WO2015122485A1 - 透明樹脂積層体及び前面板 - Google Patents

透明樹脂積層体及び前面板 Download PDF

Info

Publication number
WO2015122485A1
WO2015122485A1 PCT/JP2015/053920 JP2015053920W WO2015122485A1 WO 2015122485 A1 WO2015122485 A1 WO 2015122485A1 JP 2015053920 W JP2015053920 W JP 2015053920W WO 2015122485 A1 WO2015122485 A1 WO 2015122485A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
resin
layer
transparent resin
glass fiber
Prior art date
Application number
PCT/JP2015/053920
Other languages
English (en)
French (fr)
Inventor
照高 徳丸
岡崎 仁
建 堀野
英輝 金
妹井子 新開
達郎 高村
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2015562872A priority Critical patent/JP6485363B2/ja
Priority to KR1020167023322A priority patent/KR20160122171A/ko
Priority to CN201580008806.8A priority patent/CN106029374A/zh
Publication of WO2015122485A1 publication Critical patent/WO2015122485A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention provides a transparent resin laminate having a high light transmittance in a wide wavelength range such that the total light transmittance is 80% or more, the light transmittance at 550 nm is 80% or more, and the light transmittance at 400 nm is 60% or more. About.
  • Transparent resin films or sheets typified by polymethyl methacrylate (PMMA), polycarbonate (PC), and polyethylene terephthalate (PET) are widely used as optical materials for electrical and electronic equipment such as liquid crystal displays and mobile phones.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PET polyethylene terephthalate
  • the front panel (front plate) of portable display devices such as mobile phone terminals, portable electronic play equipment, and personal digital assistants (PDAs) has transparency and visibility, weather resistance that can be used outdoors, and finger
  • characteristics such as scratch resistance for preventing damage when contacting and carrying, and impact resistance and rigidity for preventing damage due to impact and load.
  • Candidates for front plate materials for display devices include films and sheets composed of polymethyl methacrylate (PMMA) and polycarbonate (PC), and polyester films in which fine particles as fillers are uniformly dispersed in polyester (Patent Document 1). ), A laminate (Patent Document 2) in which an acrylic resin layer (PMMA layer) is provided on at least one surface of a polycarbonate resin layer (PC layer), and a silicone resin molded article obtained by radical copolymerization of a silicone resin composition ( Patent Document 3), a laminate (Patent Document 4) in which a biaxially stretched PET film is bonded to a PC have been proposed.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • polymethylmethacrylate has a low glass transition temperature and is prone to cracking, so it is inferior in workability.
  • Polycarbonate (PC) has a glass transition temperature as good as about 145 ° C., but its surface hardness and rigidity are inferior, making it difficult to employ as a front panel for a display or the like.
  • PET polyethylene terephthalate
  • the biaxially stretched one has a softening temperature of 200 ° C. or higher and a good surface hardness, but it is difficult to increase the plate thickness, and it is difficult to cope with thick film applications (Patent Document 1).
  • Patent Document 2 Research on a laminate having a PMMA layer and a PC layer has also been made (Patent Document 2), and some of them have been used, but have problems such as workability problems due to warpage during heat treatment and lack of rigidity. Yes.
  • This invention aims at providing the transparent resin laminated body which solved the said subject.
  • the inventors have obtained transparency by providing a transparent layer (B) containing a glass fiber cloth and a resin composition containing a sulfur compound on both sides of the transparent resin layer (A).
  • the inventors have found that a transparent resin laminate excellent in rigidity can be obtained, and have reached the present invention. That is, one form of the present invention provides the following transparent resin laminate and display front plate.
  • the difference between the refractive index of the resin composition in the transparent layer (B) and the refractive index of the glass fiber cloth is 0.01 or less, according to any one of (1) to (12).
  • Transparent resin laminate (14) The transparent resin laminate according to any one of (1) to (13), wherein the resin composition in the transparent layer (B) contains a polymer of a thiol compound and an epoxy resin. (15) The transparent resin laminate according to any one of (1) to (14), wherein the refractive index of the glass fiber cloth in the transparent layer (B) is greater than 1.55. (16) The transparent resin laminate according to any one of (1) to (15), wherein the glass fiber cloth of the transparent layer (B) is an E glass cloth.
  • the transparent resin laminate described in 1. (18) The transparent resin laminate according to (17), wherein the resin component in the transparent resin layer (A) contains polycarbonate. (19) The transparent resin laminate according to any one of (1) to (18), wherein a polyethylene terephthalate film layer is disposed on at least one outer side of the transparent layer (B). (20) The transparent resin laminate according to (19), wherein a hard coat layer is further disposed on at least one outer side of the polyethylene terephthalate film layer. (21) The transparent resin laminate according to (19) or (20), wherein a transparent conductive film layer is disposed on at least one outer side of the polyethylene terephthalate film layer. (22) A display front plate using the transparent resin laminate according to any one of (1) to (21).
  • the following display front plate comprising a transparent resin laminate (C) in which a transparent layer (B) formed of a resin composition containing a glass fiber cloth and a sulfur compound is disposed on both sides of the transparent resin layer (A).
  • Front plate (2) The display front plate according to (1), wherein the transparent resin layer (A) has a thickness of 100 ⁇ m to 2000 ⁇ m, and the transparent layer (B) has a thickness of 20 ⁇ m to 300 ⁇ m.
  • the resin composition containing a sulfur compound in the transparent layer (B) contains a polymer of a thiol compound and an epoxy resin, as described in any one of (1) to (6) Front plate for display.
  • the resin component in the transparent resin layer (A) is at least one member selected from the group consisting of polycarbonate, polyethylene terephthalate, polybutylene terephthalate, and polymethyl methacrylate.
  • the following display front plate is provided.
  • a transparent layer formed of a photocurable resin composition containing a glass fiber cloth and a compound (a) having a thiol group and a compound (b) having an alkenyl group on both surfaces of the transparent resin layer (A) ( A display front plate comprising a transparent resin laminate (C) in which B) is disposed.
  • the display front plate according to claim 1. The display front plate according to any one of (1) to (8), wherein a polyethylene terephthalate film layer is disposed on at least one outer side of the transparent resin laminate (C).
  • the following transparent laminated bodies are provided.
  • a transparent layer (B) in which a glass fiber cloth is impregnated with a curable resin having a tensile modulus of elasticity of 10 MPa or more when cured at a thickness of 1 mm is disposed on both surfaces of the polycarbonate resin layer (A).
  • a hard coat layer is further disposed on at least one outer side of the polyethylene terephthalate film layer.
  • the following transparent laminated bodies are provided.
  • a transparent layer (B) having a tensile elastic modulus of 10 GPa or more by impregnating and curing a glass fiber cloth with a curable resin is tensile elastic at the time of curing at a thickness of 1 mm.
  • the transparent resin laminate of the present invention is suitable as a substitute for glass because it is excellent in transparency and rigidity and excellent in workability.
  • 1 is a schematic cross-sectional view showing a display front plate according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing a display front plate according to an embodiment of the present invention.
  • 2 is a cross-sectional photograph of a transparent resin laminate according to an embodiment of the present invention, which is a cross-sectional photograph of the transparent resin laminate produced in Example A-2.
  • One embodiment of the present invention is a transparent resin laminate in which a transparent layer (B) containing a glass fiber cloth and a resin composition containing a sulfur compound is disposed on both sides of the transparent resin layer (A).
  • the transparent resin laminate of the present invention is transparent and excellent in rigidity, and excellent in workability and impact resistance. Therefore, the transparent resin laminate is used as a transparent substrate material, a transparent protective material, and the like, and particularly preferably used as a substitute for glass for various glazing materials, substrate materials, and front plate materials such as a display front plate.
  • the “transparent resin laminate” is also simply referred to as “transparent laminate” or “laminate”.
  • the term “transparent” means that the total light transmittance is 80% or more.
  • the light transmittance at 550 nm which is a general wavelength in the visible light region, is preferably 80% or more, and the light transmittance at 400 nm is preferably 60% or more.
  • the light transmittance at 400 nm is important from the viewpoint of image contrast and color reproducibility, and it is preferable to increase the light transmittance in the wavelength region.
  • the total light transmittance and the light transmittances of 400 nm and 550 nm can be measured by the methods described in Examples described later.
  • FIG. 1 is a schematic cross-sectional view illustrating a display front plate according to an embodiment of the present invention.
  • the display front plate 10 shown in FIG. 1 has an adhesive layer 3 on both surfaces of a transparent resin layer (A) 1 and a transparent layer (B) 2 containing a glass fiber cloth and a resin composition containing a sulfur compound. It consists of the transparent resin laminated body (C) laminated
  • FIG. 2 is a schematic cross-sectional view showing a display front plate according to another embodiment of the present invention.
  • the display front plate 10 shown in FIG. 2 is a transparent resin laminate in which a transparent layer (B) 2 containing a glass fiber cloth and a resin composition containing a sulfur compound is disposed on both sides of the transparent resin layer (A) 1. (C).
  • the transparent layer (B) 2 is directly disposed on the transparent resin layer (A).
  • the transparent resin layer (A) and the transparent layer (B) may not be bonded, but more preferably, the transparent resin layer (A) and the transparent layer (B) are bonded from a highly rigid surface. Yes. That is, in one embodiment of the present invention, the transparent resin layer (A) and the transparent layer (B) are directly bonded or bonded via the adhesive layer 3.
  • FIG. 3 is a cross-sectional photograph of the transparent resin laminate according to one embodiment of the present invention, and corresponds to a cross-sectional photograph of the transparent resin laminate produced in Example A-2 below.
  • the transparent resin laminate shown in FIG. 3 is formed by sequentially laminating a GC reinforced film as a transparent layer (B) 2 and a polyethylene terephthalate film layer 4 as a resin layer on both sides of a PC plate as a transparent resin layer (A) 1. It has become.
  • the layer 5 in FIG. 3 is a sheet
  • FIG. 1 is a sheet
  • the transparent layer (B) is composed of a GC reinforced film formed from a glass fiber cloth 21, a resin composition 22 comprising a compound having a thiol group and a compound having an epoxy group.
  • the glass fiber cloth 21 is an E glass cloth, and is formed by knitting warp yarns and weft yarns (glass yarns) (white portion in the figure).
  • the transparent layer (B) 2 is formed by impregnating and curing the resin composition in the glass cloth.
  • a transparent layer (B) containing a glass fiber cloth and a resin composition containing a sulfur compound has higher rigidity (such as tensile elastic modulus) than the transparent resin layer (A).
  • rigidity such as tensile elastic modulus
  • the rigidity of the layer containing the glass fiber cloth is reflected by arranging the high rigidity layer (B) containing the glass fiber cloth on both surfaces of the relatively low rigidity layer (A).
  • the rigidity of can be increased.
  • the rigidity (bending elastic modulus) is 2.6 GPa, but the rigidity can be improved by arranging the layers containing glass fiber cloth on both sides.
  • the transparent resin laminate (C) includes a transparent resin layer (A), a transparent layer (B), and an adhesive layer, a resin layer (smoothing layer), a hard coat layer, and a transparent conductive film layer that are arranged as necessary.
  • the transparent resin layer (A) is a transparent layer (film / sheet) mainly composed of resin.
  • the thickness of the transparent resin layer (A) is not particularly limited, but is preferably 100 ⁇ m to 2000 ⁇ m, and more preferably 200 ⁇ m to 1000 ⁇ m. If the thickness of the transparent resin layer (A) is within this range, the rigidity becomes high, and an increase in the mass of the entire transparent resin laminate (C) can be suppressed.
  • the resin (resin component) used in the transparent resin layer (A) is not particularly limited, but polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polymethyl methacrylate, cyclic cycloolefin resin, norbornene resin, acrylic resin, polystyrene, polyethersal Examples include phon, polyarylate, polyester resin, polyacetal resin, polyvinyl butyral, polyvinyl alcohol, and urethane resin.
  • polycarbonate, polyethylene terephthalate, polybutylene terephthalate, and polymethyl methacrylate are selected from the viewpoint of transparency and rigidity. At least one kind is preferable, and polycarbonate resin is particularly preferable from the viewpoint of transparency and punchability. These resins may be used alone or in combination.
  • the transparent resin layer (A) is processed into a layer mainly by molding.
  • the molding method is not particularly limited, and for example, a general extrusion method such as a thermoplastic resin film forming method, a melt casting method, a calendering method, or the like can be used.
  • the transparent resin layer (A) is made of a layered polycarbonate resin.
  • a layered polycarbonate resin By using a layered polycarbonate resin, a laminate having excellent transparency, rigidity, impact resistance, flexibility, and punchability can be obtained.
  • a layered polycarbonate resin for example, Iupilon NF-2000 from Mitsubishi Gas Chemical Co., Ltd. can be preferably used.
  • the total light transmittance of the transparent resin layer (A) molded to the thickness used when forming the transparent resin laminate is 80% or more. If it is 80% or more, the transmittance
  • the transparent resin layer (A) can contain various additives in addition to the resin without departing from the spirit of the present invention.
  • Additives include heat stabilizers, antioxidants, flame retardants, flame retardant aids, UV absorbers, mold release agents, colorants, antistatic agents, fluorescent whitening agents, antifogging agents, fluidity improvers, Examples include plasticizers, dispersants, and antibacterial agents. These may be used singly or in combination of two or more.
  • heat stabilizers include phenol-based, phosphorus-based, and sulfur-based heat stabilizers.
  • phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, polyphosphoric acid
  • acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, acidic calcium pyrophosphate
  • potassium phosphate Sodium phosphate, cesium phosphate, zinc phosphate, etc.
  • Group 1 or Group 10 metal phosphates organic phosphate compounds, organic phosphite compounds, organic phosphonite compounds, and the like.
  • a phosphite compound (a), phosphorous acid (b) and phosphorous ester compound esterified with phenol and / or phenol having at least one alkyl group having 1 to 25 carbon atoms in at least one ester in the molecule Mention may be made of at least one selected from the group of tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylene-di-phosphonite (c). These may be used alone or in combination of two or more.
  • the addition ratio of the heat stabilizer is, for example, 0.001 part by mass or more, preferably 0.01 part by mass or more, more preferably 0.03 part by mass or more, with respect to 100 parts by mass of the resin component. Moreover, it is 1 mass part or less, Preferably it is 0.7 mass part or less, More preferably, it is 0.5 mass part or less. If the amount of the heat stabilizer is too small, the heat stabilizing effect may be insufficient. If the amount of the heat stabilizer is too large, the effect may reach a peak and may not be economical.
  • antioxidants examples include phenolic antioxidants, hindered phenolic antioxidants, bisphenolic antioxidants, polyphenolic antioxidants, and the like.
  • the addition ratio of the antioxidant is, for example, 0.001 part by mass or more, preferably 0.01 part by mass or more, and 1 part by mass or less, preferably 0 with respect to 100 parts by mass of the resin component. .5 parts by mass or less. If the addition ratio of the antioxidant is below the lower limit, the effect as an antioxidant may be insufficient, and if the addition ratio of the antioxidant exceeds the upper limit, the effect reaches a peak and is economical. There is a possibility of disappearing.
  • Examples of flame retardants include organic sulfonic acid metal salts.
  • Examples of the organic sulfonic acid metal salts include aliphatic sulfonic acid metal salts and aromatic sulfonic acid metal salts. These may be used alone or in combination of two or more.
  • a metal salt an alkali metal salt and an alkaline-earth metal salt are preferable.
  • the added mass of the flame retardant with respect to 100 parts by mass of the resin component is, for example, 0.005 parts by mass to 0.1 parts by mass, preferably 0.01 parts by mass to 0.1 parts by mass, and more preferably 0.03 parts by mass. Parts by mass to 0.09 parts by mass.
  • a silicone compound can be added as a flame retardant aid.
  • a silicone compound what has a phenyl group in a molecule
  • numerator is preferable. By having a phenyl group, the dispersibility of the silicone compound in a resin component (particularly polycarbonate) is improved, and the transparency and flame retardancy are excellent.
  • the addition ratio of the flame retardant aid is, for example, 0.1 parts by mass or more, preferably 0.2 parts by mass or more, and 7.5 parts by mass or less with respect to 100 parts by mass of the resin component. Preferably it is 5 mass parts or less. If the addition rate of flame retardant aid is below the lower limit, flame retardancy may be insufficient, and if the addition rate of flame retardant aid exceeds the upper limit, appearance defects such as delamination will occur and transparency , The flame retardancy reaches its peak, and it may not be economical.
  • UV absorbers include benzotriazole compounds, benzophenone compounds, salicylate compounds, cyanoacrylate compounds, triazine compounds, oxanilide compounds, malonic ester compounds, hindered amine compounds, phenyl salicylates
  • organic ultraviolet absorbers such as compounds. Of these, benzotriazole-based and benzophenone-based organic ultraviolet absorbers are preferred.
  • the addition ratio of the ultraviolet absorber is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, and 3 parts by mass or less, preferably 1 with respect to 100 parts by mass of the resin component. It is below mass parts. If the addition ratio of the UV absorber is below the lower limit, the effect of improving the weather resistance may be insufficient, and if the addition ratio of the UV absorber exceeds the upper limit, mold deposits, etc. will occur and mold contamination (Cooling roll contamination) may occur.
  • release agent examples include carboxylic acid esters, polysiloxane compounds, and paraffin wax (polyolefin type). Two or more of these may be used in combination.
  • the addition ratio of the release agent is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, and 2 parts by mass or less, based on 100 parts by mass of the resin component. Preferably it is 1 mass part or less. If the addition ratio of the release agent is below the lower limit value, the effect of the release property may not be sufficient, and if the addition ratio of the release agent exceeds the upper limit value, hydrolysis resistance decreases, gold during injection molding Mold contamination may occur.
  • dyes and pigments as colorants include inorganic pigments, organic pigments, and organic dyes.
  • inorganic pigments for example, sulfide pigments such as carbon black, cadmium red and cadmium yellow; silicate pigments such as ultramarine blue; titanium oxide, zinc white, petal, chromium oxide, iron black, titanium yellow, zinc-iron -Based brown, titanium-cobalt green, cobalt-green, cobalt-blue, copper-chromium-based black, copper-iron-based black and other oxide pigments; yellow lead, molybdate orange and other chromic pigments; bitumen and other ferrocyanians And pigments.
  • inorganic pigments for example, sulfide pigments such as carbon black, cadmium red and cadmium yellow; silicate pigments such as ultramarine blue; titanium oxide, zinc white, petal, chromium oxide, iron black, titanium yellow, zinc-iron -Based brown, titanium-cobalt green, cobalt-green
  • organic pigments and organic dyes as colorants include phthalocyanine dyes such as copper phthalocyanine blue and copper phthalocyanine green; azo dyes such as nickel azo yellow; thioindigo, perinone, perylene, and quinacridone And condensed polycyclic dyes such as dioxazine, isoindolinone, and quinophthalone; quinoline, anthraquinone, heterocyclic, and methyl dyes.
  • phthalocyanine dyes such as copper phthalocyanine blue and copper phthalocyanine green
  • azo dyes such as nickel azo yellow
  • thioindigo perinone, perylene, and quinacridone
  • condensed polycyclic dyes such as dioxazine, isoindolinone, and quinophthalone
  • quinoline, anthraquinone, heterocyclic, and methyl dyes are preferable from the viewpoint of thermal stability.
  • 1 type may contain the dye / pigment, and 2 or more types may contain it by arbitrary combinations and a ratio.
  • dyes and pigments may be used as masterbatches with polystyrene resins, polycarbonate resins, and acrylic resins for the purpose of improving handling during extrusion and improving dispersibility in the resin composition. Good.
  • the proportion of the colorant added is, for example, 1 part by mass or less, preferably 0.5 parts by mass or less, more preferably 0.1 parts by mass or less, relative to 100 parts by mass of the resin component. If the addition ratio of the colorant is too large, the impact resistance may not be sufficient.
  • the transparent layer (B) includes a glass fiber cloth and a resin composition containing a sulfur compound.
  • the transparent layer (B) is made transparent by adjusting so that the Abbe number of the resin composition containing the sulfur compound and the glass fiber cloth matches the refractive index of 589 nm.
  • the thickness of the transparent layer (B) is preferably 20 ⁇ m to 300 ⁇ m, and more preferably 50 ⁇ m to 200 ⁇ m. When the thickness of the transparent layer (B) is within this range, rigidity and transparency tend to be improved.
  • the sulfur compound is not particularly limited as long as the transparency and rigidity of the transparent layer (B) can be secured.
  • the sulfur compound include a sulfur atom-containing resin selected from the group consisting of a thermoplastic resin containing a sulfur atom, a thermosetting resin containing a sulfur atom, and a photocurable resin containing a sulfur atom. .
  • a thermosetting resin or a photocurable resin containing a sulfur atom is preferable from the viewpoint of optical characteristics (transparency).
  • thermoplastic resin containing a sulfur atom is not particularly limited, and examples thereof include thermoplastic resins such as polythiocarbonate resin, polythioester resin, polyoxothioester resin, polythioether resin, and sulfur-containing cyclic polyolefin resin.
  • thermosetting resin containing a sulfur atom is not particularly limited, and examples thereof include a thermosetting resin formed by a thermosetting reaction of a composition containing an epoxy resin and a polyfunctional thiol compound.
  • the photocurable resin containing a sulfur atom is not particularly limited, but light formed by photocuring a photocurable resin composition containing a compound having a carbon-carbon double bond and a (polyfunctional) thiol compound. Photocurable resin formed by carrying out photocuring reaction of the photocurable resin composition containing curable resin, an epoxy resin, and a polyfunctional thiol compound is mentioned.
  • the actinic ray used for curing the photocurable resin composition of the transparent layer (B) is not limited as long as it is used for curing the photocurable resin composition.
  • Ultraviolet light, visible light, near infrared light, or the like can be used. From the viewpoint that side reactions hardly occur, it is preferable to use ultraviolet rays.
  • the light source for irradiating the ultraviolet light include a metal halide type and a high-pressure mercury lamp lamp.
  • the resin composition of the transparent layer (B) contains a curable resin.
  • a curable resin is included, it is preferable in terms of refractive index adjustment and processability.
  • the resin composition of the transparent layer (B) includes a curable resin having a tensile elastic modulus at the time of curing at a thickness of 1 mm of 10 MPa or more. That is, the transparent resin laminate of one embodiment of the present invention is made of a resin composition containing a curable resin having a tensile elastic modulus of 10 MPa or more when cured at a thickness of 1 mm on both surfaces of the transparent resin layer (A).
  • a transparent layer (B) formed by impregnating a fiber cloth is provided.
  • the transparent resin layer (A) is a polycarbonate resin layer because it is excellent in transparency, rigidity, impact resistance, flexibility, and punchability.
  • the “tensile modulus at curing” means the tensile modulus of the resin after thermosetting or photocuring.
  • the present inventors made the curable resin used for the layer (B) having high rigidity transparent and have a tensile elastic modulus of 10 MPa or more when cured at a thickness of 1 mm, so that the layer as a whole becomes rigid. It was found that an excellent laminate (preferably having a flexural modulus of 5 GPa or more) was obtained, and a laminate suitable for a display front (protection) plate was obtained. If it is less than 10 MPa, the flexural modulus as a whole transparent laminate may rather be lower than the flexural modulus (2.6 GPa) of the polycarbonate resin layer (A).
  • the tensile elastic modulus at the time of curing of the curable resin used for the transparent layer (B) is more preferably 70 MPa or more, further preferably 100 MPa or more, and particularly preferably 500 MPa or more.
  • the tensile modulus of the curable resin is preferably 5 GPa or less.
  • the curable resin having such characteristics for example, an epoxy resin, an acrylic resin, a polyimide resin, a benzoxazine resin, an oxetane resin, or the like can be used.
  • the resin composition contains a polymer of a thiol compound and an epoxy resin, and particularly preferably the resin composition contains a polymer obtained by thermosetting reaction of the thiol compound and the epoxy resin.
  • the transparent layer (B) is obtained by impregnating and curing a glass fiber cloth with a resin composition containing a curable resin, and when the transparent layer (B) is cured (after curing).
  • a resin composition containing a curable resin has a tensile modulus of 10 GPa or more.
  • a method for obtaining a transparent layer (B) having a tensile modulus of 10 GPa or more a method using a specific curable resin can be mentioned.
  • the curable resin having such characteristics is not particularly limited, and an epoxy resin, an acrylic resin, a polyimide resin, a benzoxazine resin, an oxetane resin, or the like can be used, but depending on the type of the curable resin used, it is transparent.
  • the tensile modulus of the layer (B) may be less than 10 GPa, and it is not preferable to use such a curable resin.
  • the transparent resin layer (A) is a polycarbonate resin layer because it is excellent in transparency, rigidity, impact resistance, flexibility, and punchability.
  • the total light transmittance of the transparent layer (B) is preferably 80% or more, more preferably 85% or more. If the total light transmittance of a transparent layer (B) is this range, the transparency of the whole transparent resin laminated body can be made favorable, and it is preferable as a front plate for a display.
  • the difference between the Abbe number of the resin composition constituting the transparent layer (B) and the glass fiber cloth is preferably 15 or less, more preferably 10 or less, in order to obtain high transparency.
  • the lower limit of the Abbe number difference is not particularly limited, and is preferably as small as possible from the viewpoint of obtaining high transparency, and is most preferably 0.
  • the Abbe number of a resin composition means the Abbe number after hardening, when a resin composition contains curable resin.
  • the obtained transparent layer (B) has a high light transmittance at a short wavelength near 400 nm, which is preferable as a display front plate.
  • the Abbe number is an index of the wavelength dependence of the refractive index of visible light.
  • glass has a value larger than that of resin, and it is more difficult to match the larger the refractive index.
  • a resin composition containing a sulfur compound By using a resin composition containing a sulfur compound, the Abbe number of the resin approaches the Abbe number of the glass fiber cloth, the light transmittance in a wide wavelength region is improved, and high transparency is obtained.
  • the refractive index difference of the resin composition constituting the transparent layer (B) and the refractive index of the glass fiber cloth is preferably 0.01 or less, more preferably 0.005 or less in order to obtain high transparency.
  • the refractive index difference of the D line (589 nm) between the resin composition and the glass fiber cloth is preferably 0.01 or less, and more preferably 0.005 or less.
  • the lower limit of the refractive index difference of the D line (589 nm) is not particularly limited, and is preferably as small as possible from the viewpoint of obtaining high transparency, and is most preferably 0.
  • the refractive index of a resin composition means the refractive index after hardening, when a resin composition contains curable resin so that it may mention later.
  • the transmittance of the obtained transparent layer (B) becomes high, which is preferable as a display front plate.
  • a resin having a difference in refractive index between the glass fiber cloth and the D line of 0.01 or less is used alone. It may be used, or a resin having a higher refractive index of the D line and a lower resin than the glass fiber cloth may be used in combination.
  • the total light transmittance of the transparent layer (B) is 80% or more, which is a general wavelength in the visible light region of 550 nm. It is preferable that the light transmittance at 70 is 70% or more.
  • a plurality of reactive monomers (curable resins) and a curing agent are used.
  • the method or the method (2) is preferred.
  • “matching the refractive index” means that the refractive index difference is 0.01 or less, preferably 0.005 or less. Further, that the Abbe numbers coincide with each other means that the Abbe number difference is 15 or less, preferably 10 or less.
  • the resin containing sulfur atoms can be used as it is.
  • the refractive index can be configured to match that of the glass fiber by adjusting the types and amounts of monomers and curing agents that constitute the copolymer resin and the curable resin.
  • examples of such a resin include at least one sulfur atom-containing resin selected from a thermoplastic resin containing a sulfur atom, a thermosetting resin containing a sulfur atom, and a photocurable resin containing a sulfur atom. Is mentioned. In this case, only one type of resin containing sulfur atoms may be used, or two or more types may be used in combination.
  • the glass type of the glass fiber cloth is E glass (Abbe number 58, refractive index 1.56).
  • a thermoplastic copolymer resin such as a copolymer of polythioester and polyester, a thermosetting resin such as an episulfide resin, and the like.
  • a thermoplastic copolymer resin such as a copolymer of polythioester and polyester or an episulfide resin is used.
  • a thermosetting resin etc. are mentioned.
  • the refractive index and the Abbe number depend on the ratio of the sulfur compound (sulfur atom-containing compound) to be copolymerized and the compound not containing sulfur, and the smaller the sulfur compound, the lower the refractive index.
  • the amount used depends on the glass type.
  • the refractive index and Abbe number of the episulfide resin vary depending on the sulfur content in the episulfide resin, and the smaller the sulfur content, the lower the refractive index. When an S glass or T glass is used, an episulfide resin having a sulfur content corresponding to that is used.
  • the curability formed by a curing reaction between a reactive monomer of a curable resin and a curing agent containing a sulfur atom can also be used.
  • a method of adjusting by combining a curing agent containing a sulfur atom having a refractive index higher than that of glass fiber cloth and a reactive monomer (resin monomer containing no sulfur atom) of a resin having a refractive index lower than that of glass fiber cloth is preferable. .
  • the sulfur atom-containing curable resin a thermosetting resin or a photocurable resin composed of an epoxy resin as a reactive monomer and a curing agent containing a sulfur compound, an alkenyl group as a reactive monomer.
  • a photo-curable resin comprising a compound having a sulfur and a curing agent containing a sulfur compound.
  • a sulfur atom-containing curing agent having a refractive index higher than that of the glass fiber cloth and a reactive monomer of a curable resin having a low refractive index are mixed one by one or two or more, respectively.
  • the method of hardening with active energy, such as light is mentioned.
  • a method of curing a resin for example, an epoxy resin
  • a sulfur atom-containing compound for example, a polyfunctional thiol compound
  • a curable resin composed of an epoxy resin and a sulfur atom-containing curing agent is preferable from the viewpoint of transparency.
  • Examples of the sulfur atom-containing curing agent include polyfunctional thiol compounds having a refractive index higher than that of glass fiber cloth.
  • the polyfunctional thiol compound having a higher refractive index than that of the glass fiber cloth is not particularly limited, but 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 1,6-hexanedithiol 2,2′-oxybis (1-mercaptoethane), 2,2′-thiobis (1-mercaptoethane), 1,4-dimercaptobutane-2,3-diol, ethylene glycol bis (1-mercaptoethane) , Ethylene glycol bis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopropionate), ethylene glycol bis (2-mercaptopropionate), ethylene glycol bis (3-mercaptobutanoate), butanediol bis ( 2-mercaptoacetate), butanedi
  • pentaerythritol tetrakis (3-mercaptopropionate) and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane are preferable from the viewpoint of refractive index adjustment.
  • a cyclic carboxylic acid anhydride having a refractive index lower than that of the glass fiber cloth can be used in addition to the polyfunctional thiol compound.
  • Such cyclic carboxylic acid anhydrides are not particularly limited, but for example, maleic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, nadic anhydride, glutaric anhydride, tetrahydrophthalic anhydride, methyl Tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyl hexahydrophthalic anhydride, methyl nadic anhydride, dodecenyl succinic anhydride, dichlorosuccinic anhydride, benzophenone tetracarboxylic anhydride and chlorendic anhydride Thing etc.
  • tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride are preferable from the viewpoint of transparency, and hexahydrophthalic anhydride is more preferable from the viewpoint of transparency.
  • Examples of the epoxy resin having a refractive index lower than that of the glass fiber cloth combined with a curing agent containing a sulfur atom include an epoxy resin containing no aromatic ring.
  • Such an epoxy resin is not particularly limited, but hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, triazine skeleton-containing epoxy resin, linear aliphatic epoxy resin, cyclohexane oxide skeleton-containing epoxy resin, cyclohexane Examples include polyether skeleton-containing epoxy resins, glycidylamine-type epoxy resins, dicyclopentadiene skeleton-containing epoxy resins, and the like. These may be used alone or in combination of two or more.
  • the combination of a polyfunctional thiol compound having a refractive index higher than that of the glass fiber cloth and an epoxy resin not containing an aromatic ring having a low refractive index is not particularly limited.
  • the glass fiber cloth has a higher Abbe number than a general resin having a close refractive index, the difference between the Abbe number and a resin containing an aromatic ring or a resin having a large amount of carbonyl bonds tends to increase.
  • a combination of a thiol compound such as pentaerythritol tetrakis (3-mercaptopropionate) and / or 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane and a cyclohexane oxide skeleton-containing epoxy resin may be used. preferable.
  • the total content of thiol functional groups contained in the polyfunctional thiol compound is preferably 1 equivalent to the epoxy group of an epoxy resin that is a cured plastic resin. It is preferably 0.5 to 1.0 equivalent, more preferably 0.7 to 1.0 equivalent. If the content is within this range, curability does not decrease, and odor due to residual thiol functional groups can be suppressed.
  • the thiol functional group contained in the polyfunctional thiol compound and the carboxylic acid anhydride functional group contained in the cyclic carboxylic acid anhydride is preferably 0.5 to 1.0 equivalent, more preferably 0.7 to 1.0 equivalent, based on 1 equivalent of the epoxy group of the epoxy resin which is a cured plastic resin. If the content is within this range, curability does not decrease, and odor due to residual thiol functional groups can be suppressed.
  • the polyfunctional thiol compound and the cyclic carboxylic acid anhydride as a curing agent for a curable resin are used in combination, the polyfunctional thiol compound and the cyclic carboxylic acid anhydride as a curing agent, and The compounding ratio of the epoxy resin is adjusted depending on the glass fiber cloth used.
  • the compounding ratio of the polyfunctional thiol compound having a high refractive index is increased to match the refractive index with the glass fiber cloth.
  • T glass fiber cloth with low refractive index, S glass fiber cloth, NE glass fiber cloth, etc. as said glass fiber cloth, the compounding ratio of resin containing a high refractive index sulfur compound is decreased, and glass fiber is used. Match the refractive index with the cloth.
  • a sulfur atom-containing resin having a refractive index identical to that of the glass fiber cloth of (1) a composition containing a compound having a carbon-carbon double bond and a (polyfunctional) thiol compound is subjected to a photocuring reaction.
  • a photocurable resin may be used.
  • a photocurable resin formed from a photocurable resin composition containing the compound (a) having a thiol group and the compound (b) having an alkenyl group hereinafter referred to as “thiol-ene photocurable resin”
  • thiol-ene photocurable resin is preferable.
  • Such a thiol-ene photocurable resin has a thiol group and an alkenyl group in the same molecule.
  • a glass fiber cloth on both surfaces of the transparent resin layer (A), a glass fiber cloth and a resin composition containing a compound (a) having a thiol group and a compound (b) having an alkenyl group. It is a transparent resin laminate (C) in which the formed transparent layer (B) is arranged.
  • the transparent layer (B) is obtained by impregnating a glass fiber cloth with a photocurable resin composition containing a compound (a) having a thiol group and a compound (b) having an alkenyl group. , Processed into layers.
  • the photocurable resin composition as described above allows a reaction between a thiol group and an alkenyl group by an actinic ray (thiol-ene reaction) due to the thiol group of the compound having a thiol group and the alkenyl group of the compound having an alkenyl group.
  • thiol-ene reaction an actinic ray
  • the advantages of the photocurable resin produced by the thiol-ene reaction are that the reaction proceeds easily with active light regardless of the presence or absence of a polymerization initiator, the reaction is not inhibited by oxygen, and the curing shrinkage is small.
  • the point that the resin after hardening has a high weather resistance is mentioned, and the hardened
  • the photo-curable resin composition that generates a thiol-alkenyl reaction has a ratio of reactive functional groups in the molecule, that is, compared with a thiol-epoxy reaction that can produce a curable resin using a similar photo-curing reaction, that is, It is not necessary to adjust the ratio between the thiol group and the epoxy group, and the refractive index of the resin is easily adjusted.
  • the compound having a thiol group is not particularly limited as long as it is a compound having a thiol group, but as mentioned above, a polyfunctional thiol having a higher refractive index than the glass fiber cloth used as a sulfur atom-containing curing agent.
  • System compounds can be used. These may be used individually by 1 type and may use 2 or more types together.
  • the thiol compound in the thiol-alkenyl reaction is preferably pentaerythritol tetrakis (3-mercaptopropionate), 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane from the viewpoint of adjusting the refractive index. is there.
  • the compound having an alkenyl group is not particularly limited as long as it is a compound having an alkenyl group.
  • 2-methacryloyloxyethylphthalic acid methoxypolyethylene glycol methacrylate, 1,9-nonanediol dimethacrylate, neopentyl glycol diester.
  • the compound (a) having a thiol group and the compound (b) having an alkenyl group described above are combined, and the Abbe number and refractive index of the cured photocurable resin are the Abbe of the glass fiber cloth.
  • the number and refractive index should be matched.
  • a compound having a higher refractive index than that of the glass fiber cloth and a compound having a lower refractive index are mixed to be transparent. At that time, in order to obtain high transparency, it is preferable to precisely match the refractive index of the resin and the glass fiber cloth. Therefore, the compound (a) having a thiol group having a refractive index higher than that of the glass fiber cloth and the glass fiber cloth.
  • the method of mixing and adjusting the photocurable resin containing the compound (b) having an alkenyl group having a lower refractive index than that is preferable.
  • a photocurable resin containing a compound (a) having a thiol group having a higher refractive index than the glass fiber cloth and a compound (b) having an alkenyl group having a lower refractive index than the glass fiber cloth One type may be mixed, or two or more types may be used.
  • the E glass fiber cloth when E glass cloth is used as the glass fiber cloth, the E glass fiber cloth has a higher Abbe number than a general resin having a refractive index close to that of a resin containing an aromatic ring or a resin having a large amount of carbonyl bonds. The numbers do not match. Therefore, pentaerythritol tetrakisthioglycolate and / or 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol is used as the compound having a thiol group, and tricyclodecane dimethanol is used as the compound having an alkenyl group. It is preferable to combine using diacrylate.
  • Method (2) If the refractive index of the resin containing the sulfur compound and the glass fiber cloth do not match, adjust by mixing a resin with a higher refractive index than the glass fiber cloth and another resin with a lower refractive index than the glass fiber cloth. be able to.
  • the resin composition constituting the transparent layer (B) include, for example, a thermoplastic resin containing a sulfur atom, a thermosetting resin containing a sulfur atom, and a light containing a sulfur atom.
  • the structure containing at least 1 sort (s) of sulfur atom containing resin selected from curable resin and other resin (sulfur atom non-containing resin) from which a refractive index differs from the said sulfur atom containing resin is mentioned.
  • the refractive index of the resin composition of the transparent layer (B) is a resin containing a sulfur atom having a refractive index higher than that of the glass fiber cloth and another resin having a refractive index lower than that of the glass fiber cloth (a sulfur atom-free resin). And a method of adjusting by mixing.
  • resin containing sulfur atoms with higher refractive index than glass fiber cloth (sulfur atom-containing resin) and resin with lower refractive index (other resins) sulfur atom-containing resin and other resins (not containing sulfur atoms)
  • One type of resin may be mixed, or two or more types may be used.
  • the resin containing a sulfur atom is a thermoplastic resin
  • the resin containing a sulfur atom has a higher refractive index than a glass fiber cloth, such as a polythiocarbonate resin, a polythioester resin, or a polyoxo.
  • a glass fiber cloth such as a polythiocarbonate resin, a polythioester resin, or a polyoxo.
  • examples include thioester resins, polythioether resins, sulfur-containing cyclic polyolefin resins, and the like.
  • resins having a refractive index lower than that of glass fiber cloth (other resins; sulfur atom-free resins) combined with the sulfur atom-containing resin include cyclic cycloolefin resins, polymethyl methacrylate resins, acrylic resins, polyacetals. Examples thereof include resins.
  • a sulfur atom-containing resin having a higher refractive index than the glass fiber cloth and another resin having a lower refractive index as long as the refractive index difference between the glass fiber cloth and the resin composition can be adjusted to a desired range, It is not limited.
  • the glass fiber cloth generally has a higher Abbe number than a general resin having a similar refractive index, the difference between the Abbe number and a resin containing an aromatic ring or a resin having a large amount of carbonyl bonds increases.
  • a combination of cyclic cycloolefin resins is preferred.
  • the resin containing a sulfur atom is a curable resin
  • the resin containing a sulfur atom is a thermosetting resin or a photocurable resin comprising an epoxy resin and a curing agent containing a sulfur compound, a compound having an alkenyl group And a curing agent containing a sulfur compound, more preferably a thermosetting resin or a photocurable resin consisting of an epoxy resin and a curing agent containing a sulfur compound.
  • the curing agent containing a sulfur atom include a polyfunctional thiol compound having a refractive index higher than that of the glass fiber cloth, and the polyfunctional thiol compound as the sulfur atom-containing curing agent in the method (1) is used in the same manner. be able to.
  • a cyclic carboxylic acid anhydride having a refractive index lower than that of the glass fiber cloth as mentioned in the method (1) is used. Can do.
  • the amount of the resin with respect to the transparent layer (B) is appropriately selected according to the purpose of use, but is usually 10 to 80% by mass, preferably 20 with respect to the total mass (100% by mass) of the transparent layer (B). It is in the range of ⁇ 70% by mass. If the amount of the resin is too small, the resin may be insufficient and the transparency may decrease. Conversely, if the amount of the resin is too large, the rigidity may be insufficient.
  • thermoplastic resin there is a method in which the resin to be used is heated and mixed using a kneading apparatus such as a lab plast mill, a twin screw extruder, a Banbury mixer, and a vessel.
  • a thermosetting resin the resin composition can be adjusted according to a conventional method. If the resin composition containing the resin to be used and other optional components can be obtained uniformly, the adjustment can be made.
  • the method is not particularly limited.
  • a resin composition can be easily adjusted by blending a polyfunctional thiol compound and an epoxy resin that does not contain an aromatic ring and stirring sufficiently.
  • a known process for uniformly dissolving or dispersing each component can be performed.
  • the above stirring, mixing, and kneading treatment can be appropriately performed using, for example, a known device such as a ball mill, a bead mill or the like for mixing, or a revolution / spinning type mixing device.
  • the resin composition constituting the transparent layer (B) may further contain an inorganic filler as long as desired properties are not impaired.
  • inorganic fillers include silica-based inorganic fillers such as quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, and ultrafine powder amorphous silica, alumina, zircon, zinc oxide, and oxidation.
  • the said inorganic filler can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the resin composition of the transparent layer (B) may contain a curing accelerator for adjusting the curing rate as needed when adjusting the resin composition.
  • a curing accelerator for adjusting the curing rate as needed when adjusting the resin composition.
  • examples of such compounds include imidazole compounds, benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, organic peroxides exemplified by di-tert-butyl-di-perphthalate, Azobisnitrile azo compound, N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline, N -Tertiary amines such as methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine, phenol
  • the resin composition containing the sulfur compound that forms the transparent layer (B) may contain an organic solvent, if necessary. That is, the transparent layer (B) can be used as an embodiment (varnish) in which at least a part or all of the above-described resin is dissolved or compatible with an organic solvent. Any known organic solvent can be used as long as it can dissolve or be compatible with at least a part, preferably all of the resin monomer, and the kind thereof is not particularly limited.
  • Specific examples thereof include, for example, benzene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone (2-butanone), acetone, methanol, ethanol, isopropyl alcohol, 2-butanol, ethyl acetate, butyl acetate, propylene glycol monomethyl ether, propylene Examples include glycol monomethyl ether acetate, diacetone alcohol, N, N′-dimethylformamide, N, N′-dimethylacetamide, acetonitrile, and the like, but are not particularly limited thereto.
  • An organic solvent can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the solid content concentration of the solution is usually preferably 10 to 99% by mass, and preferably 20 to 90% by mass. Is more preferable. If the solution concentration is too low, the impregnation resin may be insufficient and the transparency may be lowered. Conversely, if the solution concentration is high, the solution viscosity may be increased, resulting in poor impregnation.
  • a diluent such as a monoepoxy compound is added so as not to impair the reaction in order to improve workability and workability after curing the epoxy resin. It is preferable to add.
  • a diluent is added, workability and processability are improved by lowering the monomer viscosity, and flexibility can be imparted to the cured epoxy resin, and the flexibility of the transparent layer (B) , Impact resistance, toughness and the like can be improved.
  • Diluents include styrene oxide, cyclohexene oxide, propylene oxide, methyl glycidyl ether, ethyl glycidyl ether, n-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, cresyl glycidyl ether, sec-butylphenyl glycidyl ether, cardanol glycidyl ether, Glycidyl methacrylate, phenyl glycidyl ether, allyl glycidyl ether, octylene oxide, dodecene oxide, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerin Triglycidyl ether
  • the amount of the diluent is preferably less than 100 parts by mass and more preferably 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin. If the amount of the diluent is within this range, the tensile elastic modulus of the transparent layer (B) is 15 GPa or more, and the bending elastic modulus of the transparent resin laminate as a whole can be 5 GPa or more.
  • a resin composition containing the compound (a) having a thiol group and the compound (b) having an alkenyl group is used as an ultraviolet ray or the like.
  • a photopolymerization initiator that generates radicals may be added to the resin composition. Examples of such photopolymerization initiators include benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2,2-diethoxyacetophenone, benzoin, and benzoin methyl.
  • Ether benzoinpropyl ether, benzoin isobutyl ether, benzyldimethyl ketal, ⁇ -hydroxyisobutylphenone, thioxanthone, 2-chlorothioxanthone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2 -Morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-dimethylamino-2- (4-methyl-benzyl) -1- (4 -Morph Phosphorin-4-yl-phenyl) -butan-1-one, 2,6-dimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, t-butylanthraquinone, 1-chloroanthraquinon
  • the said photoinitiator can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • Examples of commercially available photopolymerization initiators include Darocur 1173, Irgacure 651, Irgacure 184, Irgacure 907, and Lucilin TPO (all trade names manufactured by BASF).
  • the content in the resin composition in the case of using the photopolymerization initiator may be an amount that can be appropriately cured, and is, for example, 0.8% relative to a total of 100 parts by mass of compounds having two or more alkenyl groups.
  • the content is preferably 01 to 2 parts by mass, more preferably 0.02 to 1 part by mass, and most preferably 0.1 to 0.5 parts by mass.
  • a storage stabilizer that suppresses the thiol-ene reaction can be blended in order to improve the storage stability before curing.
  • the photopolymerization initiator mentioned above since the storage stability of the resin composition tends to be lowered, it is preferable to use such a storage stabilizer in combination.
  • Examples of such storage stabilizers include phosphorus compounds such as triphenylphosphine and triphenyl phosphite; p-methoxyphenol, hydroquinone, pyrogallol, naphthylamine, t-butylcatechol, cuprous chloride, 2,6-di-t-butyl-p-cresol, 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t -Butylphenol), radical polymerization inhibitors such as N-nitrosophenylhydroxylamine aluminum salt, diphenylnitrosamine; benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (diaminomethyl) phenol, Tertiary amines such as diazabicycloundecene; 2-methylimidazole, 2-ethyl-4-methyli Examples thereof include imidazoles such as midazole, 2-e
  • glass fiber cloth used for the transparent layer (B) is not particularly limited, for example, from among publicly known ones used for various transparent fiber reinforced resins, appropriately selected and used depending on the intended use and performance Can do.
  • glass fiber cloths such as E glass, S glass, T glass, NE glass, L glass, D glass, Q glass, UN glass, are mentioned.
  • the refractive index of the glass fiber cloth is preferably larger than 1.55, and E glass fiber cloth (preferably E glass cloth) is more preferable from the viewpoints of transparency, rigidity, workability and cost.
  • the thickness of the glass fiber cloth is usually preferably 10 ⁇ m to 200 ⁇ m, and more preferably 40 ⁇ m to 150 ⁇ m. Moreover, only one sheet of these glass fiber cloths may be used, and a plurality of sheets may be used in a stacked manner. Moreover, the thing surface-treated with the silane coupling agent etc., and the thing which performed the fiber opening process physically in the woven fabric (cloth) can be used suitably from the surface of moisture absorption heat resistance.
  • the method for producing the transparent layer (B) used in the display front plate of the present embodiment may be a method of processing the resin composition used for the transparent layer (B) and a glass fiber cloth together to form a layer. If it does not specifically limit.
  • the resin containing the sulfur atom is a thermoplastic resin
  • the glass fiber cloth is immersed in a solution in which the resin containing the sulfur compound is dissolved and impregnated with the resin containing the sulfur compound, and then heated with a dryer or the like. Thus, the solvent can be volatilized and removed. Thereafter, the resin may be heated to a temperature equal to or higher than the softening temperature of the resin containing the sulfur compound and may be compression-molded, or may be rolled using a metal roll.
  • the resin containing a sulfur atom is a curable resin
  • the glass fiber cloth after impregnating the glass fiber cloth with the curable resin-soluble composition, the glass fiber cloth is dried as necessary, and pressed or laminated with another base material to increase the thickness. It is prepared by a method of adjusting, crosslinking and curing the curable resin composition by at least one of heating and irradiation with actinic rays.
  • the curable resin composition here refers to a mixed liquid of a curable resin monomer and a curing accelerator.
  • the glass fiber cloth when the resin containing sulfur atoms is a thermosetting resin, the glass fiber cloth may be immersed in a resin composition containing a sulfur compound having fluidity at room temperature or under heating. Alternatively, the glass fiber cloth may be immersed in a solution in which a resin containing sulfur atoms is dissolved to impregnate the resin containing sulfur atoms. After impregnating the resin composition containing the sulfur compound, it is dried if necessary, pressed or laminated with another substrate, the thickness is adjusted, and the resin composition containing the sulfur compound is crosslinked by heating, A curing method is possible.
  • the resin composition containing a sulfur compound represents a composition containing a resin monomer before curing.
  • the resin containing sulfur atoms is a photocurable resin
  • a glass fiber cloth is immersed in a photocurable resin composition containing a compound (a) having a thiol group and a compound (b) having an alkenyl group.
  • a base material such as SUS plate, glass plate, polyethylene terephthalate, etc.
  • actinic rays such as ultraviolet light are irradiated.
  • the method for producing the transparent resin laminate (C) of the present embodiment is not particularly limited.
  • the transparent layer (B) is formed on the transparent resin layer (A) via an adhesive layer.
  • adhering the transparent resin layer (A) and the transparent layer (B), the transparent resin layer (A) and the transparent layer (B) are prepared using a transparent adhesive as a method for producing the transparent resin laminate. If it sticks together, it will not be specifically limited.
  • the transparent layer (B) is laminated and transparently bonded. The method of hardening an agent is mentioned.
  • the type and method of the transparent adhesive for laminating the transparent resin layer (A) and the transparent layer (B) are not particularly limited, but various types such as a photocurable adhesive, a thermosetting adhesive, and a room temperature curable adhesive.
  • An adhesive can be used.
  • an adhesive containing a solvent is used, bubbles may be generated at the time of curing, and the transparency of the entire transparent laminate may be lowered.
  • the adhesive may be a one-component type or a two-component type.
  • the transparent adhesive that bonds the transparent resin layer (A) and the transparent layer (B) include, for example, an epoxy adhesive, an acrylic adhesive, and a urethane adhesive.
  • a transparent adhesive may be used individually by 1 type, or multiple may be mixed and used for it.
  • Daikin Industries, Ltd.'s optodyne series acrylic UV adhesives for example, Optodyne UV-2000, Optodyne UV-3000, etc.
  • Henkel's Loctite series acrylic UV adhesives eg, Loctite 3193HS
  • World Lock series modified acrylate UV adhesive for example, World Lock XVL-90, World Lock 8807, World Lock HRJ-21, etc.
  • Acrylic UV adhesive for example, GLX18-73N, etc.
  • Acrylic adhesives such as Unidic V-9500 series urethane adhesives such as Unidic V-9520, Unidic V-9540, etc. manufactured by DIC; Daikin Industries Optodyne series epoxy UV adhesives (for example, Optodyne UV-1000, Optodyne UV-4000, etc.), EA series epoxy thermosetting adhesives, Sanyu Rec Co., Ltd. (EA-409, EA-415, etc.)
  • epoxy adhesives such as ADEKA OPTMER KR series epoxy photo-curing adhesives (such as KR-401) manufactured by ADEKA Corporation.
  • the adhesive for laminating the transparent resin layer (A) and the transparent layer (B) has a tensile elastic modulus of 1 MPa or more at the time of curing (after curing) at a thickness of 1 mm and at the time of curing.
  • a tensile elastic modulus of 1 MPa or more at the time of curing (after curing) at a thickness of 1 mm and at the time of curing Use something that is transparent. The reason is as follows. In order to demonstrate the properties generally required of adhesives that make it difficult to peel off the object to be bonded even when bending or bending force is applied, tensile elasticity at the time of curing of the adhesive is high.
  • the adhesive layer will be deformed when bending or bending force is applied, and the hardness of the transparent layer (B) will be in the entire transparent laminate. It is presumed not to be reflected. Therefore, in this embodiment, a certain degree of tensile elastic modulus is ensured in the adhesive layer, and the transparent resin layer (B) is bonded to both sides of the transparent resin layer (A), whereby the transparent resin layer ( A) Higher rigidity can be exhibited compared to the single case.
  • the tensile elastic modulus at the time of curing (after curing) at a thickness of 1 mm of the adhesive is preferably 10 MPa or more, more preferably 20 MPa or more.
  • the tensile modulus of the adhesive is preferably 4 GPa or less, more preferably 2 GPa or less.
  • Examples of transparent adhesive application methods include dip coating, spray coating, spinner coating, bead coating, wire bar coating, blade coating, roller coating, curtain coating, slit die coater, and gravure.
  • Examples include a coater method, a slit reverse coater method, a micro gravure method, and a comma coater method.
  • the transparent layer (B) is laminated on both sides of the transparent resin layer (A), and light is emitted from one side. By irradiating, light reaches the other surface and both surfaces can be cured simultaneously.
  • the thickness of the adhesive layer is preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m. If the adhesive layer is too thick, the rigidity of the entire transparent laminate is lowered, and if it is too thin, the adhesiveness is lowered. When the thickness is in the above range, the rigidity and adhesiveness of the entire transparent resin laminate are improved.
  • the viscosity at 23 ° C. before curing of the adhesive is preferably 10000 mPa ⁇ s or less, more preferably 5000 mPa ⁇ s or less.
  • the coating film of the adhesive layer does not become too thick and is controlled to a desired thickness, so that a decrease in rigidity of the transparent resin laminate can be suppressed.
  • the lower limit of the viscosity is not particularly limited as long as a good coating film is formed, but is preferably 1 mPa ⁇ s or more in terms of workability at the time of application.
  • the viscosity of the adhesive before curing can be measured according to JIS7117-1: 1999 using a rotary B-type viscometer.
  • the total light transmittance of the adhesive layer is preferably 80% or more, and more preferably 85% or more. If it is 80% or more, the transparency is high and it is suitable as a display front plate.
  • the curing shrinkage rate of the adhesive is preferably small.
  • the cure shrinkage is preferably 10% or less, and more preferably 8% or less.
  • the adhesive is preferably fast-curing from the viewpoint of productivity.
  • a photo-curing adhesive an adhesive that cures with an integrated light quantity of 5000 mJ / cm 2 or less is preferable.
  • the transparent layer (B) when the transparent layer (B) is laminated directly on the transparent resin layer (A) and the transparent resin layer (A) and the transparent layer (B) are bonded, for example, transparent
  • the resin composition forming the layer (B) contains a curable resin
  • the resin composition before curing of the transparent layer (B) was applied to both sides of the transparent resin layer (A) to form a coating film.
  • the coating film is cured by active energy such as heat or light, and thereby the transparent resin layer (A) and the transparent layer (B) are bonded.
  • the resin composition forming the transparent layer (B) contains a thermosetting resin such as an epoxy resin
  • the transparent layer (B) before curing is superimposed on both sides of the transparent resin layer (A).
  • the layers may be laminated while being cured by heating to the required temperature while pressing with a hot platen.
  • the resin composition which forms a transparent layer (B) contains a thermoplastic resin
  • the softened transparent layer (B) There is a method in which the transparent resin layer (A) and the transparent layer (B) are adhered by solidifying by cooling to a temperature below the softening point while applying pressure on both sides of the transparent resin layer (A).
  • the resin composition forming the transparent layer (B) contains a photocurable resin
  • a glass fiber is used as the photocurable resin composition containing the compound (a) having a thiol group and the compound (b) having an alkenyl group.
  • a method of photocuring a photocurable resin composition after laminating a coating film (transparent layer (B)) immersed in a cloth onto the transparent resin layer (A), a compound (a) having a thiol group and alkenyl A method of photocuring a coating film (transparent layer (B)) obtained by immersing a photocurable resin composition containing a group-containing compound (b) in a glass fiber cloth while adhering to the transparent resin layer (A). Is mentioned.
  • the transparent resin laminate (C) used in the display front plate of this embodiment is transparent as a laminate because the transparent resin layer (A) and the transparent layer (B) are transparent. Moreover, also when laminating
  • the flexural modulus of the transparent resin laminate (C) used in the display front plate of the present embodiment is preferably 5 GPa or more, more preferably 7 GPa or more, and more preferably 8 GPa or more. If the flexural modulus of the transparent resin laminate is 5 GPa or more, the rigidity is improved and it is suitably used as a display front plate.
  • a transparent resin laminate having a bending elastic modulus of 5 GPa or more can be obtained by arranging a transparent layer (B) having a tensile elastic modulus of 10 GPa or more on both surfaces of a polycarbonate resin layer (A) having a bending elastic modulus of 2.6 GPa. And you can use it.
  • a transparent layer (B) containing a curable resin having a tensile elastic modulus of 10 MPa or more at a thickness of 1 mm is disposed on both surfaces of a polycarbonate resin layer (A) having a flexural modulus of 2.6 GPa.
  • a transparent resin laminate having an elastic modulus of 5 GPa or more is obtained and can be used.
  • the flexural modulus of the transparent resin laminate is 5 GPa or more, the rigidity is improved and it is suitably used as a display front plate.
  • the transparent resin laminate according to an embodiment of the present invention is a transparent resin layer (A) having a tensile elastic modulus of 10 GPa or more by impregnating and curing a glass fiber cloth with a resin composition containing a curable resin on both sides of the transparent resin layer (A). It is a transparent laminated body which bonded together the layer (B) with the transparent adhesive whose tensile elasticity modulus after hardening in thickness 1mm is 1 Mpa or more.
  • a transparent layer (B) of a transparent layer (B) having a tensile elastic modulus of 10 GPa or more is bonded to both surfaces of the polycarbonate resin layer (A) with the transparent adhesive, so that it is transparent and excellent in rigidity as a whole.
  • the body can be obtained.
  • This transparent laminate can be suitably used as a display front plate from the viewpoint of transparency and rigidity.
  • the tensile elastic modulus of the transparent layer (B) is smaller than 10 GPa, even if it is bonded to both surfaces of the polycarbonate resin layer (A) with a transparent adhesive having a tensile elastic modulus of 1 MPa or more when cured at a thickness of 1 mm, As a result, a transparent laminate having a bending elastic modulus of 5 GPa or more may not be obtained.
  • the total light transmittance of the transparent resin laminate (C) used in the display front plate of the present embodiment is 80% or more, preferably 85% or more. When it is 80% or more, the transparency is high and it is suitably used as a display front plate. Further, from the viewpoint of image contrast and color reproducibility, the light transmittance at 400 nm of the transparent resin laminate (C) is preferably 60% or more, more preferably 70% or more, and particularly preferably 75%. That's it.
  • a resin layer (smoothing layer) is provided on at least one surface of the transparent layer (B).
  • the resin layer is more preferably a polyethylene terephthalate film layer.
  • the resin layer improves the surface smoothness and makes it easy to provide functionality. That is, in the transparent resin laminate of one embodiment of the present invention, a polyethylene terephthalate film layer is disposed on at least one outer side of the transparent layer (B).
  • the polyethylene terephthalate film requires surface hardness
  • the scratch resistance is improved, and it is suitably used as a front plate for a display.
  • a polyethylene terephthalate film as a hard coat layer that has been subjected to a hard coat treatment may be bonded together, or after a polyethylene terephthalate film is bonded, a hard coat treatment may be performed.
  • a hard coat layer may be formed. That is, in the transparent resin laminate of one embodiment of the present invention, a hard coat layer is disposed on at least one outer side of the resin layer (for example, a polyethylene terephthalate film layer).
  • the polyethylene terephthalate film When used as a front plate for a display, the polyethylene terephthalate film is preferably subjected to a transparent conductive film to form an electrode layer integrated material.
  • a transparent conductive film layer By using an electrode layer-integrated material, an electrode layer becomes unnecessary, and material costs and process costs can be suppressed. That is, in the transparent resin laminate of one embodiment of the present invention, a transparent conductive film layer is disposed on at least one outer side of a resin layer (for example, a polyethylene terephthalate film layer).
  • a transparent electrode film When a transparent electrode film is applied to the above polyethylene terephthalate film, a polyethylene terephthalate film that has been subjected to a transparent electrode film in advance may be bonded, or a transparent electrode film may be applied after the polyethylene terephthalate film has been bonded.
  • patterning the film it may be performed after the polyethylene terephthalate film is bonded, or may be performed after the polyethylene terephthalate film is bonded.
  • the method for attaching the polyethylene terephthalate film (layer) to the transparent layer (B) is not particularly limited.
  • a photocurable resin is formed on both sides of the transparent layer (B) constituting the transparent resin laminate (C),
  • An example is a method in which a suitable transparent adhesive made of a thermosetting resin, a hot melt resin, or the like is applied, and then a polyethylene terephthalate film is laminated to cure the transparent adhesive.
  • the transparent layer (B) before hardening is laminated
  • the sulfur atom-containing resin forming the transparent layer (B) is a thermoplastic resin
  • the polyethylene terephthalate film may be laminated while being cured by heating to a required temperature while pressing with a heating plate.
  • the transparent layer (B) is preheated to a temperature at which it softens, it is stacked on both sides of the transparent resin layer (A), and a polyethylene terephthalate film as a resin layer is further stacked on the outside of the transparent layer (B). You may laminate
  • An epoxy-type adhesive agent an acrylic adhesive agent, and a urethane type adhesive agent can be used.
  • the transparent resin laminate (C) of this embodiment is formed into the shape of a display front plate by punching the transparent resin laminate (C) as necessary as a display front plate, and is used as a liquid crystal display device, organic electro -It is attached to the surface mainly for the purpose of protecting a display device of a flat display device such as a luminescence (organic EL) device.
  • the angle of the weave of the glass fiber cloth of the display front plate includes a method of giving an inclination of 1 ° or more with respect to the pixel portion row of the display element in order to prevent moire.
  • the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
  • the light transmittance, the Abbe number, and the elasticity modulus were measured by the method shown below.
  • Total light transmittance and light transmittance of each wavelength The total light transmittance is measured using a haze meter NDH-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and the light transmittance at each wavelength is measured using a spectrophotometer MULTISPEC-1500 (manufactured by Shimadzu Corporation). It was measured.
  • the Abbe number of E glass fiber cloth was measured by the following method. Using contact liquids (manufactured by Shimadzu Device Manufacturing Co., Ltd.) having different refractive indexes, a liquid having a refractive index of 589 nm and a refractive index of 1.535 to 1.570 is adjusted in increments of 0.001 to obtain an E glass fiber cloth (3313 53 S101S (manufactured by Nitto Boseki Co., Ltd.) and sandwiched in a slide glass with a 100 ⁇ m slit to produce a 100 ⁇ m-thick contact liquid-impregnated E glass fiber cloth, and a spectrum measurement is performed using a spectrophotometer It was.
  • contact liquids manufactured by Shimadzu Device Manufacturing Co., Ltd.
  • a liquid having a refractive index of 589 nm and a refractive index of 1.535 to 1.570 is adjusted in increments of 0.001 to obtain an E glass fiber cloth (3313 53 S101S (manu
  • the Abbe number was derived from the refractive index of D line (589 nm), F line (486 nm), and C line (656 nm) of E glass fiber cloth.
  • the tensile elastic modulus was measured using a dynamic viscoelasticity measuring device DMS6100 (manufactured by SII Nano Technology Co., Ltd.). The test length was 20 mm and the frequency was 1 Hz.
  • the tensile elastic modulus in the present invention means a storage elastic modulus at 20 ° C.
  • Example A-1 54 parts by mass of a cyclohexane oxide skeleton-containing epoxy resin (Celoxide 2021P, manufactured by Daicel Corp., refractive index 1.51), which is a resin having a lower refractive index than E glass fiber cloth, and sulfur having a higher refractive index than E glass fiber cloth 43 parts by mass of pentaerythritol tetrakisthiopropionate (hereinafter referred to as PETP, manufactured by Sakai Chemical Co., Ltd., refractive index 1.60), 4-mercaptomethyl-3,6-dithia-1, which is a resin containing a compound , 8-octanedithiol (hereinafter referred to as GST, synthesized according to Japanese Patent No.
  • a cyclohexane oxide skeleton-containing epoxy resin (Celoxide 2021P, manufactured by Daicel Corp., refractive index 1.51), which is a resin having a lower refractive index than
  • the monomer mixed solution is put into a vat, and an E glass fiber cloth (3313, 53, S101S, manufactured by Nitto Boseki Co., Ltd., refractive index 1.56) is immersed in the monomer mixed solution to complete the mold release treatment.
  • an E glass fiber cloth 3313, 53, S101S, manufactured by Nitto Boseki Co., Ltd., refractive index 1.56
  • a transparent epoxy adhesive KR-401 (manufactured by ADEKA Co., Ltd.) is applied to a polycarbonate resin plate (Iupilon NF-2000 manufactured by Mitsubishi Gas Chemical Co., Ltd., thickness 700 ⁇ m) with a bar coater to a thickness of about 30 ⁇ m, and air bubbles
  • the transparent layer 1 was stacked so as not to enter.
  • the other surface was coated with an adhesive, and the transparent layer 1 was layered thereon, irradiated with UV at 1000 mJ / cm 2 using a UV irradiation device, and turned over to be irradiated with 1000 mJ / cm 2 and cured.
  • a three-layer transparent resin laminate of transparent layer / transparent resin layer (PC) / transparent layer was formed to produce a display front plate.
  • the thickness of the display front plate was 913 ⁇ m.
  • light also reached the other transparent layer 1 by irradiation from one side, and both adhesive surfaces of the transparent resin layer (PC) were cured simultaneously, but light was also irradiated from the other side just in case.
  • Example A-2 The monomer mixture prepared in Example A-1 was placed in a vat, and E glass fiber cloth (3313 53 S101S, manufactured by Nitto Boseki Co., Ltd.) was immersed in the monomer mixture so that the monomer mixture was immersed in the polycarbonate resin. It was sandwiched between a plate (thickness 700 ⁇ m) and a 50 ⁇ m stretched polyethylene terephthalate film. This was placed in a blown oven and held at 40 ° C. for 5 hours, then heated to 120 ° C. at 0.5 ° C./min, cured by holding at 120 ° C.
  • Tetrabutylphosphonium O, O-Diethyl Phosphodithioate By Wako Pure Chemical Pure Chemical Industries Co., Ltd. 0.8 parts by mass was added and stirred for 5 minutes with a magnetic stirrer, was a monomer mixture solution.
  • E monomer fiber solution (3313 53 S101S, manufactured by Nitto Boseki Co., Ltd., refractive index 1.56) is immersed in the above monomer mixed solution and heated at 130 ° C. for 4 minutes to remove the solvent and resin. Semi-cured to prepare a prepreg. Then, this single prepreg is sandwiched between surface-treated SUS plates, set in a hot and cold press VH2-1630 (manufactured by Kitagawa Seiki Co., Ltd.), heated to 200 ° C. at 3 ° C./min, and at 200 ° C. for 1 hour. Holding and hardening, the transparent layer 2 was obtained.
  • the light transmittance at 550 nm and the flexural modulus were measured.
  • Example B-1 Tricyclodecane dimethanol diacrylate of an alicyclic resin having an alkenyl group, which is a resin having a lower refractive index than the E glass fiber cloth used (hereinafter referred to as A-DCP, manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.53) 83 parts by mass and 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol (hereinafter referred to as GST) which is a resin having a thiol group having a higher refractive index than the E glass fiber cloth used.
  • A-DCP a resin having a lower refractive index than the E glass fiber cloth used
  • GST 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol
  • the monomer mixed solution is put into a pad, and an E glass fiber cloth (3313 53 S101S, manufactured by Nitto Boseki Co., Ltd., refractive index 1.56) is immersed therein to allow the monomer mixed solution to be immersed therein.
  • an E glass fiber cloth 3313 53 S101S, manufactured by Nitto Boseki Co., Ltd., refractive index 1.56
  • a transparent epoxy adhesive KR-401 (manufactured by ADEKA Co., Ltd.) is applied to a polycarbonate resin plate (Iupilon NF-2000, manufactured by Mitsubishi Gas Chemical Co., Ltd., thickness 800 ⁇ m) with a bar coater to a thickness of about 30 ⁇ m.
  • the transparent fiber reinforced resin 1 is layered so that bubbles do not enter, and ultraviolet light is irradiated at 1000 mJ / cm 2 using an ultraviolet light irradiation device (eye ultraviolet curing device, manufactured by Eye Graphics Co., Ltd.). / Cm 2 irradiation and curing.
  • Comparative Example B-1 70 parts by mass of A-DCP (made by Shin-Nakamura Chemical Co., Ltd., refractive index 1.53) of an alicyclic resin having an alkenyl group, which is a resin having a refractive index lower than that of the used E glass fiber cloth, was used.
  • Shin-Nakamura Chemical, 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene hereinafter referred to as A-BPEF
  • A-BPEF 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene
  • the monomer mixed solution is put into a pad, and an E glass fiber cloth (3313 53 S101S, manufactured by Nitto Boseki Co., Ltd., refractive index 1.56) is immersed therein to allow the monomer mixed solution to be immersed therein.
  • an E glass fiber cloth 3313 53 S101S, manufactured by Nitto Boseki Co., Ltd., refractive index 1.56
  • Example C-1 51 parts by mass of a cyclohexane oxide skeleton-containing epoxy resin (Celoxide 2021P, manufactured by Daicel Corporation, refractive index 1.51), which is a resin having a lower refractive index than E glass cloth, and a cyclohexane oxide skeleton-containing epoxy resin (Celoxide 2000Z, ( Co., Ltd., manufactured by Daicel Corporation, refractive index 1.50) 3 parts by mass, pentaerythritol tetrakisthiopropionate (hereinafter referred to as PETP, manufactured by Sakai Chemical Co., Ltd.), which is a resin having a higher refractive index than the E glass cloth used.
  • a cyclohexane oxide skeleton-containing epoxy resin (Celoxide 2021P, manufactured by Daicel Corporation, refractive index 1.51), which is a resin having a lower refractive index than E glass cloth
  • Refractive index 1.60 43 parts by mass, 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol (hereinafter referred to as GST, synthesized in accordance with Japanese Patent No. 3048929, refractive index 1.70) 3 parts by mass
  • the parts were mixed and stirred with a magnetic stirrer for 5 minutes. Further, 1 part by mass of Tetrabutylphosphonium O, O-Diethyl Phosphodithioate (Wako Pure Chemical Industries, Ltd.) was added as a curing accelerator, and the mixture was stirred for 5 minutes with a magnetic stirrer to obtain a monomer mixture.
  • the monomer mixed solution is put into a vat, and E glass cloth (3313 53 S101S, manufactured by Nitto Boseki Co., Ltd., refractive index 1.56) is immersed in the monomer mixed solution so that the release treatment has been completed. It was sandwiched between polyethylene terephthalate films. This was placed in a blown oven and held at 40 ° C. for 5 hours, then heated to 120 ° C. at 0.5 ° C./min and cured by holding at 120 ° C. for 5 hours to obtain a transparent layer. The total thickness of the transparent layer was 186 ⁇ m (single side: 93 ⁇ m).
  • a transparent epoxy adhesive KR-401 (manufactured by ADEKA Co., Ltd.) was applied to a polycarbonate resin plate (Iupilon NF-2000, manufactured by Mitsubishi Gas Chemical Co., Ltd., thickness 800 ⁇ m) with a bar coater to a thickness of about 20 ⁇ m.
  • the transparent layer was layered so that no bubbles could enter.
  • the other surface was coated with an adhesive, and a transparent layer was laminated thereon.
  • UV was irradiated at 1000 mJ / cm 2 , and turned over to be irradiated at 1000 mJ / cm 2 to be cured.
  • Example C-2 Transparent layer / polycarbonate resin layer / transparent in the same manner as in Example 1 except that 48 parts by mass of Celoxide 2021P, 6 parts by mass of Celoxide 2000Z, 43 parts by mass of PETP, and 3 parts by mass of GST were mixed to obtain a monomer mixture. A three-layer transparent laminate of layers was obtained. The total thickness of this transparent layer was 178 ⁇ m (one side: 89 ⁇ m), and the thickness of the transparent laminate was 1028 ⁇ m.
  • Example C-3 Transparent layer / polycarbonate resin layer in the same manner as in Example C-1, except that 42 parts by mass of Celoxide 2021P, 12 parts by mass of Celoxide 2000Z, 41 parts by mass of PETP, and 5 parts by mass of GST were mixed to obtain a monomer mixture. / A three-layer transparent laminate of transparent layers was obtained. The total thickness of this transparent layer was 182 ⁇ m (single side: 91 ⁇ m), and the thickness of the transparent laminate was 1037 ⁇ m.
  • Example C-4 Transparent layer / polycarbonate resin layer in the same manner as in Example C-1, except that 36 parts by mass of Celoxide 2021P, 18 parts by mass of Celoxide 2000Z, 42 parts by mass of PETP, and 4 parts by mass of GST were mixed to obtain a monomer mixture. / A three-layer transparent laminate of transparent layers was obtained. The total thickness of the transparent layer was 172 ⁇ m (one side: 86 ⁇ m), and the thickness of the transparent laminate was 1045 ⁇ m.
  • Example C-5 Transparent layer / polycarbonate resin layer in the same manner as in Example C-1, except that 27 parts by mass of Celoxide 2021P, 27 parts by mass of Celoxide 2000Z, 40 parts by mass of PETP, and 6 parts by mass of GST were mixed to obtain a monomer mixture. / A three-layer transparent laminate of transparent layers was obtained. The total thickness of the transparent layer was 210 ⁇ m (single side: 105 ⁇ m), and the thickness of the transparent laminate was 1016 ⁇ m.
  • the tensile modulus of the curable resin for the transparent layer was measured by the following method.
  • a SUS frame (thickness 1 mm) with a hole of 2 cm ⁇ 4 cm is placed on a release-treated glass plate, filled with each monomer mixture into the hole, covered with the release-treated glass plate, and UV irradiation device
  • the sample was irradiated with UV at 1000 mJ / cm 2 , further turned over, and cured by irradiation at 1000 mJ / cm 2 to obtain a curable resin test piece.
  • the tensile elasticity modulus was measured by said method.
  • the total light transmittance of the transparent layer was 80% or more in all Examples.
  • the flexural modulus of the polycarbonate resin layer (thickness 800 ⁇ m) as the transparent resin layer (A layer) was 2.6 GPa. As shown in Table C2, in Examples C-1 to C-4, the flexural modulus of the transparent laminate was all 5 GPa or more. From this, it is confirmed that the rigidity (bending elastic modulus) of the laminate can be further improved by including a curable resin having a tensile elastic modulus of 10 MPa or more in the transparent layer.
  • Example D-1 Preparation of transparent resin laminate> [Example D-1] (Preparation of transparent layer (B-1)) E glass fiber cloth (3313 53 S101S, manufactured by Nitto Boseki Co., Ltd.) was used as the glass fiber cloth. 54 parts by mass of a cyclohexane oxide skeleton-containing epoxy resin (Celoxide 2021P, manufactured by Daicel Corporation, refractive index 1.51), which is a resin having a lower refractive index than the used E glass fiber cloth, is refracted more than the used E glass cloth.
  • a cyclohexane oxide skeleton-containing epoxy resin (Celoxide 2021P, manufactured by Daicel Corporation, refractive index 1.51), which is a resin having a lower refractive index than the used E glass fiber cloth, is refracted more than the used E glass cloth.
  • Tetrabutylphosphonium O, O-Diethyl Phosphorodithioate (Wako Pure Chemical Industries, Ltd.) was added as a curing accelerator and stirred with a magnetic stirrer for 5 minutes to obtain a curable resin composition.
  • the curable resin composition was placed in a vat, and an E glass fiber cloth was immersed therein to infiltrate the curable resin composition, and was sandwiched between release-treated PET films. This was placed in a blown oven and held at 40 ° C. for 5 hours, then heated to 120 ° C. at 0.5 ° C./min, cured by holding at 120 ° C. for 5 hours, and a transparent layer (B -1) was obtained. The tensile modulus of the transparent layer (B-1) was 19 GPa.
  • the other surface was coated with an adhesive, and the transparent layer (B-1) was layered thereon, irradiated with UV at 1000 mJ / cm 2 using a UV irradiation device, and turned over to be irradiated with 1000 mJ / cm 2 and cured.
  • a three-layer transparent laminate of transparent layer (B-1) / polycarbonate resin layer (A) / transparent layer (B-1) was obtained.
  • the thickness of this transparent laminate was 1013 ⁇ m. Note that light from one side also reached the other transparent layer (B-1), and both adhesive surfaces of the polycarbonate resin layer (A) were cured at the same time. did.
  • Example D-2 (Preparation of transparent layer (B-2)) E glass fiber cloth (3313 53 S101S, Nittobo Co., Ltd.) was used as the glass fiber cloth in the same manner as in Example 1.
  • 83 parts by mass of tricyclodecane dimethanol diacrylate (made by Shin-Nakamura Chemical Co., Ltd., refractive index 1.53) of an alicyclic acrylate resin which is a resin having a lower refractive index than the E glass fiber cloth used 17 parts by mass of GST, which is a resin having a higher refractive index than the conventional E glass fiber cloth, was mixed and stirred for 5 minutes with a magnetic stirrer.
  • a curable resin composition 0.5 part by mass of Irgacure 184 was added as a photopolymerization initiator and stirred for 5 minutes with a magnetic stirrer to obtain a curable resin composition.
  • the curable resin composition was placed in a pad, and an E glass fiber cloth was immersed therein to infiltrate the curable resin composition, and was sandwiched between the release-treated PET films. This was irradiated with UV at 1000 mJ / cm 2 using a UV irradiation apparatus, turned over, and irradiated with 1000 mJ / cm 2 to be cured to obtain a transparent layer (B-2) having a thickness of 119 ⁇ m.
  • the tensile modulus of the transparent layer (B-2) was 18 GPa.
  • Example D-3 A transparent layer (B-1) / polycarbonate resin layer (in the same manner as in Example D-1) except that GLX18-73N (manufactured by Guru Labs, tensile elastic modulus at a thickness of 1 mm is 26 MPa) was used as an adhesive. A three-layer transparent laminate of A) / transparent layer (B-1) was obtained. The thickness of this transparent laminate was 1058 ⁇ m.
  • Example D-4 A transparent layer (B) was prepared in the same manner as in Example D-1, except that Worldlock HRJ-21 (manufactured by Kyoritsu Chemical Industry Co., Ltd., tensile elastic modulus at a thickness of 1 mm was 0.32 MPa) was used as an adhesive. -1) A three-layer transparent laminate of polycarbonate resin layer (A) / transparent layer (B-1) was obtained. The thickness of this transparent laminate was 1061 ⁇ m.
  • a transparent epoxy adhesive KR-401 is applied to a polycarbonate resin plate (Iupilon NF-2000, manufactured by Mitsubishi Gas Chemical Co., Ltd., thickness 700 ⁇ m) with a bar coater at a thickness of about 30 ⁇ m, and polyethylene is used to prevent bubbles from entering.
  • a terephthalate (PET) resin film (thickness: 100 ⁇ m) was stacked.
  • PET terephthalate
  • the other surface was coated with an adhesive, overlapped with a PET resin film, irradiated with UV at 1000 mJ / cm 2 using a UV irradiation device, and further turned over and irradiated with 1000 mJ / cm 2 to be cured.
  • a three-layer transparent laminate of PET resin film / polycarbonate resin layer / PET resin film was obtained.
  • the thickness of this transparent laminate was 1014 ⁇ m.
  • the total light transmittance and bending elastic modulus of the transparent resin laminate; the tensile elastic modulus of the adhesive; and the tensile elastic modulus of the transparent layer (B) were evaluated by the evaluation methods described above. .
  • the tensile modulus of the adhesive was measured by the following method.
  • the total light transmittance of the transparent layer was 80% or more in all Examples.
  • the transparent laminate has a flexural modulus of 5 GPa or more, and is used for front plate materials such as various glazing materials, substrate materials, and display front plates as a substitute for glass. Therefore, a preferable rigidity can be obtained. From this, the rigidity (bending elastic modulus) of the laminate can be further improved by using an adhesive having a tensile elastic modulus of the transparent layer (B) of 10 GPa or more and an elastic modulus of 1 MPa or more. It is confirmed.
  • Comparative Example D-1 in which a film having a tensile modulus of 10 GPa or less was used for the transparent layer (B), an adhesive having an elastic modulus of 1 MPa or less was used, but the flexural modulus of the transparent laminate was 5 GPa or less. It was.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 透明性と剛性に優れた透明樹脂積層体(10)を提供する。透明樹脂層(A,1)の両面に、ガラス繊維布と、硫黄化合物を含有する樹脂組成物とを含む透明層(B,2)が配された透明樹脂積層体。

Description

透明樹脂積層体及び前面板
 本発明は、全光線透過率が80%以上、550nmの光線透過率が80%以上、400nmの光線透過率が60%以上であるような、広い波長範囲で光線透過率が高い透明樹脂積層体に関する。
 ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)に代表される透明な樹脂フィルム又はシートは、液晶ディスプレイ、携帯電話等の電気電子機器等の光学材料として広く使用されている。近年、携帯電話端末や携帯電子遊具、携帯情報端末(PDA)といった携帯型のディスプレイデバイスの前面パネル(前面板)には透明性や視認性に加え、野外でも使用可能な耐候性、、指による接触や携帯して運搬する際の傷つき防止を目的とした耐擦傷性、衝撃や加重による破損防止を目的とした耐衝撃性や剛性等の特性が求められている。
 これらの問題により液晶ディスプレイ等の前面板には化学強化ガラスが用いられるケースが多くみられるが、加工性やハンドリングの難しさ、コスト、比重の高さ、割れ易さなどの問題からガラスに代わる高剛性、寸法安定性等の特性を有した樹脂フィルム又はシートが強く求められている。
 ディスプレイデバイスの前面板材料の候補として、ポリメチルメタクリレート(PMMA)やポリカーボネート(PC)から構成されるフィルムやシート、ポリエステル中に充填剤としての微粒子を均一に分散させてなるポリエステルフィルム(特許文献1)、ポリカーボネート樹脂層(PC層)の少なくとも一方の面にアクリル系樹脂層(PMMA層)を設けた積層板(特許文献2)、シリコーン樹脂組成物をラジカル共重合させてなるシリコーン樹脂成形体(特許文献3)、PCに二軸延伸PETフィルムを張り合わせた積層体(特許文献4)などが提案されている。
特開2003-26826号公報 特開平11-58627号公報 特開2006-89685号公報 特開2012-183822号公報
 しかし、上記記載の材料では、ディスプレイデバイスの前面板材料に求められる透明性と剛性とを両立させることは困難であった。特に、携帯型のディスプレイデバイスの大型化に伴い、前面板に使用し得る樹脂部材としてより剛性の高いものが求められている。
 例えば、ポリメチルメタクリレート(PMMA)ではガラス転移温度が低く、割れが生じやすいために加工性に劣る。ポリカーボネート(PC)では、ガラス転移温度は145℃程度と良好なものの、表面硬度や剛性が劣りディスプレイ等の前面パネルとしては採用されにくい。ポリエチレンテレフタレート(PET)に関しても、二軸延伸したものは軟化温度が200℃以上と高く表面硬度も良好なものの、板厚を厚くすることが困難であり厚膜用途では対応が難しい(特許文献1)。PMMA層とPC層とを有する積層体の研究もなされ(特許文献2)、一部使用されているが加工工程での熱処理の際の反りによる加工性の問題や剛性の不足といった課題を抱えている。
 また、特許文献3におけるガラス代替用途としてのシリコーン樹脂成形体や、特許文献4におけるPCおよび二軸延伸ポリエチレンテレフタレート(PET)フィルムの積層体によって高剛性化をはかっているが、未だ十分とは言えない。
 本発明は、上記課題を解決した透明樹脂積層体を提供することを目的とする。
 本発明者らは、鋭意研究を重ねた結果、透明樹脂層(A)の両面に、ガラス繊維布と、硫黄化合物を含有する樹脂組成物とを含む透明層(B)を設けることで透明性と剛性に優れた透明樹脂積層体が得られることを見出し、本発明に到達した。すなわち本発明の一形態は以下の透明樹脂積層体およびディスプレイ用前面板を提供するものである。
(1) 透明樹脂層(A)の両面に、ガラス繊維布と、硫黄化合物を含有する樹脂組成物とを含む透明層(B)が配された透明樹脂積層体。
(2) 透明樹脂層(A)の両面に、ガラス繊維布と、チオール基を有する化合物(a)及びアルケニル基を有する化合物(b)を含有する樹脂組成物で形成された透明層(B)が配された、(1)に記載の透明樹脂積層体。
(3) 透明樹脂層(A)の両面に、厚さ1mmにおける硬化時の引張弾性率が10MPa以上である硬化性樹脂を含む、樹脂組成物をガラス繊維布に含浸させてなる透明層(B)が配された、(1)または(2)に記載の透明樹脂積層体。
(4) 前記透明樹脂層(A)と前記透明層(B)との間に透明接着剤を含む接着剤層を有する、(1)~(3)のいずれか一項に記載の透明樹脂積層体。
(5) 前記接着剤層の厚みが、1μm~100μmである、(4)に記載の透明樹脂積層体。
(6) 前記透明接着剤の厚さ1mmにおける硬化時の引張弾性率が、1MPa以上である、(4)または(5)に記載の透明樹脂積層体。
(7) 透明樹脂層(A)の両面に、硬化性樹脂を含む樹脂組成物をガラス繊維布に含浸及び硬化させて引張弾性率を10GPa以上とした透明層(B)を、厚さ1mmにおける硬化時の引張弾性率が1MPa以上の透明接着剤で貼り合わせた、(1)~(6)のいずれか一項に記載の透明樹脂積層体。
(8) 前記透明接着剤は、アクリル系接着剤、エポキシ系接着剤、およびウレタン系接着剤からなる群から選択される少なくとも一種である、(4)~(7)のいずれか一項に記載の透明樹脂積層体。
(9) 前記透明樹脂積層体の曲げ弾性率が、5GPa以上である、(1)~(8)のいずれか一項に記載の透明樹脂積層体。
(10) 前記透明樹脂層(A)の厚みが、100μm~2000μm、かつ前記透明層(B)の厚みが20μm~300μmである、(1)~(9)のいずれか一項に記載の透明樹脂積層体。
(11) 全光線透過率が80%以上である、(1)~(10)のいずれか一項に記載の透明樹脂積層体。
(12) 前記透明層(B)における樹脂組成物の硬化時におけるアッベ数と、ガラス繊維布のアッベ数との差が15以下である、(1)~(11)のいずれか一項に記載の透明樹脂積層体。
(13) 前記透明層(B)における樹脂組成物の屈折率と、ガラス繊維布の屈折率との差が0.01以下である、(1)~(12)のいずれか一項に記載の透明樹脂積層体。
(14) 前記透明層(B)における樹脂組成物が、チオール化合物とエポキシ樹脂との重合物を含有する、(1)~(13)のいずれか一項に記載の透明樹脂積層体。
(15) 前記透明層(B)におけるガラス繊維布の屈折率が、1.55より大きい、(1)~(14)のいずれか一項に記載の透明樹脂積層体。
(16) 前記透明層(B)のガラス繊維布がEガラスクロスである、(1)~(15)のいずれか一項に記載の透明樹脂積層体。
(17) 前記透明樹脂層(A)における樹脂成分が、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルメタクリレートなる群から選択される少なくとも一種を含む、(1)~(16)のいずれか一項に記載の透明樹脂積層体。
(18) 前記透明樹脂層(A)における樹脂成分が、ポリカーボネートを含む、(17)に記載の透明樹脂積層体。
(19) 前記透明層(B)の少なくとも一方の外側にポリエチレンテレフタレートフィルム層が配された、(1)~(18)のいずれか一項に記載の透明樹脂積層体。
(20) 前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側にハードコート層が配された、(19)に記載の透明樹脂積層体。
(21) 前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側に透明導電膜層が配された、(19)または(20)に記載の透明樹脂積層体。
(22) (1)~(21)のいずれか一項に記載の透明樹脂積層体を用いた、ディスプレイ用前面板。
 また、本発明の他の一形態によれば、以下のディスプレイ用前面板が提供される。
(1) 透明樹脂層(A)の両面に、ガラス繊維布及び硫黄化合物を含有する樹脂組成物で形成された透明層(B)が配された透明樹脂積層体(C)からなる、ディスプレイ用前面板。
(2) 前記透明樹脂層(A)の厚みが、100μm~2000μm、かつ前記透明層(B)の厚みが20μm~300μmである、(1)に記載のディスプレイ用前面板。
(3) 前記透明樹脂積層体(C)の曲げ弾性率が、5GPa以上である、(1)又は(2)に記載のディスプレイ用前面板。
(4) 全光線透過率が80%以上である、(1)~(3)のいずれか一項に記載のディスプレイ用前面板。
(5) 前記透明層(B)における、硫黄化合物を含有する樹脂組成物の硬化時におけるアッベ数と、ガラス繊維布のアッベ数の差が15以下である、(1)~(4)のいずれか一項に記載のディスプレイ用前面板。
(6) 前記透明層(B)における、硫黄化合物を含有する樹脂組成物の硬化時における屈折率と、ガラス繊維布の屈折率の差が0.01以下である、(1)~(5)のいずれか一項に記載のディスプレイ用前面板。
(7) 前記透明層(B)における、硫黄化合物を含有する樹脂組成物が、チオール化合物とエポキシ樹脂の重合物を含有するものである、(1)~(6)のいずれか一項に記載のディスプレイ用前面板。
(8) 前記透明層(B)におけるガラス繊維布の屈折率が、1.55より大きいものである、(1)~(7)のいずれか一項に記載のディスプレイ用前面板。
(9) 前記透明樹脂層(A)における樹脂成分が、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルメタクリレートから選ばれる群のうち、いずれか一種以上である、(1)~(8)のいずれか一項に記載のディスプレイ用前面板。
(10) 前記透明樹脂積層体(C)のさらに少なくとも一方の外側にポリエチレンテレフタレートフィルム層が配された、(1)~(9)のいずれか一項に記載のディスプレイ用前面板。
(11) 前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側にハードコート層が配された、(10)に記載のディスプレイ用前面板。
(12) 前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側に透明導電膜層が配された、(10)に記載のディスプレイ用前面板。
 また、本発明のさらに他の一形態によれば、以下のディスプレイ用前面板が提供される。
(1) 透明樹脂層(A)の両面に、ガラス繊維布及びチオール基を有する化合物(a)及びアルケニル基を有する化合物(b)を含有する光硬化性樹脂組成物で形成された透明層(B)が配された、透明樹脂積層体(C)からなるディスプレイ用前面板。
(2) 前記透明樹脂層(A)の厚みが、100μm~2000μm、かつ前記透明層(B)の厚みが20μm~300μmである、(1)に記載のディスプレイ用前面板。
(3) 前記透明樹脂積層体(C)の曲げ弾性率が、5GPa以上である、(1)又は(2)に記載のディスプレイ用前面板。
(4) 全光線透過率が80%以上である、(1)~(3)のいずれか一項に記載のディスプレイ用前面板。
(5) 前記透明層(B)における、光硬化性樹脂組成物の硬化時におけるアッベ数と、ガラス繊維布のアッベ数の差が15以下である、(1)~(4)のいずれか一項に記載のディスプレイ用前面板。
(6) 前記透明層(B)における、光硬化性樹脂組成物の硬化時における屈折率と、ガラス繊維布の屈折率の差が0.01以下である、(1)~(5)のいずれか一項に記載のディスプレイ用前面板。
(7) 前記透明層(B)におけるガラス繊維布の屈折率が、1.55より大きいものである、(1)~(6)のいずれか一項に記載のディスプレイ用前面板。
(8) 前記透明樹脂層(A)における樹脂成分が、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルメタクリレートから選ばれる群のうち、いずれか一種以上である、(1)~(7)のいずれか一項に記載のディスプレイ用前面板。
(9) 前記透明樹脂積層体(C)のさらに少なくとも一方の外側にポリエチレンテレフタレートフィルム層が配された、(1)~(8)のいずれか一項に記載のディスプレイ用前面板。
(10) 前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側にハードコート層が配された、(9)に記載のディスプレイ用前面板。
(11) 前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側に透明導電膜層が配された、(10)に記載のディスプレイ用前面板。
 また、本発明のさらに他の一形態によれば、以下の透明積層体が提供される。
(1) ポリカーボネート樹脂層(A)の両面に、厚さ1mmにおける硬化時の引張弾性率が10MPa以上である硬化性樹脂にガラス繊維布を含浸させた透明層(B)が配された、透明積層体であって、全体としての曲げ弾性率が5GPa以上である、透明積層体。
(2) 前記ポリカーボネート樹脂層(A)の厚みが、100μm~2000μm、かつ前記透明層(B)の厚みが20μm~300μmである、(1)に記載の透明積層体。
(3) 前記透明層(B)の硬化性樹脂が、エポキシ樹脂を含有するものである、(1)又は(2)に記載の透明積層体。
(4) 前記透明層(B)のガラス繊維布がEガラスクロスである、(1)~(3)のいずれか一項に記載の透明積層体。
(5) 前記透明層(B)の全光線透過率が80%以上である、(1)~(4)のいずれか一項に記載の透明積層体。
(6) (1)~(5)のいずれか一項に記載の透明積層体のさらに少なくとも一方の外側にポリエチレンテレフタレートフィルム層が配された、透明積層体。
(7) 前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側にハードコート層が配された、(6)に記載の透明積層体。
(8) 前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側に透明導電膜層が配された、(6)に記載の透明積層体。
(9) (1)~(8)のいずれか一項に記載の透明積層体を用いたディスプレイ用前面板。
である。
 また、本発明のさらに他の一形態によれば、以下の透明積層体が提供される。
(1) ポリカーボネート樹脂層(A)の両面に、硬化性樹脂をガラス繊維布に含浸及び硬化させて引張弾性率を10GPa以上とした透明層(B)を、厚さ1mmにおける硬化時の引張弾性率が1MPa以上の透明接着剤で貼り合わせた透明積層体であって、全体としての曲げ弾性率が5GPa以上である、透明積層体。
(2) 全光線透過率が80%以上である、(1)に記載の透明積層体。
(3) 前記ポリカーボネート樹脂層(A)の厚みが100μm~2000μm、かつ前記透明層(B)の厚みが20μm~300μmである、(1)又は(2)に記載の透明積層体。
(4) (1)~(3)のいずれか一項に記載の透明積層体の少なくとも一方の外側にポリエチレンテレフタレートフィルム層が配された、透明積層体。
(5) 前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側にハードコート層が配された、(4)に記載の透明積層体。
(6) 前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側に透明導電膜層が配された、(4)に記載の透明積層体。
(7) (1)~(6)のいずれかに記載の透明積層体を用いた、ディスプレイ用前面板。
 本発明の透明樹脂積層体は透明性と剛性に優れ、加工性にも優れることからガラスの代替として好適である。
本発明の一実施形態によるディスプレイ用前面板を示す断面概略図である。 本発明の一実施形態によるディスプレイ用前面板を示す断面概略図である。 本発明の一実施形態に係る透明樹脂積層体の断面写真であって、実施例A-2で製造した透明樹脂積層体の断面写真である。
 以下、添付した図面を参照しながら、本発明について説明する。なお、以下は本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本発明の一形態は、透明樹脂層(A)の両面に、ガラス繊維布と、硫黄化合物を含有する樹脂組成物とを含む透明層(B)が配された透明樹脂積層体である。
 本発明の透明樹脂積層体は透明で剛性に優れており、加工性、耐衝撃性にも優れる。そのため、該透明樹脂積層体は透明性基板材料、透明性保護材料等として用いられ、特にガラス代替として各種グレージング材料、基板材料やディスプレイ用前面板等の前面板材料に好適に使用される。なお、本明細書において、「透明樹脂積層体」を単に「透明積層体」または「積層体」とも称する。
 本発明における透明とは、全光線透過率が80%以上であることを指す。さらに、本発明において、可視光領域の一般的な波長である550nmの光線透過率が80%以上であり、400nmの光線透過率が60%以上であることが好ましい。特に、400nmの光線透過率は画像のコントラスト性や色再現性の観点で重要であり、当該波長領域での光線透過率を高めることが好ましい。全光線透過率および400nmおよび550nmの光線透過率は後述する実施例に記載される方法により測定することができる。
 本発明の一実施形態は、透明樹脂積層体を用いたディスプレイ用前面板である。図1は、本発明の一実施形態によるディスプレイ用前面板を示す断面概略図である。図1に示すディスプレイ用前面板10は、透明樹脂層(A)1の両面に接着剤層3、および、ガラス繊維布と硫黄化合物を含有する樹脂組成物とを含む透明層(B)2が順に積層された透明樹脂積層体(C)からなる。すなわち本実施形態の前面板10は、透明樹脂層(A)1と透明層(B)2との間に透明接着剤を含む接着剤層3を有する。ただし、前面板10は接着剤層3を有しなくてもよい。
 図2は本発明の他の一実施形態によるディスプレイ用前面板を示す断面概略図である。図2に示すディスプレイ用前面板10は、透明樹脂層(A)1の両面に、ガラス繊維布及び硫黄化合物を含有する樹脂組成物を含む透明層(B)2が配された透明樹脂積層体(C)からなる。本実施形態では、透明樹脂層(A)上に透明層(B)2が直接配置されている。透明樹脂層(A)と透明層(B)とは接着されていなくてもよいが、より好ましくは、高剛性の面から、透明樹脂層(A)と透明層(B)とが接着されている。すなわち、本発明の一実施形態において、透明樹脂層(A)と透明層(B)とは直接接着されているか、または、接着剤層3を介して接着されている。
 図3は本発明の一実施形態による透明樹脂積層体の断面写真であり、以下の実施例A-2で製造した透明樹脂積層体の断面写真に相当する。図3に示す透明樹脂積層体は透明樹脂層(A)1としてのPC板の両面に透明層(B)2としてのGC強化フィルムおよび樹脂層としてのポリエチレンテレフタレートフィルム層4が順に積層されて一体化されている。なお、図3における層5は透明樹脂積層体を切断時に固定するために使用したシートである。図3において、透明層(B)はガラス繊維布21、チオール基を有する化合物およびエポキシ基を有する化合物からなる樹脂組成物22から形成されたGC強化フィルムで構成されている。本実施形態においてガラス繊維布21はEガラスクロスであり、タテ糸およびヨコ糸(ガラス糸)が編みこまれて形成されている(図中白色部分)。当該ガラスクロス中に樹脂組成物が含浸されて硬化されることにより、透明層(B)2が形成される。
 一般に、ガラス繊維布及び硫黄化合物を含有する樹脂組成物を含む透明層(B)は透明樹脂層(A)に比べて剛性(引張弾性率など)が高い。このように、ガラス繊維布を含有する剛性が高い層(B)を比較的剛性が低い層(A)の両面に配することで、ガラス繊維布入りの層の剛性が反映され、層全体としての剛性を高くすることができる。例えば、透明樹脂層としてポリカーボネート樹脂を用いると、それだけの剛性(曲げ弾性率)は2.6GPaであるが、ガラス繊維布入りの層を両面に配することで、剛性が向上し得る。
 透明樹脂積層体(C)は透明樹脂層(A)、透明層(B)、ならびに必要に応じて配置される接着剤層、樹脂層(平滑化層)、ハードコート層、および透明導電膜層を有する。以下、本発明の透明樹脂積層体の各構成要素について説明する。
 透明樹脂層(A)は主として樹脂で構成される透明の層(フィルム・シート)である。透明樹脂層(A)の厚さは特に限定されないが、100μm~2000μmが好ましく、200μm~1000μmであることがより好ましい。透明樹脂層(A)の厚さがこの範囲であると剛性が高くなり、透明樹脂積層体(C)全体の質量増加を抑制できる。
 透明樹脂層(A)に用いられる樹脂(樹脂成分)は特に限定されないが、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルメタクリレート、環状シクロオレフィン系樹脂、ノルボルネン樹脂、アクリル樹脂、ポリスチレン、ポリエーテルサルホン、ポリアリレート、ポリエステル樹脂、ポリアセタール樹脂、ポリビニルブチラール、ポリビニルアルコール、ウレタン樹脂などが挙げられ、その中でも、透明性および剛性の面からポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルメタクリレートなる群から選択される少なくとも一種が好ましく、さらに透明性、打ち抜き加工性の面からポリカーボネート樹脂が特に好ましい。これらの樹脂は1種を単独で用いても、複数を混合して用いてもよい。
 透明樹脂層(A)は、主として成形により層状に加工される。成形方法は特に限定されないが、たとえば一般的な熱可塑性樹脂のフィルム化法である溶融押し出し成形法や溶融流延法、カレンダー法などを用いることができる。
 好ましい一実施形態において、透明樹脂層(A)は層状のポリカーボネート樹脂からなる。層状ポリカーボネート樹脂を用いることにより、透明性、剛性、耐衝撃性、可撓性、打ち抜き加工性に優れた積層体とすることができる。このような層状ポリカーボネート樹脂として、例えば、三菱ガス化学株式会社のユーピロンNF-2000等を好ましく使用できる。
 また透明樹脂積層体を形成する際に用いる時の厚みに成型した透明樹脂層(A)の全光線透過率が80%以上であることが好ましい。80%以上であれば、得られる積層体(ディスプレイ用前面板)の透過率が低下を抑制することができる。
 透明樹脂層(A)は樹脂以外に、本発明の趣旨を逸脱しない範囲で、各種添加剤を含みうる。添加剤としては、熱安定剤、酸化防止剤、難燃剤、難燃助剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、蛍光増白剤、防曇剤、流動性改良剤、可塑剤、分散剤、および抗菌剤等が挙げられる。これらは単独で使用してもよいし、2種以上を混合して使用してもよい。
 熱安定剤として、フェノール系やリン系、硫黄系の熱安定剤を挙げることができる。具体的には、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸等のリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウム等の酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛等、第1族又は第10族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物等を挙げることができる。あるいは又、分子中の少なくとも1つのエステルがフェノール及び/又は炭素数1~25のアルキル基を少なくとも1つ有するフェノールでエステル化された亜リン酸エステル化合物(a)、亜リン酸(b)及びテトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレン-ジ-ホスホナイト(c)の群から選ばれた少なくとも1種を挙げることができる。これらは、単独で使用してもよいし、2種以上を混合して使用してもよい。
 熱安定剤の添加割合は、配合する場合、樹脂成分100質量部に対して、例えば0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、1質量部以下、好ましくは0.7質量部以下、より好ましくは0.5質量部以下である。熱安定剤が少なすぎると熱安定効果が不十分となる可能性があり、熱安定剤が多すぎると、効果が頭打ちとなり、経済的でなくなる可能性がある。
 酸化防止剤として、フェノール系酸化防止剤、ヒンダードフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリフェノール系酸化防止剤等を挙げることができる。
 酸化防止剤の添加割合は、配合する場合、樹脂成分100質量部に対して、例えば0.001質量部以上、好ましくは0.01質量部以上であり、また、1質量部以下、好ましくは0.5質量部以下である。酸化防止剤の添加割合が下限値以下の場合、酸化防止剤としての効果が不十分となる可能性があり、酸化防止剤の添加割合が上限値を超える場合、効果が頭打ちとなり、経済的でなくなる可能性がある。
 難燃剤として、例えば、有機スルホン酸金属塩等が挙げられる。有機スルホン酸金属塩としては、脂肪族スルホン酸金属塩及び芳香族スルホン酸金属塩等が挙げられ、これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。また、金属塩としては、アルカリ金属塩及びアルカリ土類金属塩が好ましい。また、有機スルホン酸金属塩以外の難燃剤を配合してもよい。
 樹脂成分100質量部に対する、難燃剤の添加質量は、例えば、0.005質量部~0.1質量部であり、好ましくは0.01質量部~0.1質量部、より好ましくは0.03質量部~0.09質量部である。
 難燃助剤として、例えばシリコーン化合物を加えることができる。シリコーン化合物としては、分子中にフェニル基を有するものが好ましい。フェニル基を有することによりシリコーン化合物の、樹脂成分(特にポリカーボネート)中への分散性が向上し、透明性と難燃性に優れる。
 難燃助剤の添加割合は、配合する場合、樹脂成分100質量部に対して、例えば0.1質量部以上、好ましくは0.2質量部以上であり、また、7.5質量部以下、好ましくは5質量部以下である。難燃助剤の添加割合が下限値以下の場合、難燃性が不十分となる可能性があり、難燃助剤の添加割合が上限値を超える場合、デラミ等外観不良が発生し透明性が低下すると共に、難燃性が頭打ちとなり、経済的でなくなる可能性がある。
 紫外線吸収剤として、酸化セリウム、酸化亜鉛等の無機紫外線吸収剤の他、ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オギザニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物、サリチル酸フェニル系化合物等の有機紫外線吸収剤を挙げることができる。これらの中では、ベンゾトリアゾール系やベンゾフェノン系の有機紫外線吸収剤が好ましい。
 紫外線吸収剤の添加割合は、配合する場合、樹脂成分100質量部に対して、例えば0.01質量部以上、好ましくは0.1質量部以上であり、また、3質量部以下、好ましくは1質量部以下である。紫外線吸収剤の添加割合が下限値以下の場合、耐候性の改良効果が不十分となる可能性があり、紫外線吸収剤の添加割合が上限値を超える場合、モールドデボジット等が生じ、金型汚染(冷却ロール汚染)を引き起こす可能性がある。
 離型剤として、カルボン酸エステル、ポリシロキサン化合物、パラフィンワックス(ポリオレフィン系)等を挙げることができる。これらの2種類以上を併用してもよい。
 離型剤の添加割合は、配合する場合、樹脂成分100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、また、2質量部以下、より好ましくは1質量部以下である。離型剤の添加割合が下限値以下の場合、離型性の効果が十分でない場合があり、離型剤の添加割合が上限値を超える場合、耐加水分解性の低下、射出成形時の金型汚染等が生じる可能性がある。
 着色剤としての染顔料として、例えば、無機顔料、有機顔料、有機染料等を挙げることができる。無機顔料として、例えば、カーボンブラック、カドミウムレッド、カドミウムイエロー等の硫化物系顔料;群青等の珪酸塩系顔料;酸化チタン、亜鉛華、弁柄、酸化クロム、鉄黒、チタンイエロー、亜鉛-鉄系ブラウン、チタンコバルト系グリーン、コバルトグリーン、コバルトブルー、銅-クロム系ブラック、銅-鉄系ブラック等の酸化物系顔料;黄鉛、モリブデートオレンジ等のクロム酸系顔料;紺青等のフェロシアン系顔料等を挙げることができる。また、着色剤としての有機顔料及び有機染料として、例えば、銅フタロシアニンブルー、銅フタロシアニングリーン等のフタロシアニン系染顔料;ニッケルアゾイエロー等のアゾ系染顔料;チオインジゴ系、ペリノン系、ペリレン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系等の縮合多環染顔料;キノリン系、アンスラキノン系、複素環系、メチル系の染顔料等を挙げることができる。そして、これらの中では、熱安定性の点から、酸化チタン、カーボンブラック、シアニン系、キノリン系、アンスラキノン系、フタロシアニン系染顔料等が好ましい。尚、染顔料は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。また、染顔料は、押出時のハンドリング性改良、樹脂組成物中への分散性改良の目的のために、ポリスチレン系樹脂、ポリカーボネート系樹脂、アクリル系樹脂とマスターバッチ化されたものも用いてもよい。
 着色剤の添加割合は、配合する場合、樹脂成分100質量部に対して、例えば1質量部以下、好ましくは0.5質量部以下、より好ましくは0.1質量部以下である。着色剤の添加割合が多すぎると耐衝撃性が十分で無くなる可能性がある。
 透明層(B)はガラス繊維布と、硫黄化合物を含有する樹脂組成物とを含むことを特徴とする。透明層(B)は硫黄化合物を含有する樹脂組成物とガラス繊維布とのアッベ数と589nmの屈折率が一致するように調整して透明化する。
 透明層(B)の厚さは20μm~300μmが好ましく、50μm~200μmであることがより好ましい。透明層(B)の厚さがこの範囲であると剛性と透明性が高められる傾向にある。
 硫黄化合物は、透明層(B)の透明性および剛性を確保できる限り、特に限定されない。硫黄化合物としては、例えば、硫黄原子を含有する熱可塑性樹脂、硫黄原子を含有する熱硬化性樹脂、および硫黄原子を含有する光硬化性樹脂からなる群から選択される硫黄原子含有樹脂が挙げられる。中でも光学的特性(透明性)面から硫黄原子を含有する熱硬化性樹脂または光硬化性樹脂が好ましい。
 硫黄原子を含有する熱可塑性樹脂は特に限定されないが、ポリチオカーボネート樹脂、ポリチオエステル樹脂、ポリオキソチオエステル樹脂、ポリチオエーテル樹脂、硫黄含有環状ポリオレフィン樹脂などの熱可塑性樹脂が挙げられる。
 硫黄原子を含有する熱硬化性樹脂は特に限定されないが、エポキシ樹脂と多官能チオール化合物とを含む組成物を熱硬化反応させて形成される熱硬化性樹脂が挙げられる。
 硫黄原子を含有する光硬化性樹脂は特に限定されないが、炭素-炭素二重結合を有する化合物と(多官能)チオール化合物とを含む光硬化性樹脂組成物を光硬化反応させて形成される光硬化性樹脂、エポキシ樹脂と多官能チオール化合物とを含む光硬化性樹脂組成物を光硬化反応させて形成される光硬化性樹脂が挙げられる。
 透明層(B)の光硬化性樹脂組成物を硬化する際に用いられる活性光線は、光硬化性樹脂組成物を硬化させるために使用されるものであれば制限されないが、例えば、紫外線、近紫外線、可視光線及び近赤外線などを使用することができる。副反応が起こりにくいという観点から、紫外線を用いることが好ましい。該紫外線を照射するための光源としては、例えば、メタルハライドタイプ及び高圧水銀灯ランプ等が挙げられる。
 本発明の一実施形態において、透明層(B)の樹脂組成物は硬化性樹脂を含む。硬化性樹脂を含む場合には屈折率調整および加工性の点で好ましい。より好ましくは、透明層(B)の樹脂組成物は、厚さ1mmにおける硬化時の引張弾性率が10MPa以上の硬化性樹脂を含む。すなわち、本発明の一実施形態の透明樹脂積層体は、透明樹脂層(A)の両面に、厚さ1mmにおける硬化時の引張弾性率が10MPa以上である硬化性樹脂を含む樹脂組成物をガラス繊維布に含浸させてなる透明層(B)が配されたものである。特に好ましい態様では、透明性、剛性、耐衝撃性、可撓性、打ち抜き加工性に優れることから、当該透明樹脂層(A)はポリカーボネート樹脂層である。なお、本明細書において「硬化時の引張弾性率」とは熱硬化または光硬化した後の樹脂の引張弾性率を意味する。
 特に、本発明者らは該剛性が高い層(B)に使用される硬化性樹脂を透明かつ厚さ1mmにおける硬化時の引張弾性率が10MPa以上のものとすることで、層全体として剛性に優れた(好ましくは曲げ弾性率が5GPa以上の)積層体となり、ディスプレイ用前面(保護)板に適した積層体が得られることを見出した。10MPa未満のものであると、むしろ透明積層体全体としての曲げ弾性率が、ポリカーボネート樹脂層(A)の有する曲げ弾性率(2.6GPa)よりも低下する場合がある。透明層(B)に用いる硬化性樹脂の硬化時の引張弾性率としては、70MPa以上であることがより好ましく、100MPa以上であることがさらに好ましく、500MPa以上であることが特に好ましい。
 また、硬化性樹脂の引張弾性率が高すぎると材料に負荷が加わった時に発生するクラック等が問題になるため、硬化性樹脂の硬化時の引張弾性率は5GPa以下であることが好ましい。そのような特性を有する硬化性樹脂としては、例えば、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、オキセタン樹脂等を用いることができる。
 透明性の点でより好ましくは、樹脂組成物がチオール化合物とエポキシ樹脂との重合物を含有し、特に好ましくは樹脂組成物がチオール化合物およびエポキシ樹脂の熱硬化反応による重合物を含有する。
 また、本発明の一実施形態において、透明層(B)は、硬化性樹脂を含む樹脂組成物をガラス繊維布に含浸及び硬化させてなり、当該透明層(B)の硬化時(硬化後)の引張弾性率が10GPa以上である。
 引張弾性率が10GPa以上の透明層(B)を得る方法としては、特定の硬化性樹脂を用いる方法が挙げられる。そのような特性を有する硬化性樹脂としては、特に限定されず、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、オキセタン樹脂等を用いることができるが、用いる硬化性樹脂の種類によっては、透明層(B)の引張弾性率が10GPaを下回ることがあり、そのような硬化性樹脂を使用することは好ましくない。
 このような透明層(B)を透明樹脂層(A)の両面に前記透明接着剤で貼り合わせることで、全体としての曲げ弾性率が5GPa以上である透明で剛性に優れた透明積層体を得ることができる。この透明積層体は透明性及び剛性の観点から、ディスプレイ用前面板として好適に用いることができる。特に好ましい態様では、透明性、剛性、耐衝撃性、可撓性、打ち抜き加工性に優れることから当該透明樹脂層(A)はポリカーボネート樹脂層である。
 透明層(B)の全光線透過率は80%以上が好ましく、85%以上がより好ましい。透明層(B)の全光線透過率がこの範囲であれば、透明樹脂積層体全体の透明性を良好とすることができ、ディスプレイ用前面板として好ましい。
 透明層(B)を構成する樹脂組成物のアッベ数とガラス繊維布とのアッベ数差は、高い透明性を得るために15以下であることが好ましく、10以下がより好ましい。当該アッベ数差の下限は特に制限されず、高い透明性を得る観点から小さいほど好ましく、最も好ましくは0である。なお、樹脂組成物のアッベ数は、樹脂組成物が、硬化性樹脂を含む場合には硬化後のアッベ数を意味する。アッベ数差が15以下の場合には、得られる透明層(B)の400nm付近の短波長の光線透過率が高くなり、ディスプレイ用前面板として好ましい。アッベ数は可視光線の屈折率の波長依存性の指標であり、一般的にガラスのほうが樹脂より値が大きく、屈折率が大きいほど一致させることが困難である。硫黄化合物を含有する樹脂組成物を用いることで樹脂のアッベ数がガラス繊維布のアッベ数に近づき、広い波長領域の光線透過率が向上し高い透明性が得られる。
 また、透明層(B)を構成する樹脂組成物の屈折率とガラス繊維布の屈折率差は、高い透明性を得るために0.01以下であることが好ましく、0.005以下がより好ましい。具体的には、樹脂組成物とガラス繊維布とのD線(589nm)の屈折率差が0.01以下となるようにすることが好ましく、0.005以下となるようにすることがより好ましい。当該D線(589nm)の屈折率差の下限は特に制限されず、高い透明性を得る観点から小さいほど好ましく、最も好ましくは0である。なお、樹脂組成物の屈折率は、樹脂組成物が後述のように、硬化性樹脂を含む場合には硬化後の屈折率を意味する。屈折率差が0.01以下の場合には、得られる透明層(B)の透過率が高くなり、ディスプレイ用前面板として好ましい。ガラス繊維布とD線の屈折率差を0.01以下にすることで透明層(B)を得る場合は、ガラス繊維布とD線の屈折率差が0.01以下である樹脂を単独で用いてもよいし、ガラス繊維布よりもD線の屈折率が高い樹脂と低い樹脂とを混合して用いてもよい。
 また、透明性が重視されるような用途においては、D線の屈折率だけでなく、透明層(B)の全光線透過率が80%以上で、可視光領域の一般的な波長である550nmにおける光線透過率が70%以上となるようにすることが好ましい。
 前記透明層(B)を構成する硫黄化合物を含有する樹脂組成物とガラス繊維布とのアッベ数差を15以下、屈折率差を0.01以下にするためには
(1)ガラス繊維布のアッベ数、屈折率に合った硫黄原子を含有する樹脂を選択する方法、
(2)ガラス繊維布よりも屈折率の高い樹脂とガラス繊維布よりも屈折率の低い樹脂とを組み合わせることにより硫黄化合物を含有する樹脂組成物のアッベ数、屈折率をガラス繊維布と一致させる方法等が採用され得る。高い透明性を得るためには樹脂組成物とガラス繊維布の屈折率とを精密に一致させることが好ましいため、(1)の方法において複数の反応性モノマー(硬化性樹脂)および硬化剤を用いる方法または(2)の方法が好ましい。なお、本明細書において、屈折率が一致するとは、屈折率差が0.01以下、好ましくは0.005以下であることを意味する。また、アッベ数が一致するとは、アッベ数差が15以下、好ましくは10以下であることを意味する。
 方法(1)
 前記硫黄原子を含有する樹脂の屈折率とガラス繊維布の屈折率が一致している場合は、硫黄原子を含有する樹脂をそのまま使用することができる。例えば、共重合樹脂や硬化性樹脂を構成するモノマーや硬化剤の種類や量を調整することで、屈折率がガラス繊維と一致するように構成することができる。このような樹脂としては、例えば、硫黄原子を含有する熱可塑性樹脂、硫黄原子を含有する熱硬化性樹脂、および硫黄原子を含有する光硬化性樹脂から選択される少なくとも1種の硫黄原子含有樹脂が挙げられる。この場合、硫黄原子を含有する樹脂を1種類のみを用いても良いし、2種類以上を組み合わせて用いてもよい。屈折率の異なる複数の硫黄原子含有樹脂(モノマー)を混合させることで樹脂組成物とガラス繊維布の屈折率とを精密に一致させることができ、高い透明性を達成し得る。
 前記(1)で選択される、ガラス繊維布のアッベ数、屈折率に合った硫黄原子を含有する樹脂としては、例えばガラス繊維布のガラス種がEガラス(アッベ数58、屈折率1.56)である場合には、ポリチオエステルとポリエステルとの共重合体のような熱可塑性の共重合樹脂やエピスルフィド樹脂のような熱硬化性樹脂等が挙げられる。また、ガラス種がSガラス、Tガラス(アッベ数68、屈折率1.53)である場合にも同じくポリチオエステルとポリエステルの共重合体のような熱可塑性の共重合樹脂やエピスルフィド樹脂のような熱硬化性樹脂等が挙げられる。該共重合体の場合、屈折率及びアッベ数は共重合する硫黄化合物(硫黄原子含有化合物)と硫黄を含まない化合物の比率によって異なり、硫黄化合物が少ないほど屈折率が低くなるので適宜併せて用いるガラス種によって使用量を使い分ける。また、該エピスルフィド樹脂の屈折率、アッベ数はエピスルフィド樹脂中の硫黄含有率によって異なり、硫黄含有率が少ないほど屈折率が低くなるため、例えばEガラス種を用いる場合は、それに見合った硫黄含有率のエピスルフィド樹脂を用い、Sガラス、Tガラスを用いる場合は、それに見合った硫黄含有率のエピスルフィド樹脂を用いる。
 また、前記(1)のガラス繊維布とアッベ数および屈折率が一致する硫黄原子含有樹脂として、硬化性樹脂の反応性モノマーと硫黄原子を含有する硬化剤との硬化反応により形成される硬化性樹脂(熱硬化性樹脂または光硬化性樹脂)を用いることもできる。例えば、ガラス繊維布よりも屈折率の高い硫黄原子を含有する硬化剤とガラス繊維布よりも屈折率の低い樹脂の反応性モノマー(硫黄原子非含有樹脂モノマー)とを組み合わせて調節する方法が好ましい。より具体的には、硫黄原子含有硬化性樹脂としては、反応性モノマーとしてのエポキシ樹脂と硫黄化合物を含有する硬化剤とからなる熱硬化性樹脂または光硬化性樹脂、反応性モノマーとしてのアルケニル基を有する化合物と硫黄化合物を含有する硬化剤とからなる光硬化性樹脂が挙げられる。これらの製造方法としては、ガラス繊維布よりも屈折率の高い硫黄原子含有硬化剤と屈折率の低い硬化性樹脂の反応性モノマーとを、それぞれ1種類ずつもしくは2種類以上を混合した後に、熱または光等の活性エネルギーによって硬化させる方法が挙げられる。例えば、ガラス繊維布よりも屈折率の高い硫黄原子含有化合物(例えば多官能チオール系化合物)を硬化剤として、ガラス繊維布よりも屈折率の低い樹脂(たとえばエポキシ樹脂)を硬化する方法が挙げられる。エポキシ樹脂と硫黄原子含有硬化剤とからなる硬化性樹脂は透明性の観点から好ましい。
 前記硫黄原子含有硬化剤としては、例えば、ガラス繊維布よりも屈折率の高い多官能チオール系化合物が挙げられる。ガラス繊維布よりも屈折率の高い多官能チオール系化合物としては、特に限定されないが、1,2-エタンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、1,6-へキサンジチオール、2,2’-オキシビス(1-メルカプトエタン)、2,2’-チオビス(1-メルカプトエタン)、1,4-ジメルカプトブタン-2,3-ジオール、エチレングリコールビス(1-メルカプトエタン)、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトプロピオネート)、エチレングリコールビス(3-メルカプトブタネート)、ブタンジオールビス(2-メルカプトアセテート)、ブタンジオールビス(3-メルカプトプロピオネート)、ブタンジオールビス(2-メルカプトプロピオネート)、ブタンジオールビス(3-メルカプトブタネート)、ペンタエリスリチオール、トリアジントリチオール、グリセロールトリス(2-メルカプトアセテート)、グリセロールトリス(3-メルカプトプロピオネート)、グリセロールトリス(2-メルカプトプロピオネート)、グリセロールトリス(3-メルカプトブタネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(PETP)、ペンタエリスリトールテトラキス(2-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブタネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブタネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトプロピオネート)、トリメチロールエタントリス(3-メルカプトブタネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン(GST)、ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、2,5-ビス(メルカプトメチル)-1,4-ジチアン、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(TEMPIC)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)などが挙げられる。これらは一種単独で使用してもよいし、二種以上を併用してもよい。中でも、屈折率調整の点から好ましくは、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンである。
 前記エポキシ樹脂の硬化剤として多官能チオール系化合物に加えてガラス繊維布よりも屈折率の低い環状カルボン酸無水物を用いることができる。そのような環状カルボン酸無水物としては、特に限定されないが、例えば無水マレイン酸、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ナジック酸、無水グルタル酸、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物、ジクロロコハク酸無水物、ベンゾフェノンテトラカルボン酸無水物及びクロレンディック酸無水物等が挙げられる。これらは一種単独で使用してもよいし、二種以上を併用してもよい。中でも、透明性の点から好ましくは、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物であり、透明性の点からより好ましくは、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物である。
 硫黄原子を含有する硬化剤と組み合わせるガラス繊維布よりも屈折率が低いエポキシ樹脂としては、芳香環を含まないエポキシ樹脂等が挙げられる。そのようなエポキシ樹脂としては、特に限定されないが、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、線状脂肪族エポキシ樹脂、シクロヘキサンオキサイド骨格含有エポキシ樹脂、シクロヘキサンポリエーテル骨格含有エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂等などが挙げられる。これらは一種単独で使用してもよいし、二種以上を併用してもよい。
 ガラス繊維布よりも屈折率の高い多官能チオール化合物と屈折率の低い芳香環を含まないエポキシ樹脂の組み合わせとしては、特に限定されない。ただし、ガラス繊維布は屈折率の近い一般的な樹脂よりもアッベ数が高いので、芳香環を含む樹脂やカルボニル結合を多量に有する樹脂とのアッベ数差は大きくなる傾向にある。このため、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、および/または、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンなどのチオール化合物とシクロヘキサンオキサイド骨格含有エポキシ樹脂との組み合わせが好ましい。
 硬化性樹脂の硬化剤として多官能チオール化合物を単独で用いる場合、該多官能チオール化合物に含まれるチオール官能基の総含有量は硬化塑性樹脂であるエポキシ樹脂のエポキシ基1当量に対して好ましくは0.5~1.0当量、より好ましくは0.7~1.0当量であることが好ましい。含有量がこの範囲であると硬化性が低下せず、チオール官能基残留による臭気が抑制できる。また前記硬化剤として多官能チオール化合物と環状カルボン酸無水物を併用して用いる場合、該多官能チオール化合物に含まれるチオール官能基と該環状カルボン酸無水物に含まれるカルボン酸無水物官能基の総含有量は硬化塑性樹脂であるエポキシ樹脂のエポキシ基1当量に対して好ましくは0.5~1.0当量、より好ましくは0.7~1.0当量であることが好ましい。含有量がこの範囲であると硬化性が低下せず、チオール官能基残留による臭気が抑制できる。
 硬化性樹脂の硬化剤としての屈折率の高い多官能チオール化合物および屈折率の低い環状カルボン酸無水物とを併用する場合には、硬化剤としての多官能チオール化合物および環状カルボン酸無水剤、ならびにエポキシ樹脂の配合比は、用いるガラス繊維布によって調整する。前記ガラス繊維布として屈折率の高いEガラス繊維布などを用いる場合は、屈折率の高い多官能チオール化合物の配合比を多くしてガラス繊維布と屈折率を合わせる。また、前記ガラス繊維布として屈折率の低いTガラス繊維布、Sガラス繊維布、NEガラス繊維布などを用いる場合は、屈折率の高い硫黄化合物を含有する樹脂の配合比を少なくしてガラス繊維布と屈折率を合わせる。
 また、前記(1)のガラス繊維布と屈折率が一致する硫黄原子含有樹脂として、炭素-炭素二重結合を有する化合物と(多官能)チオール化合物とを含む組成物を光硬化反応させて形成される光硬化性樹脂を用いてもよい。中でも好ましくは、チオール基を有する化合物(a)とアルケニル基を有する化合物(b)とを含む光硬化性樹脂組成物から形成される光硬化性樹脂(以下、「チオール-エン光硬化性樹脂」とも称する)が挙げられる。かかるチオール-エン光硬化性樹脂は同一分子内にチオール基とアルケニル基を有する。すなわち、本発明の一実施形態は、透明樹脂層(A)の両面に、ガラス繊維布と、チオール基を有する化合物(a)及びアルケニル基を有する化合物(b)を含有する樹脂組成物とで形成された透明層(B)が配された、透明樹脂積層体(C)である。
 本実施形態の一実施形態による透明層(B)はガラス繊維布に、チオール基を有する化合物(a)及びアルケニル基を有する化合物(b)を含有する光硬化性樹脂組成物を含浸等させて、層状に加工したものである。
 前記のような光硬化性樹脂組成物は、チオール基を有する化合物のチオール基と、アルケニル基を有する化合物のアルケニル基により、活性光線によってチオール基とアルケニル基との反応(チオール-エン反応)を利用することができる。該チオール-エン反応により生成される光硬化性樹脂の利点は、重合開始剤の有無にかかわらず活性光線により反応が容易に進行する点、酸素による反応阻害を受けない点、硬化収縮が小さい点、硬化後の樹脂が高い耐候性を有する点などが挙げられ、本発明の前面板に適した硬化物を得ることができる。
 さらに、チオール-アルケニル反応を生じる前記光硬化性樹脂組成物は、同様の光硬化反応を利用して硬化性樹脂を作製できるチオール-エポキシ反応と比較すると、分子内の反応官能基の割合、すなわち、チオール基とエポキシ基の割合を調整する必要がなく、樹脂の屈折率を調整しやすい。
 上記チオール基を有する化合物としては、チオール基を有する化合物であれば特に限定されないが、上記で挙げたような、硫黄原子含有硬化剤として用いられるガラス繊維布よりも屈折率の高い、多官能チオール系化合物を使用することができる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。中でも、チオール-アルケニル反応におけるチオール化合物としては、屈折率調整の点から好ましくは、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンである。
 上記アルケニル基を有する化合物としては、アルケニル基を有する化合物であれば特に限定されないが、例えば2-メタクリロイロキシエチルフタル酸、メトキシポリエチレングリコールメタクリレート、1,9-ノナンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、エトキシ化ポリプロピレングリコールジメタクリレート、グリセリンジメタクリレート、ポリプロピレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、エトキシ化 o-フェニルフェノールアクリレート、メトキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、2-アクリロイルオキシエチルサクシネート、イソステアリルアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、プロポキシ化ビスフェノールAジアクリレート、トリシクロデカンジメタノールジアクリレート、1,10-デカンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールポリアクリレート、ジペンタエリスリトールヘキサアクリレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、1,3-ジアリル-5-メトキシカルボニル-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3-ジアリル-5-(シクロヘキセン-4-リル)メトキシカルボニル-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリアリルイソシアヌレートなどが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。中でも、屈折率調整の点から好ましくは、トリシクロデカンジメタノールジアクリレートである。
 用いるガラス繊維布に合わせて、上述したチオール基を有する化合物(a)とアルケニル基を有する化合物(b)とを組み合わせ、硬化後の光硬化性樹脂のアッベ数および屈折率がガラス繊維布のアッベ数および屈折率と一致するようにすればよい。
 具体的には、ガラス繊維布よりも屈折率の高い化合物と屈折率の低い化合物を混合し透明化する。その際、高い透明性を得るためには樹脂とガラス繊維布の屈折率を精密に一致させることが好ましいため、ガラス繊維布よりも屈折率の高いチオール基を有する化合物(a)とガラス繊維布よりも屈折率の低いアルケニル基を有する化合物(b)を含有する光硬化性樹脂を混合して調節する方法が好ましい。また、ガラス繊維布よりも屈折率の高いチオール基を有する化合物(a)とガラス繊維布よりも屈折率の低いアルケニル基を有する化合物(b)を含有する光硬化性樹脂を混合する場合、それぞれ1種類ずつを混合しても良いし、2種類以上を用いても良い。
 例えば、ガラス繊維布としてEガラスクロスを用いた場合は、Eガラス繊維布は屈折率の近い一般的な樹脂よりもアッベ数が高く、芳香環を含む樹脂やカルボニル結合を多量に有する樹脂とアッベ数が一致しない。したがって、チオール基を有する化合物として、ペンタエリスリトールテトラキスチオグリコレート及び/又は4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオールを用い、アルケニル基を有する化合物として、トリシクロデカンジメタノールジアクリレートを用いて組み合わせることが好ましい。
 方法(2)
 硫黄化合物を含有する樹脂とガラス繊維布の屈折率が一致していない場合は、ガラス繊維布よりも屈折率の高い樹脂とガラス繊維布よりも屈折率の低い他の樹脂と混合して調節することができる。このような透明層(B)を構成する樹脂組成物の具体的な構成としては、例えば、硫黄原子を含有する熱可塑性樹脂、硫黄原子を含有する熱硬化性樹脂、および硫黄原子を含有する光硬化性樹脂から選択される少なくとも1種の硫黄原子含有樹脂と、前記硫黄原子含有樹脂とは屈折率の異なる他の樹脂(硫黄原子非含有樹脂)とを含む構成が挙げられる。例えば、透明層(B)の樹脂組成物の屈折率は、ガラス繊維布よりも屈折率の高い硫黄原子を含有する樹脂とガラス繊維布よりも屈折率の低い他の樹脂(硫黄原子非含有樹脂)とを混合して調節する方法が好ましい。ガラス繊維布よりも屈折率の高い硫黄原子を含有する樹脂(硫黄原子含有樹脂)と屈折率の低い樹脂(他の樹脂)を混合する場合、硫黄原子含有樹脂および他の樹脂(硫黄原子非含有樹脂)はそれぞれ1種類ずつを混合しても良いし、2種類以上を用いても良い。
 用いるガラス繊維布のガラス種や、ガラス繊維布よりも屈折率の高い樹脂及びガラス繊維布よりも屈折率の低い樹脂の使用量に応じて樹脂全体としての屈折率を調整することで適宜最適な屈折率差、アッベ数差とすることができる。
 前記硫黄原子を含有する樹脂が熱可塑性樹脂の場合、硫黄原子を含有する樹脂(硫黄原子含有樹脂)としては、ガラス繊維布よりも屈折率の高い、ポリチオカーボネート樹脂、ポリチオエステル樹脂、ポリオキソチオエステル樹脂、ポリチオエーテル樹脂、硫黄含有環状ポリオレフィン樹脂等が挙げられる。また当該硫黄原子含有樹脂と組み合わせられる、ガラス繊維布よりも屈折率が低い樹脂(他の樹脂;硫黄原子非含有樹脂)としては、環状シクロオレフィン系樹脂、ポリメタクリル酸メチル樹脂、アクリル樹脂、ポリアセタール樹脂等が挙げられる。
 前記ガラス繊維布よりも屈折率の高い硫黄原子含有樹脂と屈折率の低い他の樹脂との組み合わせとしては、ガラス繊維布と樹脂組成物との屈折率差が所望の範囲に調整されうる限り特に限定されない。ただし、一般にガラス繊維布は屈折率の近い一般的な樹脂よりもアッベ数が高いので、芳香環を含む樹脂やカルボニル結合を多量に有する樹脂とアッベ数差が大きくなることから硫黄含環状ポリオレフィンと環状シクロオレフィン系樹脂の組み合わせが好ましい。
 前記硫黄原子を含有する樹脂が硬化性樹脂の場合、硫黄原子を含有する樹脂は、エポキシ樹脂と硫黄化合物を含有する硬化剤とからなる熱硬化性樹脂または光硬化性樹脂、アルケニル基を有する化合物と硫黄化合物を含有する硬化剤とからなる光硬化性樹脂が挙げられ、より好ましくはエポキシ樹脂と硫黄化合物を含有する硬化剤とからなる熱硬化性樹脂または光硬化性樹脂であることが透明性の観点から好ましい。硫黄原子を含有する硬化剤としては、ガラス繊維布よりも屈折率の高い多官能チオール化合物が挙げられ、上記方法(1)における硫黄原子含有硬化剤としての多官能チオール系化合物を同様に使用することができる。また、本形態においても、硬化剤として多官能チオール系化合物に加えて、上記方法(1)における硬化剤として挙げたような、ガラス繊維布よりも屈折率の低い環状カルボン酸無水物を用いることができる。
 透明層(B)に対する樹脂の量は、使用目的に応じて適宜選択されるが、透明層(B)の全質量(100質量%)に対して、通常、10~80質量%、好ましくは20~70質量%の範囲である。樹脂の量が少なすぎると樹脂不足となり透明性が低下する場合があり、また逆に樹脂の量が多すぎると、剛性が不足する場合がある。
 前記(1)及び(2)の手法のいずれにおいても、2種類以上の樹脂を用いる場合の樹脂の混合方法を以下に記載する。熱可塑性樹脂を用いる場合は、用いる樹脂をラボプラストミル、2軸押出機、バンバリーミキサー及びベッセルなどの混練装置を用いて加熱混合する方法が挙げられる。また、熱硬化性樹脂を用いる場合は、樹脂組成物を常法にしたがって調整することができ、用いる樹脂及びその他の任意成分を均一に含有する樹脂組成物が得られる方法であれは、その調整方法は特に限定されない。たとえば、多官能チオール化合物、芳香環を含まないエポキシ樹脂を配合し、十分に攪拌することで樹脂組成物を容易に調整することができる。
 また、透明層(B)の樹脂組成物の調製時に、各成分を均一に溶解或いは分散させるための公知の処理(攪拌、混合、混練処理など)を行うことができる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミルなどの混合を目的とした装置、又は公転・自転型の混合装置などの公知の装置を用いて適宜行うことができる。
 透明層(B)を構成する樹脂組成物は、必要に応じて所期の特性が損なわれない範囲において、さらに無機充填材を含有してもよい。無機充填材としては、例えば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機充填材、アルミナ、ジルコン、酸化亜鉛、酸化チタン、窒化ケイ素、窒化ホウ素、窒化アルミ、ガラス繊維、ガラスフレーク、アルミナ繊維、マイカ、フェライト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、炭酸カルシウム、炭酸マンガン、炭酸マグネシウム、硫酸バリウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉等からなる群から選択された少なくとも一種であることが好ましい。上記無機充填材は、1種を単独であるいは2種以上を適宜組み合わせて使用することができる。
 透明層(B)の樹脂組成物が熱硬化性樹脂を含む場合、樹脂組成物の調整時において、必要に応じて、硬化速度を適宜調節するための硬化促進剤を含有していてもよい。このような化合物としては、例えば、イミダゾール化合物、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等で例示される有機過酸化物、アゾビスニトリル当のアゾ化合物、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジンなどの第3級アミン類、フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどのフェノール類、ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩、これらの有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの、塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩、ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物、第4級アンモニウム塩、テトラブチルホスホニウムO,O-ジエチルホスホロジチオアートなどの第4級ホスホニウム塩、リン化合物及び尿素化合物等が挙げられる。これらの硬化促進剤は1種を単独で或いは2種以上を組み合わせて使用することができる。
 透明層(B)を形成する硫黄化合物を含有する樹脂組成物は、必要に応じて、有機溶剤を含有していてもよい。すなわち、該透明層(B)は、上述した樹脂の少なくとも一部、または全部が有機溶剤に溶解或いは相溶した態様(ワニス)として用いることができる。有機溶媒としては、樹脂モノマーの少なくとも一部、好ましくは全部を溶解或いは相溶可能なものであれば、公知のものを適宜用いることができ、その種類は特に限定されない。その具体例としては、例えば、ベンゼン、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン(2-ブタノン)、アセトン、メタノール、エタノール、イソプロピルアルコール、2-ブタノール、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジアセトンアルコール、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、アセトニトリル等が挙げられるが、これらに特に限定されない。有機溶剤は、1種を単独で或いは2種以上を適宜組み合わせて使用することができる。
 透明層(B)を形成する硫黄化合物を含有する樹脂組成物が有機溶媒を含有する場合、溶液の固形分濃度は通常10~99質量%にあることが好ましく、20~90質量%にあることがより好ましい。溶液濃度が低すぎると、含浸樹脂不足となり透明性が低下する場合があり、また逆に溶液濃度が高いと、溶液粘度が高くなるため含浸不良となる場合がある。
 透明層(B)の樹脂組成物において硬化性樹脂としてエポキシ樹脂を使用する場合、作業性やエポキシ樹脂硬化後の加工性を改善するために反応を損なわない程度にモノエポキシ化合物等の希釈剤を加えることが好ましい。このような希釈剤を加えると、モノマー粘度を下げることにより作業性や加工性が改善する他に、硬化後のエポキシ樹脂に柔軟性を付与することができ、透明層(B)の可撓性、耐衝撃性、靱性等を向上させることができる。希釈剤としてはスチレンオキシド、シクロヘキセンオキシド、プロピレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、n-ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、クレジルグリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、カルダノールグリシジルエーテル、グリシジルメタアクリレート、フェニルグリシジルエーテル、アリルグリシジルエーテル、オクチレンオキシド、ドデセンオキシド、1,6-ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等が挙げられ、これらを2種以上組み合わせて使用しても良い。
 希釈剤の量としては、エポキシ樹脂100質量部に対して100質量部未満が好ましく、15質量部以下がさらに好ましい。希釈剤の量がこの範囲であれば、透明層(B)の引張弾性率は15GPa以上となり、透明樹脂積層体全体としての曲げ弾性率を5GPa以上とすることができる。
 透明層(B)の樹脂組成物においてチオール-エン光硬化性樹脂を用いる場合、チオール基を有する化合物(a)とアルケニル基を有する化合物(b)とを含有する樹脂組成物を、紫外線等の活性光線により架橋、硬化させるには、樹脂組成物中にラジカルを発生する光重合開始剤を加えてもよい。かかる光重合開始剤としては、例えば、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2,2-ジエトキシアセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール、α-ヒドロキシイソブチルフェノン、チオキサントン、2-クロロチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2,6-ジメチルベンゾイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、t-ブチルアントラキノン、1-クロロアントラキノン、2,3-ジクロロアントラキノン、3-クロロ-2-メチルアントラキノン、2-エチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、1,2-ベンゾアントラキノン、1,4-ジメチルアントラキノン、2-フェニルアントラキノン、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール2量体、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、及び4-(p-メトキシフェニル)-2,6-ジ-(トリクロロメチル)-s-トリアジン等が挙げられる。上記光重合開始剤は、1種を単独で或いは2種以上を適宜組み合わせて使用することができる。前記光重合開始剤の市販品としては、ダロキュア1173、イルガキュア651、イルガキュア184、イルガキュア907、ルシリンTPO(いずれもBASF社製商品名)等が挙げられる。
 前記光重合開始剤を使用する場合の樹脂組成物中における含有量は、適度に硬化させる量であればよく、例えば、2つ以上のアルケニル基を有する化合物の合計100質量部に対し、0.01~2質量部が好ましく、さらに好ましくは、0.02~1質量部であり、最も好ましくは、0.1~0.5質量部である。光重合開始剤の添加量が多すぎると、重合が急激に進行し、複屈折の増大、着色、硬化時の割れ等の問題が発生する。また、少なすぎると組成物を充分に硬化させることができず、架橋後に他の基材などに付着して取り外せないなどの問題が発生する恐れがある。
 また、透明層(B)の樹脂組成物においてチオール-エン光硬化性樹脂を用いる場合には、硬化前の保存安定性を向上させるため、チオール-エン反応を抑制する保存安定剤を配合できる。特に、先にあげた光重合開始剤を用いる場合には、樹脂組成物の保存安定性が低下する傾向にあるため、このような保存安定剤を併用することが好ましい。このような保存安定剤としては、トリフェニルホスフィン、亜リン酸トリフェニル等のリン系化合物;p-メトキシフェノ-ル、ハイドロキノン、ピロガロ-ル、ナフチルアミン、t-ブチルカテコ-ル、塩化第一銅、2、6ージ-t-ブチル-p-クレゾ-ル、2、2’-メチレンビス(4-エチル-6-t-ブチルフェノ-ル)、2、2’-メチレンビス(4-メチル-6-t-ブチルフェノ-ル)、N-ニトロソフェニルヒドロキシルアミンアルミニウム塩、ジフェニルニトロソアミン等のラジカル重合禁止剤;ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジアミノメチル)フェノール、ジアザビシクロウンデセン等の3級アミン類;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-エチルへキシルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-メチルイミダール等のイミダゾール類があげられる。上記保存安定剤は、1種を単独で或いは2種以上を適宜組み合わせて使用することができる。
 透明層(B)に用いられるガラス繊維布の種類は特に限定されないが、例えば各種透明繊維強化樹脂に用いられている公知のものの中から、目的とする用途や性能により適宜選択して使用することができる。例えばEガラス、Sガラス、Tガラス、NEガラス、Lガラス、Dガラス、Qガラス、UNガラス等のガラス繊維布が挙げられる。その中でもガラス繊維布の屈折率は1.55より大きいことが好ましく、Eガラス繊維布(好ましくはEガラスクロス)が、透明性や剛性、加工性及びコストの観点からより好ましい。
 前記ガラス繊維布としてガラスクロスを用いる場合、織り方としては、平織り、ななこ織り、朱子織り、綾織りなどが適用でき、平面方向での寸法安定性、引張耐性に優れることから平織りが好ましい。ガラス繊維布(繊維状フィラー)の厚みは通常、10μm~200μmであるのが好ましく、40μm~150μmであることがさらに好ましい。また、これらガラス繊維布は1枚だけでもよく、複数枚を重ねて用いてもよい。また、シランカップリング剤などで表面処理したものや、織布(クロス)において物理的に開繊処理を行ったものは、吸湿耐熱性の面から好適に使用できる。
 本実施形態のディスプレイ用前面板において使用される透明層(B)の作製方法としては、透明層(B)に用いられる樹脂組成物とガラス繊維布とを併用して層状に加工する方法であれば特に限定されない。硫黄原子を含有する樹脂が熱可塑性樹脂の場合は、硫黄化合物を含有する樹脂が溶解した溶液中にガラス繊維布を浸漬して硫黄化合物を含有する樹脂を含浸した後に、乾燥機等で加熱することにより溶剤を揮発させて除去することで作製することができる。その後に硫黄化合物を含有する樹脂の軟化温度以上に加熱して圧縮成型してもよく、金属ロールを用いて圧延してもよい。また、ガラス繊維布をセルの中に入れ、該セルへ重合前の硫黄化合物を含有する樹脂組成物を注入した後に加熱して重合させてもよい。
 硫黄原子を含有する樹脂が硬化性樹脂の場合には、硬化性樹脂溶組成物をガラス繊維布に含浸した後に、必要に応じて乾燥し、他の基材でプレス又はラミネートして、厚みを調整し、加熱及び活性光線の照射の内の少なくとも一方により、硬化性樹脂組成物を架橋し、硬化する方法で作製する。ここでいう硬化性樹脂組成物とは、硬化性樹脂モノマーと硬化促進剤等の混合液を指す。
 より具体的には、前記硫黄原子を含有する樹脂が熱硬化性樹脂の場合は、常温又は加熱下で流動性を有する硫黄化合物を含有する樹脂組成物にガラス繊維布を浸漬してもよいし、硫黄原子を含有する樹脂が溶解した溶液中にガラス繊維布を浸漬して硫黄原子を含有する樹脂を含浸してもよい。硫黄化合物を含有する樹脂組成物を含浸した後に、必要に応じて乾燥し、他の基材でプレス又はラミネートして、厚みを調整し、加熱により硫黄化合物を含有する樹脂組成物を架橋し、硬化する方法が可能である。ここで硫黄化合物を含有する樹脂組成物とは、硬化前の樹脂モノマーを含有する組成物を表す。
 前記硫黄原子を含有する樹脂が光硬化性樹脂の場合は、例えばチオール基を有する化合物(a)とアルケニル基を有する化合物(b)を含有する光硬化性樹脂組成物にガラス繊維布を浸漬し、必要に応じて乾燥し、離型処理を施したSUS板、ガラス板、ポリエチレンテレフタレートなどの基材でプレス又はラミネートして厚みを調整し、紫外光などの活性光線を照射することで、光硬化性樹脂組成物を硬化させる方法や、アルケニル基を有する化合物(b)を含有する樹脂組成物が溶解した溶液中にガラス繊維布を浸漬した後チオール基を有する化合物(a)を加えて、必要に応じて乾燥し、離型処理を施した上記と同様の基材でプレス又はラミネートして厚みを調整し、紫外光などの活性光線を照射することで、ガラス繊維布に含浸した光硬化性樹脂組成物を硬化させる方法を用いることができる。さらに、光照射後の加熱によりさらに反応が進むことが多く、光照射後の加熱処理を施してもよい。
 本実施形態の透明樹脂積層体(C)の作製方法は特に限定されないが、例えば、図1に示す形態のように、透明樹脂層(A)上に、接着剤層を介して透明層(B)を積層し、透明樹脂層(A)と透明層(B)とを接着させる場合、透明樹脂積層体の作製方法としては透明接着剤を用いて透明樹脂層(A)と透明層(B)とを貼り合わせる方法であれば特に限定されない。例えば透明樹脂層(A)の両面または片面に、光硬化性樹脂、熱硬化性樹脂、ホットメルト樹脂等からなる適当な透明接着剤を塗布した後に、透明層(B)を積層して透明接着剤を硬化させる方法が挙げられる。
 透明樹脂層(A)と透明層(B)とを貼り合わせる透明接着剤の種類や方法は特に限定されないが、光硬化性接着剤や、熱硬化性接着剤、常温硬化性接着剤等の各種接着剤を用いることができる。なお、溶剤が含まれている接着剤を使用すると、硬化時に気泡が発生し、透明積層体全体の透明性が低下することがあるので、溶剤の含まれていない無溶剤系接着剤を使用することが好ましい。接着剤は一液型であってもまたは二液型であってもよい。
 透明樹脂層(A)と透明層(B)とを貼り合わせる透明接着剤の具体例としては、例えば、エポキシ系接着剤、アクリル系接着剤、ウレタン系接着剤が挙げられる。透明接着剤は1種を単独で用いても、複数を混合して用いてもよい。例えば、ダイキン工業株式会社のオプトダインシリーズのアクリル系UV接着剤(例えば、オプトダインUV-2000、オプトダインUV-3000など)、Henkel社のLoctiteシリーズのアクリル系UV接着剤(例えばLoctite3193HS)、協立化学産業株式会社のワールドロックシリーズの変性アクリレート系UV接着剤(例えば、ワールドロックXVL-90、ワールドロック8807、ワールドロックHRJ-21など)、有限会社グルーラボのアクリル系UV接着剤(例えばGLX18-73Nなど)等のアクリル系接着剤;DIC社のユニディックV-9500シリーズのウレタン系UV接着剤(例えばユニディックV-9520、ユニディックV-9540など)等のウレタン系接着剤;ダイキン工業株式会社のオプトダインシリーズのエポキシ系UV接着剤(例えば、オプトダインUV-1000、オプトダインUV-4000など)、サンユレック株式会社のEAシリーズのエポキシ系熱硬化接着剤(EA-409、EA-415など)、株式会社ADEKAのアデカオプトマーKRシリーズのエポキシ系光硬化接着剤(KR-401など)等のエポキシ系接着剤が挙げられる。
 本発明の一実施形態において、透明樹脂層(A)と透明層(B)とを貼り合わせる接着剤としては、厚さ1mmにおける硬化時(硬化後)の引張弾性率が1MPa以上かつ、硬化時に透明となるようなものを使用する。その理由は次の通りである。追従性が高く、曲げやたわみの力が加わった場合にも貼り合わせ対象を剥離しにくくするという接着剤に一般的に求められる特性をよく発揮するためには、接着剤の硬化時の引張弾性率が低いほうがよいが、接着剤の硬化時の引張弾性率が低いと曲げやたわみの力が加わった場合に接着剤層が変形して透明層(B)の硬さが透明積層体全体に反映されないと推察される。したがって、本実施形態においては、接着剤層にある程度の引張弾性率を確保し、かつ、透明樹脂層(A)の両面に剛性の高い透明層(B)を貼り合わせることによって、透明樹脂層(A)単独に比べてより高い剛性を発揮し得る。接着剤の厚さ1mmにおける硬化時(硬化後)の引張弾性率は好ましくは10MPa以上であり、より好ましくは20MPa以上である。一方で、接着剤の引張弾性率が高すぎると加工のクラック発生等が問題になる場合がある。かかる観点から、接着剤の厚さ1mmにおける硬化時(硬化後)の引張弾性率は4GPa以下が好ましく、より好ましくは2GPa以下である。
 透明接着剤の塗布方法としては、例えば、浸漬コーティング法、スプレーコーティング法、スピンナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、カーテンコーティング法、スリットダイコーター法、グラビアコーター法、スリットリバースコーター法、マイクログラビア法、コンマコーター法等が挙げられる。透明接着剤を透明樹脂層で光硬化性の接着剤を塗布し、透明層(B)を被せて光を当てることによって接着するという方法等がある。片面ずつ接着すると反りが発生することがあるため、透明樹脂層(A)の両面で同時に接着することが好ましい。なお、透明樹脂層(A)、透明層(B)、および接着剤が透明である場合には、透明樹脂層(A)の両面に透明層(B)を積層して一方の面から光を照射することで、他方の面にも光が届き、両面を同時に硬化させることができる。
 また、接着剤層の厚みは1μm~100μmが好ましく、より好ましくは5μm~50μmである。接着剤層が厚すぎると透明積層体全体の剛性が低下し、薄すぎると接着性が低下する。上記範囲の厚みであると透明樹脂積層体全体の剛性および接着性が良好となる。
 接着剤の硬化前の23℃における粘度は、好ましくは10000mPa・s以下であり、より好ましくは5000mPa・s以下である。上記範囲であると、接着剤層の塗膜が厚くなりすぎず、所望の厚さに制御され、透明樹脂積層体の剛性の低下を抑制できる。また、当該粘度の下限は良好な塗膜が形成される限り特に限定されないが、塗布時の作業性の面で好ましくは1mPa・s以上である。硬化前の接着剤の粘度は回転式B型粘度計を用いてJIS7117-1:1999に準拠して測定することができる。
 また、接着剤の透明性が低いと透明樹脂積層体全体の透明性が低下するため、接着剤も透明性の高いものを用いることが好ましい。例えば、接着剤層の全光線透過率は80%以上が好ましく、85%以上がより好ましい。80%以上であると透明性が高くディスプレイ用前面板として好適である。
 接着剤の硬化に伴う収縮率(硬化収縮率)が大きいと密着性低下および反りの原因となるため、接着剤の硬化収縮率が小さいことが好ましい。一例をあげると、硬化収縮率は10%以下が好ましく、8%以下がより好ましい。
(硬化収縮率の測定方法)
接着剤の液比重をJIS K 7232:1986の3.1(1)から求め、接着剤の硬化体の比重をJIS K 7232の3.2(1)から求め、以下の式より硬化収縮率を測定する。
  (硬化収縮率)=(硬化体比重-液比重)/(硬化体比重)×100(%)
 接着剤は生産性の観点から速硬化性であることが好ましく、例えば、光硬化型接着剤を用いる場合には、5000mJ/cm以下の積算光量で硬化するものが好ましい。
 また、図2に示す形態のように、透明樹脂層(A)の直上に透明層(B)を積層し、透明樹脂層(A)と透明層(B)とを接着させる場合、例えば、透明層(B)を形成する樹脂組成物が硬化性樹脂を含む場合には、透明樹脂層(A)の両面に透明層(B)の硬化前の樹脂組成物を塗布し、塗膜を形成した後、当該塗膜に熱または光等の活性エネルギーによって硬化させ、これにより透明樹脂層(A)と透明層(B)とを接着する方法が挙げられる。
 より具体的には、透明層(B)を形成する樹脂組成物がエポキシ樹脂等の熱硬化性樹脂を含む場合は、透明樹脂層(A)の両面に硬化前の透明層(B)を重ねて熱盤で加圧しながら所要温度まで加熱することで硬化させながら積層すればよい。また、透明層(B)を形成する樹脂組成物が熱可塑性樹脂を含む場合は、当該熱可塑性樹脂が軟化する温度まで透明層(B)を予め加熱した後に、軟化した透明層(B)を透明樹脂層(A)の両面に重ねて加圧しながら軟化点以下の温度まで冷却することで固化させ、透明樹脂層(A)と透明層(B)とを接着させる方法が挙げられる。透明層(B)を形成する樹脂組成物が光硬化性樹脂を含む場合は、チオール基を有する化合物(a)とアルケニル基を有する化合物(b)とを含む光硬化性樹脂組成物をガラス繊維布に浸漬させた塗膜(透明層(B))を前記透明樹脂層(A)に張り合わせた後、光硬化性樹脂組成物を光硬化させる方法や、チオール基を有する化合物(a)とアルケニル基を有する化合物(b)を含有する光硬化性樹脂組成物をガラス繊維布に浸漬させた塗膜(透明層(B))を、前記透明樹脂層(A)に張り合わせながら、光硬化させる方法が挙げられる。
 以下に本発明において使用し得る代表的な接着剤の物性を示す。表中、(実測)と表記した値は以下の実施例において用いた測定方法により測定された物性値である。
Figure JPOXMLDOC01-appb-T000001
 本実施形態のディスプレイ用前面板において使用される透明樹脂積層体(C)は、透明樹脂層(A)、透明層(B)が透明であるため、積層体として透明になる。また、透明接着剤を使用して積層する場合においても、透明樹脂層(A)、透明層(B)、透明接着剤が透明であるため、積層体として透明になる。
 本実施形態のディスプレイ用前面板において使用される透明樹脂積層体(C)の曲げ弾性率は5GPa以上が好ましく、7GPa以上がより好ましく、8GPa以上がより好ましい。透明樹脂積層体の曲げ弾性率5GPa以上であると剛性が向上し、ディスプレイ用前面板として好適に用いられる。例えば、曲げ弾性率が2.6GPaのポリカーボネート樹脂層(A)の両面に、引張弾性率が10GPa以上の透明層(B)を配することで曲げ弾性率が5GPa以上の透明樹脂積層体が得られ、それを使用することができる。また、例えば、曲げ弾性率が2.6GPaのポリカーボネート樹脂層(A)の両面に、厚さ1mmにおける引張弾性率が10MPa以上である硬化性樹脂を含む透明層(B)を配することで曲げ弾性率が5GPa以上の透明樹脂積層体が得られ、それを使用することができる。透明樹脂積層体の曲げ弾性率が5GPa以上であると剛性が向上し、ディスプレイ用前面板として好適に用いられる。
 本発明の一実施形態による透明樹脂積層体は、透明樹脂層(A)の両面に、硬化性樹脂を含む樹脂組成物をガラス繊維布に含浸及び硬化させて引張弾性率を10GPa以上とした透明層(B)を、厚さ1mmにおける硬化後の引張弾性率が1MPa以上の透明接着剤で貼り合わせた透明積層体である。
 引張弾性率が10GPa以上の透明層(B)の透明層(B)をポリカーボーネート樹脂層(A)の両面に前記透明接着剤で貼り合わせることで、全体として透明で剛性に優れた透明積層体を得られうる。この透明積層体は透明性及び剛性の観点から、ディスプレイ用前面板として好適に用いることができる。透明層(B)の引張弾性率が10GPaよりも小さい場合、ポリカーボネート樹脂層(A)の両面に、厚さ1mmにおける硬化時の引張弾性率が1MPa以上の透明接着剤で貼り合わせても、全体としての曲げ弾性率が5GPa以上の透明積層体が得られないことがある。
 本実施形態のディスプレイ用前面板において使用される透明樹脂積層体(C)の全光線透過率は80%以上であり、85%以上が好ましい。80%以上であると透明性が高くディスプレイ用前面板として好適に用いられる。また、画像のコントラスト性や色再現性の観点から、透明樹脂積層体(C)の400nmの光線透過率は好ましくは60%以上であり、より好ましくは70%以上であり、特に好ましくは75%以上である。
 本実施形態のディスプレイ用前面板において使用される透明樹脂積層体(C)に耐擦傷性などの機能性を付与するために、透明層(B)の少なくとも一方の面に樹脂層(平滑化層)を形成することが好ましく、樹脂層はポリエチレンテレフタレートフィルム層であることがより好ましい。樹脂層によって表面平滑性が向上し、機能性の付与が容易になる。すなわち、本発明の一実施形態の透明樹脂積層体は透明層(B)の少なくとも一方の外側にポリエチレンテレフタレートフィルム層が配される。
 上記ポリエチレンテレフタレートフィルムについて、表面硬度を必要とするものの場合はハードコート処理等を行うことが好ましい。ハードコート処理を行うことによって耐擦傷性が向上し、ディスプレイ用前面板として好適に用いられる。
 上記のポリエチレンテレフタレートフィルムにハードコート処理を行う場合、あらかじめハードコート処理を施したハードコート層としてのポリエチレンテレフタレートフィルムを貼り合わせてもよいし、ポリエチレンテレフタレートフィルムを貼り合わせた後にハードコート処理を行って、ハードコート層を形成しても良い。すなわち、本発明の一実施形態の透明樹脂積層体は前記樹脂層(例えばポリエチレンテレフタレートフィルム層)のさらに少なくとも一方の外側にハードコート層が配される。
 ディスプレイ用前面板として用いる場合、上記ポリエチレンテレフタレートフィルムについて、透明導電膜を施して電極層一体型材料とすることが好ましい。電極層一体型材料とすることで、電極層が不要となり、材料コスト、プロセスコストが抑えられる。すなわち、本発明の一実施形態の透明樹脂積層体は樹脂層(例えばポリエチレンテレフタレートフィルム層)の少なくとも一方の外側に透明導電膜層が配される。
 上記のポリエチレンテレフタレートフィルムに透明電極膜を施す場合、あらかじめ透明電極膜を施したポリエチレンテレフタレートフィルムを貼り合わせてもよいし、ポリエチレンテレフタレートフィルムを貼り合わせた後に透明電極膜を施しても良く、透明電極膜にパターニングを施す場合、ポリエチレンテレフタレートフィルムを貼り合わせた後に行っても良いし、ポリエチレンテレフタレートフィルムを貼り合わせた後に行っても良い。
 上記のポリエチレンテレフタレートフィルム(層)の透明層(B)への貼り合わせ方法は特に限定されないが、例えば、透明樹脂積層体(C)を構成する透明層(B)の両面に光硬化性樹脂、熱硬化性樹脂、ホットメルト樹脂等からなる適当な透明接着剤を塗布した後に、ポリエチレンテレフタレートフィルムを積層して透明接着剤を硬化させる方法が挙げられる。また、透明層(B)を形成する樹脂組成物が熱硬化性樹脂を含む場合は、透明樹脂層(A)の両面に硬化前の透明層(B)を重ね、さらにその外側に樹脂層としてのポリエチレンテレフタレートフィルムを重ねて熱盤で加圧しながら所要温度まで加熱することで硬化させながら積層しても良く、透明層(B)を形成する硫黄原子含有樹脂が熱可塑性樹脂の場合は、樹脂が軟化する温度まで透明層(B)を予め加熱した後に、透明樹脂層(A)の両面に重ね、さらにその外側に樹脂層としてのポリエチレンテレフタレートフィルムを重ねて加圧しながら軟化点以下の温度まで冷却することで固化させながら積層しても良い。
 ポリエチレンテレフタレートフィルムと透明層(B)とを貼り合わせる透明接着剤としては特に限定されないが、エポキシ系接着剤、アクリル系接着剤、ウレタン系接着剤を用いることができる。
 本実施形態の透明樹脂積層体(C)は、ディスプレイ用前面板として、必要に応じて透明樹脂積層体(C)の打抜き加工によってディスプレイ用前面板の形状に成形し、液晶表示装置、有機エレクトロ・ルミネッセンス(有機EL)装置など平面ディスプレイ装置の表示装置を保護することを主目的として、その表面に取り付けられる。
 本実施形態のディスプレイ用前面板のガラス繊維布の織り目の角度はモアレ防止のために表示素子の画素部列に対して1°以上の傾きをもたせる方法が挙げられる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されない。なお、作製した透明樹脂積層体について、光線透過率、アッべ数、弾性率は下記に示す方法により測定した。
 (1)全光線透過率および各波長の光線透過率(透明性)
 ヘーズメーターNDH-2000(日本電色工業株式会社製)を用いて、全光線透過率を測定し、分光光度計MULTISPEC-1500(株式会社島津製作所製)を用いて、各波長における光線透過率を測定した。
 (2)屈折率・アッベ数
 (透明層(B))
 多波長アッベ屈折計DR-M4(株式会社アタゴ製)を用いて、屈折率およびアッベ数を測定した
 (ガラス繊維布)
 Eガラス繊維布のアッベ数は以下の方法で測定した。屈折率の異なる接触液(島津デバイス製造製)を用いて589nmの屈折率が1.535~1.570の屈折率の液を屈折率差0.001刻みで調整し、Eガラス繊維布(3313 53 S101S、日東紡績株式会社製)に含浸させて、100μmのスリットを付けたスライドガラスに挟み込み、厚さ100μmの接触液含浸Eガラス繊維布を作製し、分光光度計を用いてスペクトル測定を行った。
 調整した各種接触液のD線(589nm)、F線(486nm)、C線(656nm)の屈折率を測定し、波長ごとに横軸を接触液の屈折率、縦軸を光線透過率としてプロットし、最も光線透過率が高くなる屈折率をその波長のEガラス繊維布の屈折率とした。
 Eガラス繊維布のD線(589nm)、F線(486nm)、C線(656nm)の屈折率からアッベ数を導き出した。
 (3)曲げ弾性率
 精密万能試験機AG-5000B(株式会社島津製作所製)を用いて3点曲げ試験で測定した。支点間距離は20mm、ストローク速度は1mm/minとした。ロードセルについては1kNのものを使用した。
 (4)引張弾性率(透明層(B)および樹脂)
 動的粘弾性測定装置DMS6100(エスアイアイ・ナノテクノロジー株式会社製)を用いて、引張弾性率を測定した。試長は20mm、周波数は1Hzとした。本発明における引張弾性率とは、20℃における貯蔵弾性率を意味する。
<透明樹脂積層体の作製>
[実施例A-1]
 Eガラス繊維布よりも屈折率の低い樹脂であるシクロヘキサンオキサイド骨格含有エポキシ樹脂(セロキサイド2021P(株)ダイセル製、屈折率1.51)54質量部と、Eガラス繊維布よりも屈折率の高い硫黄化合物を含有する樹脂であるペンタエリスリトールテトラキスチオプロピオネート(以下、PETPと称する、淀化学(株)製、屈折率1.60)43質量部、4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオール(以下GSTと呼称する、特許第3048929号公報に従い合成、屈折率1.70)3質量部を混合し、マグネチックスターラーで5分間撹拌した。さらに硬化促進剤としてTetrabutylphosphonium O,O-Diethyl Phosphorodithioate(和光純薬純薬工業(株))1質量部を加え、マグネチックスターラーで5分間撹拌し、モノマー混合液とした。
 モノマー混合液をバットに入れ、そこにEガラス繊維布(3313 53 S101S、日東紡績(株)製、屈折率1.56)を浸漬して上記モノマー混合液を浸み込ませ、離型処理済みのポリエチレンテレフタレートフィルムで挟んだ。これを送風式オーブンに入れ、40℃で5時間保持した後、0.5℃/minで120℃まで昇温し、120℃で5時間保持して硬化し、透明層1を得た。
 ポリカーボネート樹脂板(ユーピロンNF-2000 三菱ガス化学(株)製、厚さ700μm)にバーコーターで透明エポキシ系接着剤KR-401((株)ADEKA製)を30μm程度の薄さで塗布し、気泡が入らないように透明層1を重ねた。もう一方の面も同様に接着剤を塗布し透明層1を重ね、UV照射装置を用いてUVを1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化した。これにより、透明層/透明樹脂層(PC)/透明層の三層透明樹脂積層体を形成してディスプレイ用前面板を作成した。このディスプレイ用前面板の厚みは913μmであった。なお、片面からの照射により他方の透明層1にも光が届き、透明樹脂層(PC)の両方の接着面が同時に硬化したが、念のため他方の面からも光を照射した。
[実施例A-2]
 実施例A-1で作製したモノマー混合液をバットに入れ、そこにEガラス繊維布(3313 53 S101S、日東紡績(株)製)を浸漬して上記モノマー混合液を浸み込ませ、ポリカーボネート樹脂板(厚さ700μm)と50μmの延伸ポリエチレンテレフタレートフィルムで挟んだ。これを送風式オーブンに入れ、40℃で5時間保持した後、0.5℃/minで120℃まで昇温し、120℃で5時間保持して硬化し、延伸ポリエチレンテレフタレートフィルム/透明層/透明樹脂層(PC)/透明層/延伸ポリエチレンテレフタレートフィルムの五層透明樹脂積層体を形成して、ディスプレイ用前面板を作成した。このディスプレイ用前面板の厚みは990μmであった。
[比較例A-1]
 Eガラス繊維布よりも屈折率の低い樹脂であるトリアジン骨格含有エポキシ樹脂(TEPIC-S(日産化学工業(株)製、屈折率1.54)47質量部と、Eガラス繊維布よりも屈折率の高い硫黄を含まない樹脂であるエポキシ樹脂(テクモアVG3101(株)プリンテック製、屈折率1.61)21質量部及び、硬化剤(リカシッドMH700(4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30)(新日本理化(株)製、屈折率1.49))32質量部を混合し、2-ブタノンで50wt%になるように希釈した後にマグネチックスターラーで10分間撹拌した。さらに硬化促進剤としてTetrabutylphosphonium O,O-Diethyl Phosphorodithioate(和光純薬純薬工業(株))を0.8質量部加え、マグネチックスターラーで5分間撹拌し、モノマー混合溶液とした。
 Eガラス繊維布(3313 53 S101S、日東紡績(株)製、屈折率1.56)に、上記モノマー混合溶液を浸み込ませ、130℃で4分間加熱することで溶剤を除去すると共に樹脂を半硬化させてプリプレグを作製した。そしてこのプリプレグ一枚を表面処理したSUS板に挟み込んで、ホット・コールドプレスVH2-1630(北川精機株式会社製)にセットし、3℃/minで200℃まで昇温し、200℃で1時間保持して硬化し、透明層2を得た。
 ポリカーボネート樹脂板(三菱ガス化学(株)製、厚さ700μm)にバーコーターで透明エポキシ系接着剤KR-401((株)ADEKA製)を30μm程度の薄さで塗布し、気泡が入らないように透明層2を重ねた。もう一方の面も同様に接着剤を塗布し透明層2を重ね、UV照射装置を用いてUVを1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化した。これにより、透明層/透明樹脂層(PC)/透明層の三層透明樹脂積層体を形成して、ディスプレイ用前面板を作成した。このディスプレイ用前面板の厚みは951μmであった。
<評価>
 以上のようにして作製した透明樹脂積層体について、上記に示す評価方法により、透明層またはガラス繊維布の屈折率、全光線透過率およびアッベ数;ならびに透明樹脂積層体の全光線透過率、400nmまたは550nmの光線透過率、および曲げ弾性率を測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<透明樹脂積層体の作製>
[実施例B-1]
 用いたEガラス繊維布よりも屈折率の低い樹脂であるアルケニル基を有する脂環式樹脂のトリシクロデカンジメタノールジアクリレート(以下、A-DCPと称する、新中村化学工業(株)製、屈折率1.53)83質量部と、用いたEガラス繊維布よりも屈折率の高いチオール基を有する樹脂である4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオール(以下、GSTと称する、三井化学(株)製、1.70)17質量部を混合し、マグネチックスターラーで5分間攪拌した。さらに、光重合開始剤としてイルガキュア184を樹脂質量部に対して0.5質量部加え、マグネチックスターラーで5分間攪拌し、モノマー混合液とした。
 モノマー混合液をバッドに入れ、そこにEガラス繊維布(3313 53 S101S、日東紡績(株)製、屈折率1.56)を浸漬して上記モノマー混合液を浸み込ませ、離型処理済みのポリエチレンテレフタレートフィルムで挟んだ。これを紫外光照射装置(アイ紫外硬化用装置、アイグラフィックス(株)製)を用いて紫外光を1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化させ、透明繊維強化樹脂1を得た。
 ポリカーボネート樹脂板(ユーピロンNF-2000、三菱ガス化学(株)製、厚さ800μm)にバーコーターで透明エポキシ系接着剤KR-401((株)ADEKA製)を30μm程度の厚さで塗布し、気泡が入らないように透明繊維強化樹脂1を重ね、紫外光照射装置(アイ紫外硬化用装置、アイグラフィックス(株)製)を用いて紫外光を1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化した。これにより、透明繊維強化樹脂層(透明層)/透明樹脂層(ポリカーボネート)/透明繊維強化樹脂層(透明層)の三層透明樹脂積層体を得た。この透明樹脂積層体の厚みは、1080μmであった。なお、片面からの照射により他方の透明層にも光が届き、透明樹脂層(PC)の両方の接着面が同時に硬化したが、念のため他方の面からも光を照射した。
[比較例B-1]
 用いたEガラス繊維布よりも屈折率の低い樹脂であるアルケニル基を有する脂環式樹脂のA-DCP(新中村化学工業(株)製、屈折率1.53)70 質量部と、用いたEガラス繊維布よりも屈折率の高いアルケニル基を有する芳香族系樹脂である9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(以下、A-BPEFと称する、新中村化学工業(株)製、屈折率1.62)30質量部を混合し、マグネチックスターラーで、50℃、30分間攪拌した。さらに、光重合開始剤としてイルガキュア184を樹脂質量部に対して0.5質量部加え、マグネチックスターラーで、50℃、5分間攪拌し、モノマー混合液とした。
 モノマー混合液をバッドに入れ、そこにEガラス繊維布(3313 53 S101S、日東紡績(株)製、屈折率1.56)を浸漬して上記モノマー混合液を浸み込ませ、離型処理済みのポリエチレンテレフタレートフィルムで挟んだ。これを紫外光照射装置(アイ紫外硬化用装置、アイグラフィックス(株)製)を用いて紫外光を1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化させ、透明繊維強化樹脂2を得た。
 ポリカーボネート樹脂板(ユーピロンNF-2000、三菱ガス化学(株)製、厚さ800μm)にバーコータ―で透明エポキシ系接着剤KR-401((株)ADEKA製)を30μm程度の厚さで塗布し、気泡が入らないように透明繊維強化樹脂2を重ね、紫外光照射装置(アイ紫外硬化用装置、アイグラフィックス(株)製)を用いて紫外光を1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化した。これにより、透明繊維強化樹脂層(透明層)/透明樹脂層(ポリカーボネート)/透明繊維強化樹脂(透明層)の三層透明樹脂積層体を得た。この透明樹脂積層体の厚みは、1060μmであった。
<評価>
 以上のようにして作製した透明樹脂積層体について、上記に示す評価方法により、透明層(透明繊維強化樹脂層)またはガラス繊維布の屈折率、全光線透過率およびアッベ数;ならびに透明樹脂積層体の全光線透過率、400nmまたは550nmの光線透過率、および曲げ弾性率を測定した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<透明樹脂積層体の作製>
[実施例C-1]
 Eガラスクロスよりも屈折率の低い樹脂であるシクロヘキサンオキサイド骨格含有エポキシ樹脂(セロキサイド2021P、(株)ダイセル製、屈折率1.51)51質量部と、シクロヘキサンオキサイド骨格含有エポキシ樹脂(セロキサイド2000Z、(株)ダイセル製、屈折率1.50)3質量部、用いたEガラスクロスよりも屈折率の高い樹脂であるペンタエリスリトールテトラキスチオプロピオネート(以下、PETPと称する、淀化学(株)製、屈折率1.60)43質量部、4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオール(以下GSTと呼称する、特許第3048929号公報に従い合成、屈折率1.70)3質量部を混合し、マグネチックスターラーで5分間撹拌した。さらに硬化促進剤としてTetrabutylphosphonium O,O-Diethyl Phosphorodithioate(和光純薬純薬工業(株))1質量部を加え、マグネチックスターラーで5分間撹拌し、モノマー混合液とした。
 モノマー混合液をバットに入れ、そこにEガラスクロス(3313 53 S101S、日東紡績(株)製、屈折率1.56)を浸漬して上記モノマー混合液を浸み込ませ、離型処理済みのポリエチレンテレフタレートフィルムで挟んだ。これを送風式オーブンに入れ、40℃で5時間保持した後、0.5℃/minで120℃まで昇温し、120℃で5時間保持して硬化し、透明層を得た。この透明層の厚みは合計で186μm(片面:93μm)であった。
 ポリカーボネート樹脂板(ユーピロンNF-2000、三菱ガス化学(株)製、厚さ800μm)にバーコーターで透明エポキシ系接着剤KR-401((株)ADEKA製)を20μm程度の薄さで塗布し、気泡が入らないように透明層を重ねた。もう一方の面も同様に接着剤を塗布し透明層を重ね、UV照射装置を用いてUVを1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化した。これにより、透明層/ポリカーボネート樹脂層/透明層の三層透明積層体を得た。この透明積層体の厚みは1020μmであった。なお、片面からの照射により他方の透明層1にも光が届き、透明樹脂層(PC)の両方の接着面が同時に硬化したが、念のため他方の面からも光を照射した。
[実施例C-2]
 セロキサイド2021Pを48質量部、セロキサイド2000Zを6質量部、PETPを43質量部、GSTを3質量部混合し、モノマー混合液とした以外は実施例1と同様にして透明層/ポリカーボネート樹脂層/透明層の三層透明積層体を得た。この透明層の厚みは合計で178μm(片面:89μm)であり、透明積層体の厚みは1028μmであった。
[実施例C-3]
 セロキサイド2021Pを42質量部、セロキサイド2000Zを12質量部、PETPを41質量部、GSTを5質量部混合し、モノマー混合液とした以外は実施例C-1と同様にして透明層/ポリカーボネート樹脂層/透明層の三層透明積層体を得た。この透明層の厚みは合計で182μm(片面:91μm)であり、透明積層体の厚みは1037μmであった。
[実施例C-4]
 セロキサイド2021Pを36質量部、セロキサイド2000Zを18質量部、PETPを42質量部、GSTを4質量部混合し、モノマー混合液とした以外は実施例C-1と同様にして透明層/ポリカーボネート樹脂層/透明層の三層透明積層体を得た。この透明層の厚みは合計で172μm(片面:86μm)であり、透明積層体の厚みは1045μmであった。
[実施例C-5]
 セロキサイド2021Pを27質量部、セロキサイド2000Zを27質量部、PETPを40質量部、GSTを6質量部混合し、モノマー混合液とした以外は実施例C-1と同様にして透明層/ポリカーボネート樹脂層/透明層の三層透明積層体を得た。この透明層の厚みは合計で210μm(片面:105μm)であり、透明積層体の厚みは1016μmであった。
<評価>
 以上のようにして作製した透明積層体について、上記に示す評価方法により、透明層の全光線透過率および引張弾性率;透明層(B)に用いた硬化性樹脂の引張弾性率、ならびに透明樹脂積層体の曲げ弾性率を測定した。
 なお、透明層の硬化性樹脂の引張弾性率は以下の方法で測定した。2cm×4cmの穴の開いたSUS製の枠(厚さ1mm)を離型処理済みのガラス板に載せ、各モノマー混合液を穴に満たし、離型処理済みのガラス板を被せ、UV照射装置を用いてUVを1000mJ/cm照射し、さらに裏返して1000mJ/cm照射して硬化することにより、硬化性樹脂試験片を得た。得られた硬化性樹脂試験片について、上記の方法により引張弾性率を測定した。
 下記表C1に示すように、実施例全てにおいて透明層の全光線透過率は80%以上を示した。
 透明樹脂層(A層)としてのポリカーボネート樹脂層(厚さ800μm)の曲げ弾性率は2.6GPaであった。表C2に示すように、実施例C-1~4では透明積層体の曲げ弾性率は全て5GPa以上であった。このことから、引張弾性率が10MPa以上である硬化性樹脂を透明層に含むことにより、積層体の剛性(曲げ弾性率)を一層向上させ得ることが確認される。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
<透明樹脂積層体の作製>
[実施例D-1]
(透明層(B-1)の作製)
 ガラス繊維布としてEガラス繊維布(3313 53 S101S、日東紡績(株)製)を用いた。用いたEガラス繊維布よりも屈折率の低い樹脂であるシクロヘキサンオキサイド骨格含有エポキシ樹脂(セロキサイド2021P、(株)ダイセル製、屈折率1.51)54質量部と、用いたEガラスクロスよりも屈折率の高い硫黄化合物を含有する樹脂であるペンタエリスリトールテトラキスチオプロピオネート(淀化学(株)製、屈折率1.60)43質量部と、4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオール(以下、GSTと呼称する、特許第3048929号公報に従い合成、屈折率1.70)3質量部を混合し、マグネチックスターラーで5分間撹拌した。さらに硬化促進剤としてTetrabutylphosphonium O,O-Diethyl Phosphorodithioate(和光純薬純薬工業(株))を1質量部加え、マグネチックスターラーで5分間撹拌し、硬化性樹脂組成物とした。
 前記硬化性樹脂組成物をバットに入れ、そこにEガラス繊維布を浸漬して硬化性樹脂組成物を浸み込ませ、離型処理済みのPETフィルムで挟んだ。これを送風式オーブンに入れ、40℃で5時間保持した後、0.5℃/minで120℃まで昇温し、120℃で5時間保持して硬化し、厚さ113μmの透明層(B-1)を得た。透明層(B-1)の引張弾性率は19GPaであった。
(ポリカーボネート樹脂層(A)と透明層(B-1)の接着)
 ポリカーボネート樹脂板(ユーピロンNF-2000、三菱ガス化学(株)製、厚さ700μm、曲げ弾性率は2.6GPa)にバーコーターで透明エポキシ系接着剤KR-401((株)ADEKA製、厚さ1mmにおける引張弾性率は1593MPa)を30μmの薄さで塗布し、気泡が入らないように透明層(B-1)を重ねた。もう一方の面も同様に接着剤を塗布し透明層(B-1)を重ね、UV照射装置を用いてUVを1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化した。これにより、透明層(B-1)/ポリカーボネート樹脂層(A)/透明層(B-1)の三層透明積層体を得た。この透明積層体の厚みは1013μmであった。なお、片面からの照射により他方の透明層(B-1)にも光が届き、ポリカーボネート樹脂層(A)の両方の接着面が同時に硬化したが、念のため他方の面からも光を照射した。
[実施例D-2]
(透明層(B-2)の作製)
 ガラス繊維布として実施例1と同様にEガラス繊維布(3313 53 S101S、日東紡績(株))を用いた。用いたEガラス繊維布よりも屈折率の低い樹脂である脂環式アクリレート樹脂のトリシクロデカンジメタノールジアクリレート(新中村化学工業(株)製、屈折率1.53)83質量部と、用いたEガラス繊維布よりも屈折率の高い樹脂であるGST17質量部を質量混合し、マグネチックスターラーで5分間攪拌した。さらに、光重合開始剤としてイルガキュア184を0.5質量部加え、マグネチックスターラーで5分間攪拌し、硬化性樹脂組成物とした。硬化性樹脂組成物をバッドに入れ、そこにEガラス繊維布を浸漬して硬化性樹脂組成物を浸み込ませ、離型処理済みのPETフィルムで挟んだ。これをUV照射装置を用いてUVを1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化し、厚さ119μmの透明層(B-2)を得た。透明層(B-2)の引張弾性率は18GPaであった。
(ポリカーボネート樹脂層(A)と透明層(B-2)の接着)
 透明層(B-1)を(B-2)とした以外は実施例1と同様に接着し、厚み1021μmの透明積層体を得た。
[実施例D-3]
 接着剤としてGLX18-73N((有)グルーラボ製、厚さ1mmにおける引張弾性率は26MPa)を用いた以外は実施例D-1と同様にして、透明層(B-1)/ポリカーボネート樹脂層(A)/透明層(B-1)の三層透明積層体を得た。この透明積層体の厚みは1058μmであった。
[実施例D-4]
 接着剤としてワールドロックHRJ-21(協立化学産業(株)製、厚さ1mmにおける引張弾性率は0.32MPa)を用いた以外は、実施例D-1と同様にして、透明層(B-1)/ポリカーボネート樹脂層(A)/透明層(B-1)の三層透明積層体を得た。この透明積層体の厚みは1061μmであった。
[比較例D-1]
 ポリカーボネート樹脂板(ユーピロンNF-2000、三菱ガス化学(株)製、厚さ700μm)にバーコーターで透明エポキシ系接着剤KR-401を30μm程度の薄さで塗布し、気泡が入らないようにポリエチレンテレフタレート(PET)樹脂フィルム(厚さ100μm)を重ねた。もう一方の面も同様に接着剤を塗布しPET樹脂フィルムを重ね、UV照射装置を用いてUVを1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化した。これにより、PET樹脂フィルム/ポリカーボネート樹脂層/PET樹脂フィルムの三層透明積層体を得た。この透明積層体の厚みは1014μmであった。
 以上のように作製した試料について、上記に示す評価方法により、透明樹脂積層体の全光線透過率および曲げ弾性率;接着剤の引張弾性率;ならびに透明層(B)の引張弾性率を評価した。なお、接着剤の引張弾性率は以下の方法により測定した。
(接着剤の引張弾性率の測定)
 2cm×4cmの穴の開いたSUS製の枠(厚さ1mm)を離型処理済みのガラス板に載せ、各接着剤を穴に満たし、離型処理済みのガラス板を被せ、UV照射装置を用いてUVを1000mJ/cm照射し、さらに裏返して1000mJ/cm照射し硬化した。これを弾性率測定用の試料とし、上記に記載した引張弾性率の測定方法と同様に粘弾性測定装置DMS6100で引張弾性率を測定した。
Figure JPOXMLDOC01-appb-T000008
 表D1に示すように、実施例全てにおいて透明層の全光線透過率は80%以上を示した。また、表D1に示すように、実施例D-1~3では透明積層体の曲げ弾性率が5GPa以上となり、ガラス代替として各種グレージング材料、基板材料やディスプレイ用前面板等の前面板材料に用いるのに好ましい剛性を得ることができた。このことから、透明層(B)の引張弾性率を10GPa以上とし、かつ、弾性率が1MPa以上の接着剤を用いることにより、積層体の剛性(曲げ弾性率)を一層向上させることができることが確認される。また、透明層(B)に引張弾性率10GPa以下のフィルムを用いた比較例D-1では、弾性率が1MPa以下の接着剤を用いたものの、透明積層体の曲げ弾性率は5GPa以下であった。
1 透明樹脂層(A)
2 透明層(B)
3 接着剤層
4 ポリエチレンテレフタレートフィルム層
5 シート
10 ディスプレイ用前面板
21 ガラス繊維布
22 樹脂組成物

Claims (22)

  1.  透明樹脂層(A)の両面に、ガラス繊維布と、硫黄化合物を含有する樹脂組成物とを含む透明層(B)が配された透明樹脂積層体。
  2.  透明樹脂層(A)の両面に、ガラス繊維布と、チオール基を有する化合物(a)及びアルケニル基を有する化合物(b)を含有する樹脂組成物とで形成された透明層(B)が配された、請求項1に記載の透明樹脂積層体。
  3.  透明樹脂層(A)の両面に、厚さ1mmにおける硬化時の引張弾性率が10MPa以上である硬化性樹脂を含む、樹脂組成物をガラス繊維布に含浸させてなる透明層(B)が配された、請求項1または2に記載の透明樹脂積層体。
  4.  前記透明樹脂層(A)と前記透明層(B)との間に透明接着剤を含む接着剤層を有する、請求項1~3のいずれか一項に記載の透明樹脂積層体。
  5.  前記接着剤層の厚みが、1μm~100μmである、請求項4に記載の透明樹脂積層体。
  6.  前記透明接着剤の厚さ1mmにおける硬化時の引張弾性率が、1MPa以上である、請求項4または5に記載の透明樹脂積層体。
  7.  透明樹脂層(A)の両面に、硬化性樹脂を含む樹脂組成物をガラス繊維布に含浸及び硬化させて引張弾性率を10GPa以上とした透明層(B)を、厚さ1mmにおける硬化時の引張弾性率が1MPa以上の透明接着剤で貼り合わせた、請求項1~6のいずれか一項に記載の透明樹脂積層体。
  8.  前記透明接着剤は、アクリル系接着剤、エポキシ系接着剤、およびウレタン系接着剤からなる群から選択される少なくとも一種である、請求項4~7のいずれか一項に記載の透明樹脂積層体。
  9.  前記透明樹脂積層体の曲げ弾性率が、5GPa以上である、請求項1~8のいずれか一項に記載の透明樹脂積層体。
  10.  前記透明樹脂層(A)の厚みが、100μm~2000μm、かつ前記透明層(B)の厚みが20μm~300μmである、請求項1~9のいずれか一項に記載の透明樹脂積層体。
  11.  全光線透過率が80%以上である、請求項1~10のいずれか一項に記載の透明樹脂積層体。
  12.  前記透明層(B)における樹脂組成物の硬化時におけるアッベ数と、ガラス繊維布のアッベ数との差が15以下である、請求項1~11のいずれか一項に記載の透明樹脂積層体。
  13.  前記透明層(B)における樹脂組成物の屈折率と、ガラス繊維布の屈折率との差が0.01以下である、請求項1~12のいずれか一項に記載の透明樹脂積層体。
  14.  前記透明層(B)における樹脂組成物が、チオール化合物とエポキシ樹脂との重合物を含有する、請求項1~13のいずれか一項に記載の透明樹脂積層体。
  15.  前記透明層(B)におけるガラス繊維布の屈折率が、1.55より大きい、請求項1~14のいずれか一項に記載の透明樹脂積層体。
  16.  前記透明層(B)のガラス繊維布がEガラスクロスである、請求項1~15のいずれか一項に記載の透明樹脂積層体。
  17.  前記透明樹脂層(A)における樹脂成分が、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルメタクリレートからなる群から選択される少なくとも一種を含む、請求項1~16のいずれか一項に記載の透明樹脂積層体。
  18.  前記透明樹脂層(A)における樹脂成分が、ポリカーボネートを含む、請求項17に記載の透明樹脂積層体。
  19.  前記透明層(B)の少なくとも一方の外側にポリエチレンテレフタレートフィルム層が配された、請求項1~18のいずれか一項に記載の透明樹脂積層体。
  20.  前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側にハードコート層が配された、請求項19に記載の透明樹脂積層体。
  21.  前記ポリエチレンテレフタレートフィルム層のさらに少なくとも一方の外側に透明導電膜層が配された、請求項19または20に記載の透明樹脂積層体。
  22.  請求項1~21のいずれか一項に記載の透明樹脂積層体を用いた、ディスプレイ用前面板。
PCT/JP2015/053920 2014-02-17 2015-02-13 透明樹脂積層体及び前面板 WO2015122485A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015562872A JP6485363B2 (ja) 2014-02-17 2015-02-13 透明樹脂積層体及び前面板
KR1020167023322A KR20160122171A (ko) 2014-02-17 2015-02-13 투명 수지 적층체 및 전면판
CN201580008806.8A CN106029374A (zh) 2014-02-17 2015-02-13 透明树脂叠层体以及前面板

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014-027291 2014-02-17
JP2014-027289 2014-02-17
JP2014027289 2014-02-17
JP2014-027292 2014-02-17
JP2014027291 2014-02-17
JP2014-027290 2014-02-17
JP2014027292 2014-02-17
JP2014027290 2014-02-17

Publications (1)

Publication Number Publication Date
WO2015122485A1 true WO2015122485A1 (ja) 2015-08-20

Family

ID=53800225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053920 WO2015122485A1 (ja) 2014-02-17 2015-02-13 透明樹脂積層体及び前面板

Country Status (5)

Country Link
JP (1) JP6485363B2 (ja)
KR (1) KR20160122171A (ja)
CN (1) CN106029374A (ja)
TW (1) TW201538328A (ja)
WO (1) WO2015122485A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065105A (ja) * 2015-09-30 2017-04-06 グンゼ株式会社 透明積層体
JP2019014255A (ja) * 2017-07-07 2019-01-31 三星電子株式会社Samsung Electronics Co., Ltd. 積層フィルム、および積層フィルムを含む表示装置
KR20190029691A (ko) * 2016-07-18 2019-03-20 쌩-고벵 글래스 프랑스 방호 및 패닉방지(antipanic) 특성을 갖는 투명한 방화글레이징
WO2019065912A1 (ja) * 2017-09-28 2019-04-04 株式会社クラレ 多層フィルムおよび繊維強化樹脂の加飾成形体
WO2019147915A1 (en) * 2018-01-25 2019-08-01 Corning Incorporated Fiberglass composite cover for foldable electronic display and methods of making the same
WO2019244395A1 (ja) * 2018-06-22 2019-12-26 株式会社日立製作所 樹脂積層体及び樹脂積層体の製造方法
JP2020537185A (ja) * 2017-10-11 2020-12-17 コーニング インコーポレイテッド 耐衝撃性及び曲げ抵抗を有する折り畳み式電子デバイスモジュール
WO2023100828A1 (ja) * 2021-11-30 2023-06-08 Eneos株式会社 硬化性組成物およびその硬化物
EP4122696A4 (en) * 2020-03-17 2024-04-17 DIC Corporation PRE-PREG AND MOLDED ARTICLE
JP7533097B2 (ja) 2020-10-06 2024-08-14 Toppanホールディングス株式会社 壁面構造体及び壁面構造体の製造方法
JP7534691B2 (ja) 2017-02-07 2024-08-15 デクセリアルズ株式会社 画像表示装置の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108877517B (zh) * 2018-06-26 2020-11-06 深圳市华星光电技术有限公司 一种柔性可拉伸基板及其制备方法
KR102534501B1 (ko) * 2023-01-06 2023-05-30 차재현 자력을 이용한 무선충전의 효율을 향상시키는 스마트단말기의 글라스 보호커버

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013329A1 (ja) * 2005-07-28 2007-02-01 Arakawa Chemical Industries, Ltd. 硬化性樹脂組成物、当該硬化物、およびこれらから誘導される各種物品
JP2007203475A (ja) * 2006-01-31 2007-08-16 Sumitomo Bakelite Co Ltd 透明樹脂積層シート
JP2007220561A (ja) * 2006-02-17 2007-08-30 Daikin Ind Ltd 不燃性照明カバー
JP2009244757A (ja) * 2008-03-31 2009-10-22 Panasonic Electric Works Co Ltd 透明基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457514B2 (ja) 1997-08-08 2003-10-20 株式会社クラレ 積層板およびその製造方法
JP2003026826A (ja) 2001-07-23 2003-01-29 Fuji Photo Film Co Ltd 光学用ポリエステルフィルム、ハードコートフィルムおよびその製造方法
JP4409397B2 (ja) 2004-09-27 2010-02-03 新日鐵化学株式会社 シリコーン樹脂組成物及び成形体
JP2012183822A (ja) 2011-02-14 2012-09-27 Meihan Shinku Kogyo Kk 光学ディスプレイ用透明積層体
JP2012031417A (ja) * 2011-09-05 2012-02-16 Mitsubishi Plastics Inc 離型フィルム付中間膜用粘着シート及び透明積層体
JP5859926B2 (ja) * 2011-11-25 2016-02-16 ダイセル・オルネクス株式会社 層間充填用活性エネルギー線硬化性組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013329A1 (ja) * 2005-07-28 2007-02-01 Arakawa Chemical Industries, Ltd. 硬化性樹脂組成物、当該硬化物、およびこれらから誘導される各種物品
JP2007203475A (ja) * 2006-01-31 2007-08-16 Sumitomo Bakelite Co Ltd 透明樹脂積層シート
JP2007220561A (ja) * 2006-02-17 2007-08-30 Daikin Ind Ltd 不燃性照明カバー
JP2009244757A (ja) * 2008-03-31 2009-10-22 Panasonic Electric Works Co Ltd 透明基板

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065105A (ja) * 2015-09-30 2017-04-06 グンゼ株式会社 透明積層体
KR20190029691A (ko) * 2016-07-18 2019-03-20 쌩-고벵 글래스 프랑스 방호 및 패닉방지(antipanic) 특성을 갖는 투명한 방화글레이징
KR102188926B1 (ko) 2016-07-18 2020-12-10 쌩-고벵 글래스 프랑스 방호 및 패닉방지(antipanic) 특성을 갖는 투명한 방화글레이징
JP7534691B2 (ja) 2017-02-07 2024-08-15 デクセリアルズ株式会社 画像表示装置の製造方法
JP7174545B2 (ja) 2017-07-07 2022-11-17 三星電子株式会社 積層フィルム、および積層フィルムを含む表示装置
JP2019014255A (ja) * 2017-07-07 2019-01-31 三星電子株式会社Samsung Electronics Co., Ltd. 積層フィルム、および積層フィルムを含む表示装置
WO2019065912A1 (ja) * 2017-09-28 2019-04-04 株式会社クラレ 多層フィルムおよび繊維強化樹脂の加飾成形体
JPWO2019065912A1 (ja) * 2017-09-28 2020-12-17 株式会社クラレ 多層フィルムおよび繊維強化樹脂の加飾成形体
JP7094972B2 (ja) 2017-09-28 2022-07-04 株式会社クラレ 多層フィルムおよび繊維強化樹脂の加飾成形体
JP2020537185A (ja) * 2017-10-11 2020-12-17 コーニング インコーポレイテッド 耐衝撃性及び曲げ抵抗を有する折り畳み式電子デバイスモジュール
WO2019147915A1 (en) * 2018-01-25 2019-08-01 Corning Incorporated Fiberglass composite cover for foldable electronic display and methods of making the same
US11709291B2 (en) 2018-01-25 2023-07-25 Corning Incorporated Fiberglass composite cover for foldable electronic display and methods of making the same
WO2019244395A1 (ja) * 2018-06-22 2019-12-26 株式会社日立製作所 樹脂積層体及び樹脂積層体の製造方法
EP4122696A4 (en) * 2020-03-17 2024-04-17 DIC Corporation PRE-PREG AND MOLDED ARTICLE
JP7533097B2 (ja) 2020-10-06 2024-08-14 Toppanホールディングス株式会社 壁面構造体及び壁面構造体の製造方法
WO2023100828A1 (ja) * 2021-11-30 2023-06-08 Eneos株式会社 硬化性組成物およびその硬化物

Also Published As

Publication number Publication date
JPWO2015122485A1 (ja) 2017-03-30
JP6485363B2 (ja) 2019-03-20
CN106029374A (zh) 2016-10-12
KR20160122171A (ko) 2016-10-21
TW201538328A (zh) 2015-10-16

Similar Documents

Publication Publication Date Title
JP6485363B2 (ja) 透明樹脂積層体及び前面板
CN103635316B (zh) 耐候性层压膜及图像显示装置
JP6083233B2 (ja) インモールド成形用転写フィルム、インモールド成形体の製造方法および成形体
KR102043768B1 (ko) 광 경화성 수지 조성물, 화상 표시 장치 및 그 제조 방법
JP5599628B2 (ja) 透明フィルム
TWI624488B (zh) 樹脂組成物、預浸體及膜片
JP6481619B2 (ja) 樹脂組成物および積層体
KR20190131140A (ko) 인몰드 성형용 전사 필름 및 그 제조 방법
KR20130142882A (ko) 도료 및 접착제 조성물, 접착 방법 및 적층체
KR20120039053A (ko) 플라스틱제 필름 또는 시트용 활성 에너지선 경화형 접착제 조성물
KR20120125552A (ko) 액정 시일제, 그것을 이용한 액정 표시 패널의 제조 방법, 및 액정 표시 패널
TW201406903A (zh) 雙固化黏著組合物
JP2012229399A (ja) 透明プラスチック基板用フェノキシ樹脂組成物及びそれを用いた透明プラスチック基板素材
JP5595867B2 (ja) 透明フィルム
JP2017179099A (ja) ハードコートフィルム
JP2011104929A (ja) 透明基板/ガラス板/透明基板複合フィルムとその用途
JP2011093966A (ja) 透明フィルム
JP2015196783A (ja) シート状組成物
KR101974708B1 (ko) 액정 시일제, 및 액정 표시 패널의 제조 방법
JP2011105888A (ja) 透明フィルム
JP2012219155A (ja) 透明樹脂複合材
JP2017008125A (ja) ケイ素化合物を含む組成物とその硬化膜
JP7072452B2 (ja) 光硬化性組成物
JP5584553B2 (ja) 硬化性組成物及び透明複合シート
JP2011068020A (ja) 透明繊維強化樹脂シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167023322

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15749421

Country of ref document: EP

Kind code of ref document: A1