりであり、互いに同一でも異なっていてもよく、互いに結合して環を形成してもよい。)
 ジスルフィド化合物としては、例えば、下記式(9)で表されるものが挙げられる。
   R-S-S-R   (9)
(式中、Rは、上記のとおりであり、互いに同一でも異なっていてもよい。)
 ジスルフィド化合物の具体例としては、炭素数1~10の直鎖状又は分岐鎖状のアルキルジスルフィド、ジアリルジスルフィド、シクロヘキシルジスルフィド、フェニルジスルフィド、ベンジルジスルフィド、p-トリルジスルフィド、p-ジクロロジフェニルスルフィド、ジ(3,4-ジクロロフェニル)ジスルフィド、2,2’-ジチオビス(5-クロロアニリン)、4,4’-ジチオピリジン、2,2’-ジチオピリジン、2,4-キシリルジスルフィド、2,3-キシリルジスルフィド、3,5-キシリルジスルフィド、2,4-キシリル2,6-キシリルジスルフィド、2,2’-ジチオサリチル酸、2,2’-ジチオビス(4-tert-ブチルフェノール)等が挙げられる。
[p型半導体]
 p型半導体としては、特に限定されないが、例えば、銅を含む化合物半導体が挙げられ、1価の銅を含む化合物半導体であることが好ましい。p型半導体の具体例としては、ヨウ化銅、チオシアン酸銅等が挙げられ、導電率、イオン化ポテンシャル、拡散長等の観点から、ヨウ化銅が好ましい。なお、ここでのヨウ化銅には、ヨウ素の一部を塩素又は臭素に任意の割合で置き換えた固溶体も含まれるものとする。p型半導体は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<p型半導体微粒子又はp型半導体微粒子膜の形成方法>
 本発明に係るp型半導体微粒子又はp型半導体微粒子膜の形成方法は、本発明の結晶成長制御剤の存在下でp型半導体を結晶化させる工程を含む。具体的には、例えば、有機溶媒と、この有機溶媒に溶解した結晶成長制御剤及びp型半導体とを含む溶液から上記有機溶媒を蒸発させることによりp型半導体を結晶化させて、p型半導体微粒子又はp型半導体微粒子膜を形成させることができる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、ピリジン等の窒素含有溶媒、γ-ブチロラクトン、バレロラクトン等のラクトン系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、ジ-n-プロピルスルフィド等のスルフィド系溶媒が挙げられ、アセトニトリル等のニトリル系溶媒が好ましい。結晶成長制御剤、p型半導体、及び有機溶媒の各々は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の形成方法で形成されたp型半導体微粒子又は本発明の形成方法で形成されたp型半導体微粒子膜におけるp型半導体微粒子は、走査型電子顕微鏡(SEM)像から測定した粒子径が、好ましくは1~3000nm、より好ましくは5~100nmという非常に小さな値を有する。このp型半導体微粒子は、太陽電池における平坦なp型半導体層の形成、全固体型色素増感型太陽電池、量子ドット増感型太陽電池等の増感型太陽電池に用いられる多孔質n型半導体における空孔の充填等に好適に用いることができ、平坦膜を製膜する場合でも、結晶成長制御剤の使用により、無添加の場合に比べて表面粗さの小さいヨウ化銅膜を形成できる。なお、本発明の形成方法で形成されたp型半導体微粒子膜におけるp型半導体微粒子も、走査型電子顕微鏡(SEM)像から測定した粒子径が、好ましくは1~3000nm、より好ましくは5~100nmという非常に小さな値を有する。
 上記の形成方法において、空孔を有する多孔質n型半導体における上記空孔内でp型半導体を結晶化させて、上記空孔の少なくとも一部をp型半導体で充填することができる。具体的には、例えば、有機溶媒と、この有機溶媒に溶解した結晶成長制御剤及びp型半導体とを含む溶液を多孔質n型半導体に含浸し、上記溶液から上記有機溶媒を蒸発させることにより上記空孔内でp型半導体を結晶化させて、上記空孔の少なくとも一部をp型半導体で充填することができる。
[n型半導体]
 n型半導体としては、特に限定されないが、例えば、金属酸化物半導体が挙げられる。n型半導体の具体例としては、TiO、SnO、ZnO、Nb、In等が挙げられる。電荷分離の効率性等の観点から、TiO又はZnOが好ましい。n型半導体は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、全固体型色素増感型太陽電池、量子ドット増感型太陽電池等の増感型太陽電池の場合はn型半導体として多孔質n型半導体を用いることが好ましく、当該多孔質n型半導体が有する空孔の直径は、平均で5nm~1000nm程度であり、好ましくは10nm~500nm程度である。
<正孔輸送層形成用組成物1>
 本発明に係る太陽電池の正孔輸送層形成用組成物1は、p型半導体と、本発明の結晶成長制御剤とを含有する。本発明の正孔輸送層形成用組成物1から太陽電池の正孔輸送層を形成することができる。p型半導体及び結晶成長制御剤の各々は、上記のとおりであり、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の組成物1において、結晶成長制御剤の含有量は、p型半導体の結晶成長を抑制することができる有効量であれば特に限定されないが、例えば、p型半導体100質量部に対し0.00001~15質量部が好ましい。
 本発明の組成物1は、通常、有機溶媒を含んだ状態で使用される。有機溶媒としては、例えば、上記で例示したものが挙げられる。有機溶媒を含む本発明の組成物1において、結晶成長制御剤の濃度は、好ましくは0.01~20mM、より好ましくは0.1~15mMである。なお、有機溶媒を含まない状態で使用する場合、結晶成長制御剤の含有量は、例えば、p型半導体100質量部に対し0.002~10質量部が好ましい。
 本発明の正孔輸送層形成用組成物1は、その他の成分として、有機塩(イオン性液体)等を含有してもよい。正孔輸送層形成用組成物1全体における有機塩の含有量は0~10質量%が好ましく、0~1質量%であることがより好ましく、0質量%であることが更に好ましい。
<太陽電池>
 本発明の実施形態1の第四の態様に係る太陽電池は、導電性基板と対極層との間に、光電変換層と、上記正孔輸送層形成用組成物1から形成された正孔輸送層とを備える太陽電池である。このような太陽電池としては、全固体型色素増感型太陽電池、量子ドット増感型太陽電池等の増感型太陽電池;有機薄膜型太陽電池;ペロブスカイト型太陽電池が挙げられる。これらのうち、まず、有機薄膜型太陽電池及びペロブスカイト型太陽電池について、説明する。増感型太陽電池については、後述する。
 有機薄膜型太陽電池やペロブスカイト型太陽電池としては、例えば、導電性基板と、上記導電性基板上に設けられるn型半導体を含むn型半導体層と、n型半導体層上に設けられる光電変換層と、光電変換層上に設けられるp型半導体層(正孔輸送層)と、p型半導体層上に設けられる対極層と、を備え、p型半導体層は本発明の正孔輸送層形成用組成物1から形成されているものが挙げられる。このような太陽電池は、更に、導電性基板の主面のうち、n型半導体層と接する主面とは反対側の主面上に支持基板を備え、対極層の主面のうち、p型半導体層と接する主面とは反対側の主面上に支持基板を備えていてもよい。これらのうち、導電性基板と対極層と支持基板については、後述する<増感型太陽電池>における説明と同様である。
[n型半導体層]
 n型半導体層は、上記導電性基板上に設けられ、n型半導体からなる。n型半導体は上記[n型半導体]の項で説明したとおりである。
 n型半導体層の厚さは、10nm~30μm程度が好ましい。
[光電変換層]
 光電変換層は、光エネルギーを電気エネルギーに変換する固体状の層である。ペロブスカイト型太陽電池の場合、光電変換層の材料としては、例えば、有機-無機ハイブリッド系のペロブスカイト(例えば、ハロゲン化鉛ペロブスカイト)が挙げられる。
 光電変換層は、上記n型半導体層上に設けられ、公知の堆積法や溶液法(滴下法又は塗布法)等により形成することができる。光電変換層の厚さは、10~2000nm程度が好ましい。
[p型半導体層]
 p型半導体層は、上記光電変換層上に設けられ、かつ、本発明の正孔輸送層形成用組成物1から形成されている。p型半導体は上記[p型半導体]の項で説明したとおりである。
 p型半導体層の厚さは、100~3000nm程度が好ましい。
 p型半導体層は、例えば、本発明の正孔輸送層形成用組成物1を用いて、公知の塗布法や堆積法により、上記光電変換層上に形成することができる。塗布法を用いる場合は正孔輸送層形成用組成物1は、有機溶媒を含むことが好ましい。
<増感型太陽電池>
 以下、本発明に係る増感型太陽電池について図1を参照しながら詳細に説明する。図1は、本発明の実施形態1の第五の態様に係る増感型太陽電池又は本発明の実施形態2の第三の態様に係る増感型太陽電池を示す縦断面図である。本発明の実施形態1の第五の態様に係る増感型太陽電池1は、導電性基板2と、上記導電性基板2上に設けられ、空孔を有する多孔質n型半導体3及び多孔質n型半導体3に吸着した増感材料4を含む光電変換層5と、光電変換層5上に設けられ、かつ、上記空孔の少なくとも一部を充填する正孔輸送層6と、正孔輸送層6上に設けられた対極層7と、を備え、正孔輸送層6は本発明の正孔輸送層形成用組成物1から形成されている。増感型太陽電池1は、更に、導電性基板2の主面のうち、光電変換層5と接する主面とは反対側の主面上に支持基板8を備え、対極層7の主面のうち、正孔輸送層6と接する主面とは反対側の主面上に支持基板9を備える。
[導電性基板]
 導電性基板2は、導電性材料からなる基板である。導電性材料としては、例えば、白金、金等の金属、炭素、及びフッ素ドープ酸化スズ(FTO)、酸化インジウムスズ(ITO)等の導電性金属酸化物が挙げられる。支持基板8としては、例えば、ガラス基板、プラスチック基板等が挙げられる。プラスチック基板としては、例えば、ポリエチレンテレフタレート(PET)基板等が挙げられる。導電性基板2及び支持基板8はともに透明である。
 導電性基板2の厚さは、100nm~2μm程度が好ましい。また、支持基板8の厚さは、1μm~3mm程度が好ましい。
 導電性基板2は、導電性材料を平板状に成形することで得ることができる。例えば、支持基板8上に導電性材料を積層することにより、導電性基板2を得ることができる。
 なお、例えば、導電性基板2のみで十分な強度が得られる場合には、支持基板8を設けなくてもよい。
[光電変換層]
 光電変換層5は、上記導電性基板2上に設けられ、空孔を有する多孔質n型半導体3及び多孔質n型半導体3に吸着した増感材料4を含む。多孔質n型半導体3は上記[n型半導体]の項で説明したとおりである。
 光電変換層5の厚さは、100nm~30μm程度が好ましい。
 増感型太陽電池1が全固体型色素増感型太陽電池である場合、多孔質n型半導体3に吸着した増感材料4としては、色素が用いられる。増感材料4として用いられる色素は、色素増感型太陽電池に用いられるものであれば、特に限定されない。色素としては、例えば、特許文献1に記載の有機金属錯体色素、メチン色素、ポルフィリン系色素、及びフタロシアニン系色素、特許文献2に記載のフタロシアニン系顔料、アゾ系顔料、アントラキノン顔料、アゾメチン系顔料、キノフタロン系顔料、イソインドリン系顔料、ニトロソ系顔料、ペリノン系顔料、キナクリドン系顔料、ペリレン系顔料、ピロロピロール系顔料、ジオキサジン系顔料等の有機顔料、炭素系顔料、クロム酸塩系顔料、硫化物系顔料、酸化物系顔料、水酸化物系顔料、フェロシアン化物系顔料、ケイ酸塩系顔料、リン酸塩系顔料等の無機顔料、シアン系色素、キサンテン系色素、アゾ系色素、ハイビスカス色素、ブラックベリー色素、ラズベリー色素、ザクロ果汁色素、クロロフィル色素、特開2011-204789号公報に記載の下記式で表される有機色素分子が挙げられる。色素は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、置換基を有していてもよい1価炭化水素基を表す。)
 Rとしては、例えば、Rについて例示した基が挙げられる。置換基の例及び数は上記のとおりである。
 増感型太陽電池1が量子ドット増感型太陽電池である場合、多孔質n型半導体3に吸着した増感材料4としては、例えば、硫化アンチモン、硫化カドミウム、硫化鉛等の硫化物や、セレン化鉛、セレン化カドミウム等のセレン化物が挙げられる。量子ドット増感型太陽電池において、増感材料4は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増感材料4について、増感型太陽電池1が全固体型色素増感型太陽電池又は量子ドット増感型太陽電池である場合を例にして説明したが、増感機能の異なる太陽電池においては、他の増感材料を適宜選択し、多孔質n型半導体3に吸着させる。
 光電変換層5は、例えば、多孔質n型半導体3を導電性基板2上に塗布して乾燥及び焼成させた後、得られた積層体を増感材料4溶液に浸漬し、多孔質n型半導体3に増感材料4を吸着させ、次に、余分な増感材料4を除去することにより得ることができる。
[正孔輸送層]
 正孔輸送層6は、上記光電変換層5上に設けられ、かつ、前記空孔の少なくとも一部を充填するものであり、本発明の正孔輸送層形成用組成物1から形成されている。正孔輸送層に含まれるp型半導体は上記[p型半導体]の項で説明したとおりである。
 正孔輸送層6の厚さは、100~3000nm程度が好ましい。
 正孔輸送層6は、例えば、有機溶媒を含む本発明の正孔輸送層形成用組成物1の所定量を所定回数に分けて光電変換層5上に滴下し乾燥させる操作を繰り返すことにより、光電変換層5上に設けられ、かつ、多孔質n型半導体3の空孔の少なくとも一部を充填する。
[対極層]
 対極層7は、正孔輸送層6上に設けられる。対極層7の材料としては、例えば、白金、金等の金属、炭素、及びフッ素ドープ酸化スズ(FTO)、酸化インジウムスズ(ITO)等の導電性金属酸化物が挙げられる。対極層7は透明であってもよい。
 対極層7の厚さは、特に限定されないが、例えば、15μm程度が好ましい。
 対極層7は、対極層7の材料が金属である場合には、それら金属を真空蒸着すること又は金属の箔を正孔輸送層6上に載せて貼り付けることにより形成させることができ、対極層7の材料が導電性金属酸化物である場合には、それら導電性金属酸化物をスパッタリング、MOCVD等で成膜すること、又は導電性金属酸化物を正孔輸送層6上に塗布して乾燥させることにより得ることができる。
 支持基板9の材質及び厚さは支持基板8と同様である。支持基板9は透明であってもよい。なお、例えば、対極層7のみで十分な強度が得られる場合には、支持基板9を設けなくてもよい。
 以下、本発明の実施形態2について詳細に説明する。
<正孔輸送層形成用組成物2>
 本発明は、p型半導体と、有機塩と、プロトン又はカチオンの解離によりチオラートアニオンを生成する化合物及びジスルフィド化合物からなる群より選択される少なくとも1種の含硫黄化合物(但し、チオシアン酸塩を除く。)からなり、p型半導体の結晶成長を制御する結晶成長制御剤と、を含有する、太陽電池の正孔輸送層形成用組成物2を提供する。本発明の正孔輸送層形成用組成物2から太陽電池の正孔輸送層を形成することができる。
[p型半導体]
 p型半導体は、上記のとおりである。
[有機塩]
 有機塩は、イオン性液体とも呼ばれる場合がある。有機塩としては、特に限定されず、公知のものを用いることができる。
 有機塩に含まれるカチオンとしては、例えば、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-プロピルイミダゾリウムイオン、1-メチル-3-オクチルイミダゾリウムイオン、1-メチル-3-パーフルオロオクチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1-ヘキシル-3-メチルイミダゾリウムイオン、1-ドデシル-3-メチルイミダゾリウムイオン、1-アリル-3-メチルイミダゾリウムイオン、1-ベンジル-3-メチルイミダゾリウムイオン、1-ブチル-1-パーフルオロオクチルイミダゾリウムイオン、1,3-ジメチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-エチル-2,3-ジメチルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオン、1-メチルイミダゾリウムイオン等のイミダゾリウムイオン;トリブチルメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラペンチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラヘプチルアンモニウムイオン、テトラオクチルアンモニウムイオン、メチル-トリオクチルアンモニウムイオン等のアンモニウムイオン;テトラブチルホスホニウムイオン、トリブチルヘキサデシルホスホニウムイオン、トリヘキシルテトラデシルホスホニウムイオン等のホスホニウムイオン;1-ブチルピリジニウムイオン、3-メチル-1-プロピルピリジニウムイオン、1-ブチル-3-メチルピリジニウムイオン、1-ブチル-4-メチルピリジニウムイオン等のピリジニウムイオン;1-メチル-1-プロピルピロリジニウムイオン、1-エチル-1-メチルピロリジニウムイオン、1-ブチル-1-メチルピロリジニウムイオン等のピロリジニウムイオン;1-メチル-1-プロピルピペリジニウムイオン;トリエチルスルホニウムイオン等が挙げられる。これらの中でも、1-エチル-3-メチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1-ヘキシル-3-メチルイミダゾリウムイオン、トリブチルメチルアンモニウムイオンが好ましい。
 有機塩に含まれるアニオンとしては、例えば、ジシアナミドイオン、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、チオシアン酸イオン、メタンスルホン酸イオン、テトラクロロアルミン酸イオン、酢酸イオン、硝酸イオン、安息香酸イオン、トシル酸イオン、デカン酸イオン、メチル硫酸イオン、エチル硫酸イオン、オクチル硫酸イオン、硫酸水素イオン、2-(2-メトキシエトキシ)エチル硫酸イオン、テトラフルオロホウ酸イオン、トリフルオロメタンスルホン酸イオン、パーフルオロブタンスルホン酸イオン、パーフルオロオクタンスルホン酸イオン、トリフルオロ酢酸イオン、ヘキサフルオロリン酸イオン、ビス(トリフルオロメチルスルホニル)アミドイオン、ビス(ペンタフルオロエチルスルホニル)イミドイオン、ビス(トリフルオロメチルスルホニル)イミドイオン、トリス(トリフルオロメチルスルホニル)メチドイオン、ビス(2,4,4-トリメチルペンチル)ホスフィン酸イオン、ヘキサフルオロホスファートイオン、テトラクロロ鉄(III)酸イオン、テトラシアノボレートアニオン、[B(CF等が挙げられる。これらの中でも、臭化物イオン、塩化物イオン、ヨウ化物イオン、ジシアナミドイオン、ヘキサフルオロホスファートイオンが好ましく、臭化物イオン、塩化物イオン、ヨウ化物イオン、ジシアナミドイオンがより好ましい。
 有機塩としては、例えば、1気圧における融点が200℃未満であるものが挙げられる。有機塩の具体例としては、1-エチル-3-メチルイミダゾリウムジシアナミド、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミド、1-エチル-3-メチルイミダゾリウムクロリド、1-エチル-3-メチルイミダゾリウムヨージド、1-エチル-3-メチルイミダゾリウムブロマイド、1-エチル-3-メチルイミダゾリウムホスファート、1-ブチル-3-メチルイミダゾリウムジシアナミド、1-ブチル-3-メチルイミダゾリウムクロリド、1-ブチル-3-メチルイミダゾリウムヨージド、1-ブチル-3-メチルイミダゾリウムブロマイド、1-ヘキシル-3-メチルイミダゾリウムジシアナミド、1-ヘキシル-3-メチルイミダゾムクロリド、1-ヘキシル-3-メチルイミダゾリウムヨージド、1-ヘキシル-3-メチルイミダゾリウムブロマイド、トリブチルメチルアンモニウムジシアナミド、トリブチルメチルアンモニウムクロリド、トリブチルメチルアンモニウムヨージド、トリブチルメチルアンモニウムブロマイド、トリブチルメチルアンモニウムビス(トリフルオロメチルスルホニル)イミドが挙げられる。
 本発明の組成物2において、有機塩の含有量は、特に限定されないが、例えば、p型半導体100質量部に対し1~25質量部が好ましい。
[結晶成長制御剤]
 本発明で用いる結晶成長制御剤は、プロトン又はカチオンの解離によりチオラートアニオン(-S)を生成する化合物及びジスルフィド化合物からなる群より選択される少なくとも1種の含硫黄化合物(但し、チオシアン酸塩を除く。)からなり、p型半導体の結晶成長を制御する。
 チオシアン酸イオン以外のアニオンを有する有機塩を含むp型半導体溶液を、多孔質n型半導体を含む光電変換層に滴下し乾燥させた場合、p型半導体は有機塩に溶解した状態で、多孔質n型半導体の細孔内に残存すると考えられる。このとき、溶液中に結晶成長制御剤が存在していると、乾燥が進行していく過程で結晶成長制御剤のチオラートアニオンがp型半導体に配位して錯体を形成し、有機塩中でのp型半導体の溶解度が低下するため、p型半導体の結晶化が起こると考えられる。そして、上記のチオラートアニオンは、結晶化したp型半導体表面に配位し、p型半導体を取り囲むことにより、p型半導体表面では結晶成長が起こりにくくなって、結晶サイズの増大が抑制される。また、ジスルフィド化合物は、ジスルフィド結合の開裂により、チオラートアニオンを生じ、その結果、上記と同様にして、結晶サイズの増大が抑制される。また、結晶成長制御剤が有する官能基を適宜選択することにより、その官能基に応じた化学修飾を、p型半導体表面に配位した結晶成長制御剤を通じて、p型半導体表面に施すことができる。
 アニオンとしてチオシアン酸イオンを有するイオン性液体を用いた場合でも、上記結晶成長制御剤から生成するチオラートアニオンはp型半導体に配位することができ、p型半導体微粒子の表面に多様な化学修飾を施すことができる。
 含硫黄化合物、チオール化合物、ジチオカルボン酸化合物、ジチオカルバミン酸化合物、チオアミド化合物又はその互変異性体、チオ尿素化合物又はその互変異性体、及びジスルフィド化合物は、上記のとおりである。
 本発明の組成物2において、結晶成長制御剤の含有量は、p型半導体の結晶化及び微細化を促進することができる有効量であれば特に限定されないが、例えば、p型半導体100質量部に対し0.001~15質量部が好ましい。
 本発明の組成物2は、通常、有機溶媒を含んだ状態で使用される。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、ピリジン等の窒素含有溶媒、γ-ブチロラクトン、バレロラクトン等のラクトン系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、ジ-n-プロピルスルフィド等のスルフィド系溶媒が挙げられ、アセトニトリル等のニトリル系溶媒が好ましい。有機溶媒を含む本発明の組成物2で、有機塩の濃度は、好ましくは0.5~20mM、より好ましくは1~15mMであり、結晶成長制御剤の濃度は、好ましくは0.5~10mM、より好ましくは0.7~7mMである。
 本発明の組成物2は、正孔輸送層の電気特性を向上させる等の目的で他の成分を加えてもよい。例えば、電気特性としてVoc向上のため、t-ブチルピリジン、ピリジン、ポリビニルピリジン、2-ピコリン、2,6-ルチジン等のアミン類;N-メチルベンズイミダゾール、N-ブチルベンゾイミダゾール等のイミダゾール類;ジメチルホルムアミド、N-メチルピロリドン等の窒素含有極性化合物を添加してもよい。また、TiO等のn型半導体の伝導帯を下げるため(Jsc向上のため)、リチウムイオンの塩やナトリウムイオンの塩(ヨウ化リチウム、(イソ)チオシアン酸リチウム、(イソ)チオシアン酸ナトリウム等)、又はグアニジウムイオンの塩(ヨウ化グアニジン、グアニジンチオシアネート、N-メチルグアニジンチオシアネート、)等を添加してもよい。また、コール酸、デオキシコール酸、ケノデオキシコール酸等のコール酸類を後述の色素の共吸着剤として添加してもよい。
<太陽電池>
 正孔輸送層形成用組成物1の代わりに正孔輸送層形成用組成物2を用いる点を除き、本発明の実施形態2の第二の態様に係る太陽電池及び本発明の実施形態2の第三の態様に係る増感型太陽電池は、それぞれ、本発明の実施形態1の第四の態様に係る太陽電池及び本発明の実施形態1の第五の態様に係る増感型太陽電池と同様である。
 なお、図1において、正孔輸送層6は、例えば、有機溶媒を含む本発明の正孔輸送層形成用組成物2の所定量を所定回数に分けて光電変換層5上に滴下し乾燥させる操作を繰り返すことにより、光電変換層5上に設けられ、かつ、多孔質n型半導体3の空孔の少なくとも一部を充填する。このときに形成されるp型半導体微粒子は、走査型電子顕微鏡(SEM)像から測定した粒子径が、好ましくは1~3000nm、より好ましくは5~100nmという非常に小さな値を有する。このp型半導体微粒子は、太陽電池における平坦なp型半導体層の形成、全固体型色素増感型太陽電池、量子ドット増感型太陽電池等の増感型太陽電池に用いられる多孔質n型半導体における空孔の充填等に好適に用いることができ、平坦膜を製膜する場合でも、結晶成長制御剤の使用により、無添加の場合に比べて表面粗さの小さいヨウ化銅膜を形成できる。
 以下、本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
・実施形態1について
[ヨウ化銅塗布液の調製]
 ヨウ化銅をアセトニトリルに0.15Mになるように溶解し、得られた溶液に、表1に示す濃度となるように結晶成長制御剤を添加し混合して、ヨウ化銅塗布液を得た。
[ヨウ化銅充填多孔質二酸化チタン基板の作成:多孔質二酸化チタンへのヨウ化銅充填]
 ガラス基板(厚さ:1100μm)とその一方の主面を覆うFTO層(厚さ:0.8μm)とからなる透明導電性支持体のFTO層上に二酸化チタンペーストをスクリーン印刷し、150℃で乾燥した後、電気炉で450℃に加熱して、透明導電性支持体とその上に設けられた多孔質二酸化チタン層とを備える多孔質二酸化チタン基板を作製した。この基板を、市販のインドリン系色素D149を0.4mMになるように溶解したアセトニトリル/tert-ブチルアルコール溶液に浸漬し、多孔質二酸化チタンに色素を吸着させた。この基板をアセトニトリルで洗浄して余分な色素を除去した後、この基板を乾燥させて、色素吸着多孔質二酸化チタン基板を得た。
 この色素吸着二酸化チタン基板を、窒素雰囲気下、ホットプレートで60℃に加熱しながら、ヨウ化銅塗布液を10μL滴下し、乾燥後、次の10μLを滴下した。この工程を繰り返し、計200μLのヨウ化銅塗布液を多孔質二酸化チタン基板に滴下し乾燥させて、多孔質二酸化チタンの細孔にヨウ化銅を充填し、ヨウ化銅充填多孔質二酸化チタン基板を得た。多孔質二酸化チタン層上に積層されたヨウ化銅層の厚さは1μmであった。
[多孔質二酸化チタンへのヨウ化銅充填性の評価]
 ヨウ化銅の充填性の評価は、上記で得られたヨウ化銅充填多孔質二酸化チタン基板の断面の走査型電子顕微鏡(SEM)像を画像処理することで行った。ヨウ化銅を充填した二酸化チタンを含む多孔質二酸化チタン層断面の二次電子像では、帯電状態の差により、ヨウ化銅部分は白色の像、二酸化チタン部分は黒色の像として得られた。二次電子像の白黒が元素組成の差に由来することは、反射電子像と比較することで確認した。得られた二次電子像(8000倍~10000倍拡大の像)を画像処理ソフトImage J(National Institute of Health、アメリカ合衆国)により、白/黒二階調化して白色部及び黒色部のピクセル数を計測し、(白色部のピクセル数)/(白色部のピクセル数+黒色部のピクセル数)の比をヨウ化銅の充填率とした。結果を表1に示す(結晶成長制御剤無添加の場合の充填率を1とした)。なお、二階調化の設定は、上記ソフトの自動設定を用いて行った。
[表面結晶の形態]
 上記で得られたヨウ化銅充填多孔質二酸化チタン基板の表面のSEM像から、上記表面におけるヨウ化銅結晶の粒子径を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1から分かるように、チオール化合物を用いた実施例1-1~1-8、ジチオカルバミン酸化合物を用いた実施例1-9、チオアミド化合物を用いた実施例1-10~1-12、及びチオ尿素化合物を用いた実施例1-13~1-14では、結晶成長制御剤無添加(比較例1-1)の場合に比べて、相対充填率が3.1~1.6に増加しており、二酸化チタン細孔内へのヨウ化銅の充填率の向上が見られた。これまでヨウ化銅の結晶成長抑制として用いられてきたチオシアン酸系イオン性液体(比較例1-2)を用いた場合には、相対充填率2.69が得られたが、本発明の結晶成長制御剤を用いた場合でも、同等の値が得られた(実施例1-1、1-3、1-4、1-7、1-10、1-13、及び1-14)。硫黄を分子内に有する化合物でも、チオエーテル(比較例1-3及び1-4)及びイソチオシアネート(比較例1-5)では、ヨウ化銅の結晶成長抑制効果及び二酸化チタン細孔内への充填率向上は見られなかった。他のソフトな塩基である、ピリジン(比較例1-6)及びトリフェニルホスフィン(比較例1-7)でも、結晶成長抑制効果及び二酸化チタン細孔内への充填率向上は見られなかった。
 ヨウ化銅充填多孔質二酸化チタン基板では、多孔質二酸化チタン層表面にヨウ化銅層が形成されるが、この層表面のヨウ化銅結晶の形態も、結晶成長制御剤の有無で大きく異なった。結晶成長制御剤無添加の場合、及び、充填率が向上しない添加剤の場合は、5μmを超える大きさのヨウ化銅結晶が成長する傾向が見られたが、充填率が向上した結晶成長制御剤の場合は、表面のヨウ化銅結晶のサイズは50~100nm程度まで小さくなる傾向が見られた。このことから、ヨウ化銅の充填率向上は、結晶成長制御剤でヨウ化銅結晶のサイズが小さくなることによることがわかった。
 以上の結果から、チオール化合物、ジチオカルバミン酸化合物、チオシアン酸塩、チオアミド化合物、及びチオ尿素化合物等の、プロトン若しくはカチオンの解離によりチオラートアニオンを生成する含硫黄化合物が、結晶成長抑制効果を示すことがわかった。
[結晶成長制御剤による色素脱離評価]
 色素増感型太陽電池では、色素は、通常、カルボン酸部位で二酸化チタン等のn型半導体表面に吸着しているにすぎない。このため、ヨウ化銅充填の際に、結晶成長制御剤がカルボン酸部位にアタックし、色素が脱離する可能性がある。そこで、各結晶成長制御剤による色素脱離につき評価した。
 上記で得た色素吸着多孔質二酸化チタン基板を1cm角に切り出し、様々な濃度の結晶成長制御剤を含むアセトニトリル液10mLに浸漬して1時間放置した後、色素D149の吸収極大である530nmにおけるアセトニトリル液の吸光度A530を測定した。700nmにおける同アセトニトリル液の吸光度A700も測定し、A700を基準として吸光度の差Δ(A530-A700)を算出した。結果を図2に示す。
 結晶成長制御剤無添加の場合は、アセトニトリル液の吸光度はほぼゼロだったが、結晶成長制御剤の濃度が高くなるにつれて、アセトニトリル液の吸光度は増加し、色素が色素吸着多孔質二酸化チタン基板から脱離することがわかった。これまでに用いられてきた10mM 1-エチル-3-メチルイミダゾリウムチオシアナートを用いた場合、アセトニトリル液の吸光度は0.107であった。結晶成長制御剤としてチオグリセロール、オクタンチオール、又はアミノベンゼンチオールを用いた場合、結晶成長制御剤濃度を1mM以下とすれば、従来法と同程度又はそれ以下の色素脱離に抑えられることがわかった。チオアセトアミドでは、濃度に対する吸光度の傾きが上記3種のチオールに比べて小さい、つまり、色素脱離能が低く、結晶成長制御剤として好適なことがわかった。
[太陽電池性能の評価]
 比較例1-1又は実施例1-14で得たヨウ化銅充填多孔質二酸化チタン基板を作用極、白金箔(15μm)を対極とし、1 sun、AM 1.5の光照射下の電流-電圧特性をポテンショスタットで測定することにより、太陽電池の性能を評価した。結果を相対値で表2に示す(比較例1-1で得られた各測定値を1とした)。
Figure JPOXMLDOC01-appb-T000005
 表2から分かるように、結晶成長制御剤を用いた実施例1-14では、結晶成長制御剤無添加(比較例1-1)の場合に比べて、効率Effが16.4倍も上昇し、短絡電流Jscが13.6倍も上昇した。このように、結晶成長制御剤を用いたことによる充填率の向上がJscの向上につながり、変換効率の向上に寄与していることが確認できた。
・実施形態2について
[ヨウ化銅塗布液の調製]
 ヨウ化銅をアセトニトリルに0.15Mになるように溶解し、得られた溶液に、表3に示す濃度となるように有機塩及び結晶成長制御剤を添加し混合して、ヨウ化銅塗布液を得た。
Figure JPOXMLDOC01-appb-T000006
[ヨウ化銅充填多孔質二酸化チタン基板の作成:多孔質二酸化チタンへのヨウ化銅充填]
 ガラス基板(厚さ:1100μm)とその一方の主面を覆うFTO層(厚さ:0.8μm)とからなる透明導電性支持体のFTO層上に二酸化チタンペーストをスクリーン印刷し、150℃で乾燥した後、電気炉で450℃に加熱して、透明導電性支持体とその上に設けられた多孔質二酸化チタン層とを備える多孔質二酸化チタン基板を作製した。この基板を、市販のインドリン系色素D149を0.4mMになるように溶解したアセトニトリル/tert-ブチルアルコール溶液に浸漬し、多孔質二酸化チタンに色素を吸着させた。この基板をアセトニトリルで洗浄して余分な色素を除去した後、この基板を乾燥させて、色素吸着多孔質二酸化チタン基板を得た。
 この色素吸着二酸化チタン基板を、窒素雰囲気下、ホットプレートで60℃に加熱しながら、ヨウ化銅塗布液を10μL滴下し、乾燥後、次の10μLを滴下した。この工程を繰り返し、計200μLのヨウ化銅塗布液を多孔質二酸化チタン基板に滴下し乾燥させて、多孔質二酸化チタンの細孔にヨウ化銅を充填し、ヨウ化銅充填多孔質二酸化チタン基板を得た。多孔質二酸化チタン層上に積層されたヨウ化銅層の厚さは1μmであった。
[多孔質二酸化チタンへのヨウ化銅充填性の評価]
 ヨウ化銅の充填性の評価は、実施例2-4又は比較例2-4若しくは2-5で得られたヨウ化銅充填多孔質二酸化チタン基板の断面の走査型電子顕微鏡(SEM)像を画像処理することで行った。ヨウ化銅を充填した二酸化チタンを含む多孔質二酸化チタン層断面の二次電子像では、帯電状態の差により、ヨウ化銅部分は白色の像、二酸化チタン部分は黒色の像として得られた。二次電子像の白黒が元素組成の差に由来することは、反射電子像と比較することで確認した。得られた二次電子像(8000倍~10000倍拡大の像)を画像処理ソフトImage J(National Institute of Health、アメリカ合衆国)により、白/黒二階調化して白色部及び黒色部のピクセル数を計測し、(白色部のピクセル数)/(白色部のピクセル数+黒色部のピクセル数)の比をヨウ化銅の充填率とした。なお、二階調化の設定は、上記ソフトの自動設定を用いて行った。
 イオン性液体として1-エチル-3-メチルイミダゾリウムジシアナミドを用い、結晶成長制御剤を用いなかった比較例2-4、及び、イオン性液体として1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドを用い、結晶成長制御剤を用いなかった比較例2-5では、SEM像においてヨウ化銅結晶に対応する白色部は見られず、二酸化チタン細孔内は黒色に見える物質で充填されていた。これはヨウ化銅が溶解したイオン性液体と思われる。
 イオン性液体として1-エチル-3-メチルイミダゾリウムジシアナミドを用い、結晶成長制御剤として1,3-ジブチルチオ尿素を用いた実施例2-4では、SEM像において、黒色に見える色素吸着二酸化チタンの細孔内に、白色のヨウ化銅結晶が充填されているのが確認された。SEM像の画像解析からヨウ化銅の充填率を求めた。イオン性液体無添加かつ結晶成長促進剤無添加の条件化で求めた充填率を1とした場合に、実施例2-4における充填率は約2であった。また、従来、用いられているイオン性液体である1-エチル-3-メチルイミダゾリウムチオシアナートを用い、結晶成長制御剤を用いなかった比較例2-1における充填率を1とした場合に、実施例2-4における充填率は約0.8であり、従来法に近いヨウ化銅の充填率が得られることがわかった。
[太陽電池性能の評価-1-]
 上記で得たヨウ化銅充填多孔質二酸化チタン基板を作用極、白金箔(15μm)を対極とし、1 sun、AM 1.5の光照射下の電流-電圧特性をポテンショスタットで測定することにより、太陽電池の性能を評価した。結果を相対値で表4に示す(比較例2-1で得られた各測定値を1とした)。
Figure JPOXMLDOC01-appb-T000007
 表4では、従来用いられているイオン性液体である1-エチル-3-メチルイミダゾリウムチオシアナートを用い、結晶成長制御剤を用いなかった比較例2-1における開放起電力Voc、短絡電流Jsc、及び曲線因子FFをそれぞれ1として結果を示す。
 イオン性液体として1-エチル-3-メチルイミダゾリウムジシアナミドを用い、結晶成長制御剤を用いなかった比較例2-1では、光照射した際に、電圧印加に対して電流が直線的に増加した。よって、白金対極と多孔質二酸化チタン層の下のFTO層とが短絡し、太陽電池として機能しないことがわかった。
 これに対して、実施例では、イオン性液体とともに結晶成長制御剤を用いたところ、得られた太陽電池は、暗下でダイオード特性を示し、光照射で光電流を発生することが確認された。Vocは従来法よりも高いか同等の値を示し、Jsc及びFFはともに対応する比較例より高い値を示し、特に実施例2-1~2-2では従来法に近い値を示したことから、本発明に係る全固体型色素増感型太陽電池の有用性が示された。
[太陽電池性能の評価-2-]
 上記実施例2-2のヨウ化銅塗布液において、表5のように濃度を変更した他は、[太陽電池性能の評価-1-]と同様にして、太陽電池の性能を評価し、表5の各ヨウ化銅塗布液について、効率Effを求めた。結果は、比較例2-1のEffに対する比(rel. Eff. vs. EMI-SCN)として表5に示す。
Figure JPOXMLDOC01-appb-T000008
 表5の結果から、特に、実施例2-11及び2-14が従来法に近い値を示したことから、本発明に係る全固体型色素増感型太陽電池の有用性が示された。
 また、表5の結果から、本発明に係る組成物中、含硫黄化合物からなる結晶成長制御剤の濃度が5mM以下であり、有機塩の濃度が結晶成長制御剤の濃度の5~15倍程度である場合が好ましいことが分かる。
 1 増感型太陽電池
 2 導電性基板
 3 多孔質n型半導体
 4 増感材料
 5 光電変換層
 6 正孔輸送層
 7 対極層
 8 支持基板
 9 支持基板

Claims (13)

  1.  プロトン又はカチオンの解離によりチオラートアニオンを生成する化合物及びジスルフィド化合物からなる群より選択される少なくとも1種の含硫黄化合物(但し、チオシアン酸塩を除く。)からなり、p型半導体の結晶成長を制御する結晶成長制御剤。
  2.  前記含硫黄化合物が、チオール化合物、ジチオカルボン酸化合物、ジチオカルバミン酸化合物、チオアミド化合物又はその互変異性体、チオ尿素化合物又はその互変異性体、及びジスルフィド化合物からなる群より選択される少なくとも1種である請求項1に記載の結晶成長制御剤。
  3.  請求項1又は2に記載の結晶成長制御剤の存在下でp型半導体を結晶化させる工程を含むp型半導体微粒子又はp型半導体微粒子膜の形成方法。
  4.  空孔を有する多孔質n型半導体における前記空孔内で前記p型半導体を結晶化させて、前記空孔の少なくとも一部を前記p型半導体で充填する請求項3に記載の形成方法。
  5.  p型半導体と、請求項1又は2に記載の結晶成長制御剤とを含有する、太陽電池の正孔輸送層形成用組成物。
  6.  有機塩を含有しない請求項5記載の正孔輸送層形成用組成物。
  7.  導電性基板と対極層との間に、光電変換層と、請求項5又は6に記載の正孔輸送層形成用組成物から形成された正孔輸送層とを備える太陽電池。
  8.  導電性基板と、
     前記導電性基板上に設けられ、空孔を有する多孔質n型半導体及び前記多孔質n型半導体に吸着した増感材料を含む光電変換層と、
     前記光電変換層上に設けられ、かつ、前記空孔の少なくとも一部を充填する正孔輸送層と、
     前記正孔輸送層上に設けられた対極層と、
    を備え、
     前記正孔輸送層が請求項5又は6に記載の正孔輸送層形成用組成物から形成されたものである太陽電池。
  9.  p型半導体と、有機塩と、プロトン又はカチオンの解離によりチオラートアニオンを生成する化合物及びジスルフィド化合物からなる群より選択される少なくとも1種の含硫黄化合物(但し、チオシアン酸塩を除く。)からなり、p型半導体の結晶成長を制御する結晶成長制御剤と、を含有する、太陽電池の正孔輸送層形成用組成物。
  10.  前記含硫黄化合物が、チオール化合物、ジチオカルボン酸化合物、ジチオカルバミン酸化合物、チオアミド化合物又はその互変異性体、チオ尿素化合物又はその互変異性体、及びジスルフィド化合物からなる群より選択される少なくとも1種である請求項9に記載の正孔輸送層形成用組成物。
  11.  前記有機塩が、臭化物イオン、塩化物イオン、ヨウ化物イオン、及びジシアナミドイオンからなる群より選択される少なくとも1種のアニオンを有する請求項9又は10に記載の正孔輸送層形成用組成物。
  12.  導電性基板と対極層との間に、光電変換層と、請求項9~11のいずれか1項に記載の正孔輸送層形成用組成物から形成された正孔輸送層とを備える太陽電池。
  13.  導電性基板と、
     前記導電性基板上に設けられ、空孔を有する多孔質n型半導体及び前記多孔質n型半導体に吸着した増感材料を含む光電変換層と、
     前記光電変換層上に設けられ、かつ、前記空孔の少なくとも一部を充填する正孔輸送層と、
     前記正孔輸送層上に設けられた対極層と、
    を備え、
     前記正孔輸送層が請求項9~11のいずれか1項に記載の正孔輸送層形成用組成物から形成されたものである太陽電池。
PCT/JP2015/056979 2014-03-14 2015-03-10 結晶成長制御剤、p型半導体微粒子又はp型半導体微粒子膜の形成方法、正孔輸送層形成用組成物、及び太陽電池 WO2015137324A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15762215.0A EP3116019A4 (en) 2014-03-14 2015-03-10 CRYSTAL GROWTH CONTROL AGENT, METHOD FOR FORMING p-TYPE SEMICONDUCTOR MICROPARTICLES OR p-TYPE SEMICONDUCTOR MICROPARTICLE FILM, COMPOSITION FOR FORMING HOLE TRANSPORT LAYER, AND SOLAR CELL
KR1020167028180A KR101760633B1 (ko) 2014-03-14 2015-03-10 결정 성장 제어제, p 형 반도체 미립자 또는 p 형 반도체 미립자막의 형성 방법, 정공 수송층 형성용 조성물, 및 태양 전지
CN201580012573.9A CN106104773B (zh) 2014-03-14 2015-03-10 晶体生长控制剂、p型半导体微粒或p型半导体微粒膜的形成方法、空穴传输层形成用组合物及太阳能电池
US15/124,087 US20170018369A1 (en) 2014-03-14 2015-03-10 CRYSTAL GROWTH CONTROL AGENT, METHOD FOR FORMING p-TYPE SEMICONDUCTOR MICROPARTICLES OR p-TYPE SEMICONDUCTOR MICROPARTICLE FILM, COMPOSITION FOR FORMING HOLE TRANSPORT LAYER, AND SOLAR CELL

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-052497 2014-03-14
JP2014052497A JP6059166B2 (ja) 2014-03-14 2014-03-14 結晶成長制御剤、p型半導体微粒子又はp型半導体微粒子膜の形成方法、正孔輸送層形成用組成物、及び太陽電池
JP2014052498A JP6059167B2 (ja) 2014-03-14 2014-03-14 正孔輸送層形成用組成物及び太陽電池
JP2014-052498 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137324A1 true WO2015137324A1 (ja) 2015-09-17

Family

ID=54071768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056979 WO2015137324A1 (ja) 2014-03-14 2015-03-10 結晶成長制御剤、p型半導体微粒子又はp型半導体微粒子膜の形成方法、正孔輸送層形成用組成物、及び太陽電池

Country Status (6)

Country Link
US (1) US20170018369A1 (ja)
EP (1) EP3116019A4 (ja)
KR (1) KR101760633B1 (ja)
CN (1) CN106104773B (ja)
TW (1) TWI669827B (ja)
WO (1) WO2015137324A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185445A1 (ja) * 2021-03-03 2022-09-09 シャープ株式会社 発光素子、発光デバイス、発光デバイス製造方法、及び電子機器
JP2023517371A (ja) * 2020-07-09 2023-04-25 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 酸塩基副産物でドープした有機正孔輸送物質及びこれを用いた光素子

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339037B2 (ja) * 2015-03-18 2018-06-06 株式会社東芝 光電変換素子およびその製造方法
TWI572049B (zh) * 2016-02-05 2017-02-21 國立成功大學 鈣鈦礦太陽能電池及其製造方法
CN106910836A (zh) * 2017-02-24 2017-06-30 深圳市华星光电技术有限公司 一种oled显示器件及oled显示器
CN106876432B (zh) * 2017-02-24 2019-11-26 深圳市华星光电技术有限公司 一种oled显示器件及oled显示器
IT201700064105A1 (it) * 2017-06-09 2018-12-09 Consiglio Nazionale Ricerche Multifunctional solid-state devices for solar control, photovoltaic conversion and artificial lighting
CN108666424B (zh) * 2018-01-05 2019-12-27 南京工业大学 一种基于醋酸甲胺室温熔盐作绿色溶剂制备钙钛矿太阳能电池及其方法和应用
KR102590581B1 (ko) * 2018-01-16 2023-10-17 이누루 게엠베하 반-산화성 졸-겔 프린팅 공정 및 해당 잉크 조성물
CN111525034B (zh) * 2020-04-27 2022-03-15 电子科技大学 一种高效稳定的混合维度钙钛矿太阳能电池的制备方法
CN111740015B (zh) * 2020-06-27 2022-08-12 苏州大学 提升钙钛矿太阳能电池稳定性用钙钛矿前驱体溶液
WO2023056337A1 (en) * 2021-09-30 2023-04-06 The Children's Medical Center Corporation Tlr8 agonist for modulating immune response

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234486A (ja) * 2002-02-07 2003-08-22 Seiko Epson Corp 光電変換素子
JP2003234488A (ja) * 2002-02-07 2003-08-22 Seiko Epson Corp 光電変換素子の製造方法
JP2011129564A (ja) * 2009-12-15 2011-06-30 Fujifilm Corp 光電変換半導体膜を形成する塗布膜及びその製造方法、光電変換半導体膜、光電変換素子、及び太陽電池
WO2013080791A1 (ja) * 2011-11-30 2013-06-06 株式会社村田製作所 化合物半導体超微粒子の製造方法
JP2013211149A (ja) * 2012-03-30 2013-10-10 Ricoh Co Ltd 光電変換素子およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4307701B2 (ja) * 1999-12-10 2009-08-05 富士フイルム株式会社 光電変換素子および光電池
JP4299960B2 (ja) 1999-12-10 2009-07-22 富士フイルム株式会社 光電変換素子および太陽電池
JP2003218371A (ja) 2002-01-18 2003-07-31 Seiko Epson Corp 光電変換素子の製造方法
TW201107241A (en) * 2009-05-21 2011-03-01 Du Pont Copper zinc tin chalcogenide nanoparticles
CN103222062A (zh) * 2010-11-22 2013-07-24 E.I.内穆尔杜邦公司 油墨和制备含硫属元素半导体的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234486A (ja) * 2002-02-07 2003-08-22 Seiko Epson Corp 光電変換素子
JP2003234488A (ja) * 2002-02-07 2003-08-22 Seiko Epson Corp 光電変換素子の製造方法
JP2011129564A (ja) * 2009-12-15 2011-06-30 Fujifilm Corp 光電変換半導体膜を形成する塗布膜及びその製造方法、光電変換半導体膜、光電変換素子、及び太陽電池
WO2013080791A1 (ja) * 2011-11-30 2013-06-06 株式会社村田製作所 化合物半導体超微粒子の製造方法
JP2013211149A (ja) * 2012-03-30 2013-10-10 Ricoh Co Ltd 光電変換素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3116019A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023517371A (ja) * 2020-07-09 2023-04-25 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 酸塩基副産物でドープした有機正孔輸送物質及びこれを用いた光素子
JP7505019B2 (ja) 2020-07-09 2024-06-24 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 酸塩基副産物でドープした有機正孔輸送物質及びこれを用いた光素子
WO2022185445A1 (ja) * 2021-03-03 2022-09-09 シャープ株式会社 発光素子、発光デバイス、発光デバイス製造方法、及び電子機器

Also Published As

Publication number Publication date
CN106104773B (zh) 2018-02-16
EP3116019A4 (en) 2017-03-22
US20170018369A1 (en) 2017-01-19
KR101760633B1 (ko) 2017-07-21
EP3116019A1 (en) 2017-01-11
KR20160124232A (ko) 2016-10-26
TWI669827B (zh) 2019-08-21
CN106104773A (zh) 2016-11-09
TW201547035A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2015137324A1 (ja) 結晶成長制御剤、p型半導体微粒子又はp型半導体微粒子膜の形成方法、正孔輸送層形成用組成物、及び太陽電池
Yao et al. Hindered formation of photoinactive δ-FAPbI3 phase and hysteresis-free mixed-cation planar heterojunction perovskite solar cells with enhanced efficiency via potassium incorporation
JP6038796B2 (ja) 電解質配合物
JP5898629B2 (ja) 電解質配合物
JP6352223B2 (ja) ペロブスカイト型太陽電池の製造方法
CN100470685C (zh) 准固态纳米复合凝胶电解质及其制作方法、应用
Venkatesan et al. Graphene oxide sponge as nanofillers in printable electrolytes in high-performance quasi-solid-state dye-sensitized solar cells
Lee et al. Zinc oxide-based dye-sensitized solar cells with a ruthenium dye containing an alkyl bithiophene group
CN101436467A (zh) 含双(氟磺酰)亚胺离子和碘离子的离子液体电解质及应用
JP5763677B2 (ja) 電解質配合物
Ma et al. Efficient CH3NH3PbI3-x (SeCN) x perovskite solar cells with improved crystallization and defect passivation
JP6059167B2 (ja) 正孔輸送層形成用組成物及び太陽電池
Hao et al. Recent molecular engineering of room temperature ionic liquid electrolytes for mesoscopic dye-sensitized solar cells
JP6059166B2 (ja) 結晶成長制御剤、p型半導体微粒子又はp型半導体微粒子膜の形成方法、正孔輸送層形成用組成物、及び太陽電池
CA2544073C (en) Electrode having a cos layer thereon, process of preparation, and uses thereof
CN104952625B (zh) 含有吡啶类添加剂的具有长期稳定性的固态染料敏化太阳能电池
KR20170008207A (ko) 담지 방법, 담지체 및 광전 변환 소자
JP2015177035A (ja) スプレー塗布用p型半導体組成物、p型半導体層の製造方法、太陽電池、及びその製造方法
WO2013118709A1 (ja) 光電変換素子およびその製造方法、これを用いた色素増感太陽電池
CN104900411B (zh) 提高电解质效率的方法及用于车辆的染料敏化太阳能电池
Shaafi et al. A study of electron regeneration efficiency in fluorophore
WO2017067631A1 (en) Blue optoelectronic device
JP6063361B2 (ja) 光電変換素子、色素増感太陽電池および光電変換素子用電子移動促進剤
JP2013206874A (ja) 光電変換素子、色素増感太陽電池用色素吸着組成液、色素増感太陽電池用半導体電極、色素増感太陽電池の製造方法および光電変換素子用金属錯体色素
JP2019106472A (ja) 電解質組成物及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762215

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15124087

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015762215

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015762215

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167028180

Country of ref document: KR

Kind code of ref document: A