WO2015122216A1 - カルボジイミド化合物の製造方法 - Google Patents

カルボジイミド化合物の製造方法 Download PDF

Info

Publication number
WO2015122216A1
WO2015122216A1 PCT/JP2015/050370 JP2015050370W WO2015122216A1 WO 2015122216 A1 WO2015122216 A1 WO 2015122216A1 JP 2015050370 W JP2015050370 W JP 2015050370W WO 2015122216 A1 WO2015122216 A1 WO 2015122216A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
compound
thiourea
Prior art date
Application number
PCT/JP2015/050370
Other languages
English (en)
French (fr)
Inventor
浩 中沢
Original Assignee
公立大学法人大阪市立大学
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学, 東洋紡株式会社 filed Critical 公立大学法人大阪市立大学
Priority to JP2015562760A priority Critical patent/JP6467673B2/ja
Publication of WO2015122216A1 publication Critical patent/WO2015122216A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C267/00Carbodiimides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a method for producing a carbodiimide compound useful as a dehydration condensing agent, a polymer hydrolysis-resistant agent, a curing agent, a sealing agent, a heat-resistant adhesive, and the like used in an organic synthesis reaction.
  • the carbodiimide compound is a useful compound as a dehydration condensing agent, a polymer hydrolysis-resistant agent, a curing agent, a sealing agent, a heat-resistant adhesive and the like used in organic synthesis reactions.
  • a method for producing a carbodiimide compound for example, a compound having a thiourea group easily obtained from an amine compound and carbon disulfide is used as a raw material, and a mercury compound, a lead compound, sodium hypochlorite, phosgene, azo Methods are known in which dicarboxylic acid ester-triphenylphosphine, methanesulfonyl chloride, tosyl chloride and the like are allowed to act (for example, Patent Documents 1 and 2 and Non-Patent Document 1).
  • the object of the present invention is to provide a novel method capable of producing a carbodiimide compound in a simple and high yield.
  • the present inventor obtained a silyl halide when producing a carbodiimide compound from a compound having a thiourea group (hereinafter sometimes referred to as “thiourea derivative”). It was found that a carbodiimide compound can be produced in a simple and high yield by coexistence, and the present invention was completed.
  • a compound having a thiourea group is represented by the following formula (2):
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom, a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkoxy group. And at least two of R 3 , R 4 and R 5 may be bonded to each other to form a ring.
  • X represents a halogen atom.
  • the compound having a thiourea group has the following formula (1):
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group, or a substituted or unsubstituted heteroaryl group. R 1 and R 2 are bonded to each other. And may form a ring.) Is preferred.
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, Or a substituted or unsubstituted heteroaryl group
  • R 3 , R 4 and R 5 are each independently substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted Or an unsubstituted heteroaryl group, or a substituted or unsubstituted alkoxy group, wherein X is a chlorine atom, and it is more preferable that R 1 and R 2 are independently substituted or unsubstituted.
  • the silyl halide in an amount of 0.7 mol or more and 5.0 mol or less with respect to 1 mol of the compound having the thiourea group.
  • the silyl halide can be used in the presence of one or both of an iron compound and a molybdenum compound, or in the absence of an iron compound and a molybdenum compound, and more preferably, the silyl halide is used as an iron compound and This embodiment is used in the absence of a molybdenum compound.
  • a carbodiimide compound can be produced in a high yield by an extremely simple method in which a silyl halide is allowed to coexist. Therefore, the production method according to the present invention is extremely useful as a method for producing a carbodiimide compound.
  • a compound having a thiourea group is represented by the following formula (2):
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom, a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkoxy group. And at least two of R 3 , R 4 and R 5 may be bonded to each other to form a ring.
  • X represents a halogen atom.
  • the thiourea group is a carbodiimide group. That is, this invention manufactures a carbodiimide compound by removing a hydrogen atom (H) and a sulfur atom (S) from the thiourea derivative used as a raw material (desulfurization dehydrogenation).
  • a carbodiimide compound can be produced in a high yield by reacting a thiourea derivative in the presence of silyl halide.
  • a carbodiimide compound can be produced in a high yield without using an iron compound and a molybdenum compound that have been conventionally required, and a new advantage that the production process can be simplified can be expected.
  • the thiourea derivative used as a raw material is a compound having a thiourea (thiourea) skeleton in which the oxygen atom of urea is replaced with a sulfur atom, and a hydrogen atom in the thiourea derivative is substituted or unsubstituted.
  • thiourea thiourea
  • the thiourea derivative is not particularly limited as long as it has a thiourea skeleton.
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group, or a substituted or unsubstituted heteroaryl group. R 1 and R 2 are bonded to each other. A compound represented by the formula (which may form a ring) is preferred.
  • hydrocarbon group is a general term for substituents composed of carbon atoms and hydrogen atoms.
  • the hydrocarbon group includes an aliphatic hydrocarbon group such as an alkyl group, a cycloalkyl group and an alkenyl group, an aromatic hydrocarbon group such as an aryl group, and an aromatic ring-containing hydrocarbon group such as an aralkyl group.
  • an alkyl group having 1 to 20 carbon atoms is preferable.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 7 carbon atoms, and particularly preferably 1 to 5 carbon atoms. More preferred are a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a tert-butyl group and a sec-butyl group, and an n-propyl group and an iso-propyl group are most preferred.
  • the cycloalkyl group is preferably a cycloalkyl group having 3 to 20 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group.
  • the number of atoms constituting the ring skeleton of the cycloalkyl group is preferably 3 to 15, more preferably 5 to 9, and still more preferably 6 (cyclohexyl group).
  • the alkenyl group is preferably an alkenyl group having 2 to 18 carbon atoms.
  • a linear or branched alkenyl group such as a butenyl group; 1-cyclopropenyl group, 2-cyclopropenyl group, 1-cyclobutenyl group, 2-cyclobutenyl group, 1-cyclopentenyl group, 2-cyclopentenyl group, 3-cyclo Examples include pentenyl group, 1-cyclohexenyl group, 2-cyclohexenyl group, 3-cyclohexenyl group, 1-cycloheptenyl group, 2-cycloheptenyl group, 3-cycloheptenyl group, 4-cycloheptenyl group, etc. .
  • the aryl group is preferably an aromatic hydrocarbon group having 6 to 16 carbon atoms.
  • the aryl group preferably has 1 to 5 rings (more preferably 1 to 3 rings), and specific examples thereof include a phenyl group, a naphthyl group, a pentarenyl group, an indenyl group, an anthracenyl group, a phenanthryl group, a fluorenyl group, Biphenylyl group etc. are mentioned.
  • an aryl group having 6 to 10 carbon atoms is preferable, a phenyl group or a naphthyl group is more preferable, and a phenyl group is still more preferable.
  • the aralkyl group is preferably an aralkyl group having 7 to 18 carbon atoms, and examples thereof include a benzyl group, a phenethyl group, a phenylpropyl group, a phenylbutyl group, and a phenylpentyl group. Of these, more preferred are a benzyl group and a phenethyl group, and even more preferred is a benzyl group.
  • the heteroaryl group is preferably a heteroaryl group having 2 to 20 carbon atoms.
  • R 1 and R 2 may be bonded to each other to form a ring, and when R 1 and R 2 form a ring, R 1 and R 2 may be directly bonded. And may be bonded via an oxygen atom, a nitrogen atom, a silicon atom, or the like.
  • the various hydrocarbon groups described above may be substituted.
  • the substituent is not particularly limited.
  • the alkyl group, aryl group, and heteroaryl group are the same as described above.
  • the amino group is represented by —NR 6 R 7 (wherein R 6 and R 7 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • the alkyl group and aryl group are the same as described above).
  • the amino group (especially alkylamino group) is preferred.
  • R 1 and R 2 are aliphatic hydrocarbon groups, particularly alkyl groups or alkenyl groups
  • preferred substituents are amino groups, particularly preferably —NR 6 R 7 (wherein R 6 and R 6 7 each independently represent a hydrogen atom, an alkyl group or an aryl group.) an amino group represented by, more preferably an amino group R 6 and R 7 is an alkyl group having 1 to 3 carbon atoms More preferably a dimethylamino group or a diethylamino group.
  • R 1 and R 2 are ring structure-containing groups, for example, in the case of a cycloalkyl group, an aryl group, a heteroaryl group, an aralkyl group, etc., preferred substituents include an alkyl group, among which a methyl group is preferable.
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl. It is preferably a group or a substituted or unsubstituted heteroaryl group.
  • R 8 represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, m represents an integer of 0 to 2, and * represents a bonding site with a thiourea skeleton).
  • Alkyl groups to be used are a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, m represents an integer of 0 to 2, and * represents a bonding site with a thiourea skeleton).
  • R 8 represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
  • the terminal hydrogen group of the alkyl group is preferably substituted, and the above-mentioned substituents can be used, and an amino group is particularly preferable.
  • m represents an integer of 0 to 2 (more preferably 0 or 1).
  • R 9 represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, n represents an integer of 0 to 3, and * represents a binding site with a thiourea skeleton).
  • R 9 represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group, ethyl Group, particularly preferably a methyl group.
  • the substituents are the same as described above.
  • n is an integer of 0 to 3, more preferably 0 or 1.
  • the bonding position (substitution position) of R 9 is not particularly limited, and is preferably the 2nd to 4th positions of the ring, more preferably the 2nd or 4th position.
  • the 1-position of the ring is a-* binding site.
  • R 1 and R 2 are preferably each independently a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group.
  • R 1 and R 2 include a hydrogen atom, methyl group, ethyl group, isopropyl group, 3-dimethylaminopropyl group, 3-dimethylamino-1-methylpropyl group, 4-dimethylamino-1-methylbutyl.
  • R 1 and R 2 described above may be the same or different, but are preferably the same.
  • Such thiourea derivatives include thiophenylurea, 1- (2-methylphenyl) thiourea, 1- (3-methylphenyl) thiourea, 1- (4-methylphenyl) thiourea, 1- (1- Monosubstituted thioureas such as naphthyl) thiourea, 1- (2-naphthyl) thiourea; 1,3-dipropylthiourea, 1,3-diisopropylthiourea, 1,3-dicyclopentylthiourea, 1,3-dicyclohexyl Thiourea, 1,3-diphenylthiourea, 1,3-bis (2-methylphenyl) thiourea, 1,3-bis (3-methylphenyl) thiourea, 1,3-bis (4-methylphenyl) Thiourea, 1-methyl-3- (3-dimethylaminopropyl) thiourea, 1-ethyl-3
  • thiophenylurea 1,3-diisopropylthiourea, 1,3-dicyclopropylthiourea, 1,3-diphenylthiourea, 1,3-bis (2-methylphenyl) thiourea, 1,3 -Bis (4-methylphenyl) thiourea, 1-ethyl-3- (3-dimethylaminopropyl) thiourea, 1-ethyl-3- (3-dimethylamino-1-methylpropyl) thiourea.
  • the above-described thiourea derivative can be easily synthesized from, for example, an amine compound and carbon disulfide based on a known organic synthesis technique.
  • silyl halide that coexists in the carbodiimidization reaction is represented by the following formula (2):
  • R 3 , R 4 and R 5 are each independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkoxy group.
  • at least two of R 3 , R 4 and R 5 may be bonded to each other to form a ring, and X represents a halogen atom.
  • the alkyl group represented by R 3 to R 5 is preferably an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group is preferably one having 1 to 5 carbon atoms, more preferably a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a tert-butyl group, or a sec-butyl group. And most preferably a methyl group or an ethyl group.
  • the cycloalkyl group represented by R 3 to R 5 is preferably a cycloalkyl group having 3 to 20 carbon atoms.
  • the number of constituent atoms of the ring skeleton of the cycloalkyl group is preferably 3 to 14.
  • an alkenyl group having 2 to 18 carbon atoms is preferable.
  • the aryl group of R 3 to R 5 is preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the aryl group preferably has 1 to 5 rings (more preferably 1 to 3 rings), and specific examples thereof include a phenyl group, a naphthyl group, a pentarenyl group, an indenyl group, an anthracenyl group, a phenanthryl group, a fluorenyl group, Biphenylyl group etc. are mentioned, Preferably it is a phenyl group.
  • the aralkyl group of R 3 to R 5 is preferably an aralkyl group having 7 to 18 carbon atoms, and examples thereof include a benzyl group, a phenethyl group, a phenylpropyl group, a phenylbutyl group, and a phenylpentyl group. Among them, an aralkyl group having 7 to 10 carbon atoms is preferable, and a benzyl group is more preferable.
  • the heteroaryl group of R 3 to R 5 is preferably a heteroaryl group having 2 to 20 carbon atoms.
  • the alkoxy groups of R 3 ⁇ R 5, the substituent which the alkyl group of R 3 ⁇ R 5 described above through the oxygen atom is attached is used, those specifically exemplified for the carbon number of 1-18
  • R 3 to R 5 described above may have a substituent.
  • a substituent is not specifically limited, For example, alkyl groups; halogen atoms, such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; amino group; aryl group; heteroaryl group; hydroxy group; .
  • X represents a halogen atom, which is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, with a chlorine atom being particularly preferred.
  • R 3 , R 4 and R 5 are each independently a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group.
  • a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkoxy group is preferable.
  • two or more (more preferably all three) of R 3 to R 5 are each independently a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted group.
  • An alkoxy group is preferred.
  • silyl halides preferred are, for example, mono-, di- or tri-alkylsilyl chlorides (preferably di- or trialkylsilyl chlorides), di- or tri-, wherein X is a chlorine atom.
  • Preferred silyl halides include di- or tri-alkyl silyl chlorides, di- or tri-aryl silyl chlorides, di- or tri-aralkyl silyl chlorides, di- or tri-alkoxy silyl chlorides.
  • Examples of the mono-, di-, or tri-alkylsilyl chloride include various silyl chlorides in which one, two, or three alkyl groups and a chlorine atom are bonded to a silicon atom, and one or two alkyl groups are bonded to a silicon atom.
  • a group is bonded, a hydrogen atom is bonded to the silicon atom, and this hydrogen atom may be substituted with another group (for example, an aryl group, an aralkyl group, or an alkoxy group).
  • di- or tri-alkylsilyl chlorides examples include trimethylsilyl chloride, triethylsilyl chloride, tripropylsilyl chloride, triisopropylsilyl chloride, trihexylsilyl chloride, dimethyl (tert-butyl) silyl chloride, isopropyldimethylsilyl chloride, Trialkylsilyl chlorides such as ethyldimethylsilyl chloride and dodecyldimethylsilyl chloride; dimethylsilyl chloride, diethylsilyl chloride, dipropylsilyl chloride, dibutylsilyl chloride, di-tert-butylsilyl chloride, phenyldimethylsilyl chloride, phenyldiethylsilyl chloride , Dialkylsilyl chlorides such as 4-methylphenyldimethylsilyl chloride; methylphenylsilyl chloride Mono alkyl
  • di- or tri-arylsilyl chloride examples include various silyl chlorides in which two or three aryl groups and a chlorine atom are bonded to a silicon atom.
  • a tri-arylsilyl chloride such as triphenylsilyl chloride
  • -Di-arylsilyl chlorides such as butyldiphenylsilyl chloride, methyldiphenylsilyl chloride, vinyldiphenylsilyl chloride, methylchlorobis (4-fluorophenyl) silane
  • a tri-arylsilyl chloride such as triphenylsilyl chloride
  • -Di-arylsilyl chlorides such as butyldiphenylsilyl chloride, methyldiphenylsilyl chloride, vinyldiphenylsilyl chloride, methylchlorobis (4-fluorophenyl) silane
  • di- or tri-aralkylsilyl chloride examples include various silyl chlorides in which two or three aralkyl groups and a chlorine atom are bonded to a silicon atom.
  • a tri-aralkylsilyl chloride such as tribenzylsilyl chloride
  • di-aralkylsilyl chlorides such as benzylsilyl chloride
  • di- or tri-alkoxysilyl chloride examples include various silyl chlorides in which two or three alkoxy groups and a chlorine atom are bonded to a silicon atom, such as trimethoxysilyl chloride, triethoxysilyl chloride, tripropoxysilyl. And tri-alkoxysilyl chlorides such as chloride; di-alkoxysilyl chlorides such as dimethoxysilyl chloride, diethoxysilyl chloride, dipropoxysilyl chloride, and the like.
  • the silyl halide is preferably trimethylsilyl chloride, triethylsilyl chloride, tripropylsilyl chloride, triisopropylsilyl chloride, triphenylsilyl chloride, trimethoxysilyl chloride, triethoxysilyl chloride, more preferably trimethylsilyl chloride, triethylsilyl chloride, Triphenylsilyl chloride and triethoxysilyl chloride.
  • silyl halides may be used alone or in combination.
  • a carbodiimide compound is produced from the thiourea derivative and the silyl halide of formula (2).
  • the thiourea derivative is represented by the above formula (1)
  • the resulting carbodiimide compound is represented by the following formula (3):
  • R 1 and R 2 are the same as described above.
  • R 1 and R 2 are determined according to the structure of the thiourea derivative used as a raw material (specifically, R 1 and R 2 in the formula (1)). That is, a carbodiimide compound having a desired structure can be obtained by appropriately selecting a thiourea derivative as a raw material.
  • the charging procedure of each raw material is not particularly limited.
  • a reaction solvent is used, (i) a reaction vessel And (ii) adding a thiourea derivative and a solvent to a reaction vessel and dissolving the thiourea derivative, and then adding the silyl halide to react. Also good.
  • the amount of silyl halide used with respect to the thiourea derivative used as the raw material is preferably 0.7 mol or more, more preferably 0.8 mol or more, still more preferably 0.9 mol, relative to 1 mol of the thiourea derivative. It is above, Especially preferably, it is 1.0 mol or more.
  • the upper limit is not particularly limited, but is preferably 5.0 mol or less, more preferably 4.0 mol or less, still more preferably 3.5 mol or less, and particularly preferably 3.0 mol or less. is there. If the amount of silyl halide used is less than the lower limit, a thiourea derivative may remain, which is economically disadvantageous. Moreover, since it may be accompanied by a by-product when it exceeds an upper limit, it is unpreferable.
  • the solvent used in the reaction is not particularly limited, but an organic solvent capable of dissolving the thiourea derivative is preferable.
  • hydrocarbon solvents such as toluene, xylene, benzene, hexane, chloroform, dichloromethane, dichloroethane, chlorobenzene, Chlorinated solvents such as dichlorobenzene; ether solvents such as diethyl ether, cyclohexyl methyl ether, dibutyl ether, dimethoxyethane, dioxane, tetrahydrofuran, and dioxolane; ketone solvents such as 2-butanone and methyl isobutyl ketone;
  • a solvent may be used independently and may use 2 or more types together.
  • the solvent is preferably a chlorine solvent or an ether solvent, more preferably dichloromethane, chloroform or tetrahydrofuran.
  • the amount of the solvent used is not particularly limited and may be appropriately set.
  • the concentration of the thiourea derivative is preferably about 0.01 to 10 mol / L, and more preferably 0.03. It should be adjusted to ⁇ 5 mol / L, more preferably 0.05 to 1 mol / L.
  • the carbodiimidization reaction is preferably carried out under heating conditions.
  • the heating temperature during the carbodiimidization reaction is not particularly limited, but is preferably 0 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 30 ° C. or higher.
  • an upper limit is not specifically limited, For example, 200 degrees C or less is preferable, More preferably, it is 150 degrees C or less, More preferably, it is 100 degrees C or less.
  • reaction time at the time of the reaction is not particularly limited and can be appropriately changed depending on the reaction conditions such as heating temperature. Usually, it is preferably 1 hour or longer, more preferably 5 hours or longer, and still more preferably. Is 10 hours or longer, preferably 48 hours or shorter, more preferably 30 hours or shorter, and more preferably 27 hours or shorter.
  • the carbodiimidization reaction is preferably performed in a nitrogen atmosphere.
  • the atmospheric pressure during the reaction is not particularly limited, and the carbodiimidization reaction may be performed under atmospheric pressure conditions (0.9 to 1.1 atm).
  • the iron compound is preferably one selected from the group consisting of an iron complex having a two-electron donating ligand, an iron halide, and iron oxide.
  • the iron complex include the following formula (4):
  • R 10 is one selected from the group consisting of an optionally substituted cyclopentadienyl group and pyrazolyl borate ligand, and R 11 is an alkyl group and an aryl group.
  • L 1 and L 2 are each independently a two-electron donor ligand, and L 1 and L 2 may form a ring).
  • Iron complex A following formula (5):
  • R 12 is one selected from the group consisting of which may have a substituent cyclopentadienyl group and pyrazolyl borate ligand, L 3 and L 4 are each independently And L 3 and L 4 may form a ring.) And are selected from the group consisting of iron complex B and Fe (CO) 5 It is preferable.
  • the “optionally substituted cyclopentadienyl group” as an example of R 10 in the formula (4) and R 12 in the formula (5) is specifically an unsubstituted cyclopenta
  • one or more hydrogen atoms of an unsubstituted cyclopentadienyl group are substituted with a substituent.
  • the substituent include alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a tert-butyl group, a sec-butyl group, and a pentyl group.
  • Examples of the pyrazolyl borate ligand which is an example of R 10 in the formula (4) and R 12 in the formula (5) include bis (1-pyrazolyl) dihydridoborate, tris (1-pyrazolyl) hydroborate, Tris (3,5-substituted-pyrazolyl-1-yl) hydroborate (wherein the 3- and 5-position substituents are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms) Hydroborates such as bis (1-pyrazolyl) dialkylborate, tris (1-pyrazolyl) alkylborate, tris (3,5-substituted-pyrazolyl-1-yl) alkylborate (where 3 and 5) The substituents at the positions are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms); bis (1-pyrazolyl) Aryl borate, tris (1-pyraBR>
  • examples of the alkyl group represented by R 11 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a tert-butyl group, a sec-butyl group, and a pentyl group.
  • an alkyl group having 5 or less carbon atoms is preferable, an alkyl group having 4 or less carbon atoms, more preferably 2 or less carbon atoms is preferable.
  • examples of the aryl group represented by R 11 include aryl groups such as a phenyl group, a thienyl group, a pyridyl group, and an imidazolyl group, or a heteroatom-containing aryl group.
  • examples of the two-electron donor ligand represented by L 1 , L 2 , L 3 and L 4 include carbonyl, phosphine, arsine, stibine, amine, nitrile, isonitrile and the like. Among these, carbonyl is particularly preferable.
  • a plurality of two-electron donor ligands may be the same or different, but are preferably the same.
  • iron halide examples include iron chloride (III) (FeCl 3 ), iron chloride (II) (FeCl 2 ), iron bromide (III) (FeBr 3 ), and iron bromide (II) (FeBr 2 ). And iron (II) iodide (FeI 2 ).
  • iron oxide examples include iron (III) oxide (Fe 2 O 3 ) and iron (II) oxide (FeO). Among these, iron (III) oxide is preferable.
  • the molybdenum compound in the present invention includes a molybdenum complex having a two-electron donor ligand.
  • a molybdenum complex having a two-electron donor ligand Preferably, the following formula (6):
  • R 13 is one selected from the group consisting of an optionally substituted cyclopentadienyl group and pyrazolyl borate ligand
  • R 14 is an alkyl group and an aryl group.
  • L 5 , L 6 and L 7 are each independently a two-electron donating ligand, and two of L 5 , L 6 and L 7 form a ring. Or at least one selected from the group consisting of Mo (CO) 6 .
  • R 10 and R 11 in the formula (4) can be similarly applied to R 13 and R 14 in the formula (6), and L 5 , L 6 and L 7 in the formula (6) can be similarly applied.
  • L 1 to L 4 in the above formulas (4) and (5) can be similarly applied.
  • iron compounds are preferable in that carbodiimide compounds can be generated more efficiently, and iron complexes are particularly preferable.
  • iron compounds for example, [CpFe (CO) 2 ] 2 (Cp: cyclopentadienyl group) corresponding to the iron complex B, iron halide, and iron oxide are commercially available.
  • the iron complex A and the like can be easily prepared from commercially available [CpFe (CO) 2 ] 2 and NaK and RI.
  • the molybdenum complex A which is the molybdenum compound, can be easily prepared from commercially available [CpMo (CO) 3 ] 2 and NaK and RI.
  • iron compounds and molybdenum compounds other than those described above can also be prepared by using a known technique such as a method described later in Examples.
  • the iron compound and the molybdenum compound described above are preferable as the amount used is small.
  • the results show that the smaller the amount of these compounds, the higher the yield of the carbodiimide compound can be obtained, and the carbodiimidization reaction is substantially metal-free, that is, the silyl halide in the absence of iron and molybdenum compounds. It is more preferable to use in.
  • the amount of the iron compound and molybdenum compound used in the carbodiimidization reaction is preferably 1.0 mol or less, more preferably 0.1 mol or less, more preferably 0.01 mol or more with respect to 1 mol of the raw thiourea derivative. Although it may be contained, it is particularly preferably 0 mol.
  • the carbodiimidization reaction can proceed only with the silyl halide.
  • silane compounds such as alkoxysilane and alkylsilane, and sulfates (magnesium sulfate, sodium sulfate, etc.) described later are not essential, but a silane compound can coexist with silyl halide if necessary.
  • the silane compound is allowed to coexist, it may be possible to increase the yield of the carbodiimide compound, and the yield of the carbodiimide compound is significantly improved.
  • Examples of the silane compound include trialkoxysilanes, dialkoxysilanes, alkoxysilanes such as monoalkoxysilanes, and trialkylsilanes. Of these, trialkoxysilanes are preferable.
  • Examples of the alkoxy group possessed by alkoxysilane include a methoxy group, an ethoxy group, and a propoxy group.
  • Examples of the alkyl group that the trialkylsilane has include a methyl group, an ethyl group, an n-propyl group, and an iso-propyl group.
  • each group may be the same and may differ.
  • trialkoxysilane examples include trimethoxysilane, triethoxysilane, dimethoxyethoxysilane, diethoxymethoxysilane, and tripropoxysilane. Among these, trimethoxysilane and triethoxysilane are preferable.
  • the amount used is preferably 0.1 mol or more and 5 mol or less, more preferably 0.5 mol or more and 3 mol or less, more preferably 1 mol per 1 mol of the thiourea derivative. Is 1 mol or more and 2 mol or less.
  • a sulfate such as at least one of magnesium sulfate and sodium sulfate can coexist with the silyl halide. It may be possible to increase the yield of the carbodiimide compound by adding a sulfate.
  • the amount used is preferably 0.1 mol or more and 5 mol or less, more preferably 1 mol of the thiourea derivative. Is 0.5 mol or more and 3 mol or less, more preferably 1.0 mol or more and 1.5 mol or less.
  • Examples of the purification method of the produced carbodiimide compound include extraction, filtration, solvent distillation, silica gel column chromatography, recrystallization, crystallization, washing and the like.
  • reaction solution was analyzed with a gas chromatograph mass spectrometer (GC-MS), and it was found that a carbodiimide compound was produced in a yield of 16%.
  • GC-MS gas chromatograph mass spectrometer
  • Me methyl group
  • Et ethyl group
  • EtO ethoxy group
  • t Bu tert-butyl group
  • Ph phenyl group
  • Bn benzyl group.
  • Example 13 a carbodiimide compound was produced in an extremely high yield.
  • Example 19 a large amount of white precipitate was formed in the obtained reaction solution after the reaction was completed. A white precipitate was isolated and 1 H NMR was measured. As a result, a spectrum of 1-ethyl-3- (3-dimethylamino-1-methylpropyl) thiourea hydrochloride was measured. Further, when the obtained reaction solution was analyzed with a gas chromatograph mass spectrometer (GC-MS), it was found that a carbodiimide compound was produced in a yield of 95%.
  • GC-MS gas chromatograph mass spectrometer
  • Comparative Example 4 The reaction was carried out in the same manner as in Examples 13 to 19 except that the thiourea derivative was changed to 1,3-dicyclohexylurea, but no reaction occurred.
  • a carbodiimide compound can be produced in a high yield according to the present invention without using an iron compound and a molybdenum compound.
  • the yield of the carbodiimide compound can be further improved by carrying out the carbodiimidization reaction in the absence of the iron compound and the molybdenum compound.
  • this reaction is peculiar to a thiourea derivative (contrast with Example and Comparative Example 4).
  • the thiourea derivatives used in the examples are as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、簡便且つ高収率でカルボジイミド化合物を製造できる新規な方法を提供する。 本発明に係るカルボジイミド化合物の製造方法は、チオウレア基を有する化合物を、下記式(2):(式中、R3、R4及びR5は、それぞれ独立して、水素原子、置換又は無置換の炭化水素基、置換又は無置換のヘテロアリール基、置換又は無置換のアルコキシ基を示す。またこれらR3、R4及びR5の少なくとも2つは、互いに結合して環を形成してもよい。Xはハロゲン原子を示す。)で表されるシリルハライドの存在下で反応させて、前記チオウレア基をカルボジイミド基にすることを特徴とする。

Description

カルボジイミド化合物の製造方法
 本発明は、有機合成反応に用いられる脱水縮合剤、ポリマーの耐加水分解剤、硬化剤、封止剤、耐熱性接着剤等として有用なカルボジイミド化合物の製造方法に関する。
 カルボジイミド化合物は、有機合成反応に用いられる脱水縮合剤、ポリマーの耐加水分解剤、硬化剤、封止剤、耐熱性接着剤等として有用な化合物である。
 従来、カルボジイミド化合物の製造方法としては、例えば、アミン化合物と二硫化炭素から容易に得られるチオウレア基を有する化合物を原料とし、これに、水銀化合物、鉛化合物、次亜塩素酸ナトリウム、ホスゲン、アゾジカルボン酸エステル-トリフェニルホスフィン、メタンスルホニルクロライド、トシルクロライドなどを作用させる方法が知られている(例えば、特許文献1、2および非特許文献1)。
 また尿素体を出発原料としても、オキシ塩化リンや五酸化リンを用いることによりカルボジイミド化合物を製造する方法も知られている。しかし、尿素体の合成には、ホスゲン又はその誘導体を用いるため、安全上の問題や試剤が高価であるといった問題が存在していた。
特開2012-1484号公報 特開2012-1476号公報
ADVANCED ORGANIC CHEMISTRY Fourth Edition by Jerry March (WILEY INTERSCIENCE), p1043
 本発明は、簡便且つ高収率でカルボジイミド化合物を製造できる新規な方法を提供することを発明の課題として掲げた。
 本発明者は、前記課題を解決するために鋭意研究を重ねた結果、チオウレア基を有する化合物(以下、「チオ尿素誘導体」と称する場合もある)からカルボジイミド化合物を製造する際に、シリルハライドを共存させておくことにより、簡便且つ高収率でカルボジイミド化合物を製造できる事を見出して、本発明を完成した。
 すなわち、本発明に係るカルボジイミド化合物の製造方法は、チオウレア基を有する化合物を、下記式(2):
Figure JPOXMLDOC01-appb-C000003
(式中、R3、R4及びR5は、それぞれ独立して、水素原子、置換又は無置換の炭化水素基、置換又は無置換のヘテロアリール基、置換又は無置換のアルコキシ基を示す。またこれらR3、R4及びR5の少なくとも2つは、互いに結合して環を形成してもよい。Xはハロゲン原子を示す。)で表されるシリルハライドの存在下で反応させて、前記チオウレア基をカルボジイミド基にすることを特徴とする。
 前記チオウレア基を有する化合物は、下記式(1):
Figure JPOXMLDOC01-appb-C000004
(式中、R1及びR2は、それぞれ独立して、水素原子、置換又は無置換の炭化水素基、置換又は無置換のヘテロアリール基である。またR1とR2とは互いに結合して環を形成していてもよい。)で表される化合物が好ましい。
 また前記R1及びR2は、それぞれ独立して、水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアリール基、置換又は無置換のアラルキル基、或いは置換又は無置換のヘテロアリール基であり、
 前記R3、R4及びR5が、それぞれ独立して、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアリール基、置換又は無置換のアラルキル基、置換又は無置換のヘテロアリール基、或いは置換又は無置換のアルコキシ基を示し、Xが塩素原子であることがより好ましい態様であり、特に前記R1及びR2が、それぞれ独立して、置換又は無置換のアルキル基、或いは置換又は無置換のシクロアルキル基であることが好ましい。
 また前記シリルハライドを、前記チオウレア基を有する化合物1モルに対して、0.7モル以上5.0モル以下使用することが好ましい。
 前記シリルハライドを、鉄化合物又はモリブデン化合物のいずれか一方若しくはその両方の存在下、或いは、鉄化合物及びモリブデン化合物の非存在下で使用することができ、より好ましくは前記シリルハライドを、鉄化合物及びモリブデン化合物の非存在下で使用する態様である。
 本発明によれば、シリルハライドを共存させておくという極めて簡便な方法により、高収率でカルボジイミド化合物を製造できる。そのため、本発明に係る製造方法は、カルボジイミド化合物の製造方法として、極めて有用である。
 本発明は、チオウレア基を有する化合物を、下記式(2):
Figure JPOXMLDOC01-appb-C000005
(式中、R3、R4及びR5は、それぞれ独立して、水素原子、置換又は無置換の炭化水素基、置換又は無置換のヘテロアリール基、置換又は無置換のアルコキシ基を示す。またこれらR3、R4及びR5の少なくとも2つは、互いに結合して環を形成してもよい。Xはハロゲン原子を示す。)で表されるシリルハライドの存在下で反応させて、前記チオウレア基をカルボジイミド基にすることを特徴とする。すなわち、本発明は、原料となるチオ尿素誘導体から水素原子(H)と硫黄原子(S)を除去(脱硫脱水素)することにより、カルボジイミド化合物を製造するものである。
 そして本発明によれば、シリルハライド共存下でチオ尿素誘導体を反応させることにより、高い収率でカルボジイミド化合物を製造することが可能となる。特に、従来必要とされていた鉄化合物及びモリブデン化合物を使用しなくても高収率でカルボジイミド化合物を製造できることは意外であり、製造プロセスを簡素化できるといった新たな利点も期待できる。
 まず原料となるチオ尿素誘導体について説明する。チオ尿素誘導体とは、尿素の酸素原子を硫黄原子に置き換えたチオ尿素(チオウレア)骨格を有し、チオ尿素誘導体中の水素原子が置換又は無置換の化合物をいう。
 チオ尿素誘導体は、チオウレア骨格を有する限り特に限定されないが、例えば、下記式(1):
Figure JPOXMLDOC01-appb-C000006
(式中、R1及びR2は、それぞれ独立して水素原子、置換又は無置換の炭化水素基、置換又は無置換のヘテロアリール基である。またR1とR2とは互いに結合して環を形成していてもよい。)で表される化合物が好ましい。
 本願明細書において、「炭化水素基」とは、炭素原子と水素原子からなる置換基の総称である。炭化水素基には、アルキル基、シクロアルキル基、アルケニル基などの脂肪族炭化水素基、アリール基などの芳香族炭化水素基、アラルキル基などの芳香族環含有炭化水素基等が包含される。
 アルキル基としては、炭素数1~20のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、オクチル基、メチルヘプチル基、ジメチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、トリメチルペンチル基、3-エチル-2-メチルペンチル基、2-エチル-3-メチルペンチル基、2,2,3,3-テトラメチルブチル基、ノニル基、メチルオクチル基、3,7-ジメチルオクチル基、ジメチルヘプチル基、3-エチルヘプチル基、4-エチルヘプチル基、トリメチルヘキシル基、3,3-ジエチルペンチル基、デシル基、ウンデシル基、ドデシル基、等の直鎖又は分岐のアルキル基が挙げられる。アルキル基の炭素数は、1~10がより好ましく、更に好ましくは1~7であり、特に好ましくは1~5である。更に好ましくは、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基であり、n-プロピル基、iso-プロピル基が最も好ましい。
 シクロアルキル基としては、炭素数3~20のシクロアルキル基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基等が挙げられる。シクロアルキル基の環骨格の構成原子数は、3~15が好ましく、より好ましくは5~9であり、更に好ましくは6(シクロヘキシル基)である。
 アルケニル基としては、炭素数2~18のアルケニル基が好ましく、例えば、ビニル基、1-プロペニル基、2-プロペニル基(アリル基)、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の直鎖又は分岐のアルケニル基;1-シクロプロペニル基、2-シクロプロペニル基、1-シクロブテニル基、2-シクロブテニル基、1-シクロペンテニル基、2-シクロペンテニル基、3-シクロペンテニル基、1-シクロヘキセニル基、2-シクロヘキセニル基、3-シクロヘキセニル基、1-シクロヘプテニル基、2-シクロヘプテニル基、3-シクロヘプテニル基、4-シクロヘプテニル基等のシクロアルケニル基;等が例示できる。
 アリール基としては、炭素数6~16からなる芳香族炭化水素基が好ましい。アリール基は、1~5環(より好ましくは1~3環)を有することが好ましく、具体的に例示すると、フェニル基、ナフチル基、ペンタレニル基、インデニル基、アントラセニル基、フェナントリル基、フルオレニル基、ビフェニレル基等が挙げられる。中でも、炭素数6~10のアリール基が好ましく、より好ましくはフェニル基、ナフチル基であり、更に好ましくはフェニル基である。
 アラルキル基としては、炭素数7~18のアラルキル基が好ましく、例えば、ベンジル基、フェネチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基等が挙げられる。中でも、より好ましくはベンジル基、フェネチル基であり、更に好ましくはベンジル基である。
 ヘテロアリール基としては、炭素数2~20のヘテロアリール基が好ましく、例えば、チエニル基、チオピラニル基、イソチオクロメニル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラリジニル基、ピリミジニル基、ピリダジニル基、チアゾリル基、イソチアゾリル基、フラニル基、ピラニル基等が例示できる。
 なおR1とR2とは互いに結合して環を形成していてもよく、R1とR2とが環を形成している場合、R1とR2は直接結合していてもよいし、酸素原子、窒素原子又はケイ素原子等を介して結合していてもよい。
 前述した各種炭化水素基は置換されていてもよい。置換基は特に限定されるものではないが、例えば、アルキル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;アミノ基;アリール基;ヘテロアリール基;ヒドロキシ基;ニトロ基;等が挙げられる。ここで、アルキル基、アリール基、ヘテロアリール基は、前記に同じである。アミノ基としては、-NR67(式中、R6及びR7は、それぞれ独立して水素原子、アルキル基又はアリール基を示す。当該アルキル基及びアリール基は前記に同じ。)で表されるアミノ基(特にアルキルアミノ基)が好ましい。
 特に、R1及びR2が、脂肪族炭化水素基の場合、特にアルキル基又はアルケニル基の場合、好ましい置換基は、アミノ基、特に好ましくは-NR67(式中、R6及びR7は、それぞれ独立して水素原子、アルキル基又はアリール基を示す。)で表されるアミノ基であり、より好ましくはR6及びR7が炭素数1~3のアルキル基であるアミノ基であり、更に好ましくはジメチルアミノ基又はジエチルアミノ基である。
 一方、R1及びR2が、環構造含有基の場合、例えば、シクロアルキル基、アリール基、ヘテロアリール基、アラルキル基等の場合、好ましい置換基としてはアルキル基が挙げられ、中でもメチル基が好ましい。
 このようなR1及びR2としては、それぞれ独立して、水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアリール基、置換又は無置換のアラルキル基、或いは置換又は無置換のヘテロアリール基であることが好ましい。
 より好ましいアルキル基としては、下記式(a):
   R8-C(H)2-m(CH3m-*   (a)
(式(a)中、R8は炭素数1~10の置換又は無置換のアルキル基を示す。mは0~2の整数を示す。*はチオウレア骨格との結合部位を示す。)で表されるアルキル基が挙げられる。
 式(a)中、R8は、置換又は無置換の炭素数1~10のアルキル基を示し、好ましくは炭素数1~4のアルキル基である。またアルキル基の末端水素基は置換されていることが好ましく、置換基は前述したものを使用でき、特にアミノ基が好ましい。
 式(a)中、mは0~2の整数(より好ましくは0又は1)を示す。
 また、より好ましいシクロアルキル基及びアリール基としては、下記式(b):
Figure JPOXMLDOC01-appb-C000007
(式(b)中、R9は、置換又は無置換の炭素数1~6のアルキル基を示し、nは0~3の整数を示し、*はチオウレア骨格との結合部位を示す。)で表されるシクロアルキル基、及び下記式(c):
Figure JPOXMLDOC01-appb-C000008
(式(c)中、R9、n及び*は、前記に同じ。)で表されるアリール基が挙げられる。
 式(b)、(c)中、R9は、置換又は無置換の炭素数1~6のアルキル基を示し、好ましくは炭素数1~4のアルキル基であり、より好ましくはメチル基、エチル基であり、特に好ましくはメチル基である。置換基は前記と同じである。
 式(b)、(c)中、nは0~3の整数であり、より好ましくは0又は1である。nが1のとき、R9の結合位置(置換位置)は特に限定されず、環の2位~4位が好ましく、より好ましくは2位又は4位である。なお環の1位は、-*の結合部位である。
 生成するカルボジイミド化合物の有用性を考慮した場合、R1及びR2は、それぞれ独立して、置換又は無置換のアルキル基、或いは置換又は無置換のシクロアルキル基であることが好ましい。
 中でも、より好ましいR1及びR2としては、水素原子、メチル基、エチル基、イソプロピル基、3-ジメチルアミノプロピル基、3-ジメチルアミノ-1-メチルプロピル基、4-ジメチルアミノ-1-メチルブチル基、シクロアルキル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基又は4-メチルフェニル基である。
 前述したR1とR2は、同一であっても、それぞれ異なっていてもよいが、同一であることが好ましい。
 このようなチオ尿素誘導体としては、チオフェニル尿素、1-(2-メチルフェニル)チオ尿素、1-(3-メチルフェニル)チオ尿素、1-(4-メチルフェニル)チオ尿素、1-(1-ナフチル)チオ尿素、1-(2-ナフチル)チオ尿素等の一置換チオ尿素;1,3-ジプロピルチオ尿素、1,3-ジイソプロピルチオ尿素、1,3-ジシクロペンチルチオ尿素、1,3-ジシクロヘキシルチオ尿素、1,3-ジフェニルチオ尿素、1,3-ビス(2-メチルフェニル)チオ尿素、1,3-ビス(3-メチルフェニル)チオ尿素、1,3-ビス(4-メチルフェニル)チオ尿素、1-メチル-3-(3-ジメチルアミノプロピル)チオ尿素、1-エチル-3-(3-ジメチルアミノプロピル)チオ尿素、1-メチル-3-(3-ジメチルアミノ-1-メチルプロピル)チオ尿素、1-エチル-3-(3-ジメチルアミノ-1-メチルプロピル)チオ尿素等の二置換チオ尿素;が好ましい。特に好ましくは、チオフェニル尿素、1,3-ジイソプロピルチオ尿素、1,3-ジシクロプロピルチオ尿素、1,3-ジフェニルチオ尿素、1,3-ビス(2-メチルフェニル)チオ尿素、1,3-ビス(4-メチルフェニル)チオ尿素、1-エチル-3-(3-ジメチルアミノプロピル)チオ尿素、1-エチル-3-(3-ジメチルアミノ-1-メチルプロピル)チオ尿素である。
 前述したチオ尿素誘導体は、例えば、アミン化合物と二硫化炭素とから公知の有機合成技術に基づき容易に合成することができる。
 次にシリルハライドについて詳述する。カルボジイミド化反応時に共存させるシリルハライドは、下記式(2):
Figure JPOXMLDOC01-appb-C000009
(式(2)中、R3、R4及びR5は、それぞれ独立して、水素原子、置換又は無置換の炭化水素基、置換又は無置換のヘテロアリール基、置換又は無置換のアルコキシ基を示す。またこれらR3、R4及びR5の少なくとも2つは、互いに結合して環を形成してもよい。Xはハロゲン原子を示す。)で表される化合物である。
 R3~R5のアルキル基としては、炭素数1~20のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、オクチル基、メチルヘプチル基、ジメチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、トリメチルペンチル基、3-エチル-2-メチルペンチル基、2-エチル-3-メチルペンチル基、2,2,3,3-テトラメチルブチル基、ノニル基、メチルオクチル基、3,7-ジメチルオクチル基、ジメチルヘプチル基、3-エチルヘプチル基、4-エチルヘプチル基、トリメチルヘキシル基、3,3-ジエチルペンチル基、デシル基、ウンデシル基、ドデシル基等が挙げられる。アルキル基としては、炭素数1~5のものが好ましく、より好ましくはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基であり、最も好ましくはメチル基、エチル基である。
 R3~R5のシクロアルキル基としては、炭素数3~20のシクロアルキル基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基等が挙げられる。シクロアルキル基の環骨格の構成原子数は、3~14が好ましい。
 R3~R5のアルケニル基としては、炭素数2~18のアルケニル基が好ましく、例えば、ビニル基、1-プロペニル基、2-プロペニル基(アリル基)、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の直鎖又は分岐のアルケニル基;1-シクロプロペニル基、2-シクロプロペニル基、1-シクロブテニル基、2-シクロブテニル基、1-シクロペンテニル基、2-シクロペンテニル基、3-シクロペンテニル基、1-シクロヘキセニル基、2-シクロヘキセニル基、3-シクロヘキセニル基、1-シクロヘプテニル基、2-シクロヘプテニル基、3-シクロヘプテニル基、4-シクロヘプテニル基等のシクロアルケニル基;等が例示できる。アルケニル基を構成する炭素数は、2~12が好ましい。
 R3~R5のアリール基としては、炭素数6~20の芳香族炭化水素基が好ましい。アリール基は、1~5環(より好ましくは1~3環)を有することが好ましく、具体的に例示すると、フェニル基、ナフチル基、ペンタレニル基、インデニル基、アントラセニル基、フェナントリル基、フルオレニル基、ビフェニレル基等が挙げられ、好ましくはフェニル基である。
 R3~R5のアラルキル基としては、炭素数7~18のアラルキル基が好ましく、例えば、ベンジル基、フェネチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基等が挙げられる。中でも、炭素数7~10のアラルキル基が好ましく、ベンジル基がより好ましい。
 R3~R5のヘテロアリール基としては、炭素数2~20のヘテロアリール基が好ましく、例えば、チエニル基、チオピラニル基、イソチオクロメニル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラリジニル基、ピリミジニル基、ピリダジニル基、チアゾリル基、イソチアゾリル基、フラニル基、ピラニル基等が例示できる。
 R3~R5のアルコキシ基としては、酸素原子を介して前述したR3~R5のアルキル基が結合している置換基が用いられ、具体的に例示すると炭素数1~18のものが好ましく、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、2-メチルペンチルオキシ基、3-メチルペンチルオキシ基、2,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、ヘプチルオキシ基、2-メチルヘキシルオキシ基、3-メチルヘキシルオキシ基、2,2-ジメチルペンチルオキシ基、2,3-ジメチルペンチルオキシ基、2,4-ジメチルペンチルオキシ基、3-エチルペンチルオキシ基、2,2,3-トリメチルブチルオキシ基、オクチルオキシ基、メチルヘプチルオキシ基、ジメチルヘキシルオキシ基、2-エチルヘキシルオキシ基、3-エチルヘキシルオキシ基、トリメチルペンチルオキシ基、3-エチル-2-メチルペンチルオキシ基、2-エチル-3-メチルペンチルオキシ基、2,2,3,3-テトラメチルブトキシ基、ノニルオキシ基、メチルオクチルオキシ基、3,7-ジメチルオクチルオキシ基、ジメチルヘプチルオキシ基、3-エチルヘプチルオキシ基、4-エチルヘプチルオキシ基、トリメチルヘキシルオキシ基、3,3-ジエチルペンチルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基等が挙げられる。
 前述したR3~R5は置換基を有していてもよい。置換基は特に限定されるものではないが、例えば、アルキル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;アミノ基;アリール基;ヘテロアリール基;ヒドロキシ基;等が挙げられる。
 Xはハロゲン原子を示し、フッ素原子、塩素原子、臭素原子又はヨウ素原子であり、中でも塩素原子が好ましい。
 本発明においてR3、R4及びR5は、それぞれ独立して、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアリール基、置換又は無置換のアラルキル基、置換又は無置換のヘテロアリール基、或いは置換又は無置換のアルコキシ基であることが好ましい。特に、シリルハライドは、R3~R5のうち2以上(より好ましくは3つ全て)がそれぞれ独立して、置換又は無置換のアルキル基、置換又は無置換のアリール基、置換又は無置換のアルコキシ基であることが好ましい。
 前述したシリルハライドのうち、好ましいものとしては、例えば、Xが塩素原子である、モノ-、ジ-又はトリ-アルキルシリルクロリド(好ましくはジ-又はトリ-アルキルシリルクロリド)、ジ-又はトリ-アリールシリルクロリド、ジ-又はトリ-アラルキルシリルクロリド、ジ-又はトリ-アルコキシシリルクロリドが挙げられる。
 好ましいシリルハライドには、ジ-又はトリ-アルキルシリルクロリド、ジ-又はトリ-アリールシリルクロリド、ジ-又はトリ-アラルキルシリルクロリド、ジ-又はトリ-アルコキシシリルクロリドが含まれる。
 前記モノ-、ジ-又はトリ-アルキルシリルクロリドとしては、ケイ素原子に1つ、2つ又は3つのアルキル基と塩素原子が結合した各種シリルクロリドが含まれ、ケイ素原子に1つ又は2つのアルキル基が結合する場合には、ケイ素原子には、水素原子が結合しており、この水素原子は他の基(例えば、アリール基、アラルキル基、アルコキシ基)で置換されていてもよい。こうしたジ-又はトリ-アルキルシリルクロリドとしては、例えば、トリメチルシリルクロリド、トリエチルシリルクロリド、トリプロピルシリルクロリド、トリイソプロピルシリルクロリド、トリヘキシルシリルクロリド、ジメチル(tert-ブチル)シリルクロリド、イソプロピルジメチルシリルクロリド、エチルジメチルシリルクロリド、ドデシルジメチルシリルクロリド等のトリアルキルシリルクロリド;ジメチルシリルクロリド、ジエチルシリルクロリド、ジプロピルシリルクロリド、ジブチルシリルクロリド、ジ-tert-ブチルシリルクロリド、フェニルジメチルシリルクロリド、フェニルジエチルシリルクロリド、4-メチルフェニルジメチルシリルクロリド等のジアルキルシリルクロリド;メチルフェニルシリルクロリド等のモノアルキルシリルクロリド;等が例示できる。
 前記ジ-又はトリ-アリールシリルクロリドとしては、ケイ素原子に2つ又は3つのアリール基と塩素原子が結合した各種シリルクロリドが含まれ、例えば、トリフェニルシリルクロリド等のトリ-アリールシリルクロリド;t-ブチルジフェニルシリルクロリド、メチルジフェニルシリルクロリド、ビニルジフェニルシリルクロリド、メチルクロロビス(4-フルオロフェニル)シラン等のジ-アリールシリルクロリド;等が例示できる。
 前記ジ-又はトリ-アラルキルシリルクロリドとしては、ケイ素原子に2つ又は3つのアラルキル基と塩素原子が結合した各種シリルクロリドが含まれ、例えば、トリベンジルシリルクロリド等のトリ-アラルキルシリルクロリド;ジベンジルシリルクロリド等のジ-アラルキルシリルクロリド;等が例示できる。
 前記ジ-又はトリ-アルコキシシリルクロリドとしては、ケイ素原子に2つ又は3つのアルコキシ基と塩素原子が結合した各種シリルクロリドが含まれ、例えば、トリメトキシシリルクロリド、トリエトキシシリルクロリド、トリプロポキシシリルクロリド等のトリ-アルコキシシリルクロリド;ジメトキシシリルクロリド、ジエトキシシリルクロリド、ジプロポキシシリルクロリド等のジ-アルコキシシリルクロリド等;が例示できる。
 中でもシリルハライドとしては、トリメチルシリルクロリド、トリエチルシリルクロリド、トリプロピルシリルクロリド、トリイソプロピルシリルクロリド、トリフェニルシリルクロリド、トリメトキシシリルクロリド、トリエトキシシリルクロリドが好ましく、より好ましくはトリメチルシリルクロリド、トリエチルシリルクロリド、トリフェニルシリルクロリド、トリエトキシシリルクロリドである。なお、シリルハライドは一種で使用してもよく、複数を併用することも可能である。
 本発明では、上記チオ尿素誘導体と式(2)のシリルハライドからカルボジイミド化合物を製造する。チオ尿素誘導体が前記式(1)で表される場合、得られるカルボジイミド化合物は、下記式(3):
Figure JPOXMLDOC01-appb-C000010
(式中、R1及びR2は前記と同様。)で表される化合物である。ここで、R1及びR2は、原料として用いるチオ尿素誘導体の構造(具体的には、前記式(1)中のR1及びR2)に応じて決定される。すなわち、原料とするチオ尿素誘導体を適宜選択することにより、所望の構造のカルボジイミド化合物を得ることができる。
 チオ尿素誘導体と式(2)のシリルハライドからカルボジイミド化合物を製造する本発明において、各原料の仕込み手順は特に限定されるものではなく、例えば、反応溶媒を使用する場合には(i)反応容器に、チオ尿素誘導体、シリルハライド、溶媒を加えて反応させる方法や、(ii)反応容器に、チオ尿素誘導体、溶媒を加え、チオ尿素誘導体を溶解させた後にシリルハライドを投入して反応させてもよい。
 前記原料となるチオ尿素誘導体に対するシリルハライドの使用量は、チオ尿素誘導体1モルに対して、0.7モル以上が好ましく、より好ましくは0.8モル以上であり、更に好ましくは0.9モル以上であり、特に好ましくは1.0モル以上である。上限は特に限定されるものではないが、5.0モル以下が好ましく、より好ましくは4.0モル以下であり、更に好ましくは3.5モル以下であり、特に好ましくは3.0モル以下である。シリルハライドの使用量が下限を下回ると、チオ尿素誘導体が残存する可能性があり経済的に不利である。また、上限を上回ると、副生物を伴う虞があるため好ましくない。
 反応に用いる溶媒は特に限定されるものではないが、チオ尿素誘導体を溶解できる有機溶媒が好ましく、例えば、トルエン、キシレン、ベンゼン、へキサン等の炭化水素系溶媒;クロロホルム、ジクロロメタン、ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶媒;ジエチルエーテル、シクロヘキシルメチルエーテル、ジブチルエーテル、ジメトキシエタン、ジオキサン、テトラヒドロフラン、ジオキソラン等のエーテル系溶媒;2-ブタノン、メチルイソブチルケトン等のケトン系溶媒;等が挙げられる。溶媒は単独で用いてもよいし、2種以上を併用してもよい。溶媒としては、塩素系溶媒、エーテル系溶媒が好ましく、より好ましくはジクロロメタン、クロロホルム又はテトラヒドロフランである。
 前記溶媒の使用量としては、特に制限はなく適宜設定すればよいが、例えば、チオ尿素誘導体の濃度が0.01~10モル/Lになる程度とすることが好ましく、より好ましくは0.03~5モル/Lであり、更に好ましくは0.05~1モル/Lになるよう調整するとよい。
 カルボジイミド化反応は、加熱条件下で実施することが好ましい。カルボジイミド化反応時の加熱温度は、特に制限されるものではないが、0℃以上が好ましく、より好ましくは20℃以上であり、更に好ましくは30℃以上である。上限も特に限定されるものではないが、例えば、200℃以下が好ましく、より好ましくは150℃以下であり、更に好ましくは100℃以下である。
 また前記反応時の反応時間も特に限定されるものではなく、加熱温度等の反応条件によって適宜変更可能であるが、通常は、1時間以上が好ましく、より好ましくは5時間以上であり、更に好ましくは10時間以上であり、48時間以下が好ましく、より好ましくは30時間以下であり、より好ましくは27時間以下である。
 水分の多い条件下ではチオ尿素誘導体が分解する虞があるため、カルボジイミド化反応は窒素雰囲気下で行うことが好ましい。反応時の気圧は特に限定されるものではなく、カルボジイミド化反応は大気圧条件下(0.9~1.1気圧)で行うとよい。
 また本発明では、従来、触媒として使用されていた鉄化合物及びモリブデン化合物等の金属触媒の非存在下で前記カルボジイミド化反応を行うことが可能であるが、この反応を阻害しない範囲であれば、反応時にこれらの鉄化合物及びモリブデン化合物の少なくとも一方を用いることも可能である。
 前記鉄化合物は、2電子供与配位子を有する鉄錯体、鉄ハロゲン化物および酸化鉄からなる群より選ばれる1種であることが好ましい。前記鉄錯体としては、例えば、下記式(4):
Figure JPOXMLDOC01-appb-C000011
(式(4)中、R10は、置換基を有していてもよいシクロペンタジエニル基およびピラゾリルボレート配位子からなる群より選ばれる1種であり、R11はアルキル基およびアリール基からなる群より選ばれる1種であり、L1およびL2は各々独立して2電子供与配位子であり、L1およびL2は環を形成していてもよい。)で表される鉄錯体A、下記式(5):
Figure JPOXMLDOC01-appb-C000012
(式(5)中、R12は、置換基を有していてもよいシクロペンタジエニル基およびピラゾリルボレート配位子からなる群より選ばれる1種であり、L3およびL4は各々独立して2電子供与配位子であり、L3およびL4は環を形成していてもよい。)で表される鉄錯体BおよびFe(CO)5からなる群より選ばれる1種であることが好ましい。
 式(4)中のR10および式(5)中のR12の例である「置換基を有していてもよいシクロペンタジエニル基」とは、具体的には、無置換のシクロペンタジエニル基のほか、無置換のシクロペンタジエニル基の水素原子の1以上が置換基で置換されたものである。置換基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、ペンチル基等の炭素数が1~5のアルキル基が好ましく挙げられ、より好ましくは炭素数が1~3のアルキル基、さらに好ましくは炭素数が1又は2のアルキル基がよい。これら置換基を有する場合、シクロペンタジエニル基の水素原子の全てが同じ置換基で置換されていることが好ましい。
 式(4)中のR10および式(5)中のR12の例であるピラゾリルボレート配位子としては、例えば、ビス(1-ピラゾリル)ジヒドリドボレート、トリス(1-ピラゾリル)ヒドロボレート、トリス(3,5-置換-ピラゾリル-1-イル)ヒドロボレート(ここで3位および5位の置換基は、それぞれ独立して炭素数1~10のアルキル基、炭素数6~20のアリール基である)等のヒドロボレート類;ビス(1-ピラゾリル)ジアルキルボレート、トリス(1-ピラゾリル)アルキルボレート、トリス(3,5-置換-ピラゾリル-1-イル)アルキルボレート(ここで3位および5位の置換基は、それぞれ独立して炭素数1~10のアルキル基、炭素数6~20のアリール基である)等のアルキルボレート類;ビス(1-ピラゾリル)ジアリールボレート、トリス(1-ピラ・BR>]リル)アリールボレート、トリス(3,5-置換-ピラゾリル-1-イル)アリールボレート(ここで3位および5位の置換基は、それぞれ独立して炭素数1~10のアルキル基、炭素数6~20のアリール基である)等のアリールボレート類;等が挙げられる。アルキルボレート類としては、メチルボレート、エチルボレート、プロピルボレート等が挙げられ、アリールボレート類としては、フェニルボレート等が挙げられる。
 式(4)中、R11の例であるアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロヘキシル基等の直鎖状、分岐鎖状又は環状のアルキル基が挙げられる。特に、炭素数が5以下のアルキル基が好ましく、より好ましくは炭素数が4以下、さらに好ましくは炭素数が2以下のアルキル基がよい。
 式(4)中、R11の例であるアリール基としては、フェニル基、チエニル基、ピリジル基、イミダゾリル基等のアリール基又はヘテロ原子含有アリール基;等が挙げられる。
 式(4)および式(5)中、L1、L2、L3およびL4で示される2電子供与配位子としては、例えば、カルボニル、ホスフィン、アルシン、スチビン、アミン、ニトリル、イソニトリル等が挙げられ、これらの中でも特にカルボニルが好ましい。各式中、複数の2電子供与配位子は、各々、同じであってもよいし異なっていてもよいが、同じであることが好ましい。
 前記鉄ハロゲン化物としては、例えば、塩化鉄(III)(FeCl3)、塩化鉄(II)(FeCl2)、臭化鉄(III)(FeBr3)、臭化鉄(II)(FeBr2)、ヨウ化鉄(II)(FeI2)等が挙げられる。
 前記酸化鉄としては、酸化鉄(III)(Fe23)、酸化鉄(II)(FeO)が挙げられ、中でも酸化鉄(III)が好ましい。
 本発明におけるモリブデン化合物としては、2電子供与配位子を有するモリブデン錯体が挙げられる。好ましくは、下記式(6):
Figure JPOXMLDOC01-appb-C000013
(式(6)中、R13は置換基を有していてもよいシクロペンタジエニル基およびピラゾリルボレート配位子からなる群より選ばれる1種であり、R14はアルキル基およびアリール基からなる群より選ばれる1種であり、L5、L6およびL7は各々独立して2電子供与配位子であり、L5、L6およびL7のうちの2つが環を形成していてもよい。)で表されるモリブデン錯体AおよびMo(CO)6からなる群より選ばれる少なくとも1種である。
 なお式(6)中のR13およびR14については、それぞれ前記式(4)中のR10およびR11の説明を同様に適用でき、式(6)中のL5、L6およびL7については、前記式(4)および式(5)中のL1~L4の説明を同様に適用できる。
 以上の鉄化合物およびモリブデン化合物の中では、より効率よくカルボジイミド化合物を生成させうる点で、鉄化合物が好ましく、特に鉄錯体が好ましい。
 前記鉄化合物のうち、例えば、前記鉄錯体Bに相当する[CpFe(CO)2] 2(Cp:シクロペンタジエニル基)や、鉄ハロゲン化物および酸化鉄は市販されている。また前記鉄錯体Aなどは、市販の[CpFe(CO)2] 2とNaKおよびRIとから容易に調製することができる。また、前記モリブデン化合物であるモリブデン錯体Aは、市販の[CpMo(CO)3] 2とNaKおよびRIとから容易に調製することができる。さらに上述した以外の鉄化合物やモリブデン化合物についても、例えば実施例で後述する方法など公知技術を用いるなどして調製することができる。
 なお、本発明者が検討したところによると、前述した鉄化合物及びモリブデン化合物は使用量が少ないほど好ましいことが分かった。これらの化合物の量が少ない程、カルボジイミド化合物を高収率で製造できるという結果が得られており、カルボジイミド化反応は実質的に金属フリー、すなわち、シリルハライドを鉄化合物及びモリブデン化合物の非存在下で使用することがより好ましい。カルボジイミド化反応における前記鉄化合物及びモリブデン化合物の使用量は、原料のチオ尿素誘導体1モルに対して、1.0モル以下が好ましく、より好ましくは0.1モル以下であり、0.01モル以上含まれていても差し支えないが、0モルであることが特に好ましい。
 本発明の製造方法によれば、前記シリルハライドだけでカルボジイミド化反応を進行させることが可能である。しかしながら、アルコキシシラン、アルキルシラン等のシラン化合物や、後述する硫酸塩(硫酸マグネシウム、硫酸ナトリウムなど)は必須ではないが、必要に応じてシリルハライドと共に、シラン化合物を共存させることができる。シラン化合物を共存させると、カルボジイミド化合物の収率を高めることが可能となる場合があり、カルボジイミド化合物の収率は格段に向上する。
 前記シラン化合物としては、トリアルコキシシラン、ジアルコキシシラン、モノアルコキシシラン等のアルコキシシラン、トリアルキルシラン等が挙げられ、中でもトリアルコキシシランが好ましい。アルコキシシランが有するアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。トリアルキルシランが有するアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基等が挙げられる。またトリアルコキシシランやジアルコキシシラン、トリアルキルシランなど、複数のアルコキシ基又はアルキル基を有する場合、各基は同じであってもよいし異なっていてもよい。
 前記トリアルコキシシランとしては、例えば、トリメトキシシラン、トリエトキシシラン、ジメトキシエトキシシラン、ジエトキシメトキシシラン、トリプロポキシシラン等が挙げられる。これらの中でも、トリメトキシシラン、トリエトキシシランが好ましい。
 シラン化合物を用いる場合、その使用量は、前記チオ尿素誘導体1モルに対して、0.1モル以上、5モル以下が好ましく、より好ましくは0.5モル以上、3モル以下であり、さらに好ましくは1モル以上、2モル以下である。また、シラン化合物の使用量は、前記シリルハライドとの合計量が、上述した前記シリルハライドの使用量の範囲内に収まるように設定することが好ましい。
 本発明の製造方法においては、前記シリルハライドと共に、硫酸マグネシウムおよび硫酸ナトリウムの少なくとも一方などの硫酸塩を共存させることができる。硫酸塩を加えることでカルボジイミド化合物の収率を高めることが可能となる場合がある。
 硫酸塩を用いる場合、その使用量(硫酸マグネシウムと硫酸ナトリウムを併用する場合には合計量)は、前記チオ尿素誘導体1モルに対して、0.1モル以上、5モル以下が好ましく、より好ましくは0.5モル以上、3モル以下であり、さらに好ましくは1.0モル以上、1.5モル以下である。
 生成したカルボジイミド化合物の精製方法としては、抽出、濾過、溶媒留去、シリカゲルカラムクロマトグラフィー、再結晶、晶析、洗浄等が挙げられ、純度を高めるにはこれらを適宜組み合わせて行うことが推奨される。
 本願は、2014年2月12日に出願された日本国特許出願第2014-024411号に基づく優先権の利益を主張するものである。2014年2月12日に出願された日本国特許出願第2014-024411号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1~12:ジイソプロピルカルボジイミドの製造方法
Figure JPOXMLDOC01-appb-C000014
 反応容器に、1,3-ジイソプロピルチオ尿素0.10mmol、FeCl30.10mmol、表1に示す各種シリルハライド0.10mmolおよび無水テトラヒドロフラン1.00mLを加え、窒素雰囲気下、60℃で24時間反応させた。
 反応終了後、得られた反応液をガスクロマトグラフ質量分析計(GC-MS)(島津製作所社製「SHIMADZU GCMS-QP2010 Plus」:以下同様)で分析したところ、表1に示す収率で、カルボジイミド化合物が生成していることが分かった。
 比較例1
 反応容器に、1,3-ジイソプロピルチオ尿素0.1mmol、および無水テトラヒドロフラン1.00mLを加え、窒素雰囲気下、60℃で24時間反応させた。
 反応終了後、得られた反応液をガスクロマトグラフ質量分析計(GC-MS)で分析したところ、収率は0%で、カルボジイミド化合物は生成していなかった。
 比較例2
 反応容器に、1,3-ジイソプロピルチオ尿素0.1mmol、FeCl30.10mmol、および無水テトラヒドロフラン1.00mLを加え、窒素雰囲気下、60℃で24時間反応させた。
 反応終了後、得られた反応液をガスクロマトグラフ質量分析計(GC-MS)で分析したところ、収率16%で、カルボジイミド化合物が生成していることが分かった。
 比較例3
 反応容器に、1,3-ジイソプロピルチオ尿素0.1mmol、トリエトキシシラン0.10mmolおよび無水テトラヒドロフラン1.00mLを加え、窒素雰囲気下、60℃で24時間反応させた。
 反応終了後、得られた反応液をガスクロマトグラフ質量分析計(GC-MS)で分析したが、カルボジイミド化合物は生成していなかった。
Figure JPOXMLDOC01-appb-T000015
 表1中、Me=メチル基、Et=エチル基、EtO=エトキシ基、tBu=tert-ブチル基、Ph=フェニル基、Bn=ベンジル基である。
 これらの結果によれば、FeCl3を加えると、カルボジイミド化反応は進行するものの(比較例1と比較例2の対比)、本発明のように、カルボジイミド化反応に際しシリルハライドを共存させておくと、生成するカルボジイミド化合物の収率を格段に向上できることが分かる(実施例と比較例2との対比)。また本発明の効果は、シラン化合物では達成できないことが分かる(実施例と比較例3との対比)。
 実施例13~19:鉄化合物及びモリブデン化合物非存在下でのカルボジイミド化合物の製造方法
Figure JPOXMLDOC01-appb-C000016
 反応容器に、チオ尿素誘導体0.1mmol、トリエチルシリルクロライド0.1mmol、および無水テトラヒドロフラン1mLを加え、窒素雰囲気下、60℃で24時間反応させた。
 反応終了後、得られた反応液をガスクロマトグラフ質量分析計(GC-MS)で分析したところ、表2に示す収率で、各種のカルボジイミド化合物が生成していることが分かった。
 なお、得られた反応液は室温まで冷却し、水を添加した後に酢酸エチルで目的物であるカルボジイミド化合物を抽出した。次いで、有機層を水および飽和食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥し、その後ろ過、濃縮することにより粗品を得、さらに該粗品をシリカゲルを用いたカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン(質量比)=1/1)で精製して、表2に示す収率でカルボジイミド化合物を単離した。
 実施例13~18では、極めて高い収率でカルボジイミド化合物が生成した。また実施例19では、反応終了後、得られた反応液に大量の白色沈殿が生成した。白色沈殿を単離し、1H NMRを測定したところ1-エチル-3-(3-ジメチルアミノ-1-メチルプロピル)チオ尿素塩酸塩のスペクトルが測定された。また、得られた反応液をガスクロマトグラフ質量分析計(GC-MS)で分析したところ、95%の収率でカルボジイミド化合物が生成していたことが分かった。
 比較例4
 チオ尿素誘導体を、1,3-ジシクロヘキシル尿素に変更したこと以外は、実施例13~19と同様の方法により反応を実施したが、反応は起こらなかった。
Figure JPOXMLDOC01-appb-T000017
 上記結果に基づくと、鉄化合物及びモリブデン化合物を使用せずとも本発明によれば高収率でカルボジイミド化合物を製造できることが分かる。また実施例4と実施例14との対比によると、カルボジイミド化反応を鉄化合物及びモリブデン化合物非存在下で実施すると、カルボジイミド化合物の収率を更に向上できることも分かる。また本反応はチオ尿素誘導体特有のものであると言える(実施例と比較例4との対比)。
 なお、実施例で使用したチオ尿素誘導体は、以下の通りである。
 ・チオフェニル尿素:東京化成工業社製「P0237」
 ・1,3-ジイソプロピルチオ尿素:東京化成工業社製「D0253」
 ・1,3-ジシクロヘキシルチオ尿素:東京化成工業社製「D0440」
 ・1,3-ジフェニルチオ尿素:東京化成工業社製「T0197」
 ・1,3-ビス(4-メチルフェニル)チオ尿素:東京化成工業社製「D0803」
 ・1,3-ビス(2-メチルフェニル)チオ尿素:東京化成工業社製「D0802」
 ・1-エチル-3-(3-ジメチルアミノ-1-メチルプロピル)チオ尿素:東洋紡社製

Claims (7)

  1.  チオウレア基を有する化合物を、下記式(2):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R3、R4及びR5は、それぞれ独立して、水素原子、置換又は無置換の炭化水素基、置換又は無置換のヘテロアリール基、置換又は無置換のアルコキシ基を示す。またこれらR3、R4及びR5の少なくとも2つは、互いに結合して環を形成してもよい。Xはハロゲン原子を示す。)で表されるシリルハライドの存在下で反応させて、前記チオウレア基をカルボジイミド基にすることを特徴とするカルボジイミド化合物の製造方法。
  2.  前記チオウレア基を有する化合物が、下記式(1):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1及びR2は、それぞれ独立して、水素原子、置換又は無置換の炭化水素基、置換又は無置換のヘテロアリール基を示す。またR1とR2とは互いに結合して環を形成していてもよい。)で表される請求項1に記載のカルボジイミド化合物の製造方法。
  3.  前記R1及びR2が、それぞれ独立して、水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアリール基、置換又は無置換のアラルキル基、或いは置換又は無置換のヘテロアリール基であり、
     前記R3、R4及びR5が、それぞれ独立して、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアリール基、置換又は無置換のアラルキル基、置換又は無置換のヘテロアリール基、或いは置換又は無置換のアルコキシ基を示し、Xが塩素原子である請求項2に記載のカルボジイミド化合物の製造方法。
  4.  前記R1及びR2が、それぞれ独立して、置換又は無置換のアルキル基、或いは置換又は無置換のシクロアルキル基である請求項2又は3に記載のカルボジイミド化合物の製造方法。
  5.  前記シリルハライドを、前記チオウレア基を有する化合物1モルに対して、0.7モル以上5.0モル以下使用する請求項1~4のいずれか1項に記載のカルボジイミド化合物の製造方法。
  6.  前記シリルハライドを、鉄化合物又はモリブデン化合物のいずれか一方若しくはその両方の存在下、或いは、鉄化合物及びモリブデン化合物の非存在下で使用する請求項1~5のいずれか1項に記載のカルボジイミド化合物の製造方法。
  7.  前記シリルハライドを、鉄化合物及びモリブデン化合物の非存在下で使用する請求項1~6のいずれか1項に記載のカルボジイミド化合物の製造方法。
PCT/JP2015/050370 2014-02-12 2015-01-08 カルボジイミド化合物の製造方法 WO2015122216A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015562760A JP6467673B2 (ja) 2014-02-12 2015-01-08 カルボジイミド化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014024411 2014-02-12
JP2014-024411 2014-02-12

Publications (1)

Publication Number Publication Date
WO2015122216A1 true WO2015122216A1 (ja) 2015-08-20

Family

ID=53799964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050370 WO2015122216A1 (ja) 2014-02-12 2015-01-08 カルボジイミド化合物の製造方法

Country Status (2)

Country Link
JP (1) JP6467673B2 (ja)
WO (1) WO2015122216A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108084055A (zh) * 2017-12-27 2018-05-29 山东汇海医药化工有限公司 一种n,n’-二异丙基硫脲氧化合成n,n’-二异丙基碳二亚胺的方法
CN109369458A (zh) * 2018-09-14 2019-02-22 山东金城柯瑞化学有限公司 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐的制备方法
CN109485583A (zh) * 2018-10-09 2019-03-19 淄博天堂山化工有限公司 N,n’-二异丙基碳二亚胺的制备方法
CN109503429A (zh) * 2018-11-23 2019-03-22 山东汇海医药化工有限公司 一种提高n,n’-二环己基碳二亚胺产品纯度的方法
CN109516930A (zh) * 2018-11-23 2019-03-26 山东汇海医药化工有限公司 一种n,n’-二环己基碳二亚胺中废硫磺的处理方法
CN112142624A (zh) * 2020-10-19 2020-12-29 山东汇海医药化工有限公司 一种使用氧气作为氧化剂合成n,n′-二异丙基碳二亚胺的方法
CN115925582A (zh) * 2022-11-18 2023-04-07 山东汇海医药化工有限公司 一种n,n’-二异丙基碳二亚胺的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047208A (ja) * 2012-09-04 2014-03-17 Osaka City Univ カルボジイミド化合物の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047208A (ja) * 2012-09-04 2014-03-17 Osaka City Univ カルボジイミド化合物の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BLOM.B. ET AL., ORGANOMETALLICS, vol. 33, 19 September 2014 (2014-09-19), pages 5272 - 5282 *
FUKUMOTO,K. ET AL., CHEM. COMMUN., vol. 48, 2012, pages 3809 - 3811 *
HAYASAKA,K. ET AL., DALTON TRANSACTIONS, vol. 42, 2013, pages 10271 - 10276 *
KAZUMASA HAYASAKA ET AL., ABSTRACTS THE 39TH SYMPOSIUM ON MAIN GROUP ELEMENT CHEMISTRY, 2012, pages 169 - 172 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108084055A (zh) * 2017-12-27 2018-05-29 山东汇海医药化工有限公司 一种n,n’-二异丙基硫脲氧化合成n,n’-二异丙基碳二亚胺的方法
CN109369458A (zh) * 2018-09-14 2019-02-22 山东金城柯瑞化学有限公司 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐的制备方法
CN109485583A (zh) * 2018-10-09 2019-03-19 淄博天堂山化工有限公司 N,n’-二异丙基碳二亚胺的制备方法
CN109503429A (zh) * 2018-11-23 2019-03-22 山东汇海医药化工有限公司 一种提高n,n’-二环己基碳二亚胺产品纯度的方法
CN109516930A (zh) * 2018-11-23 2019-03-26 山东汇海医药化工有限公司 一种n,n’-二环己基碳二亚胺中废硫磺的处理方法
CN112142624A (zh) * 2020-10-19 2020-12-29 山东汇海医药化工有限公司 一种使用氧气作为氧化剂合成n,n′-二异丙基碳二亚胺的方法
WO2022082723A1 (zh) * 2020-10-19 2022-04-28 山东汇海医药化工有限公司 一种使用氧气作为氧化剂合成 n,n'- 二异丙基碳二亚胺的方法
CN115925582A (zh) * 2022-11-18 2023-04-07 山东汇海医药化工有限公司 一种n,n’-二异丙基碳二亚胺的制备方法

Also Published As

Publication number Publication date
JP6467673B2 (ja) 2019-02-13
JPWO2015122216A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6467673B2 (ja) カルボジイミド化合物の製造方法
KR101710043B1 (ko) 하이드로실릴화 촉매
KR101890606B1 (ko) 하이드로실릴화 촉매로 사용되는 금속착물의 현장 활성화
JP5999596B2 (ja) カルボジイミド化合物の製造方法
JP2013506663A5 (ja)
US10730893B2 (en) Noble metal-free hydrosilylatable mixture
Hayasaka et al. Highly efficient olefin hydrosilylation catalyzed by iron complexes with iminobipyridine ligand
JP7048945B2 (ja) 有機金属錯体触媒
WO2016024607A1 (ja) ヒドロシリル化反応触媒
JP6515930B2 (ja) ヒドロシリル化反応触媒
JP2020512972A (ja) 貴金属を含まない阻害されたヒドロシリル化可能な混合物
JPWO2016208554A1 (ja) 鉄錯体化合物とそれを用いた有機ケイ素化合物の製造方法
JP6308547B2 (ja) 有機ケイ素化合物の製造方法
González-García et al. Pentacoordinate mono (β-diketonato)-and hexacoordinate bis-(β-diketonato)-silicon (IV) complexes obtained from (thiocyanato-N) hydridosilanes
WO2018064163A1 (en) Method for preparing silahydrocarbons
JP5747873B2 (ja) 2−トリクロロシリルノルボルナンの製造方法
JP2019182793A (ja) 第三級炭化水素基を有するハロシラン化合物の製造方法
JP5886876B2 (ja) 新規な(トリオルガノシリル)アルキン及びその誘導体、並びに、新規な及び慣用の置換(トリオルガノシリル)アルキンと、その誘導体を得るための新規な触媒法
JP6665437B2 (ja) 第3級アルキルシラン及び第3級アルキルアルコキシシランの製造方法
JP6598406B2 (ja) イリジウム錯体等を用いたアリル化合物のヒドロシリル化によるシリル化合物の製造方法
JP6762043B2 (ja) イオウ含有有機ケイ素化合物の製造方法
JPWO2019054498A1 (ja) オルガノシロキサン及びオルガノシロキサンの製造方法
JP2010235595A (ja) アルキル化されたインドール類の製造方法
JP2019073473A (ja) 錯体化合物及びシロキサンの製造方法
PL220987B1 (pl) Nowe bis(triorganosililo)terminalne dialkiny oraz nowy katalityczny sposób otrzymywania bis(triorganosililo)terminalnych dialkinów

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749241

Country of ref document: EP

Kind code of ref document: A1