WO2015129712A1 - α-オレフィン低重合体の製造方法 - Google Patents

α-オレフィン低重合体の製造方法 Download PDF

Info

Publication number
WO2015129712A1
WO2015129712A1 PCT/JP2015/055304 JP2015055304W WO2015129712A1 WO 2015129712 A1 WO2015129712 A1 WO 2015129712A1 JP 2015055304 W JP2015055304 W JP 2015055304W WO 2015129712 A1 WO2015129712 A1 WO 2015129712A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
carbon atoms
reaction
atoms substituted
catalyst
Prior art date
Application number
PCT/JP2015/055304
Other languages
English (en)
French (fr)
Inventor
哲史 戸田
江本 浩樹
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to BR112016019714-3A priority Critical patent/BR112016019714B1/pt
Priority to RU2016134442A priority patent/RU2659790C2/ru
Priority to CN201580010235.1A priority patent/CN106029611B/zh
Priority to KR1020167023123A priority patent/KR102311981B1/ko
Priority to MYPI2016703082A priority patent/MY188586A/en
Publication of WO2015129712A1 publication Critical patent/WO2015129712A1/ja
Priority to US15/245,772 priority patent/US10221109B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/107Alkenes with six carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/69Chromium, molybdenum, tungsten or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes

Definitions

  • the present invention relates to a method for obtaining an ⁇ -olefin low polymer by subjecting ⁇ -olefin to a low polymerization reaction in a solvent in the presence of a catalyst, and more specifically, to subjecting raw material ethylene to a low polymerization reaction to produce 1-hexene.
  • ⁇ -Olefin low polymer is a useful substance widely used as a raw material for monomers of olefin polymers, as a comonomer for various polymers, and as a raw material for plasticizers, surfactants, lubricants, and the like. is there.
  • 1-hexene obtained by a low polymerization reaction of ethylene is useful as a raw material for linear low density polyethylene.
  • the ⁇ -olefin low polymer is usually produced by a method in which an ⁇ -olefin is subjected to a low polymerization reaction in the presence of a catalyst and a solvent.
  • Japanese Patent Application Laid-Open No. 8-134131 discloses a method for producing 1-hexene by a trimerization reaction of ethylene in the presence of a chromium compound, a catalyst containing a halogen-containing compound, and a solvent.
  • a halide of a linear hydrocarbon is exemplified (Patent Document 1).
  • An object of the present invention is to maintain an activity in an allowable range in a method for producing an ⁇ -olefin low polymer by a low polymerization reaction of an ⁇ -olefin, particularly a method for producing 1-hexene by a trimerization reaction of ethylene,
  • the present invention provides a method for producing an ⁇ -olefin low polymer that improves the selectivity of a target product, and an industrially advantageous method for producing an ⁇ -olefin low polymer.
  • the present inventors have used a hydrocarbon having 2 or more carbon atoms substituted with a halogen atom as a halogen-containing compound that is a component of a chromium-based homogeneous catalyst. It was found that the selectivity of the desired product can be improved by circulating a olefin having 2 or more carbon atoms substituted with a halogen atom among the decomposed products to a specific amount of the reactor. At the start of the production operation, the reaction is started with a specific range of olefins having 2 or more carbon atoms substituted with halogen atoms in the circulation process. As a result, the present invention has been completed.
  • the gist of the present invention resides in the following [1] to [9].
  • a method of manufacturing A reaction step, a purification step, and a circulation step for circulating the unreacted raw material ⁇ -olefin and the solvent from the purification step to the reaction step,
  • the amount of the olefin having 2 or more carbon atoms substituted with the halogen atom supplied from the circulation step to the reaction step is in the range of 0.1 or more and less than 200 (molar ratio) with respect to the amount of transition metal in the reaction step.
  • a process for producing an olefinic low polymer [2] The method for producing an ⁇ -olefin low polymer according to [1], wherein the catalyst further contains a nitrogen-containing compound as a constituent component. [3] The method for producing an ⁇ -olefin low polymer according to [1] or [2], wherein the transition metal is chromium. [4] The method for producing an ⁇ -olefin low polymer according to any one of [1] to [3], wherein the ⁇ -olefin is ethylene and the ⁇ -olefin low polymer is 1-hexene.
  • the hydrocarbon having 2 or more carbon atoms substituted with the halogen atom is a hydrocarbon having 2 or more carbon atoms substituted with 5 or more halogen atoms, and having 2 carbon atoms substituted with the halogen atom.
  • the hydrocarbon having 2 or more carbon atoms substituted with the halogen atom is 1,1,2,2-tetrachloroethane, and the olefin having 2 or more carbon atoms substituted with the halogen atom is 1,2-
  • An ⁇ -olefin low polymer which undergoes a low polymerization reaction of ⁇ -olefin in the presence of a transition metal-containing compound, an aluminum-containing compound, a catalyst containing a hydrocarbon having 2 or more carbon atoms substituted with a halogen atom, and a solvent
  • the selectivity of the target product in producing an ⁇ -olefin low polymer by a low polymerization reaction of ⁇ -olefin, the selectivity of the target product can be improved while maintaining the activity within an allowable range.
  • FIG. 1 is a diagram for explaining an example of a production flow of an ⁇ -olefin low polymer (1-hexene) in the present embodiment.
  • the catalyst used in the present invention is a catalyst capable of producing a low ⁇ -olefin low polymer by low polymerization reaction of raw material ⁇ -olefin, and is substituted with a halogen atom as a transition metal-containing compound, an aluminum-containing compound and a halogen-containing compound.
  • a halogen atom as a transition metal-containing compound, an aluminum-containing compound and a halogen-containing compound.
  • a nitrogen containing compound as a structural component of a catalyst from a viewpoint of an improvement of catalyst activity.
  • the metal contained in the transition metal-containing compound used as a catalyst is not particularly limited as long as it is a transition metal.
  • Group 4-6 transition metals in the “periodic table” are preferably used. Specifically, it is preferably at least one metal selected from the group consisting of chromium, titanium, zirconium, vanadium and hafnium, more preferably chromium or titanium, and most preferably chromium.
  • the transition metal-containing compound used as a raw material for the catalyst is at least one compound represented by the general formula MEZ n.
  • Me is a transition metal element
  • Z is an arbitrary organic group, inorganic group, or negative atom
  • n represents an integer of 1 to 6, and 2 or more is preferable.
  • Z may be the same or different from each other.
  • the organic group may be an optionally substituted hydrocarbon group having 1 to 30 carbon atoms, and specifically includes a carbonyl group, an alkoxy group, a carboxyl group, a ⁇ -diketonate group, a ⁇ -keto group.
  • a carboxyl group, a ⁇ -ketoester group, an amide group and the like can be mentioned.
  • examples of the inorganic group include metal salt forming groups such as a nitrate group and a sulfate group.
  • examples of the negative atom include an oxygen atom and a halogen atom.
  • chromium-containing compound in which the transition metal is chromium
  • specific examples include chromium (IV) -tert-butoxide, chromium (III) acetylacetonate, chromium (III ) Trifluoroacetylacetonate, chromium (III) hexafluoroacetylacetonate, chromium (III) (2,2,6,6-tetramethyl-3,5-heptanedionate), Cr (PhCOCHCOPh) 3 (where Ph represents a phenyl group.), Chromium (II) acetate, chromium (III) acetate, chromium (III) -2-ethylhexanoate, chromium (III) benzoate, chromium (III) naphthenate, chromium (III ) heptanoate, Cr (CH 3 CO
  • a transition metal-containing compound in which the transition metal is titanium (hereinafter sometimes referred to as a titanium-containing compound)
  • specific examples include TiCl 4 , TiBr 4 , TiI 4 , TiBrCl 3 , TiBr 2 Cl 2 , Ti (OC 2 H 5 ) 4 , Ti (OC 2 H 5 ) 2 Cl 2 , Ti (On—C 3 H 7 ) 4 , Ti (On—C 3 H 7 ) 2 Cl 2 , Ti (O-iso -C 3 H 7 ) 4 , Ti (O-iso-C 3 H 7 ) 2 Cl 2 , Ti (On-C 4 H 9 ) 4 , Ti (On-C 4 H 9 ) 2 Cl 2 , Ti (O-iso-C 4 H 9 ) 4 , Ti (O-iso-C 4 H 9 ) 2 Cl 2 , Ti (O-tert-C 4 H 9 ) 4 , Ti (O-tert-C 4 H 9 ) 2 Cl 2 , TiCC
  • a transition metal-containing compound in which the transition metal is zirconium (hereinafter sometimes referred to as a zirconium-containing compound)
  • specific examples include ZrCl 4 , ZrBr 4 , ZrI 4 , ZrBrCl 3 , ZrBr 2 Cl 2 , Zr (OC 2 H 5 ) 4 , Zr (OC 2 H 5 ) 2 Cl 2 , Zr (On—C 3 H 7 ) 4 , Zr (On—C 3 H 7 ) 2 Cl 2 , Zr (O-iso -C 3 H 7 ) 4 , Zr (O-iso-C 3 H 7 ) 2 Cl 2 , Zr (On-C 4 H 9 ) 4 , Zr (On-C 4 H 9 ) 2 Cl 2 Zr (O-iso-C 4 H 9 ) 4 , Zr (O-iso-C 4 H 9 ) 2 Cl 2 , Zr (O-tert-C 4 H 9 ) 4 ,
  • vanadium-containing compound whose transition metal is vanadium
  • specific examples include vanadium pentoxide, vanadium oxytrichloride, vanadium oxytribromide, methoxy vanadate, ethoxy vanadium.
  • a transition metal-containing compound whose transition metal is hafnium hereinafter sometimes referred to as a hafnium-containing compound
  • a specific example is dimethylsilylene bis ⁇ 1- (2-methyl-4-isopropyl-4H-azurenyl) ⁇ .
  • Hafnium dichloride dimethylsilylenebis ⁇ 1- (2-methyl-4-phenyl-4H-azurenyl) ⁇ hafnium dichloride, dimethylsilylenebis [1- ⁇ 2-methyl-4- (4-chlorophenyl) -4H-azurenyl ⁇ ] Hafnium dichloride, dimethylsilylene bis [1- ⁇ 2-methyl-4- (4-fluorophenyl) -4H-azulenyl ⁇ ] hafnium dichloride, dimethylsilylene bis [1- ⁇ 2-methyl-4- (3-chlorophenyl)- 4H-azulenyl ⁇ ] hafnium dichloride, dimethylsilylene bis [ - ⁇ 2-methyl-4- (2,6-dimethylphenyl) -4H-azurenyl ⁇ ] hafnium dichloride, dimethylsilylenebis ⁇ 1- (2-methyl-4,6-diisopropyl-4H-azurenyl) ⁇ haf
  • chromium-containing compounds are preferable, and among chromium-containing compounds, chromium (III) -2-ethylhexanoate is particularly preferable.
  • the aluminum-containing compound used in the present invention is a compound containing an aluminum atom in the molecule, and examples thereof include a trialkylaluminum compound, an alkoxyalkylaluminum compound, and an alkylaluminum hydride compound.
  • the carbon number of alkyl and alkoxy is usually 1 to 20, preferably 1 to 4, respectively.
  • the trialkylaluminum compound include trimethylaluminum, triethylaluminum, and triisobutylaluminum.
  • Specific examples of the alkoxyaluminum compound include diethylaluminum ethoxide.
  • Specific examples of the alkylaluminum hydride compound include diethylaluminum hydride.
  • trialkylaluminum compounds are preferable, and triethylaluminum is more preferable. These compounds may be used as a single compound or as a mixture of a plurality of compounds.
  • the halogen-containing compound used in the present invention is a compound containing a halogen atom in the molecule.
  • a hydrocarbon having 2 or more carbon atoms substituted with a halogen atom is used.
  • the halogen-containing compound is preferably a saturated hydrocarbon having 2 or more carbon atoms substituted with 3 or more halogen atoms.
  • the halogen atom include a chlorine atom, a fluorine atom, and a bromine atom, and a chlorine atom is preferable because it tends to have high catalytic activity and selectivity for a target product.
  • hydrocarbon having 2 or more carbon atoms substituted with the halogen atom examples include chloroethylene, dichloroethylene, trichloroethane, trichloroethylene, tetrachloroethane, tetrachloroethylene (perchloroethylene), pentachloroethane, hexachloroethane, fluoroethylene, difluoroethylene, and trifluoro.
  • Ethane trifluoroethylene, tetrafluoroethane, tetrafluoroethylene (perfluoroethylene), pentafluoroethane, hexafluoroethane, bromoethylene, dibromoethylene, tribromoethane, tribromoethylene, tetrabromoethane, tetrabromoethylene (perfluoroethylene) Bromoethylene), pentabromoethane, hexabromoethane or the following compounds.
  • Saturated hydrocarbons having 2 or more carbon atoms substituted with 3 or more halogen atoms include 1,1,2,2-tetrachloroethane or hydrocarbons having 2 or more carbon atoms substituted with 5 or more halogen atoms Is preferably used.
  • the hydrocarbon having 2 or more carbon atoms substituted with 5 or more halogen atoms is preferably a saturated hydrocarbon having 2 or more carbon atoms substituted with 5 or more halogen atoms.
  • hydrocarbon having 2 or more carbon atoms substituted with 5 or more halogen atoms examples include pentachloroethane, pentafluoroethane, pentabromoethane, hexachloroethane, hexafluoroethane, 1,1,2,2,3. -Pentafluoropropane, 1,2,3,4,5,6-hexachlorocyclohexane, hexabromoethane and the like.
  • the catalyst used in the present invention contains a transition metal-containing compound, an aluminum-containing compound, and a hydrocarbon having 2 or more carbon atoms substituted with a halogen atom as a constituent component of the catalyst. It is preferable to contain a compound as a catalyst component.
  • the nitrogen-containing compound is a compound containing a nitrogen atom in the molecule, and examples thereof include amines, amides, and imides.
  • amines include pyrrole compounds. Specific examples include pyrrole, 2,4-dimethylpyrrole, 2,5-dimethylpyrrole, 2,5-diethylpyrrole, 2,4-diethylpyrrole, 2,5 -Di-n-propyl pyrrole, 2,5-di-n-butyl pyrrole, 2,5-di-n-pentyl pyrrole, 2,5-di-n-hexyl pyrrole, 2,5-dibenzyl pyrrole, 2 , 5-diisopropylpyrrole, 2-methyl-5-ethylpyrrole, 2,5-dimethyl-3-ethylpyrrole, 3,4-dimethylpyrrole, 3,4-dichloropyrrole, 2,3,4,5-tet
  • Examples of the derivatives include metal pyrolide derivatives, and specific examples include, for example, diethylaluminum pyrolide, ethylaluminum dipyrrolide, aluminum tripyrolide, diethylaluminum (2,5-dimethylpyrrolide), ethylaluminum.
  • Aluminum pyrolides such as (2,5-diethyl pyrolide), sodium pyrolide, sodium pyrolides such as sodium (2,5-dimethyl pyrolide), lithium pyrolide, lithium (2,5-dimethyl pyrolide) ) Etc.
  • Aluminum pyrolides are not included in the above-mentioned aluminum-containing compound.
  • amides include acetamide, N-methylhexaneamide, succinamide, maleamide, N-methylbenzamide, imidazole-2-carboxamide, di-2-thenoylamine, ⁇ -lactam, ⁇ -lactam, ⁇ -caprolactam or Examples thereof include salts of these with metals of Group 1, 2 or 13 of the periodic table.
  • Examples of the imides include 1,2-cyclohexanedicarboximide, succinimide, phthalimide, maleimide, 2,4,6-piperidinetrione, perhydroazecin-2,10-dione, and 1, 2 in the periodic table.
  • a salt with a Group 13 metal may be mentioned.
  • Examples of the sulfonamides and sulfonamides include benzenesulfonamide, N-methylmethanesulfonamide, N-methyltrifluoromethylsulfonamide, or a salt thereof with a metal of Group 1 to 2 or 13 of the periodic table. Can be mentioned. These compounds may be used as a single compound or as a plurality of compounds.
  • amines are preferable, among which pyrrole compounds are more preferable, and 2,5-dimethylpyrrole or diethylaluminum (2,5-dimethylpyrrolide) is particularly preferable.
  • the catalyst used in the present invention contains a transition metal-containing compound, an aluminum-containing compound, and a hydrocarbon having 2 or more carbon atoms substituted with a halogen atom as a constituent component of the catalyst, and preferably further contains a nitrogen-containing compound as a constituent component. Is included.
  • the form of use of the catalyst is not particularly limited, but the transition metal-containing compound and the aluminum-containing compound are not contacted in advance, or the contact with the raw material ⁇ -olefin and the catalyst is selectively performed in such a manner that the contact time is short.
  • the raw material ⁇ -olefin can be preferably subjected to a low polymerization reaction, and the raw material ⁇ -olefin low polymer can be obtained in a high yield.
  • an aspect in which the transition metal-containing compound and the aluminum-containing compound do not contact with each other in advance or the contact time is short in advance means not only at the start of the reaction but also the raw material ⁇ -olefin and each catalyst component thereafter. This means that the above-described embodiment is maintained even when the additional supply is made to the reactor.
  • the specific embodiments described above are preferred embodiments required during catalyst preparation and are irrelevant after the catalyst is prepared. Therefore, when the catalyst already prepared is recovered from the reaction system and reused, the catalyst can be reused regardless of the above preferred embodiment.
  • the catalyst is, for example, the above-mentioned four components, that is, a transition metal-containing compound (a), a nitrogen-containing compound (b), an aluminum-containing compound (c), and a hydrocarbon having 2 or more carbon atoms substituted with a halogen atom (d).
  • the contact mode of each component is usually (1) A method of introducing the catalyst component (a) into a solution containing the catalyst components (b), (c) and (d), (2) A method of introducing the catalyst component (c) into a solution containing the catalyst components (a), (b) and (d), (3) A method of introducing catalyst components (b) and (c) into a solution containing catalyst components (a) and (d), (4) A method of introducing the catalyst components (a) and (b) into the solution containing the catalyst components (c) and (d), (5) A method of introducing the catalyst components (c) and (d) into the solution containing the catalyst components (a) and (b), (6) A method of introducing the catalyst components (a) and (d) into the solution containing the catalyst components (b) and (c), (7) A method of introducing the catalyst components (a), (b) and (d) into the solution containing the catalyst component (c), (8) A method of introducing the catalyst components (b) to (d) into the solution containing the solution containing the
  • a solution containing the catalyst component (c) may be further introduced into the reactor), (10) A method in which the catalyst components (a) to (d) are simultaneously and independently introduced into the reactor, Etc. And each said solution is normally prepared using the solvent used for reaction.
  • the olefin having 2 or more carbon atoms substituted with one or more halogen atoms of the present invention is one in which a halogen atom is bonded to a carbon atom having a double bond of an olefinic hydrocarbon, and is substituted with the halogen atom. Further, a halogenated unsaturated hydrocarbon having a reduced number of halogen atoms is preferred for hydrocarbons having 2 or more carbon atoms. A decomposition product of a hydrocarbon having 2 or more carbon atoms substituted with a halogen atom is more preferable.
  • a decomposition product of saturated hydrocarbons having 2 or more carbon atoms substituted with 3 or more halogen atoms is more preferable.
  • the method for producing an ⁇ -olefin low polymer of the present invention (first invention) is a reaction step, a purification step, and an unreacted raw material ⁇ -olefin and a solvent are circulated from the purification step to the reaction step, as will be described in detail later.
  • a non-reacted raw material ⁇ -olefin supplied from the circulation step to the reaction step, but the amount of the olefin having 2 or more carbon atoms substituted with one or more halogen atoms is the transition metal in the reaction step. It is necessary to be in the range of 0.1 or more and less than 200 (molar ratio) with respect to the amount of. Hereinafter, this point will be described.
  • hydrocarbons having 2 or more carbon atoms substituted with a halogen atom used as one of the catalyst components are almost completely decomposed in the reaction step, and the number of carbon atoms substituted with 1 or more halogen atoms.
  • Two or more olefins are by-produced. These exist in the reaction mixture and are supplied to the purification step together with the target product, solvent and the like.
  • the purification process includes an unreacted raw material ⁇ -olefin separation step, a high boiling point material separation step, and a product separation step.
  • the unreacted raw material ⁇ -olefin When the boiling point of these by-products is close to the boiling point of the unreacted raw material ⁇ -olefin, the unreacted raw material ⁇ - In some cases, it is separated in the olefin separation step and recycled to the reaction step together with the unreacted raw material ⁇ -olefin.
  • the boiling point of the by-product when the boiling point of the by-product is close to the boiling point of the solvent, it may be separated in the product separation step and circulated to the reaction step together with the solvent. Further, when the by-product becomes a high boiling point substance, it is separated in a high boiling point substance separation step.
  • olefins having 2 or more carbon atoms substituted with one or more halogen atoms can be combined with hydrocarbons having 2 or more carbon atoms substituted with halogen atoms in a specific range.
  • halogen atoms can be supplied to the catalyst in a solvent, and as a result, the selectivity of the target product is improved.
  • the amount of the olefin having 2 or more carbon atoms substituted with one or more halogen atoms supplied from the circulation step to the reaction step is 0.1 to 200 with respect to the amount of transition metal in the reaction step.
  • a reaction system that improves the selectivity of the target product could be provided.
  • the upper limit of the molar ratio is preferably 170, more preferably 120.
  • the lower limit of the molar ratio is preferably 0.5, more preferably 1.0, still more preferably 3.0, and particularly preferably 10.0.
  • the halogen atom is supplied to the catalyst without inhibiting the reaction.
  • the hydrocarbon having 2 or more carbon atoms substituted with a halogen atom is 1,1,2,2-tetrachloroethane
  • the olefin having 2 or more carbon atoms substituted with one or more halogen atoms is 1 , 2-dichloroethylene
  • the hydrocarbon having 2 or more carbon atoms substituted with a halogen atom is a hydrocarbon having 2 or more carbon atoms substituted with 5 or more halogen atoms, 1 or more
  • the olefin having 2 or more carbon atoms substituted with a halogen atom is preferably an olefin having 2 or more carbon atoms substituted with 3 or more halogen atoms.
  • the lower limit is particularly limited to the amount of transition metal in the reaction step.
  • the value is 0.1 or more, and the upper limit is preferably less than 100 (molar ratio), more preferably less than 85, and still more preferably less than 55.
  • the supply amount of the hydrocarbon having 2 or more carbon atoms substituted with a halogen atom is 0.5 to 50 (molar ratio) with respect to the supply amount of the transition metal to the reaction step. ), And hydrocarbons having 2 or more carbon atoms in which the amount of the olefin having 2 or more carbon atoms substituted with one or more halogen atoms supplied from the circulation process to the reaction process is substituted with a halogen atom Is 2 or more (molar ratio) and less than 200 (molar ratio) with respect to the amount of transition metal in the reaction step.
  • the concentration of the olefin having 2 or more carbon atoms substituted with one or more halogen atoms in the circulating solvent can be measured using an analytical instrument such as gas chromatography.
  • Saturated hydrocarbons with 2 or more carbon atoms substituted with halogen atoms supply halogen atoms to transition metals to form catalytically active species, but the deterioration of selectivity and purity of target products as the reaction proceeds A catalytic species is formed.
  • an environment in which halogen atoms are rapidly supplied to the deteriorated catalyst species becomes an environment in which catalytically active species are formed.
  • the method for adjusting the amount of the olefin having 2 or more carbon atoms substituted by one or more halogen atoms supplied from the circulation step to the above-mentioned amount is not particularly limited.
  • an unreacted raw material ⁇ -olefin separation column is used.
  • the circulation rate of the olefin having 2 or more carbon atoms substituted with one or more halogen atoms can be adjusted by adjusting the reflux ratio.
  • the method for producing a low polymer of ⁇ -olefin of the present invention is based on the knowledge of the first invention, but can also be applied to a batch method that does not require a circulation step.
  • An ⁇ -olefin low polymer which undergoes a low polymerization reaction of ⁇ -olefin in the presence of a transition metal-containing compound, an aluminum-containing compound, a catalyst containing a saturated hydrocarbon having 2 or more carbon atoms substituted with a halogen atom, and a solvent;
  • the olefin having 2 or more carbon atoms substituted with one or more halogen atoms is transferred to the reaction step within a range of 0.1 to 200 (molar ratio) with respect to the amount of transition metal in the reaction step.
  • the olefin having 2 or more carbon atoms substituted with one or more halogen atoms which can be present in the reaction system by decomposing the saturated hydrocarbon having 2 or more carbon atoms substituted by the halogen atom in the reaction system is It is obvious that the olefin having 2 or more carbon atoms substituted with one or more halogen atoms supplied to the reaction step is not included. Further, the effect of the second invention is that when a specific amount of an olefin having 2 or more carbon atoms substituted with one or more halogen atoms derived from the circulation from the purification process in the first invention is present in the reaction process. It is obvious that it is the same.
  • Examples of the olefin having 2 or more carbon atoms substituted with one or more halogen atoms include 1,1-dichloroethylene, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene (perchloroethylene), trifluoroethylene, perfluoroethylene, Examples include trifluoropropylene, tetrachlorocyclohexene, 1,1-dibromoethylene, 1,2-dibromoethylene, tribromoethylene, and perbromoethylene.
  • the ⁇ -olefin low polymerization reaction can be carried out in a solvent.
  • a solvent is not particularly limited, but saturated hydrocarbons are preferably used.
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, mesitylene, and tetralin may be used as a solvent for the ⁇ -olefin low polymer.
  • 1-hexene, decene, etc. produced by low polymerization reaction of ⁇ -olefin can also be used as a reaction solvent. These can be used alone or as a mixed solvent.
  • chain saturated hydrocarbons having 4 to 10 carbon atoms are preferred because production or precipitation of by-products such as polyethylene can be suppressed, and further, high catalytic activity tends to be obtained. It is preferable to use an alicyclic saturated hydrocarbon. Specifically, n-heptane or cyclohexane is preferable, and n-heptane is most preferable.
  • examples of the ⁇ -olefin used as a raw material include substituted or unsubstituted ⁇ -olefins having 2 to 30 carbon atoms.
  • Specific examples of such ⁇ -olefins include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 3-methyl-1-butene, 4-methyl-1-pentene and the like.
  • ethylene is suitable as the ⁇ -olefin of the raw material of the present invention.
  • 1-hexene which is a trimer of ethylene, can be obtained with high yield and high selectivity.
  • the raw material when ethylene is used as a raw material, the raw material may contain an impurity component other than ethylene.
  • Specific components include methane, ethane, nitrogen, acetylene, carbon dioxide, carbon monoxide, oxygen, sulfur content, moisture, and the like. Although it does not specifically limit about methane, ethane, and nitrogen, It is preferable that it is 0.1 mol% or less with respect to ethylene of a raw material, and other impurities are 1 molppm or less with respect to ethylene of a raw material.
  • the ratio of each constituent component of the catalyst used in the present invention is not particularly limited, but is usually as follows.
  • the hydrocarbon having 2 or more carbon atoms substituted with a halogen atom is usually 0.5 mol or more, preferably 1 mol or more, usually 50 mol or less, preferably 30 mol or less, per 1 mol of the transition metal-containing compound. More preferably, it is 10 mol or less.
  • the aluminum-containing compound is used in an amount of 1 mol to 200 mol, preferably 10 mol to 150 mol, per 1 mol of the transition metal-containing compound.
  • the nitrogen-containing compound is used in an amount of 1 to 50 mol, preferably 1 to 30 mol, per 1 mol of the transition metal-containing compound.
  • the amount of the catalyst used is not particularly limited, but is usually 1.0 ⁇ 10 ⁇ 9 mol to 0.5 mol, preferably 5.times.5 mol in terms of 1 atom of transition metal of the transition metal-containing compound per liter of solvent.
  • the amount is from 0 ⁇ 10 ⁇ 9 mol to 0.2 mol, more preferably from 1.0 ⁇ 10 ⁇ 8 mol to 0.05 mol.
  • the low polymerization reaction temperature of the ⁇ -olefin is not particularly limited, but is usually 0 to 250 ° C., preferably 50 to 200 ° C., more preferably 80 to 170 ° C.
  • the pressure of the raw material ⁇ -olefin at the time of reaction is not particularly limited, but is usually 0 to 25 MPa in gauge pressure, preferably 0.5 to 15 MPa, more preferably 1.0 to 10 MPa. It is.
  • the residence time in the reactor is not particularly limited, but is usually in the range of 1 minute to 10 hours, preferably 3 minutes to 3 hours, more preferably 5 minutes to 40 minutes.
  • the reaction form of this invention is not specifically limited, Any of a batch type, a semibatch type, or a continuous type may be sufficient.
  • the actual machine is preferably a continuous type from comprehensive judgment including the purification process and the like, the reaction mode for obtaining the effect of the present invention may be a batch type.
  • the molar ratio of 1-hexene to ethylene in the reaction solution ((molar concentration of 1-hexene in the reaction solution) / (molar concentration of ethylene in the reaction solution)) is particularly limited. However, it is preferably 0.05 to 1.5, more preferably 0.10 to 1.0. That is, in the case of continuous reaction, it is preferable to adjust the catalyst concentration, reaction pressure, and other conditions so that the molar ratio of ethylene to 1-hexene in the reaction solution falls within the above range. In the case of batch reaction, it is preferable to stop the ethylene trimerization reaction when the molar ratio is in the above range. By performing the trimerization reaction of ethylene under such conditions, the by-product of components having a boiling point higher than that of 1-hexene is suppressed, and the selectivity of 1-hexene tends to be further increased.
  • ⁇ -olefin low polymer is obtained by the above reaction, and the ⁇ -olefin low polymer in the present invention means an oligomer in which several ⁇ -olefins as monomers are bonded. Specifically, it is a polymer in which 2 to 10 ⁇ -olefins as monomers are bonded.
  • ethylene is 1-hexene selectively trimerized.
  • HB high boiler
  • the unreacted ethylene separated in the degassing tank 20 is circulated to the reactor 10 via the circulation pipe 21 and the compressor 17.
  • the newly supplied ethylene raw material is continuously supplied from the ethylene supply pipe 12 a to the reactor 10 through the compressor 17 and the first supply pipe 12.
  • the compressor 17 can reduce the electricity cost by connecting the circulation pipe 31 to the first stage and connecting the circulation pipe 21 to the second stage.
  • a solvent used for the low polymerization reaction of ethylene is supplied to the reactor 10 from the second supply pipe 13.
  • the reactor 10 is not particularly limited, and examples thereof include a conventionally well-known type equipped with a stirrer 10a, a baffle, a jacket, and the like.
  • a stirring blade in the form of a paddle, a fiddler, a propeller, a turbine, or the like is used in combination with a baffle such as a flat plate, a cylinder, or a hairpin coil.
  • the transition metal-containing compound and the nitrogen-containing compound prepared in advance in the catalyst tank are supplied from the second supply pipe 13 to the reactor 10 via the catalyst supply pipe 13a, and the aluminum-containing compound is supplied from the third supply pipe 14.
  • the hydrocarbons having 2 or more carbon atoms substituted with halogen atoms are supplied from the fourth supply pipe 15.
  • the saturated hydrocarbon having 2 or more carbon atoms substituted with a halogen atom may be supplied to the reactor 10 from the second supply pipe 13 via the supply pipe.
  • the contact time with the transition metal-containing compound is also supplied to the reactor 10 within a few minutes
  • the aluminum-containing compound may be supplied to the reactor 10 from the second supply pipe 13 via the supply pipe. .
  • a static mixer or the like is installed between the second supply pipe 13 and the reactor 10, a homogeneous mixed solution of each catalyst component can be supplied to the reactor 10. Reduced.
  • the catalyst component is formed from the catalyst supply pipe 13a, the third supply pipe 14, the fourth supply pipe 15, and the like. What is necessary is just to supply with a compound. Also, the olefin having 2 or more carbon atoms substituted with one or more halogen atoms distilled from the reactor is separated from the reaction solution together with the solvent in a distillation column in the rear system of the reactor. The solvent is extracted in the hexene separation tower 50, and is circulated to the reaction process through the circulation process.
  • the olefin having 2 or more carbon atoms substituted with one or more halogen atoms may be used. A portion can be fed to the reactor. Therefore, in continuous operation, in order to adjust the abundance of olefins having 2 or more carbon atoms substituted with one or more halogen atoms in the reactor, the distillation conditions of the high boiling separation column 40 and the hexene separation column 50 are changed. By adjusting, the amount can be adjusted.
  • the reaction mixture continuously extracted from the reactor 10 through the pipe 11 is stopped by the ethylene trimerization reaction by the deactivator supplied from the deactivator supply pipe 11 a and supplied to the degassing tank 20.
  • the operating conditions of the degassing tank 20 are not particularly limited, but are usually 0 to 250 ° C., preferably 50 to 200 ° C., and the pressure is 0 to 15 MPa, preferably 0 to 9 MPa as a gauge pressure.
  • the reaction liquid discharged from the bottom of the degassing tank 20 is supplied to the ethylene separation tower 30 through the pipe 22.
  • the operating conditions of the ethylene separation tower 30 are not particularly limited.
  • the pressure at the top of the tower is 0 to 3 MPa in gauge pressure, preferably 0 to 2 MPa, and the reflux ratio (R / D) is not particularly limited.
  • R / D the reflux ratio
  • it is 0 to 500, preferably 0.1 to 100.
  • ethylene is distilled from the top of the ethylene separation tower 30 and the reaction liquid is withdrawn from the bottom of the tower. Distilled ethylene is circulated and supplied to the reactor 10 via the circulation pipe 31 and the first supply pipe 12.
  • the liquid extracted from the bottom of the ethylene separation tower 30 is supplied to the high boiling separation tower 40 via the pipe 32.
  • the operating conditions of the high boiling separation column 40 are not particularly limited, but usually the pressure at the top of the column is 0 to 10 MPa in gauge pressure, preferably 0 to 0.5 MPa, and the reflux ratio (R / D) is particularly limited. However, it is usually 0 to 100, preferably 0.1 to 20.
  • a high boiling point component (HB: high boiler) is extracted from the tower bottom, and a distillate is extracted from the tower top.
  • the amount of circulation of the olefin having 2 or more carbon atoms substituted with one or more halogen atoms of the present invention to the reactor is adjusted by adjusting the distillation conditions of the high boiling separation column 40 or the hexene separation column 50.
  • the amount can be adjusted.
  • Those skilled in the art can appropriately determine the distillation conditions in this case while monitoring the supply amount of the olefin having 2 or more carbon atoms substituted with one or more halogen atoms to the reactor.
  • the amount of the olefin having 2 or more carbon atoms substituted with one or more halogen atoms in the circulation process is 0.1 to less than 200 (molar ratio) with respect to the amount of the transition metal in the reaction process.
  • the distillate from the high boiling separation tower 40 is supplied to the hexene separation tower 50 via the pipe 41.
  • the operating conditions of the hexene separation column 50 are not particularly limited. Usually, the pressure at the top of the column is 0 to 10 MPa, preferably 0 to 0.5 MPa, and the reflux ratio (R / D) is usually 0. To 100, preferably 0.1 to 20.
  • a solvent eg, heptane
  • a nitrogen-containing compound which is one of the catalyst components, is also circulated in the heptane solvent extracted from the bottom of the hexene separation column 50 and continuously supplied to the reactor 10 in the same manner as the heptane solvent.
  • the vessel 10 may be continuously circulated.
  • the concentration of the nitrogen-containing compound in the solvent to be circulated in a steady state is not particularly limited, but is preferably 5.0 wtppm or more.
  • Examples 1, 2, 3 and Comparative Example 1 are examples showing that trans-1,2-dichloroethylene has an effect as a halogen source for the catalyst in the same manner as 1,1,2,2-tetrachloroethane. .
  • Examples 4 to 8 and Comparative Example 1 are the halogen sources for the catalyst in the same manner as the hydrocarbons having 2 or more carbon atoms in which the olefin having 2 or more carbon atoms substituted with a halogen atom is substituted with 5 or more halogen atoms. It is an example which shows that there exists an effect as.
  • n-heptane as a reaction solvent, 3 ml (0.20 mmol) of triethylaluminum diluted to 7.67 g / L with n-heptane, and the inside for composition analysis by gas chromatography 5 ml of n-undecane used as a standard was charged.
  • ethylene was introduced from the catalyst feed tube to initiate a low polymerization reaction of ethylene.
  • the temperature in the autoclave was maintained at 140 ° C. and the total pressure was maintained at 7 MPaG.
  • the introduction and stirring of ethylene were stopped, and immediately after the autoclave was quickly cooled, the entire amount of gas was sampled from the gas phase nozzle.
  • the reaction liquid was sampled and each composition analysis was performed with the gas chromatography.
  • the polymer weight contained in the reaction liquid was measured after filtering and drying the reaction liquid.
  • the catalytic activity was determined by dividing the weight (unit: g) of the reaction product obtained by the reaction for 60 minutes by the amount of transition catalyst metal atom (unit: g) in the transition metal catalyst component used in the reaction.
  • Example 1 In Comparative Example 1, except that n-heptane charged to the barrel side of the autoclave was 163 ml and trans-1,2-dichloroethylene diluted to 1.0 g / L with n-heptane was 1.8 ml (0.018 mmol), All were performed in the same manner.
  • the molar ratio of each catalyst component, the molar ratio of 1,2-dichloroethylene to the amount of transition metal in the reaction step in Table 1, the molar ratio of DCE to (a)
  • the results are shown in Table 1. .
  • Example 2 In Comparative Example 1, except that n-heptane charged to the barrel side of the autoclave was 161 ml and trans-1,2-dichloroethylene diluted to 1.0 g / L with n-heptane was 3.6 ml (0.037 mmol), All were performed in the same manner.
  • the molar ratio of each catalyst component, the molar ratio of 1,2-dichloroethylene to the amount of transition metal in the reaction step in Table 1, the molar ratio of DCE to (a)
  • the results are shown in Table 1. .
  • Example 3 In Comparative Example 1, except that n-heptane charged to the barrel side of the autoclave was 158 ml and trans-1,2-dichloroethylene diluted to 1.0 g / L with n-heptane was 7.2 ml (0.074 mmol), All were performed in the same manner.
  • the molar ratio of each catalyst component, the molar ratio of 1,2-dichloroethylene to the amount of transition metal in the reaction step in Table 1, the molar ratio of DCE to (a)
  • the results are shown in Table 1. .
  • Example 4 In Comparative Example 1, the same method except that n-heptane charged to the barrel side of the autoclave was changed to 164 ml, and perchlorethylene diluted to 0.5 g / L with n-heptane was changed to 1.2 ml (0.0036 mmol). I went there.
  • the molar ratio of each catalyst component, the molar ratio of perchlorethylene to the amount of transition metal in the reaction step in Table 2, the molar ratio of PCE to (a)), and the results are shown in Table 2.
  • Example 5 In Comparative Example 1, the same procedure was followed except that n-heptane charged to the barrel side of the autoclave was changed to 159 ml and perchlorethylene diluted to 0.5 g / L with n-heptane was changed to 6 ml (0.018 mmol). It was.
  • the molar ratio of each catalyst component, the molar ratio of perchlorethylene to the amount of transition metal in the reaction step in Table 2, the molar ratio of PCE to (a)), and the results are shown in Table 2.
  • Example 6 In Comparative Example 1, all were performed in the same manner except that n-heptane charged to the barrel side of the autoclave was changed to 163 ml and perchlorethylene diluted to 10 g / L with n-heptane was changed to 1.5 ml (0.090 mmol). It was.
  • Example 7 In Comparative Example 1, all were performed in the same manner except that n-heptane charged to the barrel side of the autoclave was changed to 162 ml and perchlorethylene diluted to 10 g / L with n-heptane was changed to 3 ml (0.18 mmol).
  • Example 8 In Comparative Example 1, everything was carried out in the same manner except that n-heptane charged to the barrel side of the autoclave was changed to 159 ml and perchlorethylene diluted to 10 g / L with n-heptane was changed to 6 ml (0.36 mmol).
  • the molar ratio of each catalyst component, the molar ratio of perchlorethylene to the amount of transition metal in the reaction step (in Table 2, the molar ratio of PCE to (a)), and the results are shown in Table 2.
  • Comparative Example 2 In Comparative Example 1, 164 ml of n-heptane charged to the barrel side of the autoclave was adjusted to 0.6 ml (0.0018 mmol) of 1,1,2,2-tetrachloroethane diluted to 0.5 g / L with n-heptane. Except for the above, the same method was used. The molar ratio of each catalyst component, the molar ratio of 1,2-dichloroethylene to the amount of transition metal in the reaction step (in Table 3, the molar ratio of DCE to (a)), and the results are shown in Table 3. .
  • Example 9 In Comparative Example 2, except that n-heptane charged to the barrel side of the autoclave was 163 ml, and trans-1,2-dichloroethylene diluted to 0.5 g / L with n-heptane was 0.7 ml (0.0036 mmol), All were performed in the same manner.
  • the molar ratio of each catalyst component, the molar ratio of 1,2-dichloroethylene to the amount of transition metal in the reaction step in Table 3, the molar ratio of DCE to (a)), and the results are shown in Table 3. .
  • Example 9 has improved catalytic activity, The C6 component was improved and the content of 1-hexene contained in C6 was improved.
  • Comparative Example 3 In Comparative Example 1, all were the same except that n-heptane charged to the barrel side of the autoclave was changed to 164 ml and hexachloroethane diluted to 0.5 g / L with n-heptane was changed to 0.86 ml (0.0018 mmol). went.
  • the molar ratio of each catalyst component, the molar ratio of perchlorethylene to the amount of transition metal in the reaction step in Table 4, the molar ratio of PCE to (a)), and the results are shown in Table 4.
  • Example 10 In Comparative Example 3, the same method except that n-heptane charged to the barrel side of the autoclave was changed to 163 ml, and perchlorethylene diluted to 0.5 g / L with n-heptane was changed to 1.2 ml (0.0036 mmol). I went there.
  • Example 11 In Comparative Example 3, all operations were performed in the same manner except that n-heptane charged to the barrel side of the autoclave was changed to 158 ml and perchlorethylene diluted to 10 g / L with n-heptane was changed to 6 ml (0.36 mmol).
  • Example 12 (Preparation of catalyst solution) It carried out like the comparative example 1. (Manufacture of hexene) Next, a set of 500 ml autoclaves heated and dried at 140 ° C. for 2 hours or more was assembled while being heated, and vacuum nitrogen substitution was performed. The autoclave was fitted with a catalyst feed tube equipped with a pressure rupture disc. The feed tube was charged with 2 ml of the catalyst solution prepared in advance as described above.
  • ethylene was introduced from a catalyst feed tube to initiate a low polymerization reaction of ethylene.
  • the temperature in the autoclave was maintained at 120 ° C. and the total pressure was maintained at 6 MPaG.
  • the introduction and stirring of ethylene were stopped, and immediately after the autoclave was quickly cooled, the entire amount of gas was sampled from the gas phase nozzle.
  • the reaction liquid was sampled and each composition analysis was performed with the gas chromatography. Moreover, the polymer weight contained in the reaction liquid was measured after filtering and drying the reaction liquid.
  • the catalytic activity was determined by dividing the weight (unit: g) of the reaction product obtained by the reaction for 30 minutes by the amount of transition catalyst metal atom (unit: g) in the transition metal catalyst component used in the reaction.
  • the molar ratio of each catalyst component, the molar ratio of 1,2-dichloroethylene to the amount of transition metal in the reaction step (in Table-5, the molar ratio of DCE to (a)), and the results are shown in Table-5. .
  • Example 13 In Example 12, except that n-heptane charged to the barrel side of the autoclave was changed to 160 ml, and trans-1,2-dichloroethylene diluted to 5 g / L with n-heptane was changed to 3.5 ml (0.18 mmol), All were performed in the same manner. The results are shown in Table-5.
  • Example 14 In Example 12, except that n-heptane charged to the barrel side of the autoclave was changed to 158 ml, and trans-1,2-dichloroethylene diluted to 5 g / L with n-heptane was changed to 5.7 ml (0.29 mmol). All were performed in the same manner. The results are shown in Table-5.
  • Example 15 In Example 12, except that n-heptane charged to the barrel side of the autoclave was changed to 156 ml, and trans-1,2-dichloroethylene diluted to 5 g / L with n-heptane was changed to 7.1 ml (0.37 mmol). All were performed in the same manner. The results are shown in Table-5.
  • Example 16 In Example 12, except that n-heptane charged to the barrel side of the autoclave was changed to 158 ml, and trans-1,2-dichloroethylene diluted to 10 g / L with n-heptane was changed to 5.3 ml (0.55 mmol). All were performed in the same manner. The results are shown in Table-5.
  • Example 12 In Example 12, all were performed in the same manner except that n-heptane charged to the barrel side of the autoclave was changed to 163 ml and no trans-1,2-dichloroethylene heptane solution was charged. The results are shown in Table-5.
  • Example 12 In Example 12, except that n-heptane charged to the barrel side of the autoclave was changed to 156 ml and trans-1,2-dichloroethylene diluted to 10 g / L with n-heptane was changed to 7.1 ml (0.73 mmol). All were performed in the same manner. The results are shown in Table-5.
  • Examples 12 to 16 are in a range where the catalyst activity can be tolerated as compared with Comparative Example 4 in which the initial supply amount of 1,2-dichloroethylene (DCE) into the reactor is 0.
  • DCE 1,2-dichloroethylene
  • the C6 component in the product was improved and the content of 1-hexene contained in C6 was improved.
  • the initial supply amount of DCE into the reactor was increased to 200 moles relative to the chromium catalyst (Comparative Example 5), it was shown that the catalytic activity was significantly reduced.
  • Example 17 In Example 12, 157 ml of n-heptane charged to the barrel side of the autoclave, 4.5 ml (0.057 mmol) of 1,1,2,2-tetrachloroethane diluted to 2.12 g / L with n-heptane, n -All operations were performed in the same manner except that trans-1,2-dichloroethylene diluted to 5 g / L with heptane was changed to 3.6 ml (0.18 mmol). The results are shown in Table-6.
  • Example 18 In Example 17, 153 ml of n-heptane charged to the barrel side of the autoclave, 4.5 ml (0.057 mmol) of 1,1,2,2-tetrachloroethane diluted to 2.12 g / L with n-heptane, n All were performed in the same manner except that trans-1,2-dichloroethylene diluted to 5 g / L with heptane was changed to 7.1 ml (0.37 mmol). The results are shown in Table-6.
  • Example 17 In Example 17, all was performed in the same manner except that the amount of n-heptane charged to the barrel side of the autoclave was changed to 161 ml and the trans-1,2-dichloroethylene heptane solution was not charged. The results are shown in Table-6.
  • Example 19 (Preparation of catalyst solution) It carried out like the comparative example 1. (Manufacture of hexene) Next, a set of 500 ml autoclaves heated and dried at 140 ° C. for 2 hours or more was assembled while being heated, and vacuum nitrogen substitution was performed. The autoclave was fitted with a catalyst feed tube equipped with a pressure rupture disc. The feed tube was charged with 2 ml of the catalyst solution prepared in advance as described above.
  • n-heptane As a reaction solvent, 3 ml (0.20 mmol) of triethylaluminum diluted to 7.67 g / L with n-heptane, and diluted to 2.46 g / L with n-heptane 2.1 ml (0.022 mmol) of the prepared hexachloroethane, 1.2 ml (0.072 mmol) of perchlorethylene diluted to 10 g / L with n-heptane and used as an internal standard for composition analysis by gas chromatography 5 ml of n-undecane was charged.
  • ethylene was introduced from the catalyst feed tube to initiate a low polymerization reaction of ethylene.
  • the temperature in the autoclave was maintained at 140 ° C. and the total pressure was maintained at 7 MPaG.
  • the introduction and stirring of ethylene were stopped, and immediately after the autoclave was quickly cooled, the entire amount of gas was sampled from the gas phase nozzle.
  • the reaction liquid was sampled and each composition analysis was performed with the gas chromatography. Moreover, the polymer weight contained in the reaction liquid was measured after filtering and drying the reaction liquid.
  • the catalytic activity was determined by dividing the weight (unit: g) of the reaction product obtained by the reaction for 60 minutes by the amount of transition catalyst metal atom (unit: g) in the transition metal catalyst component used in the reaction.
  • the molar ratio of each catalyst component, the molar ratio of perchlorethylene to the amount of transition metal in the reaction step (in Table-7, the molar ratio of PCE to (a)), and the results are shown in Table-7.
  • Example 20 The same method as in Example 19 except that n-heptane charged to the barrel side of the autoclave was changed to 160 ml, and perchlorethylene diluted to 10 g / L with n-heptane was changed to 3.0 ml (0.18 mmol). I went there. The results are shown in Table-7.
  • Example 21 In Example 19, the same method except that n-heptane charged to the barrel side of the autoclave was changed to 157 ml, and perchlorethylene diluted to 10 g / L with n-heptane was changed to 6.0 ml (0.36 mmol). I went there. The results are shown in Table-7.
  • Example 22 In Example 19, all the same methods except that n-heptane charged to the barrel side of the autoclave was changed to 154 ml, and perchlorethylene diluted to 10 g / L with n-heptane was changed to 9.0 ml (0.54 mmol). I went there. The results are shown in Table-7.
  • Example 19 In Example 19, the same procedure was followed except that n-heptane charged to the barrel side of the autoclave was changed to 163 ml and no heptane solution of perchlorethylene was charged. The results are shown in Table-7.
  • Example 19 In Example 19, the same method except that n-heptane charged to the barrel side of the autoclave was changed to 151 ml, and perchlorethylene diluted to 10 g / L with n-heptane was changed to 12.0 ml (0.72 mmol). I went there. The results are shown in Table-7.
  • Example 23 In the production flow shown in FIG. 1, 1-hexene was produced by continuous low polymerization reaction of ethylene using ethylene as a raw material ⁇ -olefin.
  • the production flow of FIG. 1 includes a completely mixed stirring type reactor 10 in which ethylene is low-polymerized in the presence of an n-heptane solvent and a catalyst, and a desorption that separates unreacted ethylene gas from the reaction liquid extracted from the reactor 10.
  • Gas tank 20 ethylene separation tower 30 for distilling off ethylene in the reaction liquid extracted from degassing tank 20, high-boiling separation tower for separating high-boiling substances in the reaction liquid extracted from ethylene separation tower 30 40, and a hexene separation column 50 for distilling the reaction liquid extracted from the top of the high boiling separation column 40 and distilling 1-hexene.
  • the n-heptane solvent separated in the hexene separation tower 50 is circulated to the reactor 10 via the solvent circulation pipe 52 and the second supply pipe 13.
  • unreacted ethylene separated in the degassing tank 20 is circulated to the reactor 10 via the circulation pipe 21 and the compressor 17.
  • a solution of each component of the catalyst was supplied from a 0.1 MPaG nitrogen seal tank (not shown).
  • chromium (III) -2-ethylhexanoate (a) and 2,5-dimethylpyrrole (b) are added to chromium (III) -2-ethylhexanoate (a). It was continuously supplied to the reactor 10 through the second supply pipe 13 at 0 equivalent.
  • Triethylaluminum (c) was continuously supplied from the third supply pipe 14 to the reactor 10.
  • hexachloroethane (d) was continuously supplied from the fourth supply pipe 15 to the reactor 10.
  • the reaction conditions were a reactor internal temperature of 140 ° C. and a reactor internal pressure of 7.0 MPaG.
  • the reaction liquid continuously withdrawn from the reactor 10 is added with 2-ethylhexanol as a catalyst deactivator from a deactivator supply pipe 11a, and then sequentially degassed tank 20, ethylene separation tower 30, high boiling point. It processed in the separation tower 40 and the hexene separation tower 50.
  • the recovered n-heptane solvent separated in the hexene separation tower 50 was continuously supplied from the second supply pipe 13 to the reactor 10. At this time, the reflux ratio of the high boiling separation column 40 was 0.6.
  • 2,5-dimethylpyrrole (b) was not completely separated in the high-boiling separation column, and part of it was recycled together with the recovered n-heptane solvent and fed again to the reactor. At this time, the concentration of 2,5-dimethylpyrrole (b) in the recovered n-heptane solvent was about 10 wtppm.
  • the C6 selectivity is determined by analyzing the composition of each of the circulating n-heptane solvent and the bottom liquid of the ethylene separation tower 30 by gas chromatography (GC-17AAF, manufactured by Shimadzu Corporation). The selectivity of was calculated.
  • the catalytic activity is the product weight (unit: g) produced in one hour per chromium atomic weight (unit: g) of the catalyst component supplied in one hour.
  • the molar ratio of perchlorethylene to chromium (III) -2-ethylhexanoate (a) was determined by gas chromatography (GC-17AAF, manufactured by Shimadzu Corporation) using the perchlorethylene concentration in the circulating n-heptane solvent.
  • the amount of perchloroethylene was calculated from the amount of solvent in the circulating n-heptane, and then divided by chromium (III) -2-ethylhexanoate (a) supplied to the reactor. The results are shown in Table-8.
  • Example 24 In Example 23, the same procedure was followed except that the molar ratio of perchlorethylene to chromium (III) -2-ethylhexanoate (a) was 20. The results are shown in Table-8.
  • Example 25 The same procedure as in Example 23 was carried out except that the molar ratio of perchlorethylene to chromium (III) -2-ethylhexanoate (a) was 53. The results are shown in Table-8.
  • Examples 19 to 26 allowed the catalytic activity as compared with Comparative Example 7 in which the amount of perchlorethylene (PCE) fed into the reactor was 0.
  • PCE perchlorethylene
  • the C6 component in the product was improved and the content of 1-hexene contained in C6 was improved.
  • the supply amount of PCE into the reactor is increased to 200 moles relative to the chromium catalyst (Comparative Example 8)
  • the catalytic activity is remarkably lowered, and the C6 component in the product is improved and 1 contained in C6. -No further improvement in hexene content.
  • Example 27 In Comparative Example 7, the same method was used except that n-heptane charged to the barrel side of the autoclave was changed to 161 ml, and trichlorethylene diluted to 5 g / L with n-heptane was changed to 1.5 ml (0.055 mmol). went.
  • the molar ratio of each catalyst component, the molar ratio of trichlorethylene to the amount of transition metal in the reaction step in Table-9, the molar ratio of TCE to (a)), and the results are shown in Table-9.
  • Example 27 maintained the catalyst activity in an allowable range.
  • the C6 component in the product was improved and the content of 1-hexene contained in C6 was improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

 本発明は、遷移金属含有化合物、アルミニウム含有化合物及びハロゲン原子で置換された炭素数2以上の炭化水素類を含む触媒並びに溶媒の存在下、α-オレフィンの低重合反応を行いα-オレフィン低重合体を製造する方法であって、反応工程、精製工程及び精製工程から未反応原料α-オレフィン及び溶媒を反応工程へ循環させる循環工程を備え、循環工程から反応工程へ供給されるハロゲン原子で置換された炭素数2以上のオレフィンの量が、反応工程中の遷移金属の量に対し0.1以上200未満(モル比)の範囲であるα-オレフィン低重合体の製造方法に関する。

Description

α-オレフィン低重合体の製造方法
 本発明は、触媒の存在下、溶媒中でα-オレフィンを低重合反応させ、α-オレフィン低重合体を得る方法に関し、より詳細には、原料のエチレンを低重合反応させ、1-ヘキセンを得る方法に関するものである。
 α-オレフィン低重合体は、オレフィン系重合体のモノマーの原料として、また各種高分子のコモノマーとして、さらには可塑剤や界面活性剤、潤滑油などの原料として広く用いられている有用な物質である。特に、エチレンの低重合反応により得られる1-ヘキセンは、直鎖状低密度ポリエチレンの原料として有用である。
 α-オレフィン低重合体は、通常、触媒及び溶媒の存在下でα-オレフィンを低重合反応させる方法で製造される。例えば、日本国特開平8-134131号公報には、クロム化合物、ハロゲン含有化合物を含む触媒及び溶媒の存在下エチレンの三量化反応により1-ヘキセンを製造する方法が開示され、ハロゲン含有化合物としては、直鎖状炭化水素類のハロゲン化物が例示されている(特許文献1)。
 また、日本国特開2008-179801号公報には、クロム化合物、ハロゲン含有化合物を含む触媒の存在下エチレンの三量化反応により製造された、ポリエチレン製造原料としての1-ヘキセンには、前記ハロゲン含有化合物が分解・副生したハロゲン化オレフィンが含有されることが開示されている(特許文献2)。
日本国特開平8-134131号公報 日本国特開2008-179801号公報
 工業的規模でエチレンなどのα-オレフィンを原料として1-ヘキセンなどのα-オレフィン低重合体を製造するにあたり、目的生成物の更なる選択率の向上が望まれており、従来の技術では選択率の点で更なる改善が望まれていた。また製造運転開始時は、目的生成物の生成選択率及び目的生成物純度が低く、特に製品品質に関わる目的生成物純度の改善が必要であった。
 本発明の課題は、α-オレフィンの低重合反応によるα-オレフィン低重合体の製造方法、特にエチレンの三量化反応による1-ヘキセンの製造方法において、活性を許容しうる範囲に維持しつつ、目的生成物の選択率を向上させるα-オレフィン低重合体の製造方法の提供であり、工業的に有利なα-オレフィン低重合体の製造方法の提供である。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、クロム系均一触媒の一成分であるハロゲン含有化合物として、ハロゲン原子で置換された炭素数2以上の炭化水素類を用いた場合に、その分解物のうちハロゲン原子で置換された炭素数2以上のオレフィンを特定量反応器に循環させることにより目的生成物の選択率を向上させることができることを見出した。また、製造運転開始時は循環工程中にハロゲン原子で置換された炭素数2以上のオレフィンを特定の範囲存在させた状態で反応をスタートさせることにより、スタート時より目的生成物の選択率や純度を向上させることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は、以下の[1]~[9]に存する。
[1]遷移金属含有化合物、アルミニウム含有化合物及びハロゲン原子で置換された炭素数2以上の炭化水素類を含む触媒並びに溶媒の存在下、α-オレフィンの低重合反応を行いα-オレフィン低重合体を製造する方法であって、
 反応工程、精製工程及び該精製工程から未反応原料α-オレフィン及び溶媒を反応工程へ循環させる循環工程を備え、
 循環工程から反応工程へ供給されるハロゲン原子で置換された炭素数2以上のオレフィンの量が、反応工程中の遷移金属の量に対し0.1以上200未満(モル比)の範囲であるα-オレフィン低重合体の製造方法。
[2]前記触媒が、構成成分として更に窒素含有化合物を含む[1]に記載のα-オレフィン低重合体の製造方法。
[3]前記遷移金属が、クロムである[1]または[2]に記載のα-オレフィン低重合体の製造方法。
[4]前記α-オレフィンがエチレンであり、前記α-オレフィン低重合体が1-ヘキセンである[1]~[3]のいずれか1に記載のα-オレフィン低重合体の製造方法。
[5]製造運転開始時、反応工程中の遷移金属の量に対し、前記循環工程中に1個以上のハロゲン原子で置換された炭素数2以上のオレフィンを0.1以上200未満(モル比)の範囲で存在させた状態で反応をスタートさせる[1]~[4]のいずれか1に記載のα-オレフィン低重合体の製造方法。
[6]前記ハロゲン原子で置換された炭素数2以上のオレフィンの量が反応工程中の遷移金属の量に対し0.1以上170以下(モル比)の範囲である[1]~[5]のいずれか1に記載のα-オレフィン低重合体の製造方法。
[7]前記ハロゲン原子で置換された炭素数2以上の炭化水素類が5個以上のハロゲン原子で置換された炭素数2以上の炭化水素類であり、前記ハロゲン原子で置換された炭素数2以上のオレフィンが3個以上のハロゲン原子で置換された炭素数2以上のオレフィンである[1]~[6]のいずれか1に記載のα-オレフィン低重合体の製造方法。
[8]前記ハロゲン原子で置換された炭素数2以上の炭化水素類が1,1,2,2-テトラクロロエタンであり、前記ハロゲン原子で置換された炭素数2以上のオレフィンが1,2-ジクロロエチレンである[1]~[6]のいずれか1に記載のα-オレフィン低重合体の製造方法。
[9]遷移金属含有化合物、アルミニウム含有化合物及びハロゲン原子で置換された炭素数2以上の炭化水素類を含む触媒並びに溶媒の存在下、α-オレフィンの低重合反応を行いα-オレフィン低重合体を製造する方法であって、
 ハロゲン原子で置換された炭素数2以上のオレフィンを、反応工程中の遷移金属の量に対し0.1以上200未満(モル比)の範囲で反応工程へ供給することを特徴とするα-オレフィン低重合体の製造方法。
 本発明によれば、α-オレフィンの低重合反応によりα-オレフィン低重合体を製造するにあたり、活性を許容しうる範囲に維持しつつ、目的生成物の選択率を向上させることができる。
図1は、本実施の形態におけるα-オレフィン低重合体(1-ヘキセン)の製造フロー例を説明する図である。
 以下、本発明を実施するための最良の形態(以下、発明の実施の形態)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することが出来る。
 [触媒]
 本発明で使用する触媒は、原料α-オレフィンを低重合反応させ、α-オレフィン低重合体を生成させうる触媒であり、遷移金属含有化合物、アルミニウム含有化合物及びハロゲン含有化合物としてのハロゲン原子で置換された炭素数2以上の炭化水素類を触媒の構成成分として含むものであれば特に限定されない。また、触媒活性の向上という観点から、窒素含有化合物を触媒の構成成分として含有することが好ましい。
 (遷移金属含有化合物)
 本発明のα-オレフィン低重合体の製造方法において、触媒として使用する遷移金属含有化合物に含有する金属としては、遷移金属であれば特に限定されないが、中でも、長周期型周期表(以下、特に断り書きのない限り、「周期表」という場合には長周期型周期表を指すものとする)における第4~6族の遷移金属が好ましく用いられる。具体的に、好ましくは、クロム、チタン、ジルコニウム、バナジウム及びハフニウムからなる群より選ばれる1種類以上の金属であり、更に好ましくは、クロム又はチタンであり、最も好ましくは、クロムである。
 本発明において、触媒の原料として使用される遷移金属含有化合物は、一般式MeZで表される1種以上の化合物である。ここで、前記一般式中、Meは遷移金属元素、Zは任意の有機基又は無機基もしくは陰性原子であり、nは1から6の整数を表し、2以上が好ましい。nが2以上の場合、Zは同一又は相互に異なっていてもよい。有機基としては、置換基を有していてもよい炭素数1~30の炭化水素基であればよく、具体的には、カルボニル基、アルコキシ基、カルボキシル基、β-ジケトナート基、β-ケトカルボキシル基、β-ケトエステル基、アミド基等が挙げられる。また、無機基としては、硝酸基、硫酸基等の金属塩形成基が挙げられる。また、陰性原子としては、酸素原子、ハロゲン原子等が挙げられる。
 遷移金属がクロムである遷移金属含有化合物(以下、クロム含有化合物と呼ぶことがある)の場合、具体例としては、クロム(IV)-tert-ブトキシド、クロム(III)アセチルアセトナート、クロム(III)トリフルオロアセチルアセトナート、クロム(III)ヘキサフルオロアセチルアセトナート、クロム(III)(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)、Cr(PhCOCHCOPh)(但し、ここでPhはフェニル基を示す。)、クロム(II)アセテート、クロム(III)アセテート、クロム(III)-2-エチルヘキサノエート、クロム(III)ベンゾエート、クロム(III)ナフテネート、クロム(III)ヘプタノエート、Cr(CHCOCHCOOCH、塩化第一クロム、塩化第二クロム、臭化第一クロム、臭化第二クロム、ヨウ化第一クロム、ヨウ化第二クロム、フッ化第一クロム、フッ化第二クロム等が挙げられる。
 遷移金属がチタンである遷移金属含有化合物(以下、チタン含有化合物と呼ぶことがある)の場合、具体例としては、TiCl、TiBr、TiI、TiBrCl、TiBrCl、Ti(OC、Ti(OCCl、Ti(O-n-C、Ti(O-n-CCl、Ti(O-iso-C、Ti(O-iso-CCl、Ti(O-n-C、Ti(O-n-CCl、Ti(O-iso-C、Ti(O-iso-CCl、Ti(O-tert-C、Ti(O-tert-CCl、TiCl(thf)(左記化学式中、thfはテトラヒドロフランを表す)、Ti((CHN)、Ti((CN)、Ti((n-CN)、Ti((iso-CN)、Ti((n-CN)、Ti((tert-CN)、Ti(OSOCH、Ti(OSO、Ti(OSO、Ti(OSO、TiCpCl、TiCpClBr、Ti(OCOC、Ti(OCOCCl、Ti(OCOC、Ti(OCOCCl、Ti(OCOC、Ti(OCOCCl、Ti(OCOC、Ti(OCOCClなどが挙げられる。
 ここで、Cpはシクロペンタジエニル基を表す。
 遷移金属がジルコニウムである遷移金属含有化合物(以下、ジルコニウム含有化合物と呼ぶことがある)の場合、具体例としては、ZrCl、ZrBr、ZrI、ZrBrCl、ZrBrCl、Zr(OC、Zr(OCCl、Zr(O-n-C、Zr(O-n-CCl、Zr(O-iso-C、Zr(O-iso-CCl、Zr(O-n-C、Zr(O-n-CCl、Zr(O-iso-C、Zr(O-iso-CCl、Zr(O-tert-C、Zr(O-tert-CCl、Zr((CHN)、Zr((CN)、Zr((n-CN)、Zr((iso-CN)、Zr((n-CN)、Zr((tert-CN)、Zr(OSOCH、Zr(OSO、Zr(OSO、Zr(OSO、ZrCpCl、ZrCpClBr、Zr(OCOC、Zr(OCOCCl、Zr(OCOC、Zr(OCOCCl、Zr(OCOC、Zr(OCOCCl、Zr(OCOC、Zr(OCOCCl、ZrCl(HCOCFCOF)、ZrCl(CHCOCFCOCHなどが挙げられる。
 遷移金属がバナジウムである遷移金属含有化合物(以下、バナジウム含有化合物と呼ぶことがある)の場合、具体例としては、五酸化バナジウム、バナジウムオキシトリクロリド、バナジウムオキシトリブロミド、メトキシバナデート、エトキシバナデート、n-プロピルバナデート、イソプロポキシバナデート、n-ブトキシバナデート、イソブトキシバナデート、t-ブチルバナデート、1-メチルブトキシバナデート、2-メチルブトキシバナデート、n-プロポキシバナデート、ネオペントキシバナデート、2-エチルブトキシバナデート、シクロヘキシルバナデート、アリルシクロヘキシルバナデート、フェノキシバナデート、バナジウム(III)アセチルアセトナート、バナジウム(III)ヘキサフルオロアセチルアセトナート、バナジウム(III)(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)、V(CCOCHCOC、バナジウム(III)アセテート、バナジウム(III)-2-エチルヘキサノエート、バナジウム(III)ベンゾエート、バナジウム(III)ナフテネート、V(CHCOCHCOOCH、塩化(III)バナジウム、臭化(III)バナジウム、ヨウ化(III)バナジウム、フッ化(III)バナジウム、ビス(シクロペンタジエニル)バナジウムジメチル、ビス(シクロペンタジエニル)バナジウムジメチルクロリド、ビス(シクロペンタジエニル)バナジウムエチルクロリド、ビス(シクロペンタジエニル)バナジウムジクロリド等が挙げられる。
 遷移金属がハフニウムである遷移金属含有化合物(以下、ハフニウム含有化合物と呼ぶことがある)の場合、具体例としては、ジメチルシリレンビス{1-(2-メチル-4-イソプロピル-4H-アズレニル)}ハフニウムジクロリド、ジメチルシリレンビス{1-(2-メチル-4-フェニル-4H-アズレニル)}ハフニウムジクロリド、ジメチルシリレンビス〔1-{2-メチル-4-(4-クロロフェニル)-4H-アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス〔1-{2-メチル-4-(4-フルオロフェニル)-4H-アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス〔1-{2-メチル-4-(3-クロロフェニル)-4H-アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス[1-{2-メチル-4-(2,6-ジメチルフェニル)-4H-アズレニル}]ハフニウムジクロリド、ジメチルシリレンビス{1-(2-メチル-4,6-ジイソプロピル-4H-アズレニル)}ハフニウムジクロリド、ジフェニルシリレンビス{1-(2-メチル-4-フェニル-4H-アズレニル)}ハフニウムジクロリド、メチルフェニルシリレンビス{1-(2-メチル-4-フェニル-4H-アズレニル)}ハフニウムジクロリド、メチルフェニルシリレンビス〔1-{2-メチル-4-(1-ナフチル)-4H-アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス{1-(2-エチル-4-フェニル-4H-アズレニル)}ハフニウムジクロリド、ジメチルシリレンビス〔1-{2-エチル-4-(1-アントラセニル)-4H-アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス〔1-{2-エチル-4-(2-アントラセニル)-4H-アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス〔1-{2-エチル-4-(9-フェナンスリル)-4H-アズレニル}〕ハフニウムジクロリド、ジメチルメチレンビス[1-{2-メチル-4-(4-ビフェニリル)-4H-アズレニル}]ハフニウムジクロリド、ジメチルゲルミレンビス[1-{2-メチル-4-(4-ビフェニリル)-4H-アズレニル}]ハフニウムジクロリド、ジメチルシリレンビス{1-(2-エチル-4-(3,5-ジメチル-4-トリメチルシリルフェニル-4H-アズレニル)}ハフニウムジクロリド、ジメチルシリレンビス[1-{2-メチル-4-(4-ビフェニリル)-4H-アズレニル}][1-{2-メチル-4-(4-ビフェニリル)インデニル}]ハフニウムジクロリド、ジメチルシリレン{1-(2-エチル-4-フェニル-4H-アズレニル)}{1-(2-メチル-4,5-ベンゾインデニル)}ハフニウムジクロリド、ジメチルシリレンビス{1-(2-メチル-4-フェニルインデニル)}ハフニウムジクロリド、ジメチルシリレンビス{1-(2-メチル-4,5-ベンゾインデニル)}ハフニウムジクロリド、ジメチルシリレンビス〔1-{2-メチル-4-(1-ナフチル)インデニル}〕ハフニウムジクロリド等が挙げられる。
 これらの遷移金属含有化合物の中でも、クロム含有化合物が好ましく、クロム含有化合物の中でも、特に好ましくは、クロム(III)-2-エチルヘキサノエートである。
 (アルミニウム含有化合物)
 本発明で使用するアルミニウム含有化合物は、分子内にアルミニウム原子を含有する化合物であり、例えば、トリアルキルアルミニウム化合物、アルコキシアルキルアルミニウム化合物、又は水素化アルキルアルミニウム化合物等などが挙げられる。ここで、アルキル及びアルコキシの炭素数は、各々、通常1~20、好ましくは1~4である。トリアルキルアルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが挙げられる。アルコキシアルミニウム化合物の具体的な例としては、ジエチルアルミニウムエトキシドが挙げられる。水素化アルキルアルミニウム化合物の具体的な例としては、ジエチルアルミニウムヒドリドが挙げられる。これらの中でも、トリアルキルアルミニウム化合物が好ましく、トリエチルアルミニウムが更に好ましい。これらの化合物は、単一の化合物を使用しても、複数の化合物を混合して用いてもよい。
 (ハロゲン含有化合物)
 本発明で使用するハロゲン含有化合物は、分子内にハロゲン原子を含有する化合物であり、本発明においては、ハロゲン原子で置換された炭素数2以上の炭化水素類を使用する。これにより触媒活性や目的物の選択率が大幅に向上するというメリットがある。ハロゲン含有化合物は、3個以上のハロゲン原子で置換された炭素数2以上の飽和炭化水素類が好ましい。
 ハロゲン原子としては、塩素原子、フッ素原子、臭素原子が挙げられるが、塩素原子が触媒活性及び目的物の選択率が高い傾向を示すため好ましい。
 前記ハロゲン原子で置換された炭素数2以上の炭化水素類としてはクロロエチレン、ジクロロエチレン、トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラクロロエチレン(パークロロエチレン)、ペンタクロロエタン、ヘキサクロロエタン、フルオロエチレン、ジフルオロエチレン、トリフルオロエタン、トリフルオロエチレン、テトラフルオロエタン、テトラフルオロエチレン(パーフルオロエチレン)、ペンタフルオロエタン、ヘキサフルオロエタン、ブロモエチレン、ジブロモエチレン、トリブロモエタン、トリブロモエチレン、テトラブロモエタン、テトラブロモエチレン(パーブロモエチレン)、ペンタブロモエタン、ヘキサブロモエタン又は以下に示す化合物が挙げられる。
 3個以上のハロゲン原子で置換された炭素数2以上の飽和炭化水素類としては1,1,2,2-テトラクロロエタン又は5個以上のハロゲン原子で置換された炭素数2以上の炭化水素類を用いるのが好ましい。5個以上のハロゲン原子で置換された炭素数2以上の炭化水素類は、5個以上のハロゲン原子で置換された炭素数2以上の飽和炭化水素類が好ましい。5個以上のハロゲン原子で置換された炭素数2以上の炭化水素類としては、例えば、ペンタクロロエタン、ペンタフルオロエタン、ペンタブロモエタン、ヘキサクロロエタン、ヘキサフルオロエタン、1,1,2,2,3-ペンタフルオロプロパン、1,2,3,4,5,6-ヘキサクロロシクロヘキサン、ヘキサブロモエタン等が挙げられる。
 (窒素含有化合物)
 本発明で使用する触媒は、遷移金属含有化合物、アルミニウム含有化合物、及びハロゲン原子で置換された炭素数2以上の炭化水素類を触媒の構成成分として含むが、これに加えて、更に、窒素含有化合物を触媒成分として含むことが好ましい。
 本発明において、窒素含有化合物としては、分子内に窒素原子を含有する化合物であり、例えば、アミン類、アミド類又はイミド類等が挙げられる。
 アミン類としては、例えばピロール化合物が挙げられ、具体例としては、ピロール、2,4-ジメチルピロール、2,5-ジメチルピロール、2,5-ジエチルピロール、2,4-ジエチルピロール、2,5-ジ-n-プロピルピロール、2,5-ジ-n-ブチルピロール、2,5-ジ-n-ペンチルピロール、2,5-ジ-n-ヘキシルピロール、2,5-ジベンジルピロール、2,5-ジイソプロピルピロール、2-メチル-5-エチルピロール、2,5-ジメチル-3-エチルピロール、3,4-ジメチルピロール、3,4-ジクロロピロール、2,3,4,5-テトラクロロピロール、2-アセチルピロール、インドール、2-メチルインドール、2つのピロール環が置換基を介して結合したジピロール等のピロール又はこれらの誘導体が挙げられる。誘導体としては、例えば、金属ピロライド誘導体が挙げられ、具体例としては、例えば、ジエチルアルミニウムピロライド、エチルアルミニウムジピロライド、アルミニウムトリピロライド、ジエチルアルミニウム(2,5-ジメチルピロライド)、エチルアルミニウムビス(2,5-ジメチルピロライド)、アルミニウムトリス(2,5-ジメチルピロライド)、ジエチルアルミニウム(2,5-ジエチルピロライド)、エチルアルミニウムビス(2,5-ジエチルピロライド)、アルミニウムトリス(2,5-ジエチルピロライド)等のアルミニウムピロライド類、ナトリウムピロライド、ナトリウム(2,5-ジメチルピロライド)等のナトリウムピロライド類、リチウムピロライド、リチウム(2,5-ジメチルピロライド)等のリチウムピロライド類、カリウムピロライド、カリウム(2,5-ジメチルピロライド)等のカリウムピロライド類が挙げられる。なお、アルミニウムピロライド類は、上述のアルミニウム含有化合物には含まれない。
 アミド類としては、例えば、アセトアミド、N-メチルヘキサンアミド、スクシンアミド、マレアミド、N-メチルベンズアミド、イミダゾール-2-カルボキソアミド、ジ-2-テノイルアミン、β-ラクタム、δ-ラクタム、ε-カプロラクタム又はこれらと周期表の1、2若しくは13族の金属との塩が挙げられる。
 イミド類としては、例えば、1,2-シクロヘキサンジカルボキシイミド、スクシンイミド、フタルイミド、マレイミド、2,4,6-ピペリジントリオン、ペルヒドロアゼシン-2,10-ジオン又はこれらと周期表の1、2若しくは13族の金属との塩が挙げられる。スルホンアミド類およびスルホンイミド類としては、例えば、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-メチルトリフルオロメチルスルホンアミド、又はこれらと周期表の1~2若しくは13族の金属との塩が挙げられる。これらの化合物は単一の化合物で使用しても、複数の化合物で使用してもよい。
 本発明では、これらの中でも、アミン類が好ましく、中でも、ピロール化合物がより好ましく、特に好ましくは2,5-ジメチルピロール又はジエチルアルミニウム(2,5-ジメチルピロライド)である。
 (触媒前調製)
 本発明で使用する触媒は、遷移金属含有化合物、アルミニウム含有化合物、及びハロゲン原子で置換された炭素数2以上の炭化水素類を触媒の構成成分として含み、好ましくは更に、窒素含有化合物を構成成分として含むものである。触媒の使用形態は特に限定されないが、遷移金属含有化合物とアルミニウム含有化合物とが予め接触しない、又は予めの接触時間が短い態様で、原料α-オレフィンと触媒とを接触させるのが、選択的に原料α-オレフィンの低重合反応を好適に行うことができ、原料α-オレフィン低重合体を高収率で得ることができる点から好ましい。
 本発明において、「遷移金属含有化合物と、アルミニウム含有化合物とが予め接触しない、又は予めの接触時間が短い態様」とは、反応の開始時だけでなく、その後原料α-オレフィン及び各触媒成分を反応器へ追加供給する際においても上記の態様が維持されることを意味する。
 しかし、上記の特定の態様は、触媒の調製の際に要求される好ましい態様であり、触媒が調製された後は無関係である。従って、すでに調製された触媒を反応系から回収し再利用する場合は、上記の好ましい態様に関係なく触媒を再利用することができる。
 触媒が、例えば、上記の4成分、即ち遷移金属含有化合物(a)、窒素含有化合物(b)、アルミニウム含有化合物(c)及びハロゲン原子で置換された炭素数2以上の炭化水素類(d)により構成される場合は、各成分の接触の態様は、通常、
(1)触媒成分(b)、(c)及び(d)を含む溶液中に触媒成分(a)を導入する方法、
(2)触媒成分(a)、(b)及び(d)を含む溶液中に触媒成分(c)を導入する方法、
(3)触媒成分(a)及び(d)を含む溶液中に触媒成分(b)及び(c)を導入する方法、
(4)触媒成分(c)及び(d)を含む溶液中に触媒成分(a)及び(b)を導入する方法、
(5)触媒成分(a)及び(b)を含む溶液中に触媒成分(c)及び(d)を導入する方法、
(6)触媒成分(b)及び(c)を含む溶液中に触媒成分(a)及び(d)を導入する方法、
(7)触媒成分(c)を含む溶液中に触媒成分(a)、(b)及び(d)を導入する方法、
(8)触媒成分(a)を含む溶液中に触媒成分(b)~(d)を導入する方法、
(9)触媒成分(b)及び(c)を含む溶液中に触媒成分(a)を導入して調製された液、及び、触媒成分(d)を含む溶液を同時かつ独立に反応器に導入する方法(必要により、更に触媒成分(c)を含む溶液を反応器に導入してもよい)、
(10)各触媒成分(a)~(d)をそれぞれ同時かつ独立に反応器に導入する方法、
などによって行われる。そして、上記の各溶液は、通常、反応に使用される溶媒を使用して調製される。
 [ハロゲン原子(「1個以上のハロゲン原子」と称することがある)で置換された炭素数2以上のオレフィン]
 本発明の1個以上のハロゲン原子で置換された炭素数2以上のオレフィンとは、オレフィン性炭化水素の二重結合を有する炭素原子にハロゲン原子が結合したものであり、前記ハロゲン原子で置換された炭素数2以上の炭化水素類に対し、ハロゲン原子数が減少したハロゲン化不飽和炭化水素が好ましい。前記ハロゲン原子で置換された炭素数2以上の炭化水素類の分解物がより好ましい。3個以上のハロゲン原子で置換された炭素数2以上の飽和炭化水素類の分解物が更に好ましい。
 本発明のα-オレフィン低重合体の製造方法(第一の発明)は、後に詳述する通り、反応工程、精製工程及び該精製工程から未反応原料α-オレフィン及び溶媒を反応工程へ循環させる循環工程を備えるが、循環工程から反応工程へ供給される未反応原料α-オレフィンのうち、1個以上のハロゲン原子で置換された炭素数2以上のオレフィンの量が、反応工程中の遷移金属の量に対し0.1以上200未満(モル比)の範囲であることが必要である。以下、この点について説明する。
 本発明では、触媒成分のひとつとして使用されるハロゲン原子で置換された炭素数2以上の炭化水素類は、反応工程においてそのほぼ全てが分解され、1個以上のハロゲン原子で置換された炭素数2以上のオレフィンが副生する。これらは反応混合物中に存在し、目的生成物や溶媒等とともに精製工程に供給される。
 精製工程としては、未反応原料α-オレフィン分離工程、高沸点物質分離工程、製品分離工程があるが、これら副生物の沸点が未反応原料α-オレフィンの沸点に近い場合は未反応原料α-オレフィン分離工程において分離され、未反応原料α-オレフィンとともに反応工程に循環される場合がある。一方、前記副生物の沸点が溶媒の沸点に近い場合は、製品分離工程において分離され、溶媒とともに反応工程に循環される場合がある。また、前記副生物が高沸点物質化した場合は高沸点物質分離工程において分離される。
 反応工程においては、初期供給のハロゲン原子で置換された炭素数2以上の炭化水素類、反応中にそれが分解した化合物(副生物)及び循環工程から供給されたこれら副生物とが混在することになる。
 従来、1個以上のハロゲン原子で置換された炭素数2以上のオレフィンは反応を阻害すると考えられていたため、反応工程から排出された当該オレフィンを反応工程に循環させることは、反応工程における蓄積のおそれもあり、好ましくないと考えられていた。しかし本発明によれば、驚くべきことに当該オレフィンは、触媒反応を促進し、目的生成物の選択率を向上させることが判明した。
 その理由は明らかではないが、1個以上のハロゲン原子で置換された炭素数2以上のオレフィンは、特定の範囲の配合であれば、ハロゲン原子で置換された炭素数2以上の炭化水素類と同様に、溶媒中で触媒にハロゲン原子を供給することができ、その結果として目的生成物の選択率が向上するものと考えられる。
 本発明によれば、循環工程から反応工程へ供給される1個以上のハロゲン原子で置換された炭素数2以上のオレフィンの量が、反応工程中の遷移金属の量に対し0.1以上200未満(モル比)の範囲であることにより、目的生成物の選択率を向上させる反応系を提供することができた。
 上記モル比の上限は、好ましくは170、より好ましくは120である。上記モル比の下限は、好ましくは0.5、より好ましくは1.0、さらに好ましくは3.0、特に好ましくは10.0である。モル比が上記範囲であることにより、反応を阻害することなく、触媒へのハロゲン原子の供給が行われることとなる。
 本発明において、ハロゲン原子で置換された炭素数2以上の炭化水素類が1,1,2,2-テトラクロロエタンの場合、1個以上のハロゲン原子で置換された炭素数2以上のオレフィンは1,2-ジクロロエチレンであることが好ましく、ハロゲン原子で置換された炭素数2以上の炭化水素類が5個以上のハロゲン原子で置換された炭素数2以上の炭化水素類の場合、1個以上のハロゲン原子で置換された炭素数2以上のオレフィンは3個以上のハロゲン原子で置換された炭素数2以上のオレフィンであることが好ましい。
 ここで、1個以上のハロゲン原子で置換された炭素数2以上のオレフィンが1,2-ジクロロエチレン(DCEと称することがある)である場合、特に、反応工程中の遷移金属の量に対し下限値としては0.1以上、上限値としては好ましくは100未満(モル比)、より好ましくは85未満、更に好ましくは55未満の範囲が好ましい。
 また、より好ましい態様としては、ハロゲン原子で置換された炭素数2以上の炭化水素類の反応工程への供給量が遷移金属の反応工程への供給量に対し0.5以上50以下(モル比)の範囲であって、循環工程から反応工程へ供給される1個以上のハロゲン原子で置換された炭素数2以上のオレフィンの量が、ハロゲン原子で置換された炭素数2以上の炭化水素類に対し2以上(モル比)であり、かつ、反応工程中の遷移金属の量に対し200未満(モル比)の範囲である。なお、循環溶媒中の1個以上のハロゲン原子で置換された炭素数2以上のオレフィンの濃度はガスクロマトグラフィー等の分析機器を使用して測定することができる。
 ハロゲン原子で置換された炭素数2以上の飽和炭化水素類が遷移金属にハロゲン原子を供給し触媒活性種が形成されるが、反応の進行に伴い目的生成物の選択率や純度が低下する劣化触媒種が形成される。本発明の方法により、劣化触媒種にハロゲン原子が速やかに供給される環境となり触媒活性種が形成されると考えられる。
 循環工程から供給される1個以上のハロゲン原子で置換された炭素数2以上のオレフィンを前記の量とする方法は、特に限定されないが、例えば、精製工程において、未反応原料α-オレフィン分離塔で還流比を調整することにより1個以上のハロゲン原子で置換された炭素数2以上のオレフィンの循環量を調節することが挙げられる。
 本発明のα-オレフィンの低重合体の製造方法(第二の発明)は、上記第一の発明の知見に基づくものであるが、循環工程を必要としない回分法にも適用可能なものであり、遷移金属含有化合物、アルミニウム含有化合物及びハロゲン原子で置換された炭素数2以上の飽和炭化水素類を含む触媒並びに溶媒の存在下、α-オレフィンの低重合反応を行いα-オレフィン低重合体を製造する方法において、1個以上のハロゲン原子で置換された炭素数2以上のオレフィンを、反応工程中の遷移金属の量に対し0.1以上200未満(モル比)の範囲で反応工程へ供給するものである。
 なお、この場合、反応系でハロゲン原子で置換された炭素数2以上の飽和炭化水素類が分解して反応系に存在しうる1個以上のハロゲン原子で置換された炭素数2以上のオレフィンは、反応工程に供給される1個以上のハロゲン原子で置換された炭素数2以上のオレフィンに含まれないことは自明である。
 また、第二の発明における効果は、第一の発明における精製工程からの循環に由来して1個以上のハロゲン原子で置換された炭素数2以上のオレフィンを反応工程に特定量存在させた場合と同様であることは自明である。
 1個以上のハロゲン原子で置換された炭素数2以上のオレフィンとしては、例えば、1,1-ジクロロエチレン、1,2-ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン(パークロロエチレン)、トリフルオロエチレン、パーフルオロエチレン、トリフルオロプロピレン、テトラクロロシクロヘキセン、1,1-ジブロモエチレン、1,2-ジブロモエチレン、トリブロモエチレン、パーブロモエチレン等が挙げられる。
 [溶媒]
 本発明のα-オレフィン低重合体の製造方法では、α-オレフィンの低重合反応を溶媒中で行うことができる。このような溶媒としては特に限定されないが、飽和炭化水素が好適に使用され、好ましくは、例えば、ブタン、ペンタン、3-メチルペンタン、n-ヘキサン、n-へプタン、2-メチルヘキサン、オクタン、シクロヘキサン、メチルシクロヘキサン、2,2,4-トリメチルペンタン、デカリン等の炭素数が1~20の鎖状飽和炭化水素、又は炭素数が1~20の脂環式飽和炭化水素である。また、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、テトラリン等の芳香族炭化水素をα-オレフィン低重合体の溶媒として用いてもよい。さらには、α-オレフィンを低重合反応させ生成した1-ヘキセン、デセン等を反応溶媒として用いることもできる。これらは、単独で使用する他、混合溶媒として使用することもできる。
 これらの溶媒の中でも、ポリエチレン等の副生ポリマーの生成あるいは析出を抑制できるという点、更に、高い触媒活性が得られる傾向にあるという点から、炭素数が4~10の鎖状飽和炭化水素又は脂環式飽和炭化水素を用いるのが好ましく、具体的には、n-ヘプタン又はシクロヘキサンが好ましく、最も好ましくは、n-ヘプタンである。
 [α-オレフィン]
 本発明のα-オレフィン低重合体の製造方法において、原料として使用するα-オレフィンとしては、例えば、炭素数が2~30の置換又は非置換のα-オレフィンが挙げられる。このようなα-オレフィンの具体例としては、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-オクテン、3-メチル-1-ブテン、4-メチル-1-ペンテン等が挙げられる。中でも、本発明の原料のα-オレフィンとしてはエチレンが好適であり、エチレンを原料とした場合、エチレンの三量体である1-ヘキセンが高収率かつ高選択率で得ることができる。
 また、エチレンを原料として用いる場合、原料中にエチレン以外の不純物成分を含んでいても構わない。具体的な成分としては、メタン、エタン、窒素、アセチレン、二酸化炭素、一酸化炭素、酸素、硫黄分、水分等が挙げられる。メタン、エタン、窒素については、特に限定されないが、原料のエチレンに対して0.1mol%以下、その他不純物は原料のエチレンに対して1molppm以下であることが好ましい。
 [α-オレフィンの低重合反応]
 本発明で使用する触媒の各構成成分の比率は、特に限定されないが、通常、以下のとおりである。
 ハロゲン原子で置換された炭素数2以上の炭化水素類は、遷移金属含有化合物1モルに対し、通常0.5モル以上、好ましくは1モル以上であり、通常50モル以下、好ましくは30モル以下、更に好ましくは10モル以下である。
 アルミニウム含有化合物は、遷移金属含有化合物1モルに対し、1モル~200モル、好ましくは10モル~150モルである。
 窒素含有化合物を含む場合は、該窒素含有化合物は、遷移金属含有化合物1モルに対し、1モル~50モル、好ましくは1モル~30モルである。
 本発明において、触媒の使用量は特に限定されないが、通常、溶媒1リットルあたり、遷移金属含有化合物の遷移金属1原子換算で1.0×10-9モル~0.5モル、好ましくは5.0×10-9モル~0.2モル、更に好ましくは1.0×10-8モル~0.05モルとなる量である。
 このような触媒を用いることにより、例えば、エチレンを原料とした場合、選択率90%以上でエチレンの三量体であるヘキセンを得ることができる。さらに、この場合、ヘキセンに占める1-ヘキセンの比率を99%以上にすることができる。
 α-オレフィンの低重合反応温度としては、特に限定されないが、通常、0~250℃であり、好ましくは50~200℃、更に好ましくは80~170℃である。
 また、反応時の原料α-オレフィンの圧力としては、特に限定されないが、通常、ゲージ圧で0~25MPaであり、好ましくは、0.5~15MPa、さらに好ましくは、1.0~10MPaの範囲である。
 本発明では、反応器内での滞留時間は、特に限定されないが、通常1分~10時間、好ましくは3分~3時間、更に好ましくは5分~40分の範囲である。
 本発明の反応形式は、特に限定されないが、回分式、半回分式または連続式のいずれであってもよい。実機は精製工程等も含めた総合的な判断から連続式が好ましいが、本発明の効果を得るための反応形式は回分式でもよい。
 さらに、エチレンの三量化反応の場合、反応液中のエチレンに対する1-ヘキセンのモル比((反応液中の1-ヘキセンのモル濃度)/(反応液中のエチレンのモル濃度))は特に限定されないが、好ましくは0.05~1.5であり、更に好ましくは0.10~1.0である。即ち、連続反応の場合には、反応液中のエチレンと1-ヘキセンとのモル比が上記の範囲になるように、触媒濃度、反応圧力その他の条件を調節することが好ましい。また、回分反応の場合には、モル比が、上記の範囲にある時点において、エチレンの三量化反応を中止させることが好ましい。このような条件でエチレンの三量化反応を行うことにより、1-ヘキセンよりも沸点の高い成分の副生が抑制されて、1-ヘキセンの選択率が更に高められる傾向がある。
 [α-オレフィン低重合体]
 上記反応により、α-オレフィン低重合体が得られるが、本発明におけるα-オレフィン低重合体とは、モノマーである前記α-オレフィンが数個結合したオリゴマーを意味する。具体的には、モノマーである前記α-オレフィンが2個~10個結合した重合体のことである。好ましくは、エチレンが選択的に三量体化した1-ヘキセンである。
 [α-オレフィン低重合体の製造方法]
 α-オレフィン低重合体の製造方法について、α-オレフィンとしてエチレンを用い、α-オレフィン低重合体としてエチレンの三量体である1-ヘキセンとした低重合反応を例に挙げ、図1により説明するが、これに限定されるものではない。
 図1には、エチレンを触媒存在下で低重合反応させる反応工程(完全混合撹拌型の反応器10)と、反応器10から抜き出された反応混合物(以下「反応液」と称することもある)を精製する精製工程、即ち、未反応エチレンガスを分離する脱ガス槽20、脱ガス槽20から抜き出された反応液中のエチレンを溜出させるエチレン分離塔30、エチレン分離塔30から抜き出された反応液中の高沸点物質(以下、「HB」(ハイボイラー)と記すことがある。)を分離する高沸分離塔40及び、高沸分離塔40の塔頂から抜き出された反応液を蒸留し1-ヘキセンを溜出させるヘキセン分離塔50が示されている。
 また、脱ガス槽20で分離された未反応エチレンは、循環配管21及び圧縮機17を介して反応器10に循環される。新たに供給されるエチレン原料は、エチレン供給配管12aから圧縮機17及び第1供給配管12を介して反応器10に連続的に供給される。
 圧縮機17は、例えば、2段圧縮方式の場合、1段目に循環配管31を接続し、2段目に循環配管21を接続することにより、電気代の低減が可能である。また、第2供給配管13からは、エチレンの低重合反応に使用する溶媒が反応器10に供給される。
 反応器10としては、特に限定されないが例えば、撹拌機10a、バッフル、ジャケット等が付設された従来周知の形式のものが挙げられる。撹拌機10aとしては、パドル、ファウドラー、プロぺラ、タービン等の形式の撹拌翼が、平板、円筒、ヘアピンコイル等のバッフルとの組み合わせで用いられる。
 他方、予め、触媒槽で調製された遷移金属含有化合物及び窒素含有化合物が、触媒供給配管13aを介して第2供給配管13から反応器10に供給され、第3供給配管14からアルミニウム含有化合物が供給され、第4供給配管15からハロゲン原子で置換された炭素数2以上の炭化水素類が供給される。ここで、ハロゲン原子で置換された炭素数2以上の飽和炭化水素類は、供給管を介して第2供給配管13から反応器10に供給してもよい。また、アルミニウム含有化合物も遷移金属含有化合物との接触時間が数分以内で反応器10に供給されるのであれば、供給管を介して第2供給配管13から反応器10に供給してもよい。この方式の際には、第2供給配管13と反応器10の間にスタティックミキサー等を設置すれば、各触媒成分の均一混合液を反応器10に供給できる為、反応器10の撹拌動力が低減される。
 1個以上のハロゲン原子で置換された炭素数2以上のオレフィンを反応器に存在させる方法としては、触媒供給配管13a、第3供給配管14、第4供給配管15などから触媒の構成成分とする化合物と共に供給すればよい。また、反応器から留出した1個以上のハロゲン原子で置換された炭素数2以上のオレフィンは、反応器の後系にある蒸留塔で反応液から溶媒と共に分離される。ヘキセン分離塔50で溶媒が抜き出され、循環工程を経て反応工程に循環される。即ち、溶媒循環配管52を通して、第2供給配管13から反応器に溶媒循環再利用する際に、蒸留塔の蒸留条件によっては、1個以上のハロゲン原子で置換された炭素数2以上のオレフィンの一部を反応器に供給することができる。そのため、連続運転においては、反応器内の1個以上のハロゲン原子で置換された炭素数2以上のオレフィンの存在量を調整するには、高沸分離塔40やヘキセン分離塔50の蒸留条件を調整することで、その量を調整することができる。
 反応器10から配管11を介して連続的に抜き出された反応混合物は、失活剤供給配管11aから供給された失活剤によりエチレンの三量化反応が停止され、脱ガス槽20に供給される。
 脱ガス槽20の運転条件は、特に限定されないが、通常、温度0~250℃、好ましくは、50~200℃であり、圧力はゲージ圧で0~15MPa、好ましくは、0~9MPaである。これにより脱ガス槽20の上部からは未反応エチレンが、槽底からは未反応エチレンが脱ガスされた反応液が抜き出される。
 脱ガス槽20の槽底から排出された反応液は、配管22を経てエチレン分離塔30に供給される。エチレン分離塔30の運転条件は、特に限定されないが、通常、塔頂部圧力はゲージ圧で0~3MPa、好ましくは、0~2MPa、また、還流比(R/D)は、特に限定されないが、通常、0~500、好ましくは、0.1~100である。これによりエチレン分離塔30の塔頂部からエチレンが溜出され、塔底部から反応液が抜き出される。溜出エチレンは循環配管31及び第1供給配管12を介して反応器10に循環供給される。
 エチレン分離塔30の塔底抜き出し液は、配管32を経て高沸分離塔40に供給される。高沸分離塔40の運転条件は、特に限定されないが、通常、塔頂部圧力はゲージ圧で0~10MPa、好ましくは、0~0.5MPa、また、還流比(R/D)は、特に限定されないが、通常、0~100、好ましくは、0.1~20である。これにより塔底から高沸点成分(HB:ハイボイラー)が、塔頂から溜出物が抜き出される。
 本発明の1個以上のハロゲン原子で置換された炭素数2以上のオレフィンの反応器への循環量の調節は、高沸分離塔40やヘキセン分離塔50の蒸留条件を調整することで、その量を調整することができる。この場合の蒸留条件は、当業者であれば1個以上のハロゲン原子で置換された炭素数2以上のオレフィンの反応器への供給量を監視しつつ適宜決定することができる。
 また製造運転開始時には、反応工程中の遷移金属の量に対し、循環工程中に1個以上のハロゲン原子で置換された炭素数2以上のオレフィンを0.1以上200未満(モル比)の範囲で存在させた状態で反応をスタートさせることで、1個以上のハロゲン原子で置換された炭素数2以上のオレフィンを範囲内で運転することができる。これにより製造運転開始時から遷移金属にハロゲン原子が速やかに供給される環境となり、触媒活性種が形成されるため、目的生成物の選択率や純度が向上すると考えられる。
 高沸分離塔40の溜出物は、配管41を経てヘキセン分離塔50に供給される。ヘキセン分離塔50の運転条件は、特に限定されないが、通常、塔頂部圧力はゲージ圧で0~10MPa、好ましくは、0~0.5MPa、また、還流比(R/D)は、通常、0~100、好ましくは0.1~20である。これにより塔頂部から1-ヘキセンが、塔底部から溶媒(例えばヘプタン)が抜き出され、溶媒は溶媒循環配管52、第2供給配管13を介して反応溶媒として反応器10に循環供給される。このとき、ヘキセン分離塔50の塔底部から抜き出され反応器10に連続的に循環供給されるヘプタン溶媒中に、触媒成分の一つである窒素含有化合物もヘプタン溶媒と同様に循環されて反応器10に連続的に循環供給されてもよい。定常状態における循環供給する溶媒中の窒素含有化合物の濃度は、特に限定されないが、5.0wtppm以上であることが好ましい。
 以下、実施例に基づき本発明をさらに具体的に説明する。尚、本発明は、その要旨を逸脱しない限り、以下の実施例に限定されるものではない。
[実施例1,2,3及び比較例1]
 比較例1に対する実施例1,2,3は、trans-1,2-ジクロロエチレンが、1,1,2,2-テトラクロロエタンと同様に触媒に対するハロゲン源としての効果があることを示す例である。
[実施例4~8及び比較例1]
 比較例1に対する実施例4~8は、ハロゲン原子で置換された炭素数2以上のオレフィンが、5個以上のハロゲン原子で置換された炭素数2以上の炭化水素類と同様に触媒に対するハロゲン源としての効果があることを示す例である。
(触媒液の調製)
 140℃で2時間以上加熱乾燥させた500mlの撹拌機を有したガラス製3つ口フラスコに、窒素雰囲気下で2,5-ジメチルピロールを0.37g(3.9mmol)とn-ヘプタンを234ml仕込み、これにn-ヘプタンで50g/Lに希釈したトリエチルアルミニウムを8.91ml(3.9mmol)添加した。その後、フラスコをオイルバスに浸した後に昇温し、窒素雰囲気下でn-ヘプタンの還流を98℃で3時間行うことで、窒素含有化合物であるアルミニウムピロライドを調製した。その後、80℃まで冷却した。続いて、n-ヘプタンで50g/Lに希釈したクロム(III)-2-エチルヘキサノエートを6.26ml(0.65mmol)添加した。添加後、窒素雰囲気下で80℃、30分間加熱、撹拌し、触媒液を調製した。その後、クロム(III)-2-エチルヘキサノエートの濃度が0.88g/Lとなるよう、触媒液をn-ヘプタンで希釈した。
[比較例1]
(ヘキセンの製造)
 次に、140℃で2時間以上加熱乾燥させた500mlオートクレーブ一式を熱時のまま組み立て、真空窒素置換を行った。このオートクレーブには耐圧の破裂板を備えた触媒フィード管を取り付けた。フィード管には、予め上記のように調製した触媒液を2ml仕込んだ。オートクレーブの胴側には、反応溶媒であるn-ヘプタンを165ml、n-ヘプタンで7.67g/Lに希釈したトリエチルアルミニウムを3ml(0.20mmol)、及びガスクロマトグラフィーで組成分析する際の内部標準として使用するn-ウンデカンを5ml仕込んだ。
 オートクレーブを140℃まで加温した後、触媒フィード管よりエチレンを導入し、エチレンの低重合反応を開始した。反応中はオートクレーブ内の温度を140℃、全圧を7MPaGに保持した。
 60分後、エチレンの導入と撹拌を停止し、オートクレーブを素早く冷却した後すぐに、気相ノズルよりガスを全量サンプリングした。そして反応液をサンプリングし、ガスクロマトグラフィーでそれぞれの組成分析を行った。また反応液をろ過して乾燥後、反応液中に含まれるポリマー重量の測定を行った。触媒活性は、60分の反応により得られた反応生成物の重量(単位:g)を、反応に使用した遷移金属触媒成分中の遷移触媒金属原子量(単位:g)で除して求めた。
 各触媒成分のモル比、反応工程中の遷移金属の量に対する1,2-ジクロロエチレンのモル比(表-1中、(a)に対するDCEのモル比)、及び、結果を表-1に示した。
[実施例1]
 比較例1において、オートクレーブの胴側に仕込むn-ヘプタンを163ml、n-ヘプタンで1.0g/Lに希釈したtrans-1,2-ジクロロエチレンを1.8ml(0.018mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対する1,2-ジクロロエチレンのモル比(表-1中、(a)に対するDCEのモル比)、及び、結果を表-1に示した。
[実施例2]
 比較例1において、オートクレーブの胴側に仕込むn-ヘプタンを161ml、n-ヘプタンで1.0g/Lに希釈したtrans-1,2-ジクロロエチレンを3.6ml(0.037mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対する1,2-ジクロロエチレンのモル比(表-1中、(a)に対するDCEのモル比)、及び、結果を表-1に示した。
[実施例3]
 比較例1において、オートクレーブの胴側に仕込むn-ヘプタンを158ml、n-ヘプタンで1.0g/Lに希釈したtrans-1,2-ジクロロエチレンを7.2ml(0.074mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対する1,2-ジクロロエチレンのモル比(表-1中、(a)に対するDCEのモル比)、及び、結果を表-1に示した。
Figure JPOXMLDOC01-appb-T000001
 表-1の結果より、塩素源として何も存在しない反応系(比較例1)に比して1,2-ジクロロエチレン(DCE)が存在する反応系(実施例1,2,3)が触媒活性、生成物中の目的生成物(C6成分)及びC6中に含まれる目的生成物(1-ヘキセン)含有率において非常に優れた結果をもたらすことが判明した。これにより従来、1,1,2,2-テトラクロロエタンの分解物であり、反応を阻害すると考えられていたDCEが、遷移金属であるクロム触媒にハロゲン原子である塩素原子を供給する助触媒として作用することが示された。
[実施例4]
 比較例1において、オートクレーブの胴側に仕込むn-ヘプタンを164ml、n-ヘプタンで0.5g/Lに希釈したパークロロエチレンを1.2ml(0.0036mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対するパークロロエチレンのモル比(表-2中、(a)に対するPCEのモル比)、及び、結果を表-2に示した。
[実施例5]
 比較例1において、オートクレーブの胴側に仕込むn-ヘプタンを159ml、n-ヘプタンで0.5g/Lに希釈したパークロロエチレンを6ml(0.018mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対するパークロロエチレンのモル比(表-2中、(a)に対するPCEのモル比)、及び、結果を表-2に示した。
[実施例6]
 比較例1において、オートクレーブの胴側に仕込むn-ヘプタンを163ml、n-ヘプタンで10g/Lに希釈したパークロロエチレンを1.5ml(0.090mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対するパークロロエチレンのモル比(表-2中、(a)に対するPCEのモル比)、及び、結果を表-2に示した。
[実施例7]
 比較例1において、オートクレーブの胴側に仕込むn-ヘプタンを162ml、n-ヘプタンで10g/Lに希釈したパークロロエチレンを3ml(0.18mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対するパークロロエチレンのモル比(表-2中、(a)に対するPCEのモル比)、及び、結果を表-2に示した。
[実施例8]
 比較例1において、オートクレーブの胴側に仕込むn-ヘプタンを159ml、n-ヘプタンで10g/Lに希釈したパークロロエチレンを6ml(0.36mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対するパークロロエチレンのモル比(表-2中、(a)に対するPCEのモル比)、及び、結果を表-2に示した。
Figure JPOXMLDOC01-appb-T000002
 表-2の結果より、塩素源として何も存在しない反応系(比較例1)に比してパークロロエチレン(PCE)が存在する反応系(実施例4~8)が触媒活性、生成物中の目的生成物(C6成分)及びC6中に含まれる目的生成物(1-ヘキセン)含有率において非常に優れた結果をもたらすことが判明した。これにより従来、ヘキサクロロエタンの分解物であり、反応を阻害すると考えられていたPCEが、遷移金属であるクロム触媒にハロゲン原子である塩素原子を供給する助触媒として作用することが示された。
[比較例2]
 比較例1において、オートクレーブの胴側に仕込むn-ヘプタンを164ml、n-ヘプタンで0.5g/Lに希釈した1,1,2,2-テトラクロロエタンを0.6ml(0.0018mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対する1,2-ジクロロエチレンのモル比(表-3中、(a)に対するDCEのモル比)、及び、結果を表-3に示した。
[実施例9]
 比較例2において、オートクレーブの胴側に仕込むn-ヘプタンを163ml、n-ヘプタンで0.5g/Lに希釈したtrans-1,2-ジクロロエチレンを0.7ml(0.0036mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対する1,2-ジクロロエチレンのモル比(表-3中、(a)に対するDCEのモル比)、及び、結果を表-3に示した。
Figure JPOXMLDOC01-appb-T000003
 表-3の結果より、反応器内への1,2-ジクロロエチレン(DCE)の初期供給量が0である比較例2に比して、実施例9は、触媒活性の向上、生成物中のC6成分の向上及びC6中に含まれる1-ヘキセン含有率の向上を示した。
[比較例3]
 比較例1において、オートクレーブの胴側に仕込むn-ヘプタンを164ml、n-ヘプタンで0.5g/Lに希釈したヘキサクロロエタンを0.86ml(0.0018mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対するパークロロエチレンのモル比(表-4中、(a)に対するPCEのモル比)、及び、結果を表-4に示した。
[実施例10]
 比較例3において、オートクレーブの胴側に仕込むn-ヘプタンを163ml、n-ヘプタンで0.5g/Lに希釈したパークロロエチレンを1.2ml(0.0036mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対するパークロロエチレンのモル比(表-4中、(a)に対するPCEのモル比)、及び、結果を表-4に示した。
[実施例11]
 比較例3において、オートクレーブの胴側に仕込むn-ヘプタンを158ml、n-ヘプタンで10g/Lに希釈したパークロロエチレンを6ml(0.36mmol)とした以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対するパークロロエチレンのモル比(表-4中、(a)に対するPCEのモル比)、及び、結果を表-4に示した。
Figure JPOXMLDOC01-appb-T000004
 表-4の結果より、反応器内へのパークロロエチレン(PCE)の初期供給量が0である比較例3に比して、実施例10及び11は、触媒活性の向上、生成物中のC6成分の向上及びC6中に含まれる1-ヘキセン含有率の向上を示した。
[実施例12]
(触媒液の調製)
 比較例1と同様にして行った。
(ヘキセンの製造)
 次に、140℃で2時間以上加熱乾燥させた500mlオートクレーブ一式を熱時のまま組み立て、真空窒素置換を行った。このオートクレーブには耐圧の破裂板を備えた触媒フィード管を取り付けた。フィード管には、予め上記のように調製した触媒液を2ml仕込んだ。オートクレーブの胴側には、反応溶媒であるn-ヘプタンを162ml、n-ヘプタンで7.67g/Lに希釈したトリエチルアルミニウムを3ml(0.20mmol)、n-ヘプタンで2.12g/Lに希釈した1,1,2,2-テトラクロロエタンを1.7ml(0.022mmol)、n-ヘプタンで5g/Lに希釈したtrans-1,2-ジクロロエチレンを1.4ml(0.072mmol)及びガスクロマトグラフィーで組成分析する際の内部標準として使用するn-ウンデカンを5ml仕込んだ。
 オートクレーブを120℃まで加温した後、触媒フィード管よりエチレンを導入し、エチレンの低重合反応を開始した。反応中はオートクレーブ内の温度を120℃、全圧を6MPaGに保持した。
 30分後、エチレンの導入と撹拌を停止し、オートクレーブを素早く冷却した後すぐに、気相ノズルよりガスを全量サンプリングした。そして反応液をサンプリングし、ガスクロマトグラフィーでそれぞれの組成分析を行った。また反応液をろ過して乾燥後、反応液中に含まれるポリマー重量の測定を行った。触媒活性は、30分の反応により得られた反応生成物の重量(単位:g)を、反応に使用した遷移金属触媒成分中の遷移触媒金属原子量(単位:g)で除して求めた。各触媒成分のモル比、反応工程中の遷移金属の量に対する1,2-ジクロロエチレンのモル比(表-5中、(a)に対するDCEのモル比)、及び、結果を表-5に示した。
[実施例13]
 実施例12において、オートクレーブの胴側に仕込むn-ヘプタンを160ml、n-ヘプタンで5g/Lに希釈したtrans-1,2-ジクロロエチレンを3.5ml(0.18mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-5に示した。
[実施例14]
 実施例12において、オートクレーブの胴側に仕込むn-ヘプタンを158ml、n-ヘプタンで5g/Lに希釈したtrans-1,2-ジクロロエチレンを5.7ml(0.29mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-5に示した。
[実施例15]
 実施例12において、オートクレーブの胴側に仕込むn-ヘプタンを156ml、n-ヘプタンで5g/Lに希釈したtrans-1,2-ジクロロエチレンを7.1ml(0.37mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-5に示した。
[実施例16]
 実施例12において、オートクレーブの胴側に仕込むn-ヘプタンを158ml、n-ヘプタンで10g/Lに希釈したtrans-1,2-ジクロロエチレンを5.3ml(0.55mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-5に示した。
[比較例4]
 実施例12において、オートクレーブの胴側に仕込むn-ヘプタンを163mlにし、trans-1,2-ジクロロエチレンのヘプタン溶液を仕込まなかった以外は、全て同様の方法で行った。結果を表-5に示した。
[比較例5]
 実施例12において、オートクレーブの胴側に仕込むn-ヘプタンを156ml、n-ヘプタンで10g/Lに希釈したtrans-1,2-ジクロロエチレンを7.1ml(0.73mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-5に示した。
Figure JPOXMLDOC01-appb-T000005
 表-5の結果より、反応器内への1,2-ジクロロエチレン(DCE)の初期供給量が0である比較例4に比して、実施例12~16は、触媒活性を許容しうる範囲に維持した状態で、生成物中のC6成分の向上及びC6中に含まれる1-ヘキセン含有率の向上を示した。ところが反応器内へのDCEの初期供給量を、クロム触媒に対し200モルまで多量にすると(比較例5)、触媒活性が著しく低下することを示した。
[実施例17]
 実施例12において、オートクレーブの胴側に仕込むn-ヘプタンを157ml、n-ヘプタンで2.12g/Lに希釈した1,1,2,2-テトラクロロエタンを4.5ml(0.057mmol)、n-ヘプタンで5g/Lに希釈したtrans-1,2-ジクロロエチレンを3.6ml(0.18mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-6に示した。
[実施例18]
 実施例17において、オートクレーブの胴側に仕込むn-ヘプタンを153ml、n-ヘプタンで2.12g/Lに希釈した1,1,2,2-テトラクロロエタンを4.5ml(0.057mmol)、n-ヘプタンで5g/Lに希釈したtrans-1,2-ジクロロエチレンを7.1ml(0.37mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-6に示した。
[比較例6]
 実施例17において、オートクレーブの胴側に仕込むn-ヘプタンを161mlにし、trans-1,2-ジクロロエチレンのヘプタン溶液を仕込まなかった以外は、全て同様の方法で行った。結果を表-6に示した。
Figure JPOXMLDOC01-appb-T000006
 表-6の結果より、反応器内への1,2-ジクロロエチレン(DCE)の初期供給量が0である比較例6に比して、実施例17,18は、触媒活性を許容しうる範囲に維持した状態で、生成物中のC6成分の向上を示した。
[実施例19]
(触媒液の調製)
 比較例1と同様にして行った。
(ヘキセンの製造)
 次に、140℃で2時間以上加熱乾燥させた500mlオートクレーブ一式を熱時のまま組み立て、真空窒素置換を行った。このオートクレーブには耐圧の破裂板を備えた触媒フィード管を取り付けた。フィード管には、予め上記のように調製した触媒液を2ml仕込んだ。オートクレーブの胴側には、反応溶媒であるn-ヘプタンを162ml、n-ヘプタンで7.67g/Lに希釈したトリエチルアルミニウムを3ml(0.20mmol)、n-ヘプタンで2.46g/Lに希釈したヘキサクロロエタンを2.1ml(0.022mmol)、n-ヘプタンで10g/Lに希釈したパークロロエチレンを1.2ml(0.072mmol)及びガスクロマトグラフィーで組成分析する際の内部標準として使用するn-ウンデカンを5ml仕込んだ。
 オートクレーブを140℃まで加温した後、触媒フィード管よりエチレンを導入し、エチレンの低重合反応を開始した。反応中はオートクレーブ内の温度を140℃、全圧を7MPaGに保持した。
 60分後、エチレンの導入と撹拌を停止し、オートクレーブを素早く冷却した後すぐに、気相ノズルよりガスを全量サンプリングした。そして反応液をサンプリングし、ガスクロマトグラフィーでそれぞれの組成分析を行った。また反応液をろ過して乾燥後、反応液中に含まれるポリマー重量の測定を行った。触媒活性は、60分の反応により得られた反応生成物の重量(単位:g)を、反応に使用した遷移金属触媒成分中の遷移触媒金属原子量(単位:g)で除して求めた。各触媒成分のモル比、反応工程中の遷移金属の量に対するパークロロエチレンのモル比(表-7中、(a)に対するPCEのモル比)、及び、結果を表-7に示した。
[実施例20]
 実施例19において、オートクレーブの胴側に仕込むn-ヘプタンを160ml、n-ヘプタンで10g/Lに希釈したパークロロエチレンを3.0ml(0.18mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-7に示した。
[実施例21]
 実施例19において、オートクレーブの胴側に仕込むn-ヘプタンを157ml、n-ヘプタンで10g/Lに希釈したパークロロエチレンを6.0ml(0.36mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-7に示した。
[実施例22]
 実施例19において、オートクレーブの胴側に仕込むn-ヘプタンを154ml、n-ヘプタンで10g/Lに希釈したパークロロエチレンを9.0ml(0.54mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-7に示した。
[比較例7]
 実施例19において、オートクレーブの胴側に仕込むn-ヘプタンを163mlにし、パークロロエチレンのヘプタン溶液を仕込まなかった以外は、全て同様の方法で行った。結果を表-7に示した。
[比較例8]
 実施例19において、オートクレーブの胴側に仕込むn-ヘプタンを151ml、n-ヘプタンで10g/Lに希釈したパークロロエチレンを12.0ml(0.72mmol)に変更したこと以外は、全て同様の方法で行った。結果を表-7に示した。
Figure JPOXMLDOC01-appb-T000007
[実施例23]
 図1に示す製造フローにおいて、原料α-オレフィンにエチレンを用いてエチレンの連続低重合反応による1-ヘキセンの製造を行った。図1の製造フローは、エチレンをn-ヘプタン溶媒、触媒存在下で低重合させる完全混合撹拌型の反応器10と、反応器10から抜き出された反応液から未反応エチレンガスを分離する脱ガス槽20、脱ガス槽20から抜き出された反応液中のエチレンを溜出させるエチレン分離塔30、エチレン分離塔30から抜き出された反応液中の高沸点物質を分離する高沸分離塔40、高沸分離塔40の塔頂から抜き出された反応液を蒸留し1-ヘキセンを溜出させるヘキセン分離塔50を有している。また、ヘキセン分離塔50にて分離されたn-ヘプタン溶媒を溶媒循環配管52、第2供給配管13を介して、反応器10に循環させている。さらには、脱ガス槽20において分離された未反応エチレンを循環配管21、圧縮機17を介して反応器10に循環させている。
 まず、触媒各成分の溶液を、0.1MPaGの窒素シールタンク(図示せず)から供給した。触媒供給配管13aから、クロム(III)-2-エチルヘキサノエート(a)と、2,5-ジメチルピロール(b)をクロム(III)-2-エチルヘキサノエート(a)に対し3.0当量で第2供給配管13を介して反応器10に連続供給した。また、トリエチルアルミニウム(c)を第3供給配管14から反応器10に連続供給した。さらに、ヘキサクロロエタン(d)を第4供給配管15から反応器10に連続供給した。反応条件は、反応器内温度が140℃、反応器内圧力は7.0MPaGであった。
 反応器10から連続的に抜き出される反応液は、失活剤供給配管11aから触媒失活剤として2-エチルヘキサノールが添加され、その後、順次、脱ガス槽20、エチレン分離塔30、高沸分離塔40、ヘキセン分離塔50にて処理された。
 第2供給配管13から、ヘキセン分離塔50にて分離される回収n-ヘプタン溶媒を、反応器10に連続供給した。なお、このときの高沸分離塔40の還流比は0.6であった。また、2,5-ジメチルピロール(b)は高沸分離塔で全量分離されず、一部は回収n-ヘプタン溶媒とともにリサイクルされて再度反応器にフィードした。この時、回収n-ヘプタン溶媒中の2,5-ジメチルピロール(b)の濃度は、およそ10wtppmであった。
 定常状態における反応器10内での上記の(a)~(d)の各触媒成分の比(モル比)は(a):(b):(c):(d)=1:20:80:5であり、クロム(III)-2-エチルヘキサノエート(a)に対する循環n-ヘプタン溶媒中のパークロロエチレンのモル比は14であった。なお、このパークロロエチレンはハロゲン含有化合物の分解により副生し反応器に存在しているものであった。
 C6選択率は循環n-ヘプタン溶媒とエチレン分離塔30の塔底液をそれぞれガスクロマトグラフィー(株式会社島津製作所製、GC-17AAF)でそれぞれの組成分析を行い、反応器内で生成した各成分の選択率を算出した。触媒活性は、1時間で供給される触媒成分のクロム原子重量(単位:g)当たりの1時間で生成する生成物重量(単位:g)である。またクロム(III)-2-エチルヘキサノエート(a)に対するパークロロエチレンのモル比は、循環n-ヘプタン溶媒中のパークロロエチレン濃度をガスクロマトグラフィー(株式会社島津製作所製、GC-17AAF)で測定して循環n-ヘプタン溶媒量からパークロロエチレン量を算出後、反応器に供給しているクロム(III)-2-エチルヘキサノエート(a)で除して算出した。結果を表-8に示した。
[実施例24]
 実施例23において、クロム(III)-2-エチルヘキサノエート(a)に対するパークロロエチレンのモル比を20とした以外は全て同様の方法で行った。結果を表-8に示した。
[実施例25]
 実施例23において、クロム(III)-2-エチルヘキサノエート(a)に対するパークロロエチレンのモル比を53した以外は全て同様の方法で行った。結果を表-8に示した。
[実施例26]
 実施例23において、反応器10内での触媒成分のモル比を(a):(b):(c):(d)=1:20:80:4、クロム(III)-2-エチルヘキサノエート(a)に対するパークロロエチレンのモル比を67とした以外は全て同様の方法で行った。結果を表-8に示した。
Figure JPOXMLDOC01-appb-T000008
 表-7及び表-8に示した結果より、反応器内へのパークロロエチレン(PCE)の供給量が0である比較例7に比して、実施例19~26は、触媒活性を許容しうる範囲に維持した状態で、生成物中のC6成分の向上及びC6中に含まれる1-ヘキセン含有率の向上を示した。ところが反応器内へのPCEの供給量を、クロム触媒に対し200モルまで多量にすると(比較例8)、触媒活性が著しく低下し、生成物中のC6成分の向上及びC6中に含まれる1-ヘキセン含有率の更なる向上も見られないことを示した。
[実施例27]
 比較例7において、オートクレーブの胴側に仕込むn-ヘプタンを161mlにし、n-ヘプタンで5g/Lに希釈したトリクロロエチレンを1.5ml(0.055mmol)に変更したこと以外は、全て同様の方法で行った。各触媒成分のモル比、反応工程中の遷移金属の量に対するトリクロロエチレンのモル比(表-9中、(a)に対するTCEのモル比)、及び、結果を表-9に示した。
Figure JPOXMLDOC01-appb-T000009
 表-9の結果より、反応器内へのトリクロロエチレン(TCE)の初期供給量が0である比較例7に比して、実施例27は、触媒活性を許容しうる範囲に維持した状態で、生成物中のC6成分の向上及びC6中に含まれる1-ヘキセン含有率の向上を示した。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2014年2月25日出願の日本特許出願(特願2014-034394)及び2014年3月24日出願の日本特許出願(特願2014-060711)に基づくものであり、その内容はここに参照として取り込まれる。
10…反応器
10a…撹拌機
11,22,32,41,42,51…配管
11a…失活剤供給配管
12…第1供給配管
12a…エチレン供給配管
13…第2供給配管
13a…触媒供給配管
14…第3供給配管
15…第4供給配管
21,31…循環配管
17…圧縮機
20…脱ガス槽
30…エチレン分離塔
40…高沸分離塔
50…ヘキセン分離塔
52…溶媒循環配管

Claims (9)

  1.  遷移金属含有化合物、アルミニウム含有化合物及びハロゲン原子で置換された炭素数2以上の炭化水素類を含む触媒並びに溶媒の存在下、α-オレフィンの低重合反応を行いα-オレフィン低重合体を製造する方法であって、
     反応工程、精製工程及び該精製工程から未反応原料α-オレフィン及び溶媒を反応工程へ循環させる循環工程を備え、
     循環工程から反応工程へ供給されるハロゲン原子で置換された炭素数2以上のオレフィンの量が、反応工程中の遷移金属の量に対し0.1以上200未満(モル比)の範囲であるα-オレフィン低重合体の製造方法。
  2.  前記触媒が、構成成分として更に窒素含有化合物を含む、請求項1に記載のα-オレフィン低重合体の製造方法。
  3.  前記遷移金属が、クロムである、請求項1または請求項2に記載のα-オレフィン低重合体の製造方法。
  4.  前記α-オレフィンがエチレンであり、前記α-オレフィン低重合体が1-ヘキセンである、請求項1~請求項3のいずれか1項に記載のα-オレフィン低重合体の製造方法。
  5.  製造運転開始時、反応工程中の遷移金属の量に対し、前記循環工程中に1個以上のハロゲン原子で置換された炭素数2以上のオレフィンを0.1以上200未満(モル比)の範囲で存在させた状態で反応をスタートさせる、請求項1~請求項4のいずれか1項に記載のα-オレフィン低重合体の製造方法。
  6.  前記ハロゲン原子で置換された炭素数2以上のオレフィンの量が反応工程中の遷移金属の量に対し0.1以上170以下(モル比)の範囲である、請求項1~請求項5のいずれか1項に記載のα-オレフィン低重合体の製造方法。
  7.  前記ハロゲン原子で置換された炭素数2以上の炭化水素類が5個以上のハロゲン原子で置換された炭素数2以上の炭化水素類であり、前記ハロゲン原子で置換された炭素数2以上のオレフィンが3個以上のハロゲン原子で置換された炭素数2以上のオレフィンである、請求項1~請求項6のいずれか1項に記載のα-オレフィン低重合体の製造方法。
  8.  前記ハロゲン原子で置換された炭素数2以上の炭化水素類が1,1,2,2-テトラクロロエタンであり、前記ハロゲン原子で置換された炭素数2以上のオレフィンが1,2-ジクロロエチレンである、請求項1~請求項6のいずれか1項に記載のα-オレフィン低重合体の製造方法。
  9.  遷移金属含有化合物、アルミニウム含有化合物及びハロゲン原子で置換された炭素数2以上の炭化水素類を含む触媒並びに溶媒の存在下、α-オレフィンの低重合反応を行いα-オレフィン低重合体を製造する方法であって、
     ハロゲン原子で置換された炭素数2以上のオレフィンを、反応工程中の遷移金属の量に対し0.1以上200未満(モル比)の範囲で反応工程へ供給するα-オレフィン低重合体の製造方法。
     
     
PCT/JP2015/055304 2014-02-25 2015-02-24 α-オレフィン低重合体の製造方法 WO2015129712A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112016019714-3A BR112016019714B1 (pt) 2014-02-25 2015-02-24 Método para produzir um polímero de a-olefina inferior
RU2016134442A RU2659790C2 (ru) 2014-02-25 2015-02-24 Способ получения низшего полимера альфа-олефина
CN201580010235.1A CN106029611B (zh) 2014-02-25 2015-02-24 α-烯烃低聚物的制造方法
KR1020167023123A KR102311981B1 (ko) 2014-02-25 2015-02-24 α-올레핀 저중합체의 제조 방법
MYPI2016703082A MY188586A (en) 2014-02-25 2015-02-24 Method for producing alpha-olefin low polymer
US15/245,772 US10221109B2 (en) 2014-02-25 2016-08-24 Method for producing alpha-olefin low polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014034394 2014-02-25
JP2014-034394 2014-02-25
JP2014-060711 2014-03-24
JP2014060711 2014-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/245,772 Continuation US10221109B2 (en) 2014-02-25 2016-08-24 Method for producing alpha-olefin low polymer

Publications (1)

Publication Number Publication Date
WO2015129712A1 true WO2015129712A1 (ja) 2015-09-03

Family

ID=54009029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055304 WO2015129712A1 (ja) 2014-02-25 2015-02-24 α-オレフィン低重合体の製造方法

Country Status (9)

Country Link
US (1) US10221109B2 (ja)
JP (1) JP6459587B2 (ja)
KR (1) KR102311981B1 (ja)
CN (1) CN106029611B (ja)
BR (1) BR112016019714B1 (ja)
MY (1) MY188586A (ja)
RU (1) RU2659790C2 (ja)
TW (1) TWI628157B (ja)
WO (1) WO2015129712A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114051494A (zh) 2019-07-24 2022-02-15 Sk新技术株式会社 在乙烯低聚工艺中回收未反应的乙烯的方法
KR20220104418A (ko) 2021-01-18 2022-07-26 주식회사 엘지화학 올리고머 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143213A (ja) * 1995-11-27 1997-06-03 Mitsubishi Chem Corp α−オレフィン低重合体の製造方法
JPH09268135A (ja) * 1996-04-02 1997-10-14 Tosoh Corp 1−ヘキセンの製造方法
JPH09268136A (ja) * 1996-02-02 1997-10-14 Mitsubishi Chem Corp α−オレフィン低重合体の製造方法
JPH10109946A (ja) * 1996-08-12 1998-04-28 Mitsubishi Chem Corp α−オレフィン低重合体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY115177A (en) * 1994-06-21 2003-04-30 Mitsubishi Chem Corp Process for producing (alpha) -olefin oligomers
JP3473192B2 (ja) 1994-09-13 2003-12-02 三菱化学株式会社 α−オレフィン低重合体の製造方法
US5856612A (en) * 1996-02-02 1999-01-05 Mitsubishi Chemical Corporation Process for producing α-olefin oligomer
US6759492B2 (en) * 2001-07-24 2004-07-06 Eastman Chemical Company Process for the polymerization of ethylene and interpolymers thereof
EA016590B1 (ru) 2006-12-27 2012-06-29 Мицубиси Кемикал Корпорейшн Способ получения полиолефина и продукт для получения линейного полиэтилена низкой плотности
CA2672385C (en) * 2006-12-28 2014-10-14 Mitsubishi Chemical Corporation Process for production of .alpha.-olefin low polymers using chromium catalyst
RU2483053C2 (ru) * 2011-08-25 2013-05-27 Учреждение Российской Академии Наук Институт Нефтехимии И Катализа Ран СПОСОБ ПОЛУЧЕНИЯ ОЛИГОМЕРОВ ВЫСШИХ ЛИНЕЙНЫХ α-ОЛЕФИНОВ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143213A (ja) * 1995-11-27 1997-06-03 Mitsubishi Chem Corp α−オレフィン低重合体の製造方法
JPH09268136A (ja) * 1996-02-02 1997-10-14 Mitsubishi Chem Corp α−オレフィン低重合体の製造方法
JPH09268135A (ja) * 1996-04-02 1997-10-14 Tosoh Corp 1−ヘキセンの製造方法
JPH10109946A (ja) * 1996-08-12 1998-04-28 Mitsubishi Chem Corp α−オレフィン低重合体の製造方法

Also Published As

Publication number Publication date
JP2015193587A (ja) 2015-11-05
US20160362350A1 (en) 2016-12-15
JP6459587B2 (ja) 2019-01-30
TW201534577A (zh) 2015-09-16
US10221109B2 (en) 2019-03-05
TWI628157B (zh) 2018-07-01
CN106029611B (zh) 2019-08-30
MY188586A (en) 2021-12-22
BR112016019714A2 (pt) 2021-05-11
KR102311981B1 (ko) 2021-10-14
BR112016019714B1 (pt) 2021-11-30
RU2016134442A3 (ja) 2018-03-29
RU2016134442A (ru) 2018-03-29
CN106029611A (zh) 2016-10-12
KR20160125392A (ko) 2016-10-31
RU2659790C2 (ru) 2018-07-04

Similar Documents

Publication Publication Date Title
US5856612A (en) Process for producing α-olefin oligomer
US7858833B2 (en) Process for generating linear alpha olefin comonomers
US20010023281A1 (en) Catalytic composition and a process for oligomerizing ethylene, in particular to 1-hexene
EP3237362B1 (en) Methods of preparing oligomers of an olefin
WO2011118533A1 (ja) α-オレフィン低重合体の製造方法
JP2008179631A (ja) α−オレフィン低重合体の製造方法
JP2009114199A (ja) エチレン低重合体の製造方法
JP6459587B2 (ja) α−オレフィン低重合体の製造方法
JP2014159391A (ja) α−オレフィン低重合体の製造方法
JP5593585B2 (ja) α−オレフィン低重合体の製造方法
JP6733252B2 (ja) α−オレフィン低重合体の製造方法
JP5938934B2 (ja) α−オレフィン低重合体製造用機器の洗浄方法
JP6790393B2 (ja) α−オレフィン低重合体の製造方法
JP5793899B2 (ja) 1−ヘキセンの製造方法
JP2016065052A (ja) α−オレフィン低重合体の製造方法
JP6821932B2 (ja) α−オレフィン低重合体の製造方法
JPH10109946A (ja) α−オレフィン低重合体の製造方法
JP2007045837A (ja) α−オレフィン低重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167023123

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016134442

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016019714

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 15755113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112016019714

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160825

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112016019714

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2432 DE 15/08/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016019714

Country of ref document: BR

Kind code of ref document: A2

Free format text: RESSALVADOS OS EFEITOS DA TRANSFERENCIA E ALTERACAO DE NOME (25.1 E 25.4) PUBLICADAS NAS RPI NO 2462 DE 13/03/2018 E RPI NO 2464 DE 27/03/2018, SOLICITA-SE APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DAS PRIORIDADES JP 2014-034394 DE 25/02/2014 E JP 2018-060711 DE 24/03/2014 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTAS (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DAS CITADAS PRIORIDADES, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: 112016019714

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160825