WO2015119255A1 - 固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法 - Google Patents

固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法 Download PDF

Info

Publication number
WO2015119255A1
WO2015119255A1 PCT/JP2015/053422 JP2015053422W WO2015119255A1 WO 2015119255 A1 WO2015119255 A1 WO 2015119255A1 JP 2015053422 W JP2015053422 W JP 2015053422W WO 2015119255 A1 WO2015119255 A1 WO 2015119255A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
solid phase
phase carrier
ligand
Prior art date
Application number
PCT/JP2015/053422
Other languages
English (en)
French (fr)
Inventor
幸子 津田
昌輝 籾山
良 津田
Original Assignee
Jsr株式会社
Jsrライフサイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社, Jsrライフサイエンス株式会社 filed Critical Jsr株式会社
Priority to JP2015561063A priority Critical patent/JP6276786B2/ja
Publication of WO2015119255A1 publication Critical patent/WO2015119255A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers

Definitions

  • the present invention relates to a solid phase carrier, a method for producing the solid phase carrier, a carrier for affinity purification, a packing material, a chromatography column, and a purification method.
  • the present invention relates to a solid phase carrier, a method for producing the solid phase carrier, a carrier for affinity purification, a packing material, a chromatography column, and a purification method useful for purification of proteins such as antibodies.
  • a solid phase carrier which is a carrier for a chromatography column packing material
  • a specific solid phase carrier in which pores are fixed with a water-soluble polymer, or a hydrophilic monomer such as an acrylamide monomer is subjected to reverse phase suspension polymerization.
  • Solid phase carriers formed and obtained by subjecting a hydrophilic monomer to a hydrophobic treatment with a protective group and the like, followed by polymerization and deprotection have been developed (Patent Documents 3 to 5).
  • the first problem to be solved by the present invention is to provide a solid phase carrier having both high hydrophilicity and excellent pressure resistance.
  • the second problem to be solved by the present invention is to provide an affinity purification carrier that has both excellent antifouling properties and excellent pressure resistance.
  • the present inventors paid attention to introducing a cross-linked structure into the solid phase carrier, and as a result of intensive studies on such a cross-linked structure, by introducing a specific cross-linked structure into the solid phase carrier, high hydrophilicity and The inventors have found that excellent pressure resistance is compatible, and have completed the present invention. Further, as a result of intensive studies, the present inventors have cross-linked some or all of the ends of the polymer constituting the solid phase carrier with a specific cross-linked structure, thereby providing excellent antifouling properties and excellent pressure resistance performance. The inventors have found that a carrier for affinity purification compatible with the above can be obtained, thereby completing the present invention.
  • the present invention provides the following ⁇ 1-1> to ⁇ 1-5> in order to solve the first problem.
  • a solid phase carrier comprising a resin having a divalent to tetravalent structure represented by the formula (1) (hereinafter also referred to as a first solid phase carrier).
  • R 1 represents an n-valent organic group
  • X 1 each independently represents a divalent group represented by the following formula (2), (3), (4) or (5)
  • n represents an integer of 2 to 4.
  • R 2 represents a divalent hydrocarbon group having 1 to 2 carbon atoms
  • Y 1 represents a thio group (> S), a sulfinyl group (> S ( ⁇ O)), an oxy group (> O), or an imino group (> NH).
  • R 3 represents a carbonyl group or * — (C ⁇ O) —NH— (* represents a position bonded to Y 1 in Formula (4)), Y 1 has the same meaning as described above. ]
  • ⁇ 1-3> Chromatography column (hereinafter also referred to as first chromatography column) in which a column container is filled with the packing material of ⁇ 1-2> above.
  • a method for purifying a target substance comprising the steps of: preparing a composition containing the target substance; and passing the composition through the chromatography column of ⁇ 1-3> , Also referred to as the first purification method).
  • ⁇ 1-5> 1 selected from a monovalent group represented by the following formula (8), a monovalent group represented by the following formula (9), a carboxy group, a succinimideoxy group, a formyl group, and an isocyanate group
  • a method for producing a solid phase carrier which comprises a step of bringing a solid phase having a functional group of at least one species into contact with a crosslinking agent represented by the following formula (10): Also called manufacturing method).
  • R 7 represents a divalent hydrocarbon group having 1 to 2 carbon atoms.
  • R 1 represents an n-valent organic group
  • Y 2 represents a thio group, an oxy group or an imino group
  • n represents an integer of 2 to 4.
  • the present invention provides the following ⁇ 2-1> to ⁇ 2-12> in order to solve the second problem.
  • a carrier for affinity purification having a solid phase carrier and a ligand or a reactive group for binding a ligand, wherein the reactive group for binding the ligand or the ligand is a solid phase carrier And a part or all of the ends of the polymer constituting the solid phase carrier are cross-linked with each other with a cross-linked structure represented by the following formula (21) 2) also referred to as affinity purification carrier 2).
  • R 21 represents an n2-valent organic group
  • X 21 each independently represents a thio group, a sulfinyl group or a sulfonyl group
  • n2 represents an integer of 2 or more.
  • the polymer constituting the solid phase carrier is a structural unit derived from a styrene monomer, a structural unit derived from a vinyl ketone monomer, a structural unit derived from a (meth) acrylonitrile monomer, (meth) acrylate ⁇ 2-1>
  • the carrier for affinity purification which is a polymer having one or more selected from structural units derived from a monomer and a structural unit derived from a (meth) acrylamide monomer.
  • ⁇ 2-3> The ⁇ 2-1>, wherein the cross-linked structure is introduced by adding a polyfunctional thiol compound represented by the following formula (33) before or during polymerization of the solid phase carrier.
  • R 22 represents a divalent organic group having 1 to 10 carbon atoms
  • X 22 and X 23 each independently represent a hydroxy group, an amino group or a thiol group.
  • the affinity purification carrier according to ⁇ 2-5> which is obtained by oxidizing a thio group in a cross-linked structure introduced by adding a cross-linking agent represented by the formula (22).
  • ⁇ 2-7> The affinity purification carrier according to any one of the above ⁇ 2-1> to ⁇ 2-6>, wherein the ligand or a reactive group for binding the ligand is a ligand.
  • ⁇ 2-8> The affinity purification carrier according to ⁇ 2-7>, wherein the ligand is a protein or a peptide.
  • a chromatographic column packing using the affinity purification carrier according to any one of the above ⁇ 2-1> to ⁇ 2-8> as a carrier (hereinafter also referred to as a second chromatography column packing) .
  • a chromatography column (hereinafter, also referred to as a second chromatography column) in which the packing material of ⁇ 2-9> is packed in a column container.
  • a method for purifying a target substance comprising the steps of: preparing a composition containing a target substance; and passing the composition through the chromatography column of ⁇ 2-10> Hereinafter, also referred to as a second purification method).
  • ⁇ 2-12> The purification method according to ⁇ 2-11> above, wherein the target substance is a target protein.
  • the first solid phase carrier of the present invention has high hydrophilicity and excellent pressure resistance, so that it is difficult to compact, and has a large dynamic binding capacity for a target substance when a ligand is immobilized. Therefore, according to the present invention, there are provided a chromatography column packing material and a chromatography column that have high impurity removal efficiency, excellent pressure resistance, are difficult to compact, and have a large dynamic binding capacity to a target substance when a ligand is immobilized. it can.
  • the second affinity purification carrier of the present invention has excellent antifouling properties and excellent pressure resistance, so that it is difficult to consolidate, and when it has a ligand, it has a large dynamic binding capacity to the target substance. Therefore, according to the present invention, there are provided a chromatography column packing material and a chromatography column that have high impurity removal efficiency, excellent pressure resistance, are difficult to compact, and have a large dynamic binding capacity to a target substance when having a ligand. it can.
  • the first solid phase carrier of the present invention is characterized by containing a resin having a divalent to tetravalent structure represented by the following formula (1), and the structure (1) is provided on the resin surface. What has is preferable.
  • formula (1) “ ⁇ ” extending from X 1 on the side not bonded to R 1 means a bond. In the present specification, the same applies hereinafter unless otherwise specified.
  • R 1 represents an n-valent organic group
  • X 1 each independently represents a divalent group represented by the following formula (2), (3), (4) or (5)
  • n represents an integer of 2 to 4.
  • R 2 represents a divalent hydrocarbon group having 1 to 2 carbon atoms
  • Y 1 represents a thio group (> S), a sulfinyl group (> S ( ⁇ O)), an oxy group (> O), or an imino group (> NH).
  • R 3 represents a carbonyl group or * — (C ⁇ O) —NH— (* represents a position bonded to Y 1 in Formula (4)), Y 1 has the same meaning as described above. ]
  • R 1 represents an n-valent organic group.
  • n is an integer of 2 to 4, preferably 2 or 3, and more preferably 2.
  • the structure (1) when n is 2 is represented by the following formula (1-1).
  • R 1-2 represents a divalent organic group
  • X 1 is as defined above, and each independently represents a divalent group represented by the formula (2), (3), (4) or (5).
  • the divalent organic group in R 1 may be linear or branched.
  • a divalent organic group includes a group having at least one selected from an ether bond, an imino group and an ester bond between carbon-carbon atoms of a divalent hydrocarbon group and a divalent hydrocarbon group. These may have a hydrophilic group as a substituent.
  • the hydrophilic group include a hydroxy group, a carboxy group, a thio group, an amino group, a sulfo group, a thiol group, a phosphate group, an aldehyde group, and a cyano group.
  • the substitution position and the number of such hydrophilic groups are arbitrary, but the number is preferably 0 to 6, more preferably 0 to 4, even more preferably from the viewpoint of hydrophilicity and pressure resistance. Is 0-2.
  • the carbon number is preferably 1 to 20, more preferably 1 to 10, from the viewpoint of hydrophilicity and pressure resistance. More preferably, it is 1-6, and particularly preferably 2-6.
  • the divalent hydrocarbon group may be linear or branched.
  • the divalent hydrocarbon group is preferably a divalent aliphatic hydrocarbon group, and more preferably an alkanediyl group.
  • alkanediyl group examples include methane-1,1-diyl group, ethane-1,1-diyl group, ethane-1,2-diyl group, propane-1,1-diyl group, propane-1,2 -Diyl group, propane-1,3-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, etc. Can be mentioned.
  • the group having one or more selected from an ether bond, an imino group and an ester bond between carbon-carbon atoms of the divalent hydrocarbon group includes hydrophilicity, pressure resistance, dynamics when a ligand is fixed.
  • a group having an ether bond between carbon-carbon atoms of a divalent hydrocarbon group is preferred, and a group represented by —R a (OR b ) m OR c — is more preferred (R a , R b and R c each independently represents an alkanediyl group having 2 to 4 carbon atoms, and m represents an integer of 0 to 30).
  • the number of carbon atoms of the alkanediyl group represented by R a , R b and R c is preferably 2 or 3, and more preferably 2.
  • Such alkanediyl group may be linear or branched, and preferred specific examples include ethane-1,2-diyl group, propane-1,2-diyl group, propane-1,3- A diyl group is mentioned.
  • M represents an integer of 0 to 30, but from the viewpoint of hydrophilicity, pressure resistance, and dynamic binding capacity when a ligand is immobilized, an integer of 0 to 25 is preferable, and an integer of 0 to 20 is more preferable.
  • An integer of 0 to 15 is more preferred, an integer of 0 to 10 is more preferred, an integer of 0 to 5 is more preferred, and an integer of 0 to 3 is particularly preferred.
  • R 1-2 is the same as the divalent organic group represented by R 1 .
  • each X 1 independently represents a divalent group represented by the following formula (2), (3), (4) or (5), but is hydrophilic and pressure resistant. From the viewpoint of performance and dynamic binding capacity when a ligand is immobilized, a divalent group represented by the formula (2), (3) or (4) is preferable, and represented by the formula (2) or (4). Are more preferable, and the divalent group represented by the formula (2) is particularly preferable.
  • R 2 represents a divalent hydrocarbon group having 1 to 2 carbon atoms
  • Y 1 represents a thio group (> S), a sulfinyl group (> S ( ⁇ O)), an oxy group (> O), or an imino group (> NH).
  • R 3 represents a carbonyl group or * — (C ⁇ O) —NH— (* represents a position bonded to Y 1 in Formula (4)), Y 1 has the same meaning as described above. ]
  • R 2 represents a divalent hydrocarbon group having 1 to 2 carbon atoms.
  • the divalent hydrocarbon group may be linear or branched.
  • the divalent hydrocarbon group is preferably a divalent aliphatic hydrocarbon group, and more preferably an alkanediyl group.
  • Preferable specific examples include methane-1,1-diyl group, ethane-1,2-diyl group and the like.
  • Y 1 represents a thio group, a sulfinyl group, an oxy group or an imino group, and has hydrophilicity, pressure resistance, and dynamic binding capacity when a ligand is immobilized. From the viewpoint of increasing both, a thio group and a sulfinyl group are preferable, and a sulfinyl group is more preferable.
  • the bond on the Y 1 side may be bonded to R 1, and the other bond is bonded to R 1. It may be.
  • a divalent group represented by the formula (5) is a bond of the nitrogen atom side may be bonded to R 1, other bond may be bonded to R 1.
  • the first solid phase carrier of the present invention includes a thio group or a sulfinyl group and a hydroxy group in addition to the structure (1) from the viewpoint of hydrophilicity and dynamic binding capacity when a ligand is immobilized. Those having further a monovalent group are preferred, and those having such a group on the resin surface are more preferred.
  • the monovalent group having a thio group or sulfinyl group and a hydroxy group those represented by the formula (6-1) or (6-2) are preferable, and those represented by the formula (6-1) Is more preferable.
  • R 4 represents a divalent hydrocarbon group having 1 to 2 carbon atoms
  • R 5 represents a monovalent organic group having 1 to 10 carbon atoms
  • Y 3 represents a thio group or a sulfinyl group.
  • R 4 represents a divalent hydrocarbon group having 1 to 2 carbon atoms. As the carbon number of such a divalent hydrocarbon group, 1 is preferable.
  • the divalent hydrocarbon group may be linear or branched.
  • the divalent hydrocarbon group is preferably a divalent aliphatic hydrocarbon group, and more preferably an alkanediyl group. Preferable specific examples include methane-1,1-diyl group, ethane-1,2-diyl group and the like.
  • R 5 represents a monovalent organic group having 1 to 10 carbon atoms.
  • the carbon number of such a monovalent organic group is preferably 1 to 8, more preferably 1 to 6, and further preferably 2 to 4 from the viewpoint of hydrophilicity and dynamic binding capacity when a ligand is immobilized.
  • the monovalent organic group includes a monovalent hydrocarbon group, a group in which at least one hydrogen atom contained in the monovalent hydrocarbon group is substituted with a hydrophilic group, — (R d O ) P -H (R d represents an alkanediyl group having 2 to 4 carbon atoms, and p represents an integer of 1 to 30). These may be linear or branched.
  • the monovalent hydrocarbon group is a concept including a monovalent aliphatic hydrocarbon group, a monovalent alicyclic hydrocarbon group, and a monovalent aromatic hydrocarbon group.
  • An aliphatic hydrocarbon group more preferably an alkyl group.
  • the number of carbon atoms of such an alkyl group is preferably 1 to 8, more preferably 1 to 6, and further preferably 2 to 4 from the viewpoints of hydrophilicity and dynamic binding capacity when a ligand is immobilized.
  • alkyl group examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, An octyl group etc. are mentioned.
  • examples of the hydrophilic group include a hydroxy group, a carboxy group, an amino group, a sulfo group, a thiol group, a phosphate group, and an aldehyde group, but the dynamic binding capacity and antifouling property when a ligand is fixed.
  • a hydroxy group is preferable.
  • the substitution position and the number of hydrophilic groups are arbitrary, but the number is preferably 1 to 6, more preferably from the viewpoint of dynamic binding capacity and antifouling property when a ligand is immobilized. One to four, particularly preferably two.
  • the number of carbon atoms of the alkanediyl group represented by R d is preferably 2 or 3, and more preferably 2.
  • Such alkanediyl group may be linear or branched, and preferred specific examples include ethane-1,2-diyl group, propane-1,2-diyl group, propane-1,3- A diyl group is mentioned.
  • p represents an integer of 1 to 30, but from the viewpoint of pressure resistance, an integer of 1 to 25 is preferable, an integer of 1 to 20 is more preferable, an integer of 1 to 15 is still more preferable, and an integer of 1 to 10 Is more preferred, an integer of 1 to 5 is more preferred, and an integer of 1 to 3 is particularly preferred.
  • R 5 a group in which at least one hydrogen atom contained in the monovalent hydrocarbon group is substituted with a hydrophilic group is preferable, and a specific example is represented by the following formula (7). What is represented.
  • R 6 represents a divalent or trivalent organic group having 1 to 10 carbon atoms, q represents 1 or 2, ** represents the bonding position with Y 3 in formula (6-1) or (6-2). ]
  • the carbon number of the divalent or trivalent organic group represented by R 6 is preferably 1 to 8 from the viewpoint of dynamic binding capacity and antifouling property when a ligand is fixed. To 6 are more preferable, and 2 to 4 are more preferable.
  • examples of the divalent organic group include divalent hydrocarbon groups, which may be linear or branched.
  • the divalent hydrocarbon group is preferably a divalent aliphatic hydrocarbon group, more preferably an alkanediyl group.
  • the number of carbon atoms in the alkanediyl group is preferably 1 to 8, more preferably 1 to 6, and further preferably 2 to 4 from the viewpoints of dynamic binding capacity and antifouling property when a ligand is immobilized.
  • alkanediyl group examples include methane-1,1-diyl group, ethane-1,1-diyl group, ethane-1,2-diyl group, propane-1,1-diyl group, propane-1, Examples include 2-diyl group, propane-1,3-diyl group, propane-2,2-diyl group and the like.
  • examples of the trivalent organic group include a trivalent hydrocarbon group, which may be linear or branched.
  • the trivalent hydrocarbon group is preferably a trivalent aliphatic hydrocarbon group, and more preferably an alkanetriyl group.
  • the number of carbon atoms of such an alkanetriyl group is preferably 1 to 8, more preferably 1 to 6, and further preferably 2 to 4 from the viewpoint of dynamic binding capacity and antifouling property when a ligand is immobilized.
  • alkanetriyl group examples include methane-1,1,1-triyl group, ethane-1,1,2-triyl group, propane-1,2,3-triyl group, propane-1,2, And 2-triyl group.
  • q is preferably 2 from the viewpoint of dynamic binding capacity and antifouling property when a ligand is immobilized.
  • the first solid phase carrier of the present invention preferably has a functional group capable of immobilizing a ligand, and more preferably has such a group on the surface.
  • the functional group capable of immobilizing the ligand is a monovalent group represented by the following formula (8), a monovalent group represented by the following formula (9), a carboxy group, a succinimideoxy group, or formyl. Group, an isocyanate group, and an amino group are mentioned, The group represented by Formula (8) is preferable.
  • R 7 represents a divalent hydrocarbon group having 1 to 2 carbon atoms.
  • the carbon number of the divalent hydrocarbon group represented by R 7 is preferably 1.
  • the divalent hydrocarbon group may be linear or branched.
  • the divalent hydrocarbon group is preferably a divalent aliphatic hydrocarbon group, and more preferably an alkanediyl group.
  • Preferable specific examples include methane-1,1-diyl group, ethane-1,2-diyl group and the like.
  • the ligand may be any molecule that binds to a target substance.
  • proteins such as protein A, protein G, and avidin; peptides such as insulin; antibodies such as monoclonal antibodies; enzymes; hormones; DNA; Carbohydrates such as heparin, Lewis X and ganglioside; low molecular weight compounds such as iminodiacetic acid, synthetic dye, 2-aminophenylboronic acid, 4-aminobenzamidine, glutathione, biotin and derivatives thereof.
  • the ligand illustrated above may use the whole, the fragment obtained by a recombinant, an enzyme treatment, etc. may be used. Further, it may be an artificially synthesized peptide or peptide derivative.
  • the target substance to be purified is an antibody, those containing an amino group are preferred, proteins are more preferred, immunoglobulin binding proteins are more preferred, and protein A is more preferred.
  • the average particle size (volume average particle size) of the first solid phase carrier of the present invention is preferably 20 to 150 ⁇ m, more preferably 40 to 100 ⁇ m, from the viewpoint of pressure resistance.
  • such an average particle diameter means the average particle diameter before ligand fixation.
  • the variation coefficient of the average particle diameter is preferably 40% or less, more preferably 30% or less.
  • the specific surface area of the first solid phase carrier of the present invention is a specific surface area at a pore size of 10 nm to 5000 nm, preferably 70 m 2 / g or more, from the viewpoint of dynamic binding capacity when a ligand is immobilized. Preferably, it is 90 m 2 / g or more.
  • the average particle size and specific surface area can be measured by a laser diffraction / scattering particle size analyzer or a mercury porosimeter.
  • the form of the first solid phase carrier of the present invention may be any of monolith, membrane, hollow fiber, particle, cassette, chip, etc., but particles are preferred.
  • the first solid phase carrier is preferably a porous material such as porous particles from the viewpoint of improving the surface area.
  • porous particles porous polymer particles are preferable.
  • the resin contained in the first solid phase carrier is not particularly limited as long as it has a bivalent to tetravalent structure represented by the formula (1), and polysaccharides such as agarose, dextran, and cellulose. It may be a natural polymer composed of or a synthetic polymer.
  • the method for producing the first solid phase carrier of the present invention may be produced by appropriately combining conventional methods, and is not particularly limited.
  • the monovalent group represented by the following formula (8) is represented by the following formula (9).
  • a solid phase having one or more functional groups selected from a monovalent group, a carboxy group, a succinimide group, a formyl group and an isocyanate group, and a crosslinking agent represented by the following formula (10) By a method for producing a solid phase carrier characterized by including a step, it can be produced simply and efficiently.
  • R 7 represents a divalent hydrocarbon group having 1 to 2 carbon atoms.
  • R 1 represents an n-valent organic group
  • Y 2 represents a thio group, an oxy group or an imino group
  • n represents an integer of 2 to 4.
  • Step 1-1 A solid phase such as raw material particles is obtained according to a conventional method, and as shown in FIGS. 1-2) A method of bringing the obtained solid phase into contact with the crosslinking agent represented by the formula (10) can be mentioned. Further, a solid phase carrier in which X 1 in the structure (1) is a divalent group represented by the formulas (2) to (4) and Y 1 is a sulfinyl group is ⁇ PR-2> (Step 2 -1) Obtaining the above solid phase according to a conventional method, and as illustrated in FIG.
  • Step 2-2 contacting the obtained solid phase with a cross-linking agent represented by the formula (10), (Step 2-3) Further, it can be obtained by a method of bringing an oxidant into contact with the obtained solid phase carrier (i).
  • the crosslinking agent Y 2 in formula (10) is a thio group.
  • ⁇ PR-1> and ⁇ PR-2> they were obtained in (Step 1-1) and (Step 2-1) prior to (Step 1-2) and (Step 2-2).
  • the monovalent group represented by the formula (6-1) or (6-2) can also be introduced into the solid phase carrier.
  • R 5 in the compounds represented by R 5 SH are the same as R 5 in the formula (6-1).
  • each said process is demonstrated concretely.
  • Steps 1-1 and 2-1 include a monovalent group represented by the formula (8), a monovalent group represented by the formula (9), a carboxy group, a succinimideoxy group, a formyl group, and an isocyanate group.
  • This is a step of (co) polymerizing selected monomers having one or more functional groups (hereinafter referred to as functional group-containing monomers) to obtain a solid phase having the functional groups.
  • the (co) polymerization method is preferably suspension polymerization.
  • the functional group-containing monomer those having a monovalent group represented by the formula (8) are preferable, and examples thereof include an epoxy group-containing unsaturated monomer.
  • an epoxy group-containing unsaturated monomer a (meth) acrylate monomer, a styrene monomer or the like is preferable, a (meth) acrylate monomer is more preferable, and a (meth) acrylate monomer represented by the following formula (11): Is more preferable.
  • R 8 represents a hydrogen atom or a methyl group
  • R 9 represents a single bond
  • R 10 represents an alkanediyl group having 2 to 4 carbon atoms, and r is 1 to 30 Represents an integer
  • R 7 has the same meaning as described above.
  • the carbon number of the divalent hydrocarbon group represented by R 9 is preferably 1 to 8, more preferably 1 to 6, and still more preferably 1 to 4.
  • the divalent hydrocarbon group may be linear or branched.
  • the divalent hydrocarbon group is preferably a divalent aliphatic hydrocarbon group, and more preferably an alkanediyl group. Preferable specific examples include methane-1,1-diyl group, ethane-1,2-diyl group and the like.
  • the alkanediyl group represented by R 10 may be linear or branched, and specific examples thereof include ethane-1,1-diyl group, ethane-1,2-diyl group, propane-1,1- Diyl group, propane-1,2-diyl group, propane-1,3-diyl group, propane-2,2-diyl group, butane-1,2-diyl group, butane-1,3-diyl group, butane- Examples include 1,4-diyl group.
  • R is preferably an integer of 1 to 25, more preferably an integer of 1 to 15.
  • Preferred specific examples of the functional group-containing monomer include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, ⁇ - (meth) acryl- ⁇ -glycidyl polyethylene glycol, (4-vinylbenzyl ) Glycidyl ether, allyl glycidyl ether, 3,4-epoxy-1-butene, 3,4-epoxy-3-methyl-1-butene, and the like can be used alone or in combination of two or more. .
  • the total amount of the functional group-containing monomer is preferably 1 to 90 parts by weight, more preferably 20 to 80 parts by weight, more preferably 30 to 30 parts by weight with respect to 100 parts by weight of the total monomer from the viewpoint of hydrophilicity and pressure resistance. 70 parts by mass is particularly preferred.
  • another monomer may be used together with the functional group-containing monomer.
  • the other monomer either a non-crosslinkable monomer or a crosslinkable monomer can be used, and these may be used in combination.
  • non-crosslinkable monomer (meth) acrylate non-crosslinkable monomer, (meth) acrylamide non-crosslinkable monomer, styrene non-crosslinkable monomer, vinyl ketone non-crosslinkable monomer, (meth) acrylonitrile non-crosslinkable Monomers and N-vinylamide non-crosslinkable monomers can be mentioned, and one of these can be used alone or in combination of two or more. Among these, (meth) acrylate-based non-crosslinkable monomers are preferable.
  • Examples of the (meth) acrylate non-crosslinkable monomer include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, and glycerol mono (meth) ) Acrylate, trimethylolethane mono (meth) acrylate, trimethylolpropane mono (meth) acrylate, butanetriol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, pentaerythritol mono (meth) acrylate, dipentaerythritol mono ( And (meth) acrylate, inositol mono (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and the like.
  • Examples of the (meth) acrylamide non-crosslinkable monomer include (meth) acrylamide, dimethyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone (meth) acrylamide, and the like.
  • styrene non-crosslinkable monomer examples include styrene, ⁇ -methylstyrene, halogenated styrene, and the like.
  • examples of the vinyl ketone non-crosslinkable monomer include ethyl vinyl ketone, propyl vinyl ketone, isopropyl vinyl ketone, and the like.
  • examples of the (meth) acrylonitrile-based non-crosslinkable monomer include acrylonitrile and methacrylonitrile.
  • examples of the N-vinylamide non-crosslinkable monomer include N-vinylacetamide and N-vinylpropamide.
  • the total amount of the non-crosslinkable monomer used is preferably 0 to 70 parts by weight, more preferably 3 to 50 parts by weight, with respect to 100 parts by weight of the total monomer, from the viewpoint of hydrophilicity and pressure resistance. 30 parts by mass is particularly preferred.
  • the crosslinkable monomer is preferably a (meth) acrylate-based crosslinkable monomer. Further, those having 2 to 5 functions are preferred, and those having 2 or 3 functions are more preferred.
  • the (meth) acrylate-based cross-linkable monomer examples include glycerin di (meth) acrylate, trimethylolethane di (meth) acrylate, trimethylolpropane di (meth) acrylate, butanetriol di (meth) acrylate, Pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) Acrylate, Inositol di (meth) acrylate, Inositol tri (meth) acrylate, Inositol tetra (meth) acrylate, Trimethylolpropane tri (meth) acrylate Rate, (pol
  • the total amount used is preferably 1 to 90 parts by weight, more preferably 5 to 70 parts by weight with respect to 100 parts by weight of the total monomer, from the viewpoint of hydrophilicity and pressure resistance.
  • 10 to 60 parts by mass is more preferable, and 20 to 50 parts by mass is particularly preferable.
  • a polymerization initiator is dissolved in a mixed solution (monomer solution) containing a monomer and, if necessary, a porosifying agent.
  • a method of polymerizing by suspending in water and heating to a predetermined temperature, or an aqueous medium in which a polymerization initiator is dissolved in a mixed solution (monomer solution) containing a monomer and, if necessary, a porosifying agent, and heated to a predetermined temperature
  • Add the polymerization initiator add the polymerization initiator, suspend the mixed solution (monomer solution) containing the monomer and, if necessary, the porosifying agent in an aqueous medium and heat it to the specified temperature.
  • polymerization methods for example, a polymerization initiator is dissolved in a mixed solution (monomer solution) containing a monomer and, if necessary, a porosifying agent.
  • radical polymerization initiators include azo initiators, peroxide initiators, redox initiators, and the like. Specific examples include azobisisobutyronitrile, methyl azobisisobutyrate, azobis-2, Examples include 4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, benzoyl peroxide-dimethylaniline, and the like.
  • the total amount of the polymerization initiator used is usually about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • the above-mentioned porous agent is used for producing porous particles, and is present together with a monomer in polymerization in oil droplets, and has a role of forming pores as a non-polymerized component.
  • the porous agent is not particularly limited as long as it can be easily removed on the porous surface, and examples thereof include linear polymers that are soluble in various organic solvents and mixed monomers. You may use together.
  • the porosifying agent examples include aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, and undecane; alicyclic hydrocarbons such as cyclohexane and cyclopentane; benzene, toluene, xylene, naphthalene, and ethylbenzene.
  • Aromatic hydrocarbons such as; halogenated hydrocarbons such as carbon tetrachloride and tetrachloroethane; butanol, pentanol, hexanol, heptanol, hexanol, 4-methyl-2-pentanol, 2-ethyl-1-hexanol, etc.
  • Aliphatic alcohols such as cyclohexanol; Aromatic alcohols such as 2-phenylethyl alcohol and benzyl alcohol; Diethyl ketone, methyl isobutyl ketone, diisobutyl ketone, acetophenone, 2-octanone, cyclohexano Ketones such as dibutyl ether, diisobutyl ether, anisole and ethoxybenzene; homopolymers of non-crosslinkable vinyl monomers in addition to esters such as isopentyl acetate, butyl acetate, 3-methoxybutyl acetate and diethyl malonate Examples thereof include linear polymers such as polymers.
  • the porosifying agents can be used alone or in admixture of two or more.
  • the total amount of the porous agent used is usually 70 to 600 parts by mass, more preferably 70 to 400 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • aqueous medium examples include aqueous water-soluble polymer aqueous solutions, and examples of the water-soluble polymer include hydroxyethyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, starch, and gelatin.
  • the total amount of the aqueous medium used is usually about 200 to 7000 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • a dispersion stabilizer such as sodium carbonate, calcium carbonate, sodium sulfate, calcium phosphate, sodium chloride, etc. may be used.
  • Steps 1-1 and 2-1 various surfactants including anionic surfactants such as alkyl sulfate ester salts, alkylaryl sulfate ester salts, alkyl phosphate ester salts, and fatty acid salts are used. Also good.
  • polymerization inhibitors such as nitrites such as sodium nitrite, iodide salts such as potassium iodide, tert-butylpyrocatechol, benzoquinone, picric acid, hydroquinone, copper chloride, ferric chloride and the like can also be used.
  • polymerization preparation agents such as dodecyl mercaptan.
  • the polymerization temperature in steps 1-1 and 2-1 may be determined according to the polymerization initiator.
  • the polymerization initiator 50 to 100 ° C. is preferable. 60 to 90 ° C. is more preferable.
  • the polymerization time is usually 5 minutes to 48 hours, preferably 10 minutes to 24 hours.
  • the compound represented by R 5 SH is subjected to ring-opening addition to the group represented by the formula (8) or (9) of the solid phase thus obtained, whereby the following formula (6-1) ) Or (6-2) can also be introduced into the solid phase.
  • Examples of the compound represented by R 5 SH include methanethiol and thioglycerol.
  • the total amount of such compounds used is usually 0.1 to 12 mole equivalents per mole of the group represented by the formula (8) or (9).
  • the reaction time for such ring-opening addition reaction is not particularly limited, but is usually about 0.5 to 72 hours.
  • the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100 ° C.
  • Steps 1-2 and 2-2 are steps for introducing a crosslinking structure by ring-opening addition of a crosslinking agent represented by the formula (10) to a functional group derived from a functional group-containing monomer.
  • Examples of the crosslinking agent (10) used in Steps 1-2 and 2-2 include diols such as ethylene diol, 1,6-hexanediol, 3,6-dioxa-1,8-octanediol, and diethylene glycol; ethylenediamine, 1 Diamines such as 1,6-hexanediamine, 2,2′-oxybis (ethylamine), 3,6-dioxa-1,8-octanediamine; ethylenedithiol, 1,6-hexanedithiol, bis (2-mercaptoethyl) In addition to dithiols such as ether and 3,6-dioxa-1,8-octanedithiol, 2-mercaptoethanol, glycerin and the like can be mentioned.
  • diols such as ethylene diol, 1,6-hexanediol, 3,6-dioxa-1,8-octanedio
  • crosslinking agents can be used alone or in admixture of two or more.
  • the total amount of the crosslinking agent (10) used is usually 0.1 to 12 molar equivalents, preferably 0.1 to 6 molar equivalents, based on 1 mol of the functional group derived from the functional group-containing monomer.
  • the amount is preferably 0.1 to 3 molar equivalents.
  • Steps 1-2 and 2-2 may be performed in the presence of a basic catalyst.
  • a basic catalyst include triethylamine, N, N-dimethyl-4-aminopyridine, diisopropylethylamine, and the like.
  • One kind can be used alone, or two or more kinds can be used in combination.
  • the reaction time in steps 1-2 and 2-2 is not particularly limited, but is usually about 0.5 to 72 hours, preferably 0.5 to 48 hours.
  • the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100 ° C.
  • Step 2-3 the solid phase carrier (i) in which Y 2 in Formula (10) is crosslinked with a crosslinking agent having a thio group is contacted with an oxidizing agent to convert the thio group of the solid phase carrier (i) to a sulfinyl group. It is a process of oxidizing to.
  • the above oxidizing agents are roughly classified into organic oxidizing agents and inorganic oxidizing agents.
  • organic oxidizing agents include peracetic acid, perbenzoic acid, metachloroperbenzoic acid, and the like.
  • examples of the inorganic oxidizing agent include hydrogen peroxide, chromic acid, permanganate and the like.
  • these oxidizing agents can be used individually by 1 type or in combination of 2 or more types.
  • the total amount of oxidizing agent used is usually about 0.1 to 10 molar equivalents per mole of thio group, preferably 0.5 to 5 molar equivalents, and more preferably 0.5 to 3 molar equivalents. Molar equivalents.
  • step 2-3 may be performed in the presence of a solvent.
  • solvents include water, amide solvents such as dimethylformamide and dimethylacetamide, alcohol solvents such as methanol and ethanol, and the like. These solvents can be used alone or in combination of two or more. .
  • the reaction time in step 2-3 is not particularly limited, but is usually about 0.5 to 72 hours, and the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 1 to 70 ° C. .
  • the first solid phase carrier containing the resin having the structure (1) of the present invention obtained as described above has high hydrophilicity and is excellent in pressure resistance performance (mechanical strength), so it is difficult to be consolidated, Moreover, since the dynamic binding capacity with respect to the target substance when the ligand is immobilized is large, it is useful as a carrier for chromatography.
  • the first packing material for a chromatography column of the present invention uses the first solid phase carrier of the present invention as a carrier. Since the first solid phase carrier of the present invention has a large dynamic binding capacity for a target substance (particularly a target protein) when a ligand is immobilized, the above-mentioned packing material is suitable for use in affinity chromatography. Examples of such a packing material for affinity chromatography column include those in which the ligand is immobilized on the solid phase carrier.
  • the total amount of ligand used is usually about 50 to 300 mg per gram of the first solid phase carrier of the present invention, preferably 120 to 180 mg.
  • the ligand may be immobilized in the same manner as in the conventional method except that the above solid phase carrier is used, but it is preferably performed in a buffer to which a salt is added.
  • the salt include trisodium citrate and sodium sulfate.
  • the buffer include sodium phosphate, potassium phosphate and boric acid.
  • the total amount of the buffer used is usually about 20 to 80 times by mass, preferably 35 to 45 times by mass with respect to the first solid phase carrier of the present invention.
  • the reaction time for ligand fixation is not particularly limited, but is usually about 0.5 to 72 hours, and the reaction temperature is usually about 1 to 40 ° C.
  • a functional group such as a monovalent group represented by the formula (8) remains in the solid phase carrier that is a carrier for the filler, a compound represented by R 5 SH (R 5 is the number of carbon atoms) The monofunctional organic group of 1 to 10) may be reacted to open the ring of the functional group.
  • the first chromatography column of the present invention is a column container filled with the first chromatography column packing material of the present invention.
  • the column is suitable for use in affinity chromatography.
  • the first purification method of the present invention comprises a step of preparing a composition containing a target substance, and a step of passing the composition through the first chromatography column of the present invention.
  • the target substance include target proteins.
  • purification may be performed according to a conventional method except that the first chromatography column of the present invention is used.
  • the second affinity purification carrier of the present invention is an affinity purification carrier having a solid phase carrier and a ligand or a reactive group for binding a ligand, and is reactive for binding a ligand or a ligand.
  • the group is bonded to the solid phase carrier, and part or all of the ends of the polymer constituting the solid phase carrier are cross-linked with each other with a cross-linked structure represented by the following formula (21).
  • R 21 represents an n2-valent organic group
  • X 21 each independently represents a thio group (> S), a sulfinyl group (> S ⁇ O) or a sulfonyl group (> S ( ⁇ O) 2 )
  • n2 represents an integer of 2 or more.
  • the crosslinked structure (21) is a crosslinked structure having n2 bonds.
  • R 21 represents an n2-valent organic group.
  • n2 is an integer of 2 or more, but from the viewpoint of antifouling property and pressure resistance, an integer of 2 to 6 is preferable, an integer of 2 to 4 is preferable, 2 or 3 is more preferable, and 2 is particularly preferable.
  • the total number of carbon atoms of the n2-valent organic group represented by R 21 is preferably 1 to 40, more preferably 1 to 30, more preferably 1 to 24, and more preferably from the viewpoint of antifouling property and pressure resistance Preferably, it is 2 to 18, more preferably 2 to 12, more preferably 2 to 10, more preferably 2 to 8, still more preferably 3 to 7, particularly preferably 4 to 6.
  • Examples of the n2-valent organic group represented by R 21 include an n2-valent hydrocarbon group, an oxy group (> O), a thio group (> S), a sulfinyl group between the carbon-carbon atoms of the n2-valent hydrocarbon group.
  • a group having an oxy group or the like between carbon-carbon atoms of an n2-valent hydrocarbon group are examples of the n2-valent organic group represented by R 21.
  • a group having an oxy group or the like between the carbon-carbon atoms of the n2-valent hydrocarbon group is preferable, and an oxy group between the carbon-carbon atoms of the n2-valent hydrocarbon group is preferred.
  • a group having one or more selected from a thio group, a sulfinyl group, and a sulfonyl group is more preferable.
  • the carbon number is preferably 1 to 30, more preferably 1 to 20, still more preferably 1 to 10, and more preferably 1 to 6 Is more preferable, 2 to 4 are more preferable, and 2 or 3 is particularly preferable.
  • the carbon number of the n2-valent hydrocarbon group in such a group is Is preferably 2 to 40, more preferably 2 to 30, more preferably 2 to 24, still more preferably 2 to 18, still more preferably 2 to 12, still more preferably 2 to 10, and still more preferably 2 to 8, 3 to 7 is more preferable, and 4 to 6 is particularly preferable.
  • the “n2-valent hydrocarbon group” in R 21 may be linear or branched, but is preferably an n2-valent aliphatic hydrocarbon group. Preferred examples include divalent to tetravalent aliphatic groups. Group hydrocarbon group.
  • an alkanediyl group is preferable. Specifically, a methane-1,1-diyl group, an ethane-1,1-diyl group, an ethane-1,2-diyl group, propane -1,1-diyl group, propane-1,2-diyl group, propane-1,3-diyl group, propane-2,2-diyl group, butane-1,2-diyl group, butane-1,3- Diyl group, butane-1,4-diyl group, pentane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,5-diyl group, hexane-1,6-diyl group, etc.
  • an alkanetriyl group is preferable. Specifically, a methane-1,1,1-triyl group, an ethane-1,1,2-triyl group, a propane-1,2 , 3-triyl group, propane-1,2,2-triyl group and the like.
  • the tetravalent aliphatic hydrocarbon group is preferably an alkanetetrayl group, such as a 4,4-dipropylheptane-tetrayl group.
  • the crosslinked structure (21) as described above include a crosslinked structure represented by the formula (23) or (24).
  • the formula (23) Is preferably a cross-linked structure.
  • the crosslinked structure (23) is a crosslinked structure having two bonds
  • the crosslinked structure (24) is a crosslinked structure having p2 bonds.
  • R 23 represents a divalent hydrocarbon group or a group having at least one selected from an oxy group, a thio group, a sulfinyl group, and a sulfonyl group between carbon-carbon atoms of the divalent hydrocarbon group;
  • X 21 is as defined above, and each independently represents a thio group, a sulfinyl group or a sulfonyl group.
  • R 23 when R 23 is a divalent hydrocarbon group, the carbon number thereof is preferably 1-20, more preferably 1-10, still more preferably 1-6, and even more preferably 2-4 2 or 3 is particularly preferred.
  • R 23 when R 23 is a group having one or more selected from an oxy group, a thio group, a sulfinyl group, and a sulfonyl group between carbon-carbon atoms of a divalent hydrocarbon group,
  • the number of carbon atoms of the hydrogen group is preferably 2 to 18, more preferably 2 to 12, further preferably 2 to 10, still more preferably 2 to 8, still more preferably 3 to 7, and particularly preferably 4 to 6.
  • divalent hydrocarbon groups in R 23 may be linear or branched, but are preferably divalent aliphatic hydrocarbon groups.
  • an alkanediyl group is preferable. Specifically, a methane-1,1-diyl group, an ethane-1,1-diyl group, an ethane-1,2-diyl group, propane -1,1-diyl group, propane-1,2-diyl group, propane-1,3-diyl group, propane-2,2-diyl group, butane-1,2-diyl group, butane-1,3- Diyl group, butane-1,4-diyl group, pentane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,5-diyl group, hexane-1,6-diyl group, etc. It is done.
  • R 23 is selected from an oxy group, a thio group, a sulfinyl group, and a sulfonyl group between the carbon-carbon atoms of the divalent hydrocarbon group from the viewpoint of antifouling property, pressure resistance and the like.
  • a group having at least one species is preferable, and the group represented by —R f (Y a R g ) t Y b R h —
  • R f , R g and R h are each independently a group having 1 to 4 carbon atoms, More preferably, it represents an alkanediyl group, and Y a and Y b each independently represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and t represents an integer of 0 to 10.
  • the number of carbon atoms of the alkanediyl group represented by R f , R g and R h is preferably 2 or 3, and more preferably 2.
  • alkanediyl groups may be linear or branched.
  • Preferred examples include ethane-1,2-diyl, propane-1,2-diyl, propane-1,3-diyl.
  • Groups. T represents an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 0 to 3, and particularly preferably 0 or 1.
  • R 24 represents a p2 + q2 valent organic group
  • R 25 represents a divalent hydrocarbon group
  • R 26 represents a hydrocarbon group
  • p2 represents an integer of 2 to 6
  • q2 represents an integer of 0 to 8
  • X 21 is as defined above, and each independently represents a thio group, a sulfinyl group or a sulfonyl group.
  • p2 represents an integer of 2 to 6, preferably an integer of 2 to 4, more preferably 3 or 4, and particularly preferably 4.
  • q2 represents an integer of 0 to 8, preferably an integer of 0 to 4, more preferably an integer of 0 to 2, and particularly preferably 0.
  • p2 + q2 is preferably an integer of 2 to 10, more preferably an integer of 2 to 6, still more preferably an integer of 2 to 4, still more preferably 3 or 4, and particularly preferably 4. It is.
  • the p2 + q2 valent organic group represented by R 24 is preferably a p2 + q2 valent hydrocarbon group or a group having an oxy group between carbon-carbon atoms of the p2 + q2 valent hydrocarbon group, and preferably a p2 + q2 valent hydrocarbon group.
  • the p2 + q2 valent hydrocarbon group may be linear or branched, but is preferably an alkanediyl group, an alkanetriyl group, or an alkanetetrayl group.
  • the number of carbon atoms of the alkanediyl group represented by R 24 is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 2 to 4.
  • the carbon number of the alkanetriyl group and alkanetetrayl group represented by R 24 is preferably 1 to 10, more preferably 2 to 8, and particularly preferably 4 to 6.
  • Preferred specific examples of the alkanetriyl group and alkanetetrayl group are as shown in the following formulae.
  • the divalent hydrocarbon group represented by R 25 preferably has 1 to 6 carbon atoms, more preferably 2 to 4 carbon atoms.
  • the divalent hydrocarbon group may be linear or branched.
  • the divalent hydrocarbon group is preferably a divalent aliphatic hydrocarbon group, and more preferably an alkanediyl group. Specifically, methane-1,1-diyl group, ethane-1,1-diyl group, ethane-1,2-diyl group, propane-1,1-diyl group, propane-1,2-diyl group, Examples thereof include a propane-1,3-diyl group and a propane-2,2-diyl group.
  • the number of carbon atoms of the hydrocarbon group represented by R 26 is preferably 1 to 10, more preferably 2 to 8.
  • the hydrocarbon group may be linear or branched.
  • an aliphatic hydrocarbon group is preferable and an alkyl group is more preferable.
  • methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc. Can be mentioned.
  • the second affinity purification carrier of the present invention has a ligand or a reactive group for binding the ligand.
  • the ligand may be any molecule that binds to a target substance.
  • proteins such as protein A, protein G, and avidin; peptides such as insulin; antibodies such as monoclonal antibodies; enzymes; hormones; DNA; RNA; heparin, Lewis X, saccharides such as ganglioside; low molecular weight compounds such as iminodiacetic acid, synthetic dye, 2-aminophenylboronic acid, 4-aminobenzamidine, glutathione, biotin and derivatives thereof.
  • the ligand illustrated above may use the whole, the fragment obtained by a recombinant, an enzyme treatment, etc. may be used. Further, it may be an artificially synthesized peptide or peptide derivative.
  • proteins and peptides are preferable, and proteins are more preferable.
  • ligands suitable for immunoglobulin separation or purification include immunoglobulin-binding proteins.
  • the immunoglobulin binding protein is preferably at least one selected from the group consisting of protein A, protein G, protein L, Fc binding protein, and functional variants thereof. Among them, protein A, protein G, and functional variants thereof are preferable, and protein A, and functional variants thereof are more preferable.
  • the binding amount of the ligand is preferably 10 to 200 mg, more preferably 25 to 100 mg per 1 g of the solid phase carrier.
  • Examples of the reactive group for binding the ligand include a cyclic ether group, a carboxy group, a succinimide oxy group, a formyl group, an isocyanate group, and an amino group, and a cyclic ether group is preferable.
  • Examples of the cyclic ether group include a monovalent group represented by the following formula (25), a monovalent group represented by the following formula (26), and a monovalent group represented by the formula (25). Particularly preferred.
  • R 27 represents a divalent hydrocarbon group having 1 to 6 carbon atoms.
  • the carbon number of the divalent hydrocarbon group represented by R 27 is preferably 1 to 4, and more preferably 1 or 2.
  • the divalent hydrocarbon group may be linear or branched, but is preferably a divalent aliphatic hydrocarbon group, and more preferably an alkanediyl group.
  • Preferable specific examples include methane-1,1-diyl group, ethane-1,1-diyl group, ethane-1,2-diyl group and the like.
  • the polymer constituting the solid phase carrier is not particularly limited as long as part or all of the ends of the polymer chain are cross-linked with each other with a cross-linked structure represented by the formula (21). Alternatively, it may be a natural polymer composed of polysaccharides such as agarose, dextran, and cellulose, or may be a synthetic polymer.
  • the polymer constituting the solid phase carrier is preferably a polymer having a structural unit derived from an ethylenically unsaturated monomer.
  • structural units derived from styrene monomers structural units derived from vinyl ketone monomers, structural units derived from (meth) acrylonitrile monomers, structural units derived from (meth) acrylate monomers, and (meth) acrylamide monomers
  • a polymer having one or more selected from structural units derived from For example, structural units derived from styrene monomers, structural units derived from vinyl ketone monomers, structural units derived from (meth) acrylonitrile monomers, structural units derived from (meth) acrylate monomers, and (meth) acrylamide monomers Or a polymer having one or more selected from structural units derived from.
  • the form of the solid phase carrier may be any of monolith, membrane, hollow fiber, particle, cassette, chip, etc., but particle is preferred.
  • the solid phase carrier is preferably a porous material such as porous particles from the viewpoint of improving the surface area.
  • porous particles porous polymer particles are preferable.
  • the particle diameter is usually 35 to 100 ⁇ m, preferably 40 to 85 ⁇ m. By setting the particle diameter to 35 ⁇ m or more, pressure characteristics are improved.
  • the thickness is 100 ⁇ m or less, the dynamic binding capacity when a ligand is bound is increased.
  • the coefficient of variation of the particle diameter is preferably 40% or less, more preferably 30% or less.
  • the particle diameter can be adjusted by the conditions for polymerization.
  • the “particle diameter” means a volume average particle diameter obtained by a laser diffraction / scattering particle size distribution analyzer.
  • the second method for producing a carrier for affinity purification of the present invention can be produced by appropriately combining conventional methods.
  • a monomer having a reactive group for binding a ligand and, if necessary, a monomer other than the monomer are represented by the following formula (33).
  • a ligand may be bound to the solid phase carrier obtained by such a method.
  • R 21 has the same meaning as described above, and represents an n2-valent organic group, n2 is as defined above and represents an integer of 2 or more. ]
  • Examples of the monomer having a reactive group for binding a ligand and the other monomer include ethylenically unsaturated monomers. Specifically, one or more monomers selected from styrene monomers, vinyl ketone monomers, (meth) acrylonitrile monomers, (meth) acrylate monomers, and (meth) acrylamide monomers can be exemplified. .
  • the monomer having a reactive group for binding a ligand is preferably a monomer having a reactive group selected from a cyclic ether group, a carboxy group, a succinimideoxy group, a formyl group, an isocyanate group and an amino group.
  • a monomer having a monovalent group represented by formula (25) or (26) is more preferred, and a monomer having a monovalent group represented by formula (25) is particularly preferred.
  • Examples of the monomer having a monovalent group represented by the formula (25) include an epoxy group-containing unsaturated monomer.
  • the epoxy group-containing unsaturated monomer is preferably a (meth) acrylate monomer, a styrene monomer, more preferably a (meth) acrylate monomer, and further a (meth) acrylate monomer represented by the following formula (27): preferable.
  • R 28 represents a hydrogen atom or a methyl group
  • R 29 represents a single bond
  • R 30 represents an alkanediyl group having 2 to 4 carbon atoms
  • j represents 1 to 30 Represents an integer
  • R 27 has the same meaning as described above.
  • the carbon number of the divalent hydrocarbon group represented by R 29 is preferably 1 to 8, more preferably 1 to 6, and still more preferably 1 to 4.
  • the divalent hydrocarbon group may be linear or branched.
  • the divalent hydrocarbon group is preferably a divalent aliphatic hydrocarbon group, and more preferably an alkanediyl group.
  • Preferable specific examples include methane-1,1-diyl group, ethane-1,1-diyl group, ethane-1,2-diyl group and the like.
  • the alkanediyl group represented by R 30 may be linear or branched, and specific examples thereof include ethane-1,1-diyl group, ethane-1,2-diyl group, propane-1,1- Diyl group, propane-1,2-diyl group, propane-1,3-diyl group, propane-2,2-diyl group, butane-1,2-diyl group, butane-1,3-diyl group, butane- Examples include 1,4-diyl group.
  • J is preferably an integer of 1 to 25, and more preferably an integer of 1 to 15.
  • the monomer having a reactive group for binding a ligand examples include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, ⁇ - (meth) acryl- ⁇ -glycidyl polyethylene glycol, (4 -Vinylbenzyl) glycidyl ether, allyl glycidyl ether, 3,4-epoxy-1-butene, 3,4-epoxy-3-methyl-1-butene, and the like. Can be used.
  • the total amount of the monomer having a reactive group for binding a ligand is 1 in terms of 100 parts by mass of the total amount of monomers from the viewpoint of the amount of ligand that can be immobilized and the dynamic binding capacity when the ligand is immobilized. Is preferably 90 parts by weight, more preferably 20-80 parts by weight, still more preferably 30-70 parts by weight, and particularly preferably 40-60 parts by weight.
  • a non-crosslinkable monomer either a non-crosslinkable monomer or a crosslinkable monomer can be used, and these may be used in combination.
  • the non-crosslinkable monomer include a hydroxy group-containing non-crosslinkable unsaturated monomer, a non-crosslinkable unsaturated monomer not containing a hydroxy group, and the crosslinkable monomer includes a hydroxy group-containing crosslinkable unsaturated monomer, Examples thereof include crosslinkable unsaturated monomers that do not contain a hydroxy group.
  • the hydroxy group-containing non-crosslinkable unsaturated monomer is preferably a (meth) acrylate monomer or a (meth) acrylamide monomer.
  • the number of hydroxy groups contained in the hydroxy group-containing non-crosslinkable unsaturated monomer is preferably 1 to 5, more preferably 1 to 3.
  • the (meth) acrylate type monomer represented by following formula (28) is preferable.
  • R 31 represents a hydrogen atom or a methyl group
  • R 32 represents a trivalent hydrocarbon group having 1 to 6 carbon atoms.
  • the trivalent hydrocarbon group represented by R 32 may be linear or branched.
  • the number of carbon atoms is preferably 2-4.
  • the trivalent hydrocarbon group is preferably a trivalent aliphatic hydrocarbon group, and more preferably an alkanetriyl group. Specific examples include an ethane-1,1,2-triyl group.
  • hydroxyl group-containing non-crosslinkable unsaturated monomer examples include glycerol mono (meth) acrylate, trimethylolethane mono (meth) acrylate, trimethylolpropane mono (meth) acrylate, butanetriol mono (meth) acrylate, polyethylene glycol Mono (meth) acrylate, pentaerythritol mono (meth) acrylate, dipentaerythritol mono (meth) acrylate, inositol mono (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylamide 1 type can be used individually or in combination of 2 or more types.
  • the total use amount thereof is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the total amount of monomers from the viewpoint of preventing aggregation during production. More preferably, 20 parts by mass is more preferable, and 3-15 parts by mass is particularly preferable.
  • non-crosslinkable unsaturated monomer not containing the hydroxy group (meth) acrylate monomers, (meth) acrylamide monomers and the like are preferable.
  • said (meth) acrylate type monomer the (meth) acrylate type monomer represented by following formula (29) is more preferable.
  • R 33 represents a hydrogen atom or a methyl group
  • R 34 represents an alkanediyl group having 2 to 4 carbon atoms
  • R 35 represents a hydrocarbon group having 1 to 6 carbon atoms
  • k represents an integer of 0 to 50.
  • the number of carbon atoms of the alkanediyl group represented by R 34 is preferably 2 or 3.
  • the alkanediyl group may be linear or branched, and preferred specific examples include ethane-1,1-diyl group, ethane-1,2-diyl group and the like.
  • the number of carbon atoms of the hydrocarbon group represented by R 35 is preferably 1 to 4, and more preferably 1 or 2.
  • the hydrocarbon group may be linear or branched.
  • the hydrocarbon group is a concept including an aliphatic hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group, preferably an aliphatic hydrocarbon group, more preferably an alkyl group. .
  • methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc. Can be mentioned.
  • K represents an integer of 0 to 50, preferably an integer of 1 to 25, and more preferably an integer of 1 to 15.
  • non-crosslinkable unsaturated monomers not containing a hydroxy group include methoxypolyethylene glycol (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxy
  • examples thereof include ethyl (meth) acrylate, (meth) acrylamide, dimethyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone (meth) acrylamide, and the like, which can be used alone or in combination of two or more.
  • the total amount of the non-crosslinkable unsaturated monomer containing no hydroxy group is preferably 0 to 70 parts by weight, preferably 0 to 30 parts by weight with respect to 100 parts by weight of the total amount of monomers from the viewpoint of dynamic binding capacity. Is more preferable, and 0 to 20 parts by mass is particularly preferable.
  • the number of hydroxy groups contained in the hydroxy group-containing crosslinkable unsaturated monomer is preferably 1 to 5, more preferably 1 to 3, from the viewpoint of dynamic binding capacity and antifouling property.
  • the hydroxy group-containing crosslinkable unsaturated monomer is preferably a bifunctional to pentafunctional monomer, and more preferably a bifunctional or trifunctional monomer.
  • the hydroxy group-containing crosslinkable unsaturated monomer is preferably a (meth) acrylate monomer, and more preferably a (meth) acrylate monomer represented by the following formula (30).
  • R 36 and R 37 each independently represent a hydrogen atom or a methyl group
  • R 38 represents a trivalent hydrocarbon group having 1 to 8 carbon atoms.
  • Trivalent hydrocarbon group represented by R 38 represents may be either linear or branched.
  • the carbon number is preferably 1 to 5.
  • the trivalent hydrocarbon group is preferably a trivalent aliphatic hydrocarbon group, and more preferably an alkanetriyl group. Specific examples include methane-1,1,1-triyl group.
  • hydroxyl group-containing crosslinkable unsaturated monomer examples include glycerin di (meth) acrylate, trimethylolethane di (meth) acrylate, trimethylolpropane di (meth) acrylate, butanetriol di (meth) acrylate, pentaerythritol di (Meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, inositol Examples include di (meth) acrylate, inositol tri (meth) acrylate, inositol tetra (meth) acrylate, etc., one type alone or a combination of two or more types
  • the total use amount thereof is preferably 1 to 70 parts by weight with respect to 100 parts by weight of the total amount of monomers from the viewpoint of dynamic binding capacity and antifouling property. 10 to 50 parts by mass is more preferable, and 15 to 40 parts by mass is preferable.
  • the crosslinkable unsaturated monomer containing no hydroxy group is preferably a bifunctional to pentafunctional monomer, more preferably a bifunctional or trifunctional monomer.
  • a crosslinkable unsaturated monomer which does not contain the said hydroxyl group a (meth) acrylate type monomer is preferable and the (meth) acrylate type monomer represented by following formula (31) or (32) is more preferable.
  • R 39 to R 41 each independently represents a hydrogen atom or a methyl group
  • R 42 represents a trivalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 43 and R 44 each independently represent a hydrogen atom or a methyl group
  • R 45 represents an alkanediyl group having 2 to 4 carbon atoms
  • i represents an integer of 1 to 50.
  • the trivalent hydrocarbon group represented by R 42 may be linear or branched.
  • the number of carbon atoms is preferably 2-4.
  • the trivalent hydrocarbon group is preferably a trivalent aliphatic hydrocarbon group, and more preferably an alkanetriyl group. Specific examples include a propane-1,1,1-triyl group.
  • alkanediyl group represented by R 45 in the formula (32) may be linear or branched, and specific examples thereof include ethane-1,1-diyl group, ethane-1,2-diyl group, Propane-1,1-diyl group, propane-1,2-diyl group, propane-1,3-diyl group, propane-2,2-diyl group, butane-1,2-diyl group, butane-1,3 -Diyl group, butane-1,4-diyl group and the like.
  • i is preferably an integer of 1 to 25, and more preferably an integer of 1 to 15.
  • crosslinkable unsaturated monomer not containing a hydroxy group examples include trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate containing two or more ethylene glycols, polypropylene glycol Di (meth) acrylate, polypropylene glycol di (meth) acrylate containing two or more ethylene glycols, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaerythritol tetra (meth) ) Acrylate and the like, and one kind can be used alone, or two or more kinds can be used in combination.
  • the total use amount thereof is 1 to 90 parts by mass with respect to 100 parts by mass of the total monomer from the viewpoint of dynamic binding capacity and antifouling property. It is preferably 5 to 70 parts by mass, more preferably 10 to 60 parts by mass, and particularly preferably 20 to 50 parts by mass.
  • the (co) polymerization reaction in the process PS1 is performed in the presence of the polyfunctional thiol compound represented by the following formula (33).
  • the addition of the polyfunctional thiol compound can be performed before or during the polymerization of the solid phase carrier. Good.
  • R 21 has the same meaning as described above, and represents an n2-valent organic group, n2 is as defined above and represents an integer of 2 or more. ]
  • the polyfunctional thiol compound By adding the polyfunctional thiol compound, a plurality of growing carbon radicals during radical polymerization easily react with a hydrogen abstraction reaction from the polyfunctional thiol compound, and have a plurality of hydrogen-terminated polymers and a plurality of sulfur radicals. A single compound is produced. The polymer chain is formed again by restarting from a single compound having a plurality of sulfur radicals.
  • the polyfunctional thiol compound acts as a chain transfer agent, and the cross-linked structure (21) derived from the polyfunctional thiol compound is introduced.
  • HCP Host Cell Protein
  • polyfunctional thiol compound examples include 3,6-dioxa-1,8-octanedithiol, 1,2-ethanedithiol, 1,3-propanedithiol, 2,2′-thiodiethanethiol, and 3-mercaptopropanoic acid.
  • the amount of the polyfunctional thiol compound used is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • the addition of the polyfunctional thiol compound may be performed before or during the polymerization, but when adding the polyfunctional thiol compound simultaneously with the addition of the polymerization initiator or after the addition of the polymerization initiator, from the addition of the polymerization initiator.
  • the polyfunctional thiol compound is added preferably within 0 to 5 hours, more preferably within 0 to 3 hours, and even more preferably within 0 to 1 hour. Further, the addition of the polyfunctional thiol compound may be performed in the presence of a basic catalyst.
  • a radical polymerization initiator is preferable as the polymerization initiator for polymerizing the monomer.
  • radical polymerization initiators include azo initiators, peroxide initiators, redox initiators, and the like. Specific examples include azobisisobutyronitrile, methyl azobisisobutyrate, azobis-2, Examples include 4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, benzoyl peroxide-dimethylaniline, and the like.
  • the total amount of the polymerization initiator used is usually about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • the (co) polymerization reaction in the process PS1 is preferably suspension polymerization.
  • a polymerization initiator is dissolved in a mixed solution (monomer solution) containing a monomer and, if necessary, a porosifying agent, and suspended in an aqueous medium to be at a predetermined temperature.
  • the polymerization initiator is dissolved in a mixed solution (monomer solution) containing a monomer and, if necessary, a porosifying agent, and added to an aqueous medium heated to a predetermined temperature for polymerization.
  • Examples include a method, a method in which a mixed solution (monomer solution) containing a monomer and, if necessary, a porosifying agent is suspended in an aqueous medium and heated to a predetermined temperature, and a polymerization initiator is added to perform polymerization. It is done.
  • the porosifying agent examples include aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, and undecane; alicyclic hydrocarbons such as cyclohexane and cyclopentane; benzene, toluene, xylene, naphthalene, and ethylbenzene.
  • Aromatic hydrocarbons such as carbon tetrachloride, 1,2-dichloroethane, tetrachloroethane, chlorobenzene and the like; butanol, pentanol, hexanol, heptanol, hexanol, 4-methyl-2-pentanol, Aliphatic alcohols such as 2-ethyl-1-hexanol; alicyclic alcohols such as cyclohexanol; aromatic alcohols such as 2-phenylethyl alcohol and benzyl alcohol; diethyl ketone, methyl isobutyl ketone, diisobutyl ketone, Ketones such as non, 2-octanone and cyclohexanone; ethers such as dibutyl ether, diisobutyl ether, anisole and ethoxybenzene; in addition to esters such as isopentyl acetate, butyl acetate, 3-meth
  • aqueous medium examples include aqueous water-soluble polymer aqueous solutions, and examples of the water-soluble polymer include hydroxyethyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, starch, and gelatin.
  • the total amount of the aqueous medium used is usually about 200 to 7000 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • a dispersion stabilizer such as sodium chloride, sodium sulfate, sodium carbonate, calcium carbonate, calcium phosphate may be used.
  • surfactants including anionic surfactants, such as an alkyl sulfate ester salt, an alkyl aryl sulfate ester salt, an alkyl phosphate ester salt, and a fatty acid salt, for the polymerization reaction of process PS1.
  • anionic surfactants such as an alkyl sulfate ester salt, an alkyl aryl sulfate ester salt, an alkyl phosphate ester salt, and a fatty acid salt
  • polymerization inhibitors such as nitrites such as sodium nitrite, iodide salts such as potassium iodide, tert-butylpyrocatechol, benzoquinone, picric acid, hydroquinone, copper chloride, ferric chloride and the like can also be used.
  • the polymerization temperature may be determined according to the polymerization initiator. For example, it is usually about 2 to 100 ° C., and 50 to 100 ° C. is preferable when azobisisobutyronitrile is used as the polymerization initiator. 60 to 90 ° C. is more preferable.
  • the polymerization time is usually 5 minutes to 48 hours, preferably 10 minutes to 24 hours.
  • Step PS2-1 a crosslinking agent is subjected to ring-opening addition to a part of the reactive group for binding a ligand derived from a monomer having a reactive group for binding a ligand, thereby forming a crosslinked structure derived from the crosslinking agent.
  • This is a cross-linking reaction introduced into a solid phase carrier.
  • a crosslinked structure is formed on the surface of the solid phase carrier or the like via the residue of the reactive group for binding the ligand.
  • crosslinking agent a bivalent to hexavalent crosslinking agent is preferable, and a bivalent or trivalent crosslinking agent is more preferable.
  • a styrene-based crosslinking agent a crosslinking agent having a hydroxy group, an amino group or a thiol group as a reactive group is preferable, and a crosslinking agent having a hydroxy group, an amino group or a thiol group as a reactive group is more preferable.
  • a crosslinking agent represented by the following formula (22) is preferable.
  • R 22 represents a divalent organic group having 1 to 10 carbon atoms
  • X 22 and X 23 each independently represent a hydroxy group, an amino group or a thiol group.
  • the divalent organic group for R 22 may be linear or branched.
  • Such a divalent organic group includes a group having at least one selected from an ether bond, an imino group and an ester bond between carbon-carbon atoms of a divalent hydrocarbon group and a divalent hydrocarbon group. Can be mentioned.
  • the divalent organic group is a divalent hydrocarbon group
  • the carbon number thereof is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 6, Particularly preferred is 2-6.
  • the divalent hydrocarbon group may be linear or branched.
  • the divalent hydrocarbon group is preferably a divalent aliphatic hydrocarbon group, and more preferably an alkanediyl group.
  • alkanediyl group examples include methane-1,1-diyl group, ethane-1,1-diyl group, ethane-1,2-diyl group, propane-1,1-diyl group, propane-1,2 -Diyl group, propane-1,3-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, etc. Can be mentioned.
  • the group having one or more selected from an ether bond, an imino group and an ester bond between the carbon-carbon atoms of the divalent hydrocarbon group includes an ether between the carbon-carbon atoms of the divalent hydrocarbon group.
  • a group having a bond is preferable, and a group represented by —R i (OR j ) u OR k — is more preferable (R i , R j and R k are each independently an alkanediyl group having 2 to 4 carbon atoms) U represents an integer of 0 to 30).
  • the number of carbon atoms of the alkanediyl group represented by R i , R j and R k is preferably 2 or 3, and more preferably 2.
  • Such alkanediyl group may be linear or branched, and preferred specific examples include ethane-1,2-diyl group, propane-1,2-diyl group, propane-1,3- A diyl group is mentioned.
  • U represents an integer of 0 to 30, preferably an integer of 0 to 25, more preferably an integer of 0 to 20, more preferably an integer of 0 to 15, still more preferably an integer of 0 to 10, and 0 to An integer of 5 is more preferable, and an integer of 0 to 3 is particularly preferable.
  • X 22 and X 23 each independently represent a hydroxy group, an amino group or a thiol group, with a thiol group being preferred.
  • crosslinking agent having a reactive group as a hydroxy group, amino group or thiol group examples include 1,2-ethanedithiol, 1,3-propanedithiol, 3,6-dioxa-1,8- Examples include octanedithiol, 2,3-dimercapto-1-propanol, bis (2-mercaptoethyl) sulfide, tris (mercaptoacetic acid) trimethylolpropane, bis (mercaptoacetic acid) ethylene glycol, ( ⁇ ) -dithiothreitol. .
  • the styrenic crosslinking agent examples include a crosslinking agent having an aromatic ring or aromatic heterocyclic ring and 2 to 4 ethylenically unsaturated bonds in the molecule.
  • Specific examples include divinylbenzene, trivinylbenzene, divinyltoluene, divinylnaphthalene, diallyl phthalate, divinylxylene, divinylethylbenzene, and the like, and a heterocyclic crosslinking agent such as divinylpyridine may be used.
  • the reaction temperature for the cross-linking reaction in Step PS2-1 is usually 25 to 200 ° C, preferably 50 to 100 ° C.
  • the reaction time for the crosslinking reaction in Step PS2-1 is usually about 30 minutes to 24 hours, preferably about 1 to 12 hours.
  • step PS2-2 the thio group in the cross-linked structure (21) introduced by performing (co) polymerization reaction in the presence of the polyfunctional thiol compound in step PS1, such as by using an oxidizing agent, and step PS2-1 This is a step of oxidizing the thio group in the crosslinked structure introduced in (1).
  • these thio groups are oxidized to sulfinyl groups or sulfonyl groups, preferably sulfinyl groups.
  • the oxidizing agent is roughly classified into an organic oxidizing agent and an inorganic oxidizing agent, and examples of the organic oxidizing agent include peracetic acid, perbenzoic acid, and metachloroperbenzoic acid.
  • examples of the inorganic oxidizing agent include hydrogen peroxide, chromic acid, permanganate and the like.
  • these oxidizing agents can be used individually by 1 type or in combination of 2 or more types.
  • the total amount of the oxidizing agent used is usually about 0.1 to 10 molar equivalents, preferably 0.5 to 3 molar equivalents, per 1 mole of thio group.
  • the oxidation reaction is preferably performed in the presence of a solvent.
  • a solvent examples include water; amide solvents such as dimethylformamide and dimethylacetamide; alcohol solvents such as methanol and ethanol. These solvents can be used alone or in combination of two or more.
  • the total amount of the solvent used is usually about 1 to 50 times by mass, preferably 5 to 15 times by mass with respect to the solid phase carrier used as a raw material.
  • the reaction time for the oxidation reaction is not particularly limited, but is usually about 1 to 72 hours, and the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 1 to 90 ° C.
  • the solid phase carrier obtained in each of the above steps can be obtained by removing the porosifying agent and unreacted monomer by distillation, extraction, washing or the like, if necessary.
  • Ligand fixation may be performed in the same manner as in the conventional method except that the solid phase carrier obtained above is used, but it is preferably performed in a buffer to which a salt is added.
  • the salt include trisodium citrate and sodium sulfate.
  • the buffer include sodium phosphate, potassium phosphate and boric acid.
  • the total amount of the buffer used is usually about 20 to 80 times by mass, preferably 35 to 45 times by mass with respect to the solid phase carrier used as a raw material.
  • the reaction time is not particularly limited, but is usually about 0.5 to 72 hours, and the reaction temperature is usually about 1 to 40 ° C. Note that the carrier on which the ligand is immobilized may be brought into contact with the thiol compound to open the unreacted reactive group.
  • the second affinity purification carrier of the present invention has excellent antifouling properties and is excellent in pressure resistance, so that it is difficult to consolidate, and when it has a ligand, it has a large dynamic binding capacity to the target substance. Therefore, the second affinity purification carrier of the present invention is useful as a carrier for a chromatography column packing material.
  • the second chromatography column of the present invention is such that a column container is packed with a chromatography column packing material using the second affinity purification carrier of the present invention as a carrier.
  • the chromatography column is suitable for use in affinity chromatography.
  • the second purification method of the present invention comprises a step of preparing a composition containing a target substance, and a step of passing the composition through the second chromatography column of the present invention. .
  • the purification is the same as in the conventional method except that the second chromatography column of the present invention is used.
  • the preparation step for preparing the composition containing the target substance and the second chromatography column of the present invention include the above-mentioned steps.
  • Examples of the method include a liquid passing step of passing the composition and a elution step of eluting the target substance adsorbed on the carrier by the liquid passing step.
  • the second purification method of the present invention is suitable for protein purification and particularly suitable for immunoglobulin purification.
  • the average particle size (volume average particle size) was determined using a laser diffraction / scattering particle size distribution analyzer (LS13 320) manufactured by Beckman Coulter.
  • Example 1-1 dithiol crosslinked particles (1) Synthesis of porous particles 0.72 g of polyvinyl alcohol (PVA-217 manufactured by Kuraray Co., Ltd.) was added to 358 g of pure water, and stirred at 55 ° C. for 4 hours to dissolve the polyvinyl alcohol. To this, 0.18 g of sodium dodecyl sulfate (Emal 10G manufactured by Kao Corporation), 0.36 g of sodium carbonate and 0.18 g of sodium nitrite were added and stirred to prepare an aqueous solution (S-1).
  • a monomer composition composed of 8.23 g of glycidyl methacrylate (manufactured by Mitsubishi Rayon Co., Ltd.), 1.37 g of glycerol monomethacrylate (manufactured by NOF Corporation) and 4.12 g of trimethylolpropane trimethacrylate (manufactured by Sartomer)
  • a monomer solution (M-1) was prepared by dissolving in a mixed solution of 20.63 g of octanone (Toyo Gosei Co., Ltd.) and 5.30 g of acetophenone (Inoue Fragrance Co., Ltd.).
  • the entire amount of the aqueous solution (S-1) was put into a 500-mL separable flask, a thermometer, a stirring blade and a cooling pipe were attached, and set in a hot water bath, and stirring was started under a nitrogen atmosphere.
  • the entire amount of the monomer solution (M-1) was put into a separable flask and heated by a hot water bath.
  • AIBN 2,2′-azoisobutyronitrile
  • the washed particles were transferred to a polybin, dispersed in pure water, and decanted three times to remove small particles. Subsequently, it was dispersed in pure water so that the particle concentration was 10% by mass to obtain a dithiol crosslinked particle dispersion (P-1).
  • the average particle size of the dithiol crosslinked particles in dispersion (P-1) was 70 ⁇ m.
  • Example 1-2 sulfoxidized particles
  • the dithiol crosslinked particle dispersion obtained in the operation (3) of Example 1-1 was cooled in an ice bath, and 11.85 g of hydrogen peroxide (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the dispersion. Mix by inverting at 24 ° C. for 24 hours to sulphoxide the particles. Thereafter, the reaction solution was filtered, washed with pure water, and further dispersed in pure water so that the concentration of the particles became 10% by mass to obtain a sulfoxide particle dispersion (P-2).
  • the average particle diameter of the sulfoxide particles in the dispersion (P-2) was 70 ⁇ m.
  • Example 1-3 sulfoxidized particles
  • the reaction solution was cooled to 25 ° C., and 3.16 g of 3,6-dioxa-1,8-octanedithiol was added. It added to the reaction liquid, and it heated with the hot water bath after that, and maintained the internal temperature at 85 degreeC, and stirred for 1 hour.
  • the reaction solution was filtered and washed with pure water and ethanol. The washed particles were transferred to a polybin, dispersed in pure water, and decanted three times to remove small particles.
  • the dithiol crosslinked particle dispersion liquid was obtained.
  • the obtained dithiol crosslinked particle dispersion was cooled in an ice bath, and 11.85 g of hydrogen peroxide (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the dispersion, and then mixed by inversion at 25 ° C. for 24 hours. Was sulfoxidized.
  • the reaction solution was filtered, washed with pure water, and further dispersed in pure water so that the concentration of the particles became 10% by mass to obtain a sulfoxide particle dispersion (P-3).
  • the average particle diameter of the sulfoxidized particles in the dispersion (P-3) was 70 ⁇ m.
  • Example 1-4 sulfoxide particles After carrying out the reaction in the same manner as the operations (1) and (2) of Example 1-1, the reaction solution was cooled to 25 ° C., and 1.72 g of 1,2-ethanedithiol was added to the reaction solution, Thereafter, the mixture was heated with a hot water bath, and the internal temperature was maintained at 85 ° C., followed by stirring for 1 hour. Next, after the reaction solution was cooled to 25 ° C., the reaction solution was filtered and washed with pure water and ethanol. The washed particles were transferred to a polybin, dispersed in pure water, and decanted three times to remove small particles.
  • Example 1-5 Crosslinked diamine particles
  • the reaction solution was cooled to 25 ° C., and 1.04 g of ethylenediamine and N, N-diisopropylethylamine (DIEA) 3. 12g was added to the reaction liquid, and it heated with the hot water bath after that, and maintained the internal temperature at 85 degreeC, and stirred for 1 hour.
  • the reaction solution was filtered and washed with pure water and ethanol. The washed particles were transferred to a polybin, dispersed in pure water, and decanted three times to remove small particles.
  • the average particle diameter of the diamine crosslinked particles in the dispersion (P-5) was 69 ⁇ m.
  • Example 1-6 Crosslinked diol particles
  • the reaction solution was cooled to 25 ° C., and 2.61 g of 3,6-dioxa-1,8-octanediol was added. It added to the reaction liquid, and it heated with the hot water bath after that, and maintained the internal temperature at 85 degreeC, and stirred for 1 hour.
  • the reaction solution was filtered and washed with pure water and ethanol. The washed particles were transferred to a polybin, dispersed in pure water, and decanted three times to remove small particles.
  • the average particle diameter of the diol crosslinked particles in the dispersion (P-6) was 68 ⁇ m.
  • a particle dispersion (P-8) was obtained in the same manner as in Comparative Example 1-1 except that the amount of thioglycerol added was changed to 50.10 g.
  • the average particle size of the particles in dispersion (P-8) was 71 ⁇ m.
  • a single unit consisting of 1.4 g of glycidyl methacrylate (manufactured by Mitsubishi Rayon Co., Ltd.), 2.8 g of glycerol monomethacrylate (manufactured by NOF Corporation) and 9.8 g of glycerol-1,3-dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • the body composition was dissolved in a mixed solution of 7.4 g of 2-octanone (manufactured by Toyo Gosei Co., Ltd.) and 21.6 g of acetophenone (manufactured by Inoue Fragrance Co., Ltd.) to prepare a monomer solution (M-2).
  • the entire amount of the aqueous solution (S-2) was put into a 500 mL separable flask, a thermometer, a stirring blade and a cooling pipe were attached, set in a hot water bath, and stirring was started under a nitrogen atmosphere.
  • the whole amount of the monomer solution (M-2) was put into a separable flask and heated with a hot water bath.
  • AIBN 2,2′-azoisobutyronitrile
  • the reaction solution was cooled and then filtered, washed with pure water, and further dispersed in pure water so that the concentration of the particles became 10% by mass to obtain a particle dispersion (P-9).
  • the average particle size of the particles in dispersion (P-9) was 48 ⁇ m.
  • Example 1-1 Evaluation of pressure resistance of particles
  • the dispersion (P-1) was poured into a HR (High Resolution) column having an inner diameter of 16 mm and a length of 100 mm, and manufactured by GE Healthcare.
  • HR High Resolution
  • liquid was passed at a linear flow rate of 450 cm / hr to fill the column with particles.
  • pure water was passed through, the linear flow rate was increased stepwise, and the linear flow rate at a pressure loss of 1.9 MPa was measured.
  • This linear flow velocity was taken as a measurable linear flow velocity, and pressure resistance was evaluated according to the following criteria.
  • Measurable linear flow velocity is 2700 cm / hr or more
  • the obtained protein A fixed particles were washed with 0.1 M sodium phosphate buffer (pH 7.6), and then dispersed in 40 mL of 1.0 M thioglycerol / 0.1 M sodium sulfate aqueous solution (pH 8.3). And stirred for 24 hours. Then, it wash
  • the above-mentioned packing material for affinity chromatography is packed in a column of 4 mL (5 mm ⁇ ⁇ 200 mm length), and 100 ⁇ L of a solution of 1% by mass of acetone in 1M NaCl solution is supplied to this column.
  • Sodium / 150 mM sodium chloride aqueous solution pH 7.5
  • an elution peak was detected with a conductivity detector (AKTAprime plus manufactured by GE Healthcare), and the elution time of NaCl and acetone at a linear flow rate of 300 cm / hr was determined. It was measured.
  • the ratio of the elution time of the obtained NaCl solution and the acetone solution was set to a value representing hydrophilicity, and the hydrophilicity was evaluated according to the following criteria.
  • Dispersion (P-1) was changed to dispersions (P-2) to (P-9), respectively, and Examples 1-2 to 1-6 and Comparative Examples 1-1 to 1-3 were used.
  • the obtained porous particles were also evaluated for hydrophilicity.
  • Vuv / Vcond is less than 1.06
  • Vuv / Vcond is 1.06 or more and less than 1.10
  • the obtained protein A fixed particles were washed with 0.1 M sodium phosphate buffer (pH 7.6), and then dispersed in 40 mL of 1.0 M thioglycerol / 0.1 M sodium sulfate aqueous solution (pH 8.3). And stirred for 24 hours. Then, it wash
  • DBC against a protein human IgG antibody, HGG-1000 manufactured by Equitech Bio
  • AKTAprime plus manufactured by GE Healthcare Use a column with a volume of 4 mL (5 mm ⁇ ⁇ 200 mm long) and a protein diluted to 25 mg / mL with 20 mM sodium phosphate / 150 mM sodium chloride aqueous solution (pH 7.5).
  • the DBC was determined from the amount of protein captured and the column packing volume.
  • the particles of Examples 1-1 to 1-6 have higher measurable linear flow rates than the hydrophilized particles of Comparative Example 1-1 and Comparative Example 1-2.
  • the binding capacity was also equivalent or better.
  • the hydrophilicity and the dynamic binding capacity were high, and the pressure performance was equal or better.
  • Example 2-1 (1) 0.72 g of polyvinyl alcohol (PVA-217, manufactured by Kuraray Co., Ltd.) is added to 360 g of pure water, heated and stirred to dissolve the polyvinyl alcohol, cooled, and sodium dodecyl sulfate (Emar 10G, manufactured by Kao Corporation). 18 g, 0.36 g of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.18 g of sodium nitrite (manufactured by Wako Pure Chemical Industries, Ltd.) were added and stirred to prepare an aqueous solution (S-3).
  • PVA-217 polyvinyl alcohol
  • Emar 10G sodium dodecyl sulfate
  • a monomer composition consisting of 8.23 g of glycidyl methacrylate (manufactured by Mitsubishi Rayon Co., Ltd.), 1.37 g of glycerol monomethacrylate (manufactured by NOF Corporation), and 4.12 g of trimethylolpropane trimethacrylate (manufactured by Sartomer),
  • a monomer solution (M-3) was prepared by dissolving in a mixed solution of 20.63 g of 2-octanone (Toyo Gosei Co., Ltd.) and 5.30 g of acetophenone (Inoue Fragrance Co., Ltd.).
  • the entire amount of the aqueous solution (S-3) was put into a 500-mL separable flask, a thermometer, a stirring blade and a cooling pipe were attached, and set in a hot water bath, and stirring was started under a nitrogen atmosphere.
  • the whole amount of the monomer solution (M-3) was put into a separable flask and heated with a hot water bath.
  • 2,2′-azoisobutyronitrile (Wako Pure Chemical Industries, Ltd.) 0.53 g) (manufactured by Kogyo Co., Ltd.) was added to bring the internal temperature to 86 ° C.
  • modified protein A manufactured by Repligen rSPA
  • 40 mL of 1.0 M trisodium citrate / 0.1 M sodium phosphate buffer (pH 6.6) was dispersed in 40 mL of 1.0 M trisodium citrate / 0.1 M sodium phosphate buffer (pH 6.6) to obtain a protein A dispersion.
  • the sulfoxidized particle dispersion (1 g in terms of particle dry mass) was added to the A dispersion. The dispersion was shaken and stirred at 25 ° C. for 5 hours to fix Protein A to the particles.
  • the produced protein A fixed particles were washed with 0.1 M sodium phosphate buffer (pH 7.6), and then dispersed in 40 mL of 1.0 M thioglycerol / 0.1 M sodium sulfate aqueous solution (pH 8.3).
  • the unreacted epoxy group was ring-opened with an excessive amount of thioglycerol by shaking and stirring for 17 hours.
  • the membrane was washed successively with 0.1 M sodium phosphate buffer (pH 7.6), 0.5 M aqueous sodium hydroxide solution, and 0.1 M sodium citrate buffer (pH 3.2) to obtain carrier 2-1 for affinity purification. .
  • Example 2-2 An aqueous solution (S-3) was prepared in the same procedure as in Example 2-1.
  • a monomer composition consisting of 8.87 g of glycidyl methacrylate, 1.48 g of glycerol monomethacrylate and 4.44 g of glycerol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) was converted into 2-octanone (manufactured by Toyo Gosei Co., Ltd.).
  • a monomer solution (M-4) was prepared by dissolving in a mixed solution of 63 g and 5.30 g of acetophenone (manufactured by Inoue Fragrance Co., Ltd.). Next, the entire amount of the aqueous solution (S-3) was put into a 500-mL separable flask, a thermometer, a stirring blade and a cooling pipe were attached, and set in a hot water bath, and stirring was started under a nitrogen atmosphere. The whole amount of the monomer solution (M-4) was put into a separable flask and heated with a hot water bath.
  • Example 2-3 An aqueous solution (S-3) was prepared in the same procedure as in Example 2-1.
  • a monomer composition consisting of 8.79 g of glycidyl methacrylate, 1.46 g of glycerol monomethacrylate and 4.40 g of ethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) was converted into 2-octanone (manufactured by Toyo Gosei Co., Ltd.) 20
  • a monomer solution (M-5) was prepared by dissolving in a mixed solution of .63 g and 5.30 g of acetophenone (Inoue Fragrance Co., Ltd.).
  • the entire amount of the aqueous solution (S-3) was put into a 500-mL separable flask, a thermometer, a stirring blade and a cooling pipe were attached, and set in a hot water bath, and stirring was started under a nitrogen atmosphere.
  • the whole amount of the monomer solution (M-5) was put into a separable flask and heated with a hot water bath.
  • 2,2′-azoisobutyronitrile (Wako Pure Chemical Industries, Ltd.) 0.53 g) (manufactured by Kogyo Co., Ltd.) was added to bring the internal temperature to 86 ° C.
  • Example 2-4 An aqueous solution (S-3) and a monomer solution (M-3) were prepared in the same procedure as in Example 2-1. Next, the entire amount of the aqueous solution (S-3) was put into a 500-mL separable flask, a thermometer, a stirring blade and a cooling pipe were attached, and set in a hot water bath, and stirring was started under a nitrogen atmosphere. The whole amount of the monomer solution (M-3) was put into a separable flask and heated with a hot water bath.
  • Example 2-5 An aqueous solution (S-3) and a monomer solution (M-3) were prepared in the same procedure as in Example 2-1. Next, the entire amount of the aqueous solution (S-3) was put into a 500-mL separable flask, a thermometer, a stirring blade and a cooling pipe were attached, and set in a hot water bath, and stirring was started under a nitrogen atmosphere. The whole amount of the monomer solution (M-3) was put into a separable flask and heated with a hot water bath.
  • Example 2-1 An aqueous solution (S-3) and a monomer solution (M-3) were prepared in the same procedure as in Example 2-1. Next, the entire amount of the aqueous solution (S-3) was put into a 500-mL separable flask, a thermometer, a stirring blade and a cooling pipe were attached, and set in a hot water bath, and stirring was started under a nitrogen atmosphere. The whole amount of the monomer solution (M-3) was put into a separable flask and heated with a hot water bath.
  • aqueous solution (S-3) was prepared in the same procedure as in Example 2-1.
  • a monomer composition consisting of 8.86 g of glycidyl methacrylate, 0.74 g of glycerol monomethacrylate (manufactured by NOF Corporation), and 5.17 g of trimethylolpropane trimethacrylate was added to 2-octanone (manufactured by Toyo Gosei Co., Ltd.).
  • a monomer solution (M-6) was prepared by dissolving in a mixed solution of 63 g and acetophenone (manufactured by Inoue Fragrance Co., Ltd.) 5.30 g.
  • the entire amount of the aqueous solution (S-3) was put into a 500-mL separable flask, a thermometer, a stirring blade and a cooling pipe were attached, and set in a hot water bath, and stirring was started under a nitrogen atmosphere.
  • the whole amount of the monomer solution (M-6) was put into a separable flask and heated by a hot water bath.
  • 2,2′-azoisobutyronitrile (Wako Pure Chemical Industries, Ltd.) 0.53 g) (manufactured by Kogyo Co., Ltd.) was added to bring the internal temperature to 86 ° C.
  • 20 mM sodium phosphate buffer (pH 7.5), 20 mM sodium phosphate / 1M sodium chloride buffer (pH 7.5), and 20 mM sodium phosphate buffer (pH 7.5) were each 5 column volumes, flow rate 1 mL / min. Were sequentially passed through the column. Thereafter, 50 mM sodium citrate buffer (pH 3.2) was passed through the column at a flow rate of 1 mL / min to elute the monoclonal antibody captured in the column. An elution fraction of 280> 100 mAu was collected. And the antibody concentration (mg / mL) contained in the collect
  • HCP Host Cell Protein
  • HCP amount is less than 1500 ppm
  • Measurable linear flow velocity is 2700 cm / hr or more

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

 高い親水性と優れた耐圧性能を両立した固相担体を提供すること。 式(1)で表される2~4価の構造を有する樹脂を含むことを特徴とする固相担体。〔式(1)中、 R1は、n価の有機基を示し、 X1は、それぞれ独立して、下記式(2)で表される2価の基等を示し、 nは2~4の整数を示す。〕 〔式(2)中、 R2は、炭素数1~2の2価の炭化水素基を示し、 Y1は、チオ基、スルフィニル基、オキシ基またはイミノ基を示す。〕

Description

固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法
 本発明は、固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法に関する。特に、抗体などのタンパク質の精製に有用な、固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラムおよび精製方法に関する。
 近年、抗体医薬等に代表されるバイオ医薬品の分野では、タンパク質等の標的物質の発現技術が著しく進展し、それに伴いクロマトグラフィー等による精製工程での生産性の向上が求められている。生産性を向上させる方法として、宿主細胞由来タンパク質、デオキシリボ核酸のような、医薬品原料に混在する不純物の濃度を1回の精製で可能な限り低減させ、精製回数や工程を少なくすることが挙げられ、これを実現できるクロマトグラフィーカラム用充填剤の需要が高まっている。
 そして、精製工程における不純物除去効率を向上させるためには、担体の防汚性を改善させ、不純物と充填剤との疎水性相互作用による非特異吸着を抑制し、充填剤に対する不純物の付着を抑える必要があり、斯様な付着を抑える有効な手段として、クロマトグラフィーカラム用充填剤の担体である固相担体の親水化が知られている(特許文献1)。
 そのため、親水性を高めた固相担体として、水溶性ポリマーで細孔内部が固定された特定の固相担体(特許文献2)や、アクリルアミドモノマー等の親水性モノマーを逆相懸濁重合して形成した固相担体、親水性モノマーを保護基等で疎水化処理した後に重合し、脱保護して得た固相担体が開発されている(特許文献3~5)。
国際公開第2005/010529号 特許第5250985号 特表2003-511659号公報 特表2009-503203号公報 特開2006-111717号公報
 しかしながら、従来採用されていた技術で固相担体の親水性を高めた場合や担体の防汚性を改善させた場合には、機械強度(耐圧性能)が低下するという問題があった。固相担体の耐圧性能が不十分な場合には、スケールの大きなカラムを用いて精製を行う際に圧密化が起こり、通液しなくなる可能性がある。また、カラム圧力損失が大きくなり、高線速下で使用することが困難となるため、操作に要する時間が長時間化する。
 本発明が解決しようとする第1の課題は、高い親水性と優れた耐圧性能を両立した固相担体を提供することにある。
 また、本発明が解決しようとする第2の課題は、優れた防汚性と優れた耐圧性能を両立したアフィニティ精製用担体を提供することにある。
 そこで、本発明者らは固相担体に架橋構造を導入することに着目し、斯かる架橋構造について鋭意検討した結果、特定の架橋構造を、固相担体に導入することによって、高い親水性と優れた耐圧性能が両立されることを見出し、本発明を完成した。
 また、本発明者らは鋭意検討した結果、固相担体を構成する高分子の末端の一部または全部を、特定の架橋構造で互いに架橋させることによって、優れた防汚性と優れた耐圧性能を両立したアフィニティ精製用担体が得られることを見出し、本発明を完成した。
 すなわち、本発明は、前記第1の課題を解決するために、以下の<1-1>~<1-5>を提供するものである。
 <1-1>式(1)で表される2~4価の構造を有する樹脂を含むことを特徴とする固相担体(以下、第1の固相担体とも称する)。
Figure JPOXMLDOC01-appb-C000014
〔式(1)中、
 R1は、n価の有機基を示し、
 X1は、それぞれ独立して、下記式(2)、(3)、(4)または(5)で表される2価の基を示し、
 nは2~4の整数を示す。〕
Figure JPOXMLDOC01-appb-C000015
〔式(2)中、
 R2は、炭素数1~2の2価の炭化水素基を示し、
 Y1は、チオ基(>S)、スルフィニル基(>S(=O))、オキシ基(>O)またはイミノ基(>NH)を示す。〕
Figure JPOXMLDOC01-appb-C000016
〔式(3)中、
 Y1は、前記と同義である。〕
Figure JPOXMLDOC01-appb-C000017
〔式(4)中、
 R3は、カルボニル基または*-(C=O)-NH-を示し(*は、式(4)中のY1と結合する位置を示す)、
 Y1は、前記と同義である。〕
Figure JPOXMLDOC01-appb-C000018
 <1-2>上記<1-1>の固相担体を担体とするクロマトグラフィーカラム用充填剤(以下、第1のクロマトグラフィーカラム用充填剤とも称する)。
 <1-3>上記<1-2>の充填剤がカラム容器に充填されているクロマトグラフィーカラム(以下、第1のクロマトグラフィーカラムとも称する)。
 <1-4>標的物質を含む組成物を用意する工程と、上記<1-3>のクロマトグラフィーカラムに前記組成物を通液する工程を含むことを特徴とする標的物質の精製方法(以下、第1の精製方法とも称する)。
 <1-5>下記式(8)で表される1価の基、下記式(9)で表される1価の基、カルボキシ基、コハク酸イミドオキシ基、ホルミル基およびイソシアネート基から選ばれる1種以上の官能基を有する固相と、下記式(10)で表される架橋剤とを接触させる工程を含むことを特徴とする固相担体の製造方法(以下、第1の固相担体の製造方法とも称する)。
Figure JPOXMLDOC01-appb-C000019
〔式(8)中、
 R7は炭素数1~2の2価の炭化水素基を示す。〕
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
〔式(10)中、
 R1は、n価の有機基を示し、
 Y2は、チオ基、オキシ基またはイミノ基を示し、
 nは2~4の整数を示す。〕
 また、本発明は、前記第2の課題を解決するために、以下の<2-1>~<2-12>を提供するものである。
 <2-1>固相担体と、リガンドまたはリガンドを結合するための反応性基と、を有するアフィニティ精製用担体であって、前記リガンドまたはリガンドを結合するための反応性基が、固相担体に結合しており、前記固相担体を構成する高分子の末端の一部または全部が、下記式(21)で表される架橋構造で互いに架橋されている、アフィニティ精製用担体(以下、第2のアフィニティ精製用担体とも称する)。
Figure JPOXMLDOC01-appb-C000022
〔式(21)中、
 R21は、n2価の有機基を示し、
 X21は、それぞれ独立して、チオ基、スルフィニル基またはスルホニル基を示し、
 n2は、2以上の整数を示す。〕
 <2-2>前記固相担体を構成する高分子が、スチレン系モノマーに由来する構造単位、ビニルケトン系モノマーに由来する構造単位、(メタ)アクリロニトリル系モノマーに由来する構造単位、(メタ)アクリレート系モノマーに由来する構造単位および(メタ)アクリルアミド系モノマーに由来する構造単位から選ばれる1種または2種以上を有する高分子である、前記<2-1>のアフィニティ精製用担体。
 <2-3>前記架橋構造が、固相担体の重合前或いは重合中に下記式(33)で表される多官能チオール化合物を添加して導入されるものである、前記<2-1>または<2-2>のアフィニティ精製用担体。
Figure JPOXMLDOC01-appb-C000023
〔式(33)中、R21およびn2は、前記と同義である。〕
 <2-4>前記固相担体が、固相担体の重合後に下記式(22)で表される架橋剤を添加して導入される架橋構造を更に有する、前記<2-3>のアフィニティ精製用担体。
Figure JPOXMLDOC01-appb-C000024
〔式(22)中、
 R22は、炭素数1~10の2価の有機基を示し、
 X22およびX23は、それぞれ独立して、ヒドロキシ基、アミノ基またはチオール基を示す。〕
 <2-5>X22およびX23が、チオール基である、前記<2-4>のアフィニティ精製用担体。
 <2-6>式(22)で表される架橋剤を添加して導入された架橋構造中のチオ基を酸化してなる、前記<2-5>のアフィニティ精製用担体。
 <2-7>前記リガンドまたはリガンドを結合するための反応性基が、リガンドである、前記<2-1>~<2-6>いずれかのアフィニティ精製用担体。
 <2-8>前記リガンドが、タンパク質またはペプチドである、前記<2-7>のアフィニティ精製用担体。
 <2-9>前記<2-1>~<2-8>いずれかのアフィニティ精製用担体を担体とする、クロマトグラフィーカラム用充填剤(以下、第2のクロマトグラフィーカラム用充填剤とも称する)。
 <2-10>前記<2-9>の充填剤がカラム容器に充填されている、クロマトグラフィーカラム(以下、第2のクロマトグラフィーカラムとも称する)。
 <2-11>標的物質を含む組成物を用意する工程と、前記<2-10>のクロマトグラフィーカラムに前記組成物を通液する工程を含むことを特徴とする、標的物質の精製方法(以下、第2の精製方法とも称する)。
 <2-12>標的物質が、標的タンパク質である、前記<2-11>の精製方法。
 本発明の第1の固相担体は、高い親水性を有し、耐圧性能に優れるため圧密化しにくく、また、リガンドを固定した場合の標的物質に対する動的結合容量が大きい。したがって、本発明によれば、不純物除去効率が高く、耐圧性能に優れ圧密化しにくく、且つリガンドを固定した場合の標的物質に対する動的結合容量が大きいクロマトグラフィーカラム用充填剤及びクロマトグラフィーカラムを提供できる。
 本発明の第2のアフィニティ精製用担体は、優れた防汚性を有し、耐圧性能に優れるため圧密化しにくく、また、リガンドを有する場合には標的物質に対する動的結合容量が大きい。したがって、本発明によれば、不純物除去効率が高く、耐圧性能に優れ圧密化しにくく、且つリガンドを有する場合には標的物質に対する動的結合容量が大きいクロマトグラフィーカラム用充填剤およびクロマトグラフィーカラムを提供できる。
本発明の固相担体の製造方法の一例を示す図である。 本発明の固相担体の製造方法の一例を示す図である。 本発明の固相担体の製造方法の一例を示す図である。 本発明の固相担体の製造方法の一例を示す図である。 本発明の固相担体の製造方法の一例を示す図である。
 <第1の固相担体>
 本発明の第1の固相担体は、下記式(1)で表される2~4価の構造を有する樹脂を含むことを特徴とするものであり、斯かる構造(1)を樹脂表面に有するものが好ましい。なお、式(1)中、Rに結合していない側のX1から伸びる-は、結合手を意味する。本明細書において、特に断りがない限り以下同様である。
Figure JPOXMLDOC01-appb-C000025
〔式(1)中、
 R1は、n価の有機基を示し、
 X1は、それぞれ独立して、下記式(2)、(3)、(4)または(5)で表される2価の基を示し、
 nは2~4の整数を示す。〕
Figure JPOXMLDOC01-appb-C000026
〔式(2)中、
 R2は、炭素数1~2の2価の炭化水素基を示し、
 Y1は、チオ基(>S)、スルフィニル基(>S(=O))、オキシ基(>O)またはイミノ基(>NH)を示す。〕
Figure JPOXMLDOC01-appb-C000027
〔式(3)中、
 Y1は、前記と同義である。〕
Figure JPOXMLDOC01-appb-C000028
〔式(4)中、
 R3は、カルボニル基または*-(C=O)-NH-を示し(*は、式(4)中のY1と結合する位置を示す)、
 Y1は、前記と同義である。〕
Figure JPOXMLDOC01-appb-C000029
 以下、構造(1)について詳細に説明する。
 式(1)中、R1は、n価の有機基を示す。nは2~4の整数であるが、2または3が好ましく、2がより好ましい。なお、nが2である場合の構造(1)は、下記式(1-1)で表される。
Figure JPOXMLDOC01-appb-C000030
〔式(1-1)中、
 R1-2は2価の有機基を示し、
 X1は前記と同義であり、それぞれ独立して、式(2)、(3)、(4)または(5)で表される2価の基を示す。〕
 また、R1における2価の有機基は、直鎖状でも分岐鎖状でもよい。また、斯かる2価の有機基としては、2価の炭化水素基、2価の炭化水素基の炭素-炭素原子間にエーテル結合、イミノ基及びエステル結合から選ばれる1種以上を有する基が挙げられ、これらは、置換基として親水性基を有していてもよい。親水性基としては、ヒドロキシ基、カルボキシ基、チオ基、アミノ基、スルホ基、チオール基、リン酸基、アルデヒド基、シアノ基等が挙げられる。斯かる親水性基の置換位置及び個数は任意であるが、その個数は、親水性、耐圧性能の観点から、好ましくは0~6個であり、より好ましくは0~4個であり、更に好ましくは0~2個である。
 また、上記2価の有機基が2価の炭化水素基である場合、その炭素数は、親水性、耐圧性能の観点から、好ましくは1~20であり、より好ましくは1~10であり、更に好ましくは1~6であり、特に好ましくは2~6である。また、2価の炭化水素基は直鎖状でも分岐鎖状でもよい。
 また、上記2価の炭化水素基は、好ましくは2価の脂肪族炭化水素基であり、より好ましくはアルカンジイル基である。
 アルカンジイル基の具体例としては、メタン-1,1-ジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基等が挙げられる。
 また、上記2価の炭化水素基の炭素-炭素原子間にエーテル結合、イミノ基及びエステル結合から選ばれる1種以上を有する基としては、親水性、耐圧性能、リガンドを固定した場合の動的結合容量の観点から、2価の炭化水素基の炭素-炭素原子間にエーテル結合を有する基が好ましく、-Ra(ORbmORc-で表される基がより好ましい(Ra、RbおよびRcは、それぞれ独立して炭素数2~4のアルカンジイル基を示し、mは0~30の整数を示す)。
 上記Ra、RbおよびRcで示されるアルカンジイル基の炭素数としては、2または3が好ましく、2がより好ましい。また、斯かるアルカンジイル基は直鎖状でも分岐鎖状でもよいが、好適な具体例としては、エタン-1,2-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基が挙げられる。
 また、mは0~30の整数を示すが、親水性、耐圧性能、リガンドを固定した場合の動的結合容量の観点から、0~25の整数が好ましく、0~20の整数がより好ましく、0~15の整数が更に好ましく、0~10の整数が更に好ましく、0~5の整数が更に好ましく、0~3の整数が特に好ましい。
 なお、上記R1-2は、R1で示される2価の有機基と同じである。
 また、式(1)中、X1は、それぞれ独立して、下記式(2)、(3)、(4)または(5)で表される2価の基を示すが、親水性、耐圧性能、リガンドを固定した場合の動的結合容量の観点から、式(2)、(3)または(4)で表される2価の基が好ましく、式(2)または(4)で表される2価の基がより好ましく、式(2)で表される2価の基が特に好ましい。
Figure JPOXMLDOC01-appb-C000031
〔式(2)中、
 R2は、炭素数1~2の2価の炭化水素基を示し、
 Y1は、チオ基(>S)、スルフィニル基(>S(=O))、オキシ基(>O)またはイミノ基(>NH)を示す。〕
Figure JPOXMLDOC01-appb-C000032
〔式(3)中、
 Y1は、前記と同義である。〕
Figure JPOXMLDOC01-appb-C000033
〔式(4)中、
 R3は、カルボニル基または*-(C=O)-NH-を示し(*は、式(4)中のY1と結合する位置を示す)、
 Y1は、前記と同義である。〕
Figure JPOXMLDOC01-appb-C000034
 上記式(2)中、R2は、炭素数1~2の2価の炭化水素基を示す。斯かる2価の炭化水素基の炭素数としては1が好ましい。また、2価の炭化水素基は直鎖状でも分岐鎖状でもよい。
 また、上記2価の炭化水素基は、好ましくは2価の脂肪族炭化水素基であり、より好ましくはアルカンジイル基である。好適な具体例としては、メタン-1,1-ジイル基、エタン-1,2-ジイル基等が挙げられる。
 また、上記式(2)~(4)中、Y1は、チオ基、スルフィニル基、オキシ基またはイミノ基を示すが、親水性と耐圧性能とリガンドを固定した場合の動的結合容量とをいずれも高める観点から、チオ基、スルフィニル基が好ましく、スルフィニル基がより好ましい。
 なお、式(2)、(3)または(4)で表される2価の基はY1側の結合手がR1と結合していてもよく、他方の結合手がR1と結合していてもよい。同様に、式(5)で表される2価の基は、窒素原子側の結合手がR1と結合していてもよく、他方の結合手がR1と結合していてもよい。
 また、本発明の第1の固相担体としては、親水性、リガンドを固定した場合の動的結合容量の観点から、上記構造(1)に加えて、チオ基またはスルフィニル基とヒドロキシ基とを有する1価の基を更に有するものが好ましく、斯かる基を樹脂表面に有するものがより好ましい。
 上記チオ基またはスルフィニル基とヒドロキシ基とを有する1価の基としては、式(6-1)または(6-2)で表されるものが好ましく、式(6-1)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000035
〔式(6-1)中、
 R4は、炭素数1~2の2価の炭化水素基を示し、
 R5は、炭素数1~10の1価の有機基を示し、
 Y3は、チオ基またはスルフィニル基を示す。〕
Figure JPOXMLDOC01-appb-C000036
〔式(6-2)中、
 R5およびY3は前記と同義である。〕
 上記式(6-1)中、R4は、炭素数1~2の2価の炭化水素基を示す。斯かる2価の炭化水素基の炭素数としては1が好ましい。また、2価の炭化水素基は直鎖状でも分岐鎖状でもよい。
 また、上記2価の炭化水素基は、好ましくは2価の脂肪族炭化水素基であり、より好ましくはアルカンジイル基である。好適な具体例としては、メタン-1,1-ジイル基、エタン-1,2-ジイル基等が挙げられる。
 また、式(6-1)および(6-2)中、R5は、炭素数1~10の1価の有機基を示す。斯かる1価の有機基の炭素数としては、親水性、リガンドを固定した場合の動的結合容量の観点から、1~8が好ましく、1~6がより好ましく、2~4が更に好ましい。
 また、上記1価の有機基としては、1価の炭化水素基、該1価の炭化水素基に含まれる水素原子の少なくとも1個以上が親水性基に置換された基、-(RdO)p-H(Rdは炭素数2~4のアルカンジイル基を示し、pは1~30の整数を示す)が挙げられる。これらは直鎖状でも分岐鎖状でもよい。
 また、上記1価の炭化水素基は、1価の脂肪族炭化水素基、1価の脂環式炭化水素基および1価の芳香族炭化水素基を包含する概念であるが、好ましくは1価の脂肪族炭化水素基であり、より好ましくはアルキル基である。斯かるアルキル基の炭素数としては、親水性、リガンドを固定した場合の動的結合容量の観点から、1~8が好ましく、1~6がより好ましく、2~4が更に好ましい。
 上記アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられる。
 また、上記親水性基としては、ヒドロキシ基、カルボキシ基、アミノ基、スルホ基、チオール基、リン酸基、アルデヒド基等が挙げられるが、リガンドを固定した場合の動的結合容量、防汚性の観点から、ヒドロキシ基が好ましい。
 また、親水性基の置換位置および個数は任意であるが、その個数は、リガンドを固定した場合の動的結合容量、防汚性の観点から、好ましくは1~6個であり、より好ましくは1~4個であり、特に好ましくは2個である。
 また、上記-(RdO)p-Hにおいて、Rdで示されるアルカンジイル基の炭素数としては、2または3が好ましく、2がより好ましい。また、斯かるアルカンジイル基は直鎖状でも分岐鎖状でもよいが、好適な具体例としては、エタン-1,2-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基が挙げられる。
 また、pは1~30の整数を示すが、耐圧性能の観点から、1~25の整数が好ましく、1~20の整数がより好ましく、1~15の整数が更に好ましく、1~10の整数が更に好ましく、1~5の整数が更に好ましく、1~3の整数が特に好ましい。
 斯様なR5の中でも、上記1価の炭化水素基に含まれる水素原子の少なくとも1個以上が親水性基に置換された基が好ましく、好適な具体例としては、下記式(7)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000037
〔式(7)中、
 R6は炭素数1~10の2価または3価の有機基を示し、
 qは1または2を示し、
 **は、式(6-1)または(6-2)中のY3との結合位置を示す。〕
 式(7)中、R6で示される2価または3価の有機基の炭素数としては、リガンドを固定した場合の動的結合容量、防汚性の観点から、1~8が好ましく、1~6がより好ましく、2~4が更に好ましい。
 また、上記2価の有機基としては、2価の炭化水素基が挙げられ、直鎖状でも分岐鎖状でもよい。上記2価の炭化水素基は、好ましくは2価の脂肪族炭化水素基であり、より好ましくはアルカンジイル基である。斯かるアルカンジイル基の炭素数としては、リガンドを固定した場合の動的結合容量、防汚性の観点から、1~8が好ましく、1~6がより好ましく、2~4が更に好ましい。
 上記アルカンジイル基の具体例としては、メタン-1,1-ジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基等が挙げられる。
 また、上記3価の有機基としては、3価の炭化水素基が挙げられ、直鎖状でも分岐鎖状でもよい。上記3価の炭化水素基は、好ましくは3価の脂肪族炭化水素基であり、より好ましくはアルカントリイル基である。斯かるアルカントリイル基の炭素数としては、リガンドを固定した場合の動的結合容量、防汚性の観点から、1~8が好ましく、1~6がより好ましく、2~4が更に好ましい。
 上記アルカントリイル基の具体例としては、メタン-1,1,1-トリイル基、エタン-1,1,2-トリイル基、プロパン-1,2,3-トリイル基、プロパン-1,2,2-トリイル基等が挙げられる。
 また、式(7)中、qとしては、リガンドを固定した場合の動的結合容量、防汚性の観点から、2が好ましい。
 また、本発明の第1の固相担体としては、上記の構造等の他に、リガンドを固定可能な官能基を有するものが好ましく、斯かる基を表面に有するものがより好ましい。
 また、上記リガンドを固定可能な官能基としては、下記式(8)で表される1価の基、下記式(9)で表される1価の基、カルボキシ基、コハク酸イミドオキシ基、ホルミル基、イソシアネート基、アミノ基が挙げられ、式(8)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000038
〔式(8)中、
 R7は炭素数1~2の2価の炭化水素基を示す。〕
Figure JPOXMLDOC01-appb-C000039
 式(8)中、R7で示される2価の炭化水素基の炭素数としては、1が好ましい。また、2価の炭化水素基は直鎖状でも分岐鎖状でもよい。
 また、上記2価の炭化水素基は、好ましくは2価の脂肪族炭化水素基であり、より好ましくはアルカンジイル基である。好適な具体例としては、メタン-1,1-ジイル基、エタン-1,2-ジイル基等が挙げられる。
 また、上記リガンドは、標的物質と結合する分子であればよいが、例えば、プロテインA、プロテインG、アビジン等のタンパク質;インシュリン等のペプチド;モノクローナル抗体等の抗体;酵素;ホルモン;DNA;RNA;ヘパリン、ルイスX、ガングリオシド等の糖質;イミノジ酢酸、合成色素、2-アミノフェニル硼素酸、4-アミノベンズアミジン、グルタチオン、ビオチンやその誘導体のような低分子化合物が挙げられる。なお、上記に例示したリガンドはその全体を用いてもよいが、リコンビナント、酵素処理等によって得られるそのフラグメントを用いてもよい。また、人工的に合成されたペプチドやペプチド誘導体であってもよい。
 斯様なリガンドの中でも、精製の標的物質が抗体である場合は、アミノ基を含むものが好ましく、タンパク質がより好ましく、イムノグロブリン結合タンパク質が更に好ましく、プロテインAが更に好ましい。
 また、本発明の第1の固相担体の平均粒径(体積平均粒径)は、耐圧性能の観点から、好ましくは20~150μmであり、より好ましくは40~100μmである。なお、斯かる平均粒径はリガンド固定前の平均粒径をいう。また、平均粒径の変動係数は、好ましくは40%以下であり、より好ましくは30%以下である。
 また、本発明の第1の固相担体の比表面積は、リガンドを固定した場合の動的結合容量の観点から、ポアサイズ10nm~5000nmにおける比表面積で、好ましくは70m2/g以上であり、より好ましくは90m2/g以上である。
 なお、上記平均粒径および比表面積は、レーザー回折・散乱式粒径分析測定装置や水銀ポロシメータ等により測定できる。
 また、本発明の第1の固相担体の形態は、モノリス、膜、中空繊維、粒子、カセット、チップ等のいずれでもよいが、粒子が好ましい。また、第1の固相担体は、表面積の向上の観点から、多孔質粒子等の多孔質化されたものが好ましい。また、多孔質粒子としては、多孔質ポリマー粒子が好ましい。また、第1の固相担体が含む樹脂は、式(1)で表される2~4価の構造を有するものであれば特に限定されるものではなく、アガロース、デキストラン、セルロース等の多糖類で構成される天然高分子でもよく、合成高分子でもよい。
 <第1の固相担体の製造方法>
 本発明の第1の固相担体の製造方法は常法を適宜組み合わせて製造すればよく、特に限定されないが、下記式(8)で表される1価の基、下記式(9)で表される1価の基、カルボキシ基、コハク酸イミドオキシ基、ホルミル基およびイソシアネート基から選ばれる1種以上の官能基を有する固相と、下記式(10)で表される架橋剤とを接触させる工程を含むことを特徴とする固相担体の製造方法により、簡便かつ効率よく製造することができる。
Figure JPOXMLDOC01-appb-C000040
〔式(8)中、
 R7は炭素数1~2の2価の炭化水素基を示す。〕
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
〔式(10)中、
 R1は、n価の有機基を示し、
 Y2は、チオ基、オキシ基またはイミノ基を示し、
 nは2~4の整数を示す。〕
 また、上記製法の具体的な方法としては、例えば、<PR-1>(工程1-1)原料粒子等の固相を常法に従って得て、図1~4に例示するように、(工程1-2)得られた固相と式(10)で表される架橋剤とを接触させる方法が挙げられる。
 また、構造(1)中のX1が式(2)~(4)で表される2価の基であり、Y1がスルフィニル基である固相担体は、<PR-2>(工程2-1)上記固相を常法に従って得て、図5に例示するように、(工程2-2)得られた固相と式(10)で表される架橋剤とを接触させ、(工程2-3)更に得られた固相担体(i)に酸化剤を接触させる方法等により得られる。なお、この場合、架橋化剤として、式(10)中のY2がチオ基のものを用いる。
 また、上記方法<PR-1>および<PR-2>において、(工程1-2)、(工程2-2)に先立ち、(工程1-1)、(工程2-1)で得られた固相にR5SHで表される化合物を接触させることで、式(6-1)または(6-2)で表される1価の基を固相担体に導入することもできる。なお、上記R5SHで表される化合物におけるR5は式(6-1)中のR5と同義である。
 以下、上記各工程について、具体的に説明する。
(工程1-1および2-1)
 工程1-1および2-1は、式(8)で表される1価の基、式(9)で表される1価の基、カルボキシ基、コハク酸イミドオキシ基、ホルミル基およびイソシアネート基から選ばれる1種以上の官能基を有するモノマー(以下、官能基含有モノマーという)を(共)重合させ、上記官能基を有する固相を得る工程である。上記(共)重合の方法は、好ましくは懸濁重合である。
 上記官能基含有モノマーとしては、式(8)で表される1価の基を有するものが好ましく、例えば、エポキシ基含有不飽和モノマーが挙げられる。斯かるエポキシ基含有不飽和モノマーとしては、(メタ)アクリレート系モノマー、スチレン系モノマー等が好ましく、(メタ)アクリレート系モノマーがより好ましく、下記式(11)で表される(メタ)アクリレート系モノマーがさらに好ましい。
Figure JPOXMLDOC01-appb-C000043
〔式(11)中、
 R8は水素原子またはメチル基を示し、
 R9は単結合、炭素数1~10の2価の炭化水素基または-(R10O)r-を示し(R10は炭素数2~4のアルカンジイル基を示し、rは1~30の整数を示す)、
 R7は前記と同義である。〕
 R9で示される2価の炭化水素基の炭素数としては、1~8が好ましく、1~6がより好ましく、1~4が更に好ましい。また、2価の炭化水素基は直鎖状でも分岐鎖状でもよい。
 また、上記2価の炭化水素基は、好ましくは2価の脂肪族炭化水素基であり、より好ましくはアルカンジイル基である。好適な具体例としては、メタン-1,1-ジイル基、エタン-1,2-ジイル基等が挙げられる。
 また、R10で示されるアルカンジイル基は直鎖状でも分岐鎖状でもよく、具体例としては、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,2-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基等が挙げられる。
 また、rとしては、1~25の整数が好ましく、1~15の整数がより好ましい。
 また、上記のようなR9の中でも、単結合が好ましい。
 また、上記官能基含有モノマーの好適な具体例としては、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、α-(メタ)アクリル-ω-グリシジルポリエチレングリコール、(4-ビニルベンジル)グリシジルエーテル、アリルグリシジルエーテル、3,4-エポキシ-1-ブテン、3,4-エポキシ-3-メチル-1-ブテン等が挙げられ、1種を単独でまたは2種以上を組み合わせて使用できる。
 また、上記官能基含有モノマーの合計使用量としては、親水性、耐圧性能の観点から、モノマー総量100質量部に対し、1~90質量部が好ましく、20~80質量部がより好ましく、30~70質量部が特に好ましい。
 また、工程1-1および2-1には、官能基含有モノマーとともに他のモノマーを用いてもよい。該他のモノマーとしては、非架橋性モノマー、架橋性モノマーのいずれも使用でき、これらを併用してもよい。
 上記非架橋性モノマーとしては、(メタ)アクリレート系非架橋性モノマー、(メタ)アクリルアミド系非架橋性モノマー、スチレン系非架橋性モノマー、ビニルケトン系非架橋性モノマー、(メタ)アクリロニトリル系非架橋性モノマー、N-ビニルアミド系非架橋性モノマーが挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて使用できる。これらの中でも、(メタ)アクリレート系非架橋性モノマーが好ましい。
 上記(メタ)アクリレート系非架橋性モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、トリメチロールエタンモノ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、ブタントリオールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ジペンタエリスリトールモノ(メタ)アクリレート、イノシトールモノ(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等が挙げられる。
 また、上記(メタ)アクリルアミド系非架橋性モノマーとしては、例えば、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ダイアセトン(メタ)アクリルアミド等が挙げられる。
 また、上記スチレン系非架橋性モノマーとしては、例えば、スチレン、α-メチルスチレン、ハロゲン化スチレン等が挙げられる。
 また、上記ビニルケトン系非架橋性モノマーとしては、例えば、エチルビニルケトン、プロピルビニルケトン、イソプロピルビニルケトン等が挙げられる。
 また、上記(メタ)アクリロニトリル系非架橋性モノマーとしては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。
 また、上記N-ビニルアミド系非架橋性モノマーとしては、N-ビニルアセトアミド、N-ビニルプロパミド等が挙げられる。
 また、上記非架橋性モノマーの合計使用量としては、親水性、耐圧性能の観点から、モノマー総量100質量部に対し、0~70質量部が好ましく、3~50質量部がより好ましく、5~30質量部が特に好ましい。
 また、上記架橋性モノマーとしては、(メタ)アクリレート系架橋性モノマーが好ましい。また、2~5官能のものが好ましく、2または3官能のものがより好ましい。
 また、上記(メタ)アクリレート系架橋性モノマーの具体例としては、グリセリンジ(メタ)アクリレート、トリメチロールエタンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ブタントリオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、イノシトールジ(メタ)アクリレート、イノシトールトリ(メタ)アクリレート、イノシトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられ、1種を単独でまたは2種以上を組み合わせて使用できる。
 また、架橋性モノマーを使用する場合、その合計使用量としては、親水性、耐圧性能の観点から、モノマー総量を100質量部に対し、1~90質量部が好ましく、5~70質量部がより好ましく、10~60質量部が更に好ましく、20~50質量部が特に好ましい。
 また、工程1-1および2-1の具体的な方法としては、例えば、モノマーおよび必要に応じて多孔化剤を含む混合溶液(単量体溶液)に重合開始剤を溶解し、水系媒体中に懸濁させて所定温度まで加熱して重合させる方法や、モノマーおよび必要に応じて多孔化剤を含む混合溶液(単量体溶液)に重合開始剤を溶解し、所定温度まで加熱した水系媒体中に添加して重合させる方法、モノマーおよび必要に応じて多孔化剤を含む混合溶液(単量体溶液)を、水系媒体中に懸濁させて所定温度まで加熱して、重合開始剤を添加し重合させる方法等が挙げられる。
 重合開始剤としてはラジカル重合開始剤が好ましい。ラジカル重合開始剤としては、例えば、アゾ系開始剤、過酸化物系開始剤、レドックス系開始剤等が挙げられ、具体的には、アゾビスイソブチロニトリル、アゾビスイソ酪酸メチル、アゾビス-2,4-ジメチルバレロニトリル、過酸化ベンゾイル、過酸化ジ-tert-ブチル、過酸化ベンゾイル-ジメチルアニリン等が挙げられる。重合開始剤の合計使用量は、通常、モノマー総量100質量部に対して0.01~10質量部程度である。
 上記多孔化剤は、多孔質粒子を製造するために使用され、油滴内の重合において、モノマーと共に存在し、非重合成分として孔を形成する役割を有する。多孔化剤は、多孔質表面において容易に除去可能なものであれば特に限定されるものではなく、例えば、各種の有機溶剤や混合モノマーに可溶な線状重合物等が挙げられ、これらを併用してもよい。
 上記多孔化剤としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素類;シクロヘキサン、シクロペンタン等の脂環式炭化水素類;ベンゼン、トルエン、キシレン、ナフタレン、エチルベンゼン等の芳香族炭化水素類;四塩化炭素、テトラクロロエタン等のハロゲン化炭化水素類;ブタノール、ペンタノール、ヘキサノール、ヘプタノール、ヘキサノール、4-メチル-2-ペンタノール、2-エチル-1-ヘキサノール等の脂肪族アルコール類;シクロヘキサノール等の脂環式アルコール類;2-フェニルエチルアルコール、ベンジルアルコール等の芳香族アルコール類;ジエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、アセトフェノン、2-オクタノン、シクロヘキサノン等のケトン類;ジブチルエーテル、ジイソブチルエーテル、アニソール、エトキシベンゼン等のエーテル類;酢酸イソペンチル、酢酸ブチル、酢酸-3-メトキシブチル、マロン酸ジエチル等のエステル類の他、非架橋性ビニルモノマーのホモポリマー等の線状重合物が挙げられる。多孔化剤は単独でまたは2種以上を混合して用いることができる。
 上記多孔化剤の合計使用量は、通常、モノマー総量100質量部に対して70~600質量部であり、より好ましくは70~400質量部である。
 上記水系媒体としては、例えば水溶性高分子水溶液等が挙げられ、水溶性高分子としては、例えばヒドロキシエチルセルロース、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、デンプン、ゼラチン等が挙げられる。
 水系媒体の合計使用量は、モノマー総量100質量部に対して、通常、200~7000質量部程度である。
 また、水系媒体の分散媒として水を用いる場合、例えば、炭酸ナトリウム、炭酸カルシウム、硫酸ナトリウム、燐酸カルシウム、塩化ナトリウム等の分散安定剤を使用してもよい。
 また、工程1-1および2-1には、アルキル硫酸エステル塩、アルキルアリール硫酸エステル塩、アルキルリン酸エステル塩、脂肪酸塩等のアニオン性界面活性剤をはじめとする各種界面活性剤を用いてもよい。
 また、亜硝酸ナトリウム等の亜硝酸塩、ヨウ化カリウム等のヨウ化物塩、tert-ブチルピロカテコール、ベンゾキノン、ピクリン酸、ハイドロキノン、塩化銅、塩化第二鉄等の重合禁止剤を用いることもできる。
 また、ドデシルメルカプタン等の重合調製剤を用いてもよい。
 また、工程1-1および2-1の重合温度は重合開始剤に応じて決定すればよいが、例えば、アゾビスイソブチロニトリルを重合開始剤として用いる場合は、50~100℃が好ましく、60~90℃がより好ましい。
 また、重合時間は通常5分~48時間、好ましくは10分~24時間である。
 なお、斯様にして得られた固相の式(8)または(9)で表される基に対し、R5SHで表される化合物を開環付加させることで、下記式(6-1)または(6-2)で表される1価の基を固相に導入することもできる。
Figure JPOXMLDOC01-appb-C000044
〔式(6-1)中、各記号は前記と同義である。〕
Figure JPOXMLDOC01-appb-C000045
〔式(6-2)中、各記号は前記と同義である。〕
 上記R5SHで表される化合物としては、メタンチオール、チオグリセロールが挙げられる。斯かる化合物の合計使用量は、式(8)または(9)で表される基1モルに対し、通常0.1~12モル当量である。
 また、斯かる開環付加反応の反応時間は特に限定されないが、通常0.5~72時間程度である。また、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常2~100℃程度である。
(工程1-2および2-2)
 工程1-2および2-2は、官能基含有モノマーに由来する官能基に対し、式(10)で表される架橋剤を開環付加させ、架橋構造を導入する工程である。
 工程1-2および2-2で用いる架橋剤(10)としては、エチレンジオール、1,6-ヘキサンジオール、3,6-ジオキサ-1,8-オクタンジオール、ジエチレングリコール等のジオール類;エチレンジアミン、1,6-ヘキサンジアミン、2,2’-オキシビス(エチルアミン)、3,6-ジオキサ-1,8-オクタンジアミン等のジアミン類;エチレンジチオール、1,6-ヘキサンジチオール、ビス(2-メルカプトエチル)エーテル、3,6-ジオキサ-1,8-オクタンジチオール等のジチオール類の他、2-メルカプトエタノール、グリセリン等が挙げられる。これら架橋剤は単独でまたは2種以上を混合して用いることができる。
 上記架橋剤(10)の合計使用量は、官能基含有モノマーに由来する官能基1モルに対し、通常0.1~12モル当量であり、好ましくは0.1~6モル当量であり、より好ましくは0.1~3モル当量である。
 なお、工程1-2および2-2は、塩基性触媒存在下で行ってもよい。斯かる塩基性触媒としては、トリエチルアミン、N,N-ジメチル-4-アミノピリジン、ジイソプロピルエチルアミン等が挙げられ、1種を単独でまたは2種以上を組み合わせて使用できる。
 また、工程1-2および2-2の反応時間は特に限定されないが、通常0.5~72時間程度であり、好ましくは0.5~48時間である。また、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常2~100℃程度である。
(工程2-3)
 工程2-3は、式(10)中のY2がチオ基の架橋剤で架橋された固相担体(i)に酸化剤を接触させて、固相担体(i)のチオ基をスルフィニル基に酸化する工程である。
 上記酸化剤は、有機酸化剤と無機酸化剤とに大別され、有機酸化剤としては、例えば、過酢酸、過安息香酸、メタクロロ過安息香酸等が挙げられる。一方、無機酸化剤としては、例えば、過酸化水素、クロム酸、過マンガン酸塩等が挙げられる。なお、これら酸化剤は1種を単独でまたは2種以上を組み合わせて使用できる。
 また、酸化剤の合計使用量は、チオ基1モルに対し、通常0.1~10モル当量程度であるが、好ましくは0.5~5モル当量であり、さらに好ましくは0.5~3モル等量である。
 なお、工程2-3は、溶媒存在下で行ってもよい。斯かる溶媒としては、水や、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、メタノール、エタノール等のアルコール系溶媒等が挙げられ、これら溶媒は1種を単独でまたは2種以上を組み合わせて使用できる。
 また、工程2-3の反応時間は特に限定されないが、通常0.5~72時間程度であり、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常1~70℃程度である。
 なお、上記各工程で得られる反応生成物を、蒸留、抽出、洗浄等の分離手段で精製してもよい。
 そして、上記のようにして得られる本発明の構造(1)を有する樹脂を含む第1の固相担体は、高い親水性を有し、耐圧性能(機械的強度)に優れるため圧密化しにくく、また、リガンドを固定した場合の標的物質に対する動的結合容量が大きいため、クロマトグラフィー用担体として有用である。
 <第1のクロマトグラフィーカラム用充填剤>
 本発明の第1のクロマトグラフィーカラム用充填剤は、本発明の第1の固相担体を担体とするものである。
 本発明の第1の固相担体はリガンドを固定した場合の標的物質(特に標的タンパク質)に対する動的結合容量が大きいため、上記充填剤はアフィニティクロマトグラフィーへの使用に適する。
 斯様なアフィニティクロマトグラフィーカラム用充填剤としては、上記固相担体に上記リガンドを固定したものが挙げられる。リガンドの合計使用量は、本発明の第1の固相担体1gあたり、通常50~300mg程度であるが、好ましくは120~180mgである。
 また、リガンドの固定は、上記固相担体を用いる以外は常法と同様にして行えばよいが、塩を添加したバッファー下で行うのが好ましい。塩の種類としては、クエン酸三ナトリウム、硫酸ナトリウム等が挙げられ、上記バッファーとしては、リン酸ナトリウム、リン酸カリウム、ホウ酸等が挙げられる。
 また、バッファーの合計使用量は、本発明の第1の固相担体に対し、通常20~80質量倍程度であるが、好ましくは35~45質量倍である。
 また、リガンド固定の反応時間は特に限定されないが、通常0.5~72時間程度であり、反応温度は通常1~40℃程度である。
 なお、充填剤の担体である固相担体中に式(8)で表される1価の基等の官能基が残存する場合は、R5SHで表される化合物(R5は、炭素数1~10の1価の有機基を示す)を反応させて、上記官能基を開環させてもよい。
 <第1のクロマトグラフィーカラム>
 本発明の第1のクロマトグラフィーカラムは、本発明の第1のクロマトグラフィーカラム用充填剤がカラム容器に充填されているものである。該カラムはアフィニティクロマトグラフィーへの使用に適する。
 <第1の精製方法>
 本発明の第1の精製方法は、標的物質を含む組成物を用意する工程と、本発明の第1のクロマトグラフィーカラムに前記組成物を通液する工程を含むことを特徴とするものである。上記標的物質としては、標的タンパク質が挙げられる。また、精製は本発明の第1のクロマトグラフィーカラムを用いる以外は常法に従い行えばよい。
 <第2のアフィニティ精製用担体>
 本発明の第2のアフィニティ精製用担体は、固相担体と、リガンドまたはリガンドを結合するための反応性基と、を有するアフィニティ精製用担体であって、リガンドまたはリガンドを結合するための反応性基が、固相担体に結合しており、固相担体を構成する高分子の末端の一部または全部が、下記式(21)で表される架橋構造で互いに架橋されているものである。
Figure JPOXMLDOC01-appb-C000046
〔式(21)中、
 R21は、n2価の有機基を示し、
 X21は、それぞれ独立して、チオ基(>S)、スルフィニル基(>S=O)またはスルホニル基(>S(=O)2)を示し、
 n2は、2以上の整数を示す。〕
 (架橋構造)
 以下、架橋構造(21)について詳細に説明する。架橋構造(21)は、結合手の数がn2の架橋構造である。
 式(21)中、R21は、n2価の有機基を示す。n2は、2以上の整数であるが、防汚性および耐圧性能等の観点から、2~6の整数が好ましく、2~4の整数が好ましく、2または3がより好ましく、2が特に好ましい。
 また、R21で示されるn2価の有機基の総炭素数は、防汚性および耐圧性能等の観点から、好ましくは1~40、より好ましくは1~30、更に好ましくは1~24、更に好ましくは2~18、更に好ましくは2~12、更に好ましくは2~10、更に好ましくは2~8、更に好ましくは3~7、特に好ましくは4~6である。
 また、R21で示されるn2価の有機基としては、n2価の炭化水素基、n2価の炭化水素基の炭素-炭素原子間にオキシ基(>O)、チオ基(>S)、スルフィニル基(>S=O)、スルホニル基(>S(=O)2)、エステル結合(-C(=O)O-)およびイミノ基(>NH)から選ばれる1種以上を有する基(以下、n2価の炭化水素基の炭素-炭素原子間にオキシ基等を有する基とも称する)が挙げられる。中でも、防汚性および耐圧性能等の観点から、n2価の炭化水素基の炭素-炭素原子間にオキシ基等を有する基が好ましく、n2価の炭化水素基の炭素-炭素原子間にオキシ基、チオ基、スルフィニル基、およびスルホニル基から選ばれる1種以上を有する基がより好ましい。
 R21で示されるn2価の有機基がn2価の炭化水素基である場合、その炭素数としては、1~30が好ましく、1~20がより好ましく、1~10が更に好ましく、1~6が更に好ましく、2~4が更に好ましく、2または3が特に好ましい。一方、R21で示されるn2価の有機基がn2価の炭化水素基の炭素-炭素原子間にオキシ基等を有する基である場合、斯かる基におけるn2価の炭化水素基の炭素数としては、2~40が好ましく、2~30がより好ましく、2~24が更に好ましく、2~18が更に好ましく、2~12が更に好ましく、2~10が更に好ましく、2~8が更に好ましく、3~7が更に好ましく、4~6が特に好ましい。
 これらR21における「n2価の炭化水素基」は直鎖状でも分岐鎖状でもよいが、好ましくはn2価の脂肪族炭化水素基であり、好適な具体例としては、2~4価の脂肪族炭化水素基が挙げられる。
 2価の脂肪族炭化水素基としては、アルカンジイル基が好ましく、具体的には、メタン-1,1-ジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,2-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,5-ジイル基、ヘキサン-1,6-ジイル基等が挙げられる。3価の脂肪族炭化水素基としては、アルカントリイル基が好ましく、具体的には、メタン-1,1,1-トリイル基、エタン-1,1,2-トリイル基、プロパン-1,2,3-トリイル基、プロパン-1,2,2-トリイル基等が挙げられる。4価の脂肪族炭化水素基としては、アルカンテトライル基が好ましく、4,4-ジプロピルヘプタン-テトライル基等が挙げられる。
 上記のような架橋構造(21)の好適な具体例としては、式(23)または(24)で表される架橋構造が挙げられ、防汚性および耐圧性能等の観点から、式(23)で表される架橋構造が好ましい。なお、架橋構造(23)は、結合手の数が2の架橋構造であり、架橋構造(24)は、結合手の数がp2の架橋構造である。
Figure JPOXMLDOC01-appb-C000047
〔式(23)中、
 R23は、2価の炭化水素基、または2価の炭化水素基の炭素-炭素原子間にオキシ基、チオ基、スルフィニル基およびスルホニル基から選ばれる1種以上を有する基を示し、
 X21は前記と同義であり、それぞれ独立して、チオ基、スルフィニル基またはスルホニル基を示す。〕
 式(23)中、R23が2価の炭化水素基である場合、その炭素数としては、1~20が好ましく、1~10がより好ましく、1~6が更に好ましく、2~4が更に好ましく、2または3が特に好ましい。一方、R23が2価の炭化水素基の炭素-炭素原子間にオキシ基、チオ基、スルフィニル基およびスルホニル基から選ばれる1種以上を有する基である場合、斯かる基における2価の炭化水素基の炭素数としては、2~18が好ましく、2~12がより好ましく、2~10が更に好ましく、2~8が更に好ましく、3~7が更に好ましく、4~6が特に好ましい。
 これらR23における「2価の炭化水素基」は直鎖状でも分岐鎖状でもよいが、好ましくは2価の脂肪族炭化水素基である。2価の脂肪族炭化水素基としては、アルカンジイル基が好ましく、具体的には、メタン-1,1-ジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,2-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,5-ジイル基、ヘキサン-1,6-ジイル基等が挙げられる。
 また、上記の中でも、R23としては、防汚性および耐圧性能等の観点から、2価の炭化水素基の炭素-炭素原子間にオキシ基、チオ基、スルフィニル基およびスルホニル基から選ばれる1種以上を有する基が好ましく、-R(Yab-で表される基(R、RおよびRは、それぞれ独立して、炭素数1~4のアルカンジイル基を示し、YaおよびYbは、それぞれ独立して、オキシ基、チオ基、スルフィニル基またはスルホニル基を示し、tは0~10の整数を示す)がより好ましい。
 R、RおよびRで示されるアルカンジイル基の炭素数としては、2または3が好ましく、2がより好ましい。また、斯かるアルカンジイル基は直鎖状でも分岐鎖状でもよく、好適な具体例としては、エタン-1,2-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基が挙げられる。また、tは、0~10の整数を示すが、0~5の整数が好ましく、0~3の整数がより好ましく、0または1が特に好ましい。
Figure JPOXMLDOC01-appb-C000048
〔式(24)中、
 R24は、p2+q2価の有機基を示し、
 R25は、2価の炭化水素基を示し、
 R26は、炭化水素基を示し、
 p2は、2~6の整数を示し、
 q2は、0~8の整数を示し、
 X21は前記と同義であり、それぞれ独立して、チオ基、スルフィニル基またはスルホニル基を示す。〕
 式(24)中、p2は、2~6の整数を示すが、2~4の整数が好ましく、3または4がより好ましく、4が特に好ましい。q2は、0~8の整数を示すが、0~4の整数が好ましく、0~2の整数がより好ましく、0が特に好ましい。また、p2+q2は、好ましくは2~10の整数であり、より好ましくは2~6の整数であり、更に好ましくは2~4の整数であり、更に好ましくは3または4であり、特に好ましくは4である。
 R24で示されるp2+q2価の有機基としては、p2+q2価の炭化水素基、p2+q2価の炭化水素基の炭素-炭素原子間にオキシ基を有する基が好ましく、p2+q2価の炭化水素基が好ましい。p2+q2価の炭化水素基は直鎖状でも分岐鎖状でもよいが、アルカンジイル基、アルカントリイル基、アルカンテトライル基が好ましい。
 R24で示されるアルカンジイル基の炭素数は、好ましくは1~10、より好ましくは1~6、特に好ましくは2~4である。具体的には、メタン-1,1-ジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,2-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,5-ジイル基、ヘキサン-1,6-ジイル基等が挙げられる。
 R24で示されるアルカントリイル基、アルカンテトライル基の炭素数は、好ましくは1~10、より好ましくは2~8、特に好ましくは4~6である。アルカントリイル基、アルカンテトライル基の好適な具体例は、以下の式に示すとおりである。
Figure JPOXMLDOC01-appb-C000049
〔各式中、*は結合手を示す。〕
 R25で示される2価の炭化水素基の炭素数は、好ましくは1~6、より好ましくは2~4である。また、当該2価の炭化水素基は直鎖状でも分岐鎖状でもよい。また、当該2価の炭化水素基としては、2価の脂肪族炭化水素基が好ましく、アルカンジイル基がより好ましい。具体的には、メタン-1,1-ジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基等が挙げられる。
 R26で示される炭化水素基の炭素数は、好ましくは1~10、より好ましくは2~8である。当該炭化水素基は直鎖状でも分岐鎖状でもよい。また、当該炭化水素基としては、脂肪族炭化水素基が好ましく、アルキル基がより好ましい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられる。
 (リガンド等)
 また、本発明の第2のアフィニティ精製用担体は、リガンドまたはリガンドを結合するための反応性基を有する。
 上記リガンドは標的物質と結合する分子であればよいが、例えば、プロテインA、プロテインG、アビジン等のタンパク質;インシュリン等のペプチド;モノクローナル抗体等の抗体;酵素;ホルモン;DNA;RNA;ヘパリン、ルイスX、ガングリオシド等の糖質;イミノジ酢酸、合成色素、2-アミノフェニル硼素酸、4-アミノベンズアミジン、グルタチオン、ビオチンやその誘導体のような低分子化合物が挙げられる。なお、上記に例示したリガンドはその全体を用いてもよいが、リコンビナント、酵素処理等によって得られるそのフラグメントを用いてもよい。また、人工的に合成されたペプチドやペプチド誘導体であってもよい。
 上記リガンドの中でも、タンパク質、ペプチドが好ましく、タンパク質がより好ましく、特に、イムノグロブリンの分離または精製に好適なリガンドとしては、イムノグロブリン結合性タンパク質が挙げられる。
 イムノグロブリン結合性タンパク質としては、プロテインA、プロテインG、プロテインL、Fc結合タンパクおよびそれらの機能性変異体よりなる群から選ばれる少なくとも1種以上が好ましい。中でも、好ましくはプロテインA、プロテインG、それらの機能性変異体であり、より好ましくはプロテインA、その機能性変異体である。
 リガンドの結合量は、固相担体1g当たり、好ましくは10~200mg、より好ましくは25~100mgである。
 リガンドを結合するための反応性基としては、環状エーテル基、カルボキシ基、コハク酸イミドオキシ基、ホルミル基、イソシアネート基、アミノ基が挙げられ、環状エーテル基が好ましい。環状エーテル基としては、下記式(25)で表される1価の基、下記式(26)で表される1価の基が挙げられ、式(25)で表される1価の基が特に好ましい。
Figure JPOXMLDOC01-appb-C000050
〔式(25)中、R27は炭素数1~6の2価の炭化水素基を示す。〕
Figure JPOXMLDOC01-appb-C000051
 式(25)中、R27で示される2価の炭化水素基の炭素数としては、1~4が好ましく、1または2がより好ましい。2価の炭化水素基は、直鎖状でも分岐鎖状でもよいが、好ましくは2価の脂肪族炭化水素基であり、より好ましくはアルカンジイル基である。
 好適な具体例としては、メタン-1,1-ジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基等が挙げられる。
 また、固相担体を構成する高分子は、高分子鎖の末端の一部または全部が、式(21)で表される架橋構造で互いに架橋されているものであれば特に限定されるものではなく、アガロース、デキストラン、セルロース等の多糖類で構成される天然高分子でもよく、合成高分子でもよい。
 固相担体を構成する高分子としては、エチレン性不飽和モノマーに由来する構造単位を有する高分子が好ましい。例えば、スチレン系モノマーに由来する構造単位、ビニルケトン系モノマーに由来する構造単位、(メタ)アクリロニトリル系モノマーに由来する構造単位、(メタ)アクリレート系モノマーに由来する構造単位および(メタ)アクリルアミド系モノマーに由来する構造単位から選ばれる1種または2種以上を有する高分子などである。
 また、固相担体の形態は、モノリス、膜、中空繊維、粒子、カセット、チップ等のいずれでもよいが、粒子が好ましい。また、固相担体は、表面積の向上の観点から、多孔質粒子等の多孔質化されたものが好ましい。また、多孔質粒子としては、多孔質ポリマー粒子が好ましい。
 本発明の第2のアフィニティ精製用担体を構成する固相担体が粒子である場合、その粒子径は、通常、35~100μmであり、好ましくは40~85μmである。粒子径を35μm以上とすることにより、圧力特性が向上する。また、100μm以下とすることによりリガンドを結合した場合の動的結合容量が大きくなる。また、粒子径の変動係数は、好ましくは40%以下であり、より好ましくは30%以下である。
 粒子径は、重合する際の条件で調整することができる。なお、上記「粒子径」とは、レーザ回折散乱式粒度分布測定装置により得られる体積平均粒子径を意味する。
 <第2のアフィニティ精製用担体の製造方法>
 本発明の第2のアフィニティ精製用担体の製造方法は、常法を適宜組み合わせて製造することができる。
 例えば、(工程PS1)リガンドを結合するための反応性基を有するモノマーと、必要に応じで当該モノマー以外のモノマー(以下、他のモノマーとも称する)を、下記式(33)で表される多官能チオール化合物および重合開始剤の存在下で(共)重合させ、必要に応じて、(工程PS2-1)架橋剤を用いた架橋化反応や(工程PS2-2)酸化剤を用いるなどしてチオ基をスルフィニル基に酸化をするなどして製造できる。また、(工程PS3)斯様な方法で得られた固相担体にリガンドを結合させてもよい。
Figure JPOXMLDOC01-appb-C000052
〔式(33)中、
 R21は、前記と同義であり、n2価の有機基を示し、
 n2は、前記と同義であり、2以上の整数を示す。〕
 (工程PS1)
 リガンドを結合するための反応性基を有するモノマー、他のモノマーとしては、いずれも、エチレン性不飽和モノマーが挙げられる。具体的には、スチレン系モノマー、ビニルケトン系モノマー、(メタ)アクリロニトリル系モノマー、(メタ)アクリレート系モノマーおよび(メタ)アクリルアミド系モノマーから選ばれる1種または2種以上のモノマーを例示することができる。
 リガンドを結合するための反応性基を有するモノマーとしては、環状エーテル基、カルボキシ基、コハク酸イミドオキシ基、ホルミル基、イソシアネート基およびアミノ基から選ばれる反応性基を有するモノマーが好ましく、環状エーテル基を有するモノマーがより好ましく、式(25)または(26)で表される1価の基を有するモノマーが更に好ましく、式(25)で表される1価の基を有するモノマーが特に好ましい。式(25)で表される1価の基を有するモノマーとしては、エポキシ基含有不飽和モノマーが挙げられる。
 エポキシ基含有不飽和モノマーとしては、(メタ)アクリレート系モノマー、スチレン系モノマー等が好ましく、(メタ)アクリレート系モノマーがより好ましく、下記式(27)で表される(メタ)アクリレート系モノマーがさらに好ましい。
Figure JPOXMLDOC01-appb-C000053
〔式(27)中、
 R28は水素原子またはメチル基を示し、
 R29は単結合、炭素数1~10の2価の炭化水素基または-(R30O)j-を示し(R30は炭素数2~4のアルカンジイル基を示し、jは1~30の整数を示す)、
 R27は前記と同義である。〕
 R29で示される2価の炭化水素基の炭素数としては、1~8が好ましく、1~6がより好ましく、1~4が更に好ましい。また、2価の炭化水素基は直鎖状でも分岐鎖状でもよい。
 また、上記2価の炭化水素基は、好ましくは2価の脂肪族炭化水素基であり、より好ましくはアルカンジイル基である。好適な具体例としては、メタン-1,1-ジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基等が挙げられる。
 また、R30で示されるアルカンジイル基は直鎖状でも分岐鎖状でもよく、具体例としては、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,2-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基等が挙げられる。
 また、jとしては、1~25の整数が好ましく、1~15の整数がより好ましい。
 また、上記のようなR29の中でも、単結合が好ましい。
 リガンドを結合するための反応性基を有するモノマーの具体例としては、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、α-(メタ)アクリル-ω-グリシジルポリエチレングリコール、(4-ビニルベンジル)グリシジルエーテル、アリルグリシジルエーテル、3,4-エポキシ-1-ブテン、3,4-エポキシ-3-メチル-1-ブテン等が挙げられ、1種を単独でまたは2種以上を組み合わせて使用できる。
 また、リガンドを結合するための反応性基を有するモノマーの合計使用量としては、固定可能なリガンド量とリガンドを固定した場合の動的結合容量の観点から、モノマー総量100質量部に対し、1~90質量部が好ましく、20~80質量部がより好ましく、30~70質量部がさらに好ましく、40~60質量部が特に好ましい。
 また、他のモノマーとしては、非架橋性モノマー、架橋性モノマーのいずれも使用でき、これらを併用してもよい。
 また、上記非架橋性モノマーとしては、ヒドロキシ基含有非架橋性不飽和モノマー、ヒドロキシ基を含まない非架橋性不飽和モノマーが挙げられ、架橋性モノマーとしては、ヒドロキシ基含有架橋性不飽和モノマー、ヒドロキシ基を含まない架橋性不飽和モノマーが挙げられる。
 上記ヒドロキシ基含有非架橋性不飽和モノマーとしては、(メタ)アクリレート系モノマー、(メタ)アクリルアミド系モノマー等が好ましい。また、上記ヒドロキシ基含有非架橋性不飽和モノマーに含まれるヒドロキシ基の個数としては、1~5が好ましく、1~3がより好ましい。また、上記(メタ)アクリレート系モノマーとしては、下記式(28)で表される(メタ)アクリレート系モノマーが好ましい。
Figure JPOXMLDOC01-appb-C000054
〔式(28)中、
 R31は水素原子またはメチル基を示し、
 R32は炭素数1~6の3価の炭化水素基を示す。〕
 R32で示される3価の炭化水素基は直鎖状でも分岐鎖状でもよい。また、その炭素数は、好ましくは2~4である。また、上記3価の炭化水素基は、好ましくは3価の脂肪族炭化水素基であり、より好ましくはアルカントリイル基である。具体的には、エタン-1,1,2-トリイル基等が挙げられる。
 ヒドロキシ基含有非架橋性不飽和モノマーの具体例としては、グリセロールモノ(メタ)アクリレート、トリメチロールエタンモノ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、ブタントリオールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ジペンタエリスリトールモノ(メタ)アクリレート、イノシトールモノ(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリルアミド等が挙げられ、1種を単独でまたは2種以上を組み合わせて使用できる。
 また、上記ヒドロキシ基含有非架橋性不飽和モノマーを使用する場合、その合計使用量としては、製造時の凝集防止の観点から、モノマー総量100重量部に対し、1~30質量部が好ましく、2~20質量部がより好ましく、3~15質量部が特に好ましい。
 また、上記ヒドロキシ基を含まない非架橋性不飽和モノマーとしては、(メタ)アクリレート系モノマー、(メタ)アクリルアミド系モノマー等が好ましい。また、上記(メタ)アクリレート系モノマーとしては、下記式(29)で表される(メタ)アクリレート系モノマーがより好ましい。
Figure JPOXMLDOC01-appb-C000055
〔式(29)中、
 R33は、水素原子またはメチル基を示し、
 R34は、炭素数2~4のアルカンジイル基を示し、
 R35は、炭素数1~6の炭化水素基を示し、
 kは、0~50の整数を示す。〕
 R34で示されるアルカンジイル基の炭素数は、好ましくは2または3である。また、アルカンジイル基は直鎖状でも分岐鎖状でもよく、好適な具体例としてはエタン-1,1-ジイル基、エタン-1,2-ジイル基等が挙げられる。
 R35で示される炭化水素基の炭素数としては、1~4が好ましく、1または2がより好ましい。また、炭化水素基は直鎖状でも分岐鎖状でもよい。
 また、炭化水素基は、脂肪族炭化水素基、脂環式炭化水素基および芳香族炭化水素基を包含する概念であるが、好ましくは脂肪族炭化水素基であり、より好ましくはアルキル基である。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられる。
 kは、0~50の整数を示すが、1~25の整数が好ましく、1~15の整数がより好ましい。
 ヒドロキシ基を含まない非架橋性不飽和モノマーの具体例としては、メトキシポリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ダイアセトン(メタ)アクリルアミド等が挙げられ、1種を単独でまたは2種以上を組み合わせて使用できる。
 また、上記ヒドロキシ基を含まない非架橋性不飽和モノマーの合計使用量としては、動的結合容量の観点から、モノマー総量100質量部に対し、0~70質量部が好ましく、0~30質量部がより好ましく、0~20質量部が特に好ましい。
 また、上記ヒドロキシ基含有架橋性不飽和モノマーに含まれるヒドロキシ基の個数としては、動的結合容量と防汚性の観点から、1~5が好ましく、1~3がより好ましい。また、上記ヒドロキシ基含有架橋性不飽和モノマーとしては、2~5官能のものが好ましく、2または3官能のものがより好ましい。
 また、上記ヒドロキシ基含有架橋性不飽和モノマーとしては、(メタ)アクリレート系モノマーが好ましく、下記式(30)で表される(メタ)アクリレート系モノマーがより好ましい。
Figure JPOXMLDOC01-appb-C000056
〔式(30)中、
 R36およびR37は、それぞれ独立して、水素原子またはメチル基を示し、
 R38は、炭素数1~8の3価の炭化水素基を示す。〕
 R38で示される3価の炭化水素基は直鎖状でも分岐鎖状でもよい。また、その炭素数は、好ましくは1~5である。
 また、上記3価の炭化水素基は、好ましくは3価の脂肪族炭化水素基であり、より好ましくはアルカントリイル基である。具体的には、メタン-1,1,1-トリイル基等が挙げられる。
 ヒドロキシ基含有架橋性不飽和モノマーの具体例としては、グリセリンジ(メタ)アクリレート、トリメチロールエタンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ブタントリオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、イノシトールジ(メタ)アクリレート、イノシトールトリ(メタ)アクリレート、イノシトールテトラ(メタ)アクリレート等が挙げられ、1種を単独でまたは2種以上を組み合わせて使用できる。
 また、ヒドロキシ基含有架橋性不飽和モノマーを使用する場合、その合計使用量としては、動的結合容量、防汚性の観点から、モノマー総量100質量部に対し、1~70質量部が好ましく、10~50質量部がより好ましく、15~40質量部が好ましい。
 また、上記ヒドロキシ基を含まない架橋性不飽和モノマーとしては、2~5官能のものが好ましく、2または3官能のものがより好ましい。また、上記ヒドロキシ基を含まない架橋性不飽和モノマーとしては、(メタ)アクリレート系モノマーが好ましく、下記式(31)または(32)で表される(メタ)アクリレート系モノマーがより好ましい。
Figure JPOXMLDOC01-appb-C000057
〔式(31)中、
 R39~R41は、それぞれ独立して、水素原子またはメチル基を示し、
 R42は、炭素数1~6の3価の炭化水素基を示す。〕
Figure JPOXMLDOC01-appb-C000058
〔式(32)中、
 R43およびR44は、それぞれ独立して、水素原子またはメチル基を示し、
 R45は、炭素数2~4のアルカンジイル基を示し、
 iは、1~50の整数を示す。〕
 式(31)中、R42で示される3価の炭化水素基は直鎖状でも分岐鎖状でもよい。また、その炭素数は、好ましくは2~4である。
 また、上記3価の炭化水素基は、好ましくは3価の脂肪族炭化水素基であり、より好ましくはアルカントリイル基である。具体的には、プロパン-1,1,1-トリイル基等が挙げられる。
 また、式(32)中のR45で示されるアルカンジイル基は直鎖状でも分岐鎖状でもよく、具体例としては、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,2-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基等が挙げられる。
 また、iとしては、1~25の整数が好ましく、1~15の整数がより好ましい。
 ヒドロキシ基を含まない架橋性不飽和モノマーの具体例としては、トリメチロールプロパントリ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、2以上のエチレングリコールを含むポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2以上のエチレングリコールを含むポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられ、1種を単独でまたは2種以上を組み合わせて使用できる。
 また、上記ヒドロキシ基を含まない架橋性不飽和モノマーを使用する場合、その合計使用量としては、動的結合容量、防汚性の観点から、モノマー総量100質量部に対し、1~90質量部が好ましく、5~70質量部がより好ましく、10~60質量部が更に好ましく、20~50質量部が特に好ましい。
 工程PS1における(共)重合反応は、下記式(33)で表される多官能チオール化合物存在下で行われるものであるが、多官能チオール化合物の添加は、固相担体の重合前でも重合中でもよい。
Figure JPOXMLDOC01-appb-C000059
〔式(33)中、
 R21は、前記と同義であり、n2価の有機基を示し、
 n2は、前記と同義であり、2以上の整数を示す。〕
 上記多官能チオール化合物の添加により、ラジカル重合中の複数の生長炭素ラジカルが、多官能チオール化合物からの水素引き抜き反応を伴って容易に反応し、複数の水素末端のポリマーと複数の硫黄ラジカルを有する単一の化合物を生成する。この複数の硫黄ラジカルを有する単一の化合物からの再開始により再びポリマー鎖が形成される。このように多官能チオール化合物が連鎖移動剤として作用し、上記多官能チオール化合物由来の架橋構造(21)が導入される。これにより、得られる担体の防汚性が改善され、充填剤に非特異的に吸着する不純物、例えば宿主細胞タンパク質(HCP=Host Cell Protein)等に対する防汚性を改善することが可能となり、また、優れた耐圧性能が得られ、しかも、リガンドを結合した際の動的結合容量も大きくなる。
 上記多官能チオール化合物としては、3,6-ジオキサ-1,8-オクタンジチオール、1,2-エタンジチオール、1,3-プロパンジチオール、2,2’-チオジエタンチオール、3-メルカプトプロパン酸2-メルカプトエチル、ビス(3-メルカプトプロパン酸)エチレン、ビス[オクタン酸]2,2-ビス[(3-メルカプト-1-オキソプロポキシ)メチル]-1,3-プロパンジイル、トリス(3-メルカプトプロパン酸)[(エタン-1,1,1-トリイル)トリスメチレン]、トリメチロールプロパントリス(3-メルカプトプロピオナート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ヘキサキス(3‐メルカプトプロパン酸)[オキシビス(メチレンメタンテトライル)ヘキサキスメチレン]等が挙げられ、1種を単独でまたは2種以上を組み合わせて使用できる。
 上記多官能チオール化合物の使用量は、モノマー総量100質量部に対し、0.01~10質量部が好ましく、0.05~5質量部がより好ましい。
 なお、上記のとおり多官能チオール化合物の添加は重合前でも重合中でもよいが、重合開始剤の投入と同時または重合開始剤の投入後に多官能チオール化合物を添加する場合は、重合開始剤の投入から、好ましくは0~5時間以内、より好ましくは0~3時間以内、さらに好ましくは0~1時間以内に多官能チオール化合物を添加する。また、多官能チオール化合物の添加は、塩基性触媒存在下で行ってもよい。
 上記モノマーを重合させるための重合開始剤としてはラジカル重合開始剤が好ましい。ラジカル重合開始剤としては、例えば、アゾ系開始剤、過酸化物系開始剤、レドックス系開始剤等が挙げられ、具体的には、アゾビスイソブチロニトリル、アゾビスイソ酪酸メチル、アゾビス-2,4-ジメチルバレロニトリル、過酸化ベンゾイル、過酸化ジ-tert-ブチル、過酸化ベンゾイル-ジメチルアニリン等が挙げられる。
 重合開始剤の合計使用量は、通常、モノマー総量100質量部に対して、0.01~10質量部程度である。
 また、工程PS1における(共)重合反応は、懸濁重合が好ましい。懸濁重合の具体的な手法としては、例えば、モノマーおよび必要に応じて多孔化剤を含む混合溶液(単量体溶液)に重合開始剤を溶解し、水系媒体中に懸濁させて所定温度まで加熱して重合させる方法や、モノマーおよび必要に応じて多孔化剤を含む混合溶液(単量体溶液)に重合開始剤を溶解し、所定温度まで加熱した水系媒体中に添加して重合させる方法、モノマーおよび必要に応じて多孔化剤を含む混合溶液(単量体溶液)を、水系媒体中に懸濁させて所定温度まで加熱して、重合開始剤を添加し重合させる方法等が挙げられる。
 上記多孔化剤としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素類;シクロヘキサン、シクロペンタン等の脂環式炭化水素類;ベンゼン、トルエン、キシレン、ナフタレン、エチルベンゼン等の芳香族炭化水素類;四塩化炭素、1,2-ジクロロエタン、テトラクロロエタン、クロロベンゼン等のハロゲン化炭化水素類;ブタノール、ペンタノール、ヘキサノール、ヘプタノール、ヘキサノール、4-メチル-2-ペンタノール、2-エチル-1-ヘキサノール等の脂肪族アルコール類;シクロヘキサノール等の脂環式アルコール類;2-フェニルエチルアルコール、ベンジルアルコール等の芳香族アルコール類;ジエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、アセトフェノン、2-オクタノン、シクロヘキサノン等のケトン類;ジブチルエーテル、ジイソブチルエーテル、アニソール、エトキシベンゼン等のエーテル類;酢酸イソペンチル、酢酸ブチル、酢酸-3-メトキシブチル、マロン酸ジエチル等のエステル類の他、非架橋性ビニルモノマーのホモポリマー等の線状重合物が挙げられる。多孔化剤は単独でまたは2種以上を混合して用いることができる。
 上記多孔化剤の合計使用量は、通常、モノマー総量100質量部に対して40~400質量部程度である。
 上記水系媒体としては、例えば水溶性高分子水溶液等が挙げられ、水溶性高分子としては、例えばヒドロキシエチルセルロース、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、デンプン、ゼラチン等が挙げられる。
 水系媒体の合計使用量は、モノマー総量100質量部に対して、通常、200~7000質量部程度である。
 また、水系媒体の分散媒として水を用いる場合、例えば、塩化ナトリウム、硫酸ナトリウム、炭酸ナトリウム、炭酸カルシウム、燐酸カルシウム等の分散安定剤を使用してもよい。
 また、工程PS1の重合反応には、アルキル硫酸エステル塩、アルキルアリール硫酸エステル塩、アルキルリン酸エステル塩、脂肪酸塩等のアニオン性界面活性剤をはじめとする各種界面活性剤を用いてもよい。
 また、亜硝酸ナトリウム等の亜硝酸塩、ヨウ化カリウム等のヨウ化物塩、tert-ブチルピロカテコール、ベンゾキノン、ピクリン酸、ハイドロキノン、塩化銅、塩化第二鉄等の重合禁止剤を用いることもできる。
 また、重合温度は重合開始剤に応じて決定すればよいが、例えば、通常2~100℃程度であり、アゾビスイソブチロニトリルを重合開始剤として用いる場合は、50~100℃が好ましく、60~90℃がより好ましい。
 また、重合時間は通常5分~48時間、好ましくは10分~24時間である。
 (工程PS2-1)
 工程PS2-1は、リガンドを結合するための反応性基を有するモノマーに由来するリガンドを結合するための反応性基の一部に、架橋剤を開環付加させ、架橋剤由来の架橋構造を固相担体に導入する架橋化反応である。これにより、リガンドを結合するための反応性基の残基を介して固相担体表面等に架橋構造が形成される。このようにして固相担体の重合後に架橋剤を添加して、架橋構造を固相担体に導入することによって、防汚性や耐圧性能が向上する。
 上記架橋剤としては、2~6価の架橋剤が好ましく、2または3価の架橋剤がより好ましい。また、スチレン系架橋剤、ヒドロキシ基、アミノ基またはチオール基を反応性基とする架橋剤が好ましく、ヒドロキシ基、アミノ基またはチオール基を反応性基とする架橋剤がより好ましい。斯様な架橋剤の中でも、下記式(22)で表される架橋剤が好ましい。
Figure JPOXMLDOC01-appb-C000060
〔式(22)中、
 R22は、炭素数1~10の2価の有機基を示し、
 X22およびX23は、それぞれ独立して、ヒドロキシ基、アミノ基またはチオール基を示す。〕
 R22における2価の有機基は、直鎖状でも分岐鎖状でもよい。また、斯かる2価の有機基としては、2価の炭化水素基、2価の炭化水素基の炭素-炭素原子間にエーテル結合、イミノ基およびエステル結合から選ばれる1種以上を有する基が挙げられる。
 また、上記2価の有機基が2価の炭化水素基である場合、その炭素数は、好ましくは1~20であり、より好ましくは1~10であり、更に好ましくは1~6であり、特に好ましくは2~6である。また、2価の炭化水素基は直鎖状でも分岐鎖状でもよい。
 また、上記2価の炭化水素基は、好ましくは2価の脂肪族炭化水素基であり、より好ましくはアルカンジイル基である。
 アルカンジイル基の具体例としては、メタン-1,1-ジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基等が挙げられる。
 また、上記2価の炭化水素基の炭素-炭素原子間にエーテル結合、イミノ基およびエステル結合から選ばれる1種以上を有する基としては、2価の炭化水素基の炭素-炭素原子間にエーテル結合を有する基が好ましく、-R(ORuOR-で表される基がより好ましい(R、RおよびRは、それぞれ独立して炭素数2~4のアルカンジイル基を示し、uは0~30の整数を示す)。
 上記R、RおよびRで示されるアルカンジイル基の炭素数としては、2または3が好ましく、2がより好ましい。また、斯かるアルカンジイル基は直鎖状でも分岐鎖状でもよいが、好適な具体例としては、エタン-1,2-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基が挙げられる。
 また、uは0~30の整数を示すが、0~25の整数が好ましく、0~20の整数がより好ましく、0~15の整数が更に好ましく、0~10の整数が更に好ましく、0~5の整数が更に好ましく、0~3の整数が特に好ましい。
 X22およびX23は、それぞれ独立して、ヒドロキシ基、アミノ基またはチオール基を示すが、チオール基が好ましい。
 また、上記ヒドロキシ基、アミノ基またはチオール基を反応性基とする架橋剤の種類としては、例えば、1,2-エタンジチオール、1,3-プロパンジチオール、3,6-ジオキサ-1,8-オクタンジチオール、2,3-ジメルカプト-1-プロパノール、ビス(2-メルカプトエチル)スルフィド、トリス(メルカプト酢酸)トリメチロールプロパン、ビス(メルカプト酢酸)エチレングリコール、(±)-ジチオスレイトールなどが挙げられる。
 また、上記スチレン系架橋剤としては、例えば、芳香族環又は芳香族複素環と2~4個のエチレン性不飽和結合とを分子内に有する架橋剤が挙げられる。具体的には、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、フタル酸ジアリル、ジビニルキシレン、ジビニルエチルベンゼン等が挙げられ、ジビニルピリジンのようなヘテロ環式架橋剤でもよい。
 工程PS2-1の架橋反応の反応温度は、通常25~200℃であるが、好ましくは50~100℃である。
 工程PS2-1の架橋反応の反応時間は、通常30分~24時間程度であり、好ましくは1~12時間程度である。
 (工程PS2-2)
 工程PS2-2は、酸化剤を用いるなどして、工程PS1で多官能チオール化合物存在下で(共)重合反応を行うことで導入された架橋構造(21)中のチオ基や工程PS2-1で導入された架橋構造中のチオ基を酸化する工程である。工程PS2-2により、これらチオ基は、スルフィニル基またはスルホニル基に、好ましくはスルフィニル基に酸化される。
 上記酸化剤は、有機酸化剤と無機酸化剤とに大別され、有機酸化剤としては、例えば、過酢酸、過安息香酸、メタクロロ過安息香酸等が挙げられる。一方、無機酸化剤としては、例えば、過酸化水素、クロム酸、過マンガン酸塩等が挙げられる。なお、これら酸化剤は1種を単独でまたは2種以上を組み合わせて使用できる。
 また、酸化剤の合計使用量は、チオ基1モルに対し、通常0.1~10モル当量程度であるが、好ましくは0.5~3モル当量である。
 また、上記酸化反応は、溶媒存在下で行うのが好ましい。斯かる溶媒としては、水;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;メタノール、エタノール等のアルコール系溶媒等が挙げられ、これら溶媒は1種を単独でまたは2種以上を組み合わせて使用できる。
 上記溶媒の合計使用量は、原料となる固相担体に対し、通常1~50質量倍程度であるが、好ましくは5~15質量倍である。
 また、上記酸化反応の反応時間は特に限定されないが、通常1~72時間程度であり、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常1~90℃程度である。
 なお、上記各工程で得られる固相担体は、必要に応じて多孔化剤や未反応モノマーを蒸留、抽出、洗浄等により除去することで得ることができる。
 (工程PS3)
 リガンドの固定は、上記で得られた固相担体を用いる以外は常法と同様にして行えばよいが、塩を添加したバッファー下で行うのが好ましい。塩の種類としては、クエン酸三ナトリウム、硫酸ナトリウム等が挙げられ、上記バッファーとしては、リン酸ナトリウム、リン酸カリウム、ホウ酸等が挙げられる。バッファーの合計使用量は、原料となる固相担体に対し、通常20~80質量倍程度であるが、好ましくは35~45質量倍である。
 また、反応時間は特に限定されないが、通常0.5~72時間程度であり、反応温度は通常1~40℃程度である。
 なお、リガンドが固定された担体を、チオール化合物と接触させ、未反応の反応性基を開環させてもよい。
 そして、本発明の第2のアフィニティ精製用担体は、優れた防汚性を有し、耐圧性能に優れるため圧密化しにくく、また、リガンドを有する場合には標的物質に対する動的結合容量が大きい。したがって、本発明の第2のアフィニティ精製用担体は、クロマトグラフィーカラム用充填剤の担体として有用である。
 <第2のクロマトグラフィーカラム>
 本発明の第2のクロマトグラフィーカラムは、本発明の第2のアフィニティ精製用担体を担体とするクロマトグラフィーカラム用充填剤がカラム容器に充填されているものである。該クロマトグラフィーカラムはアフィニティクロマトグラフィーへの使用に適する。
 <第2の精製方法>
 本発明の第2の精製方法は、標的物質を含む組成物を用意する工程と、本発明の第2のクロマトグラフィーカラムに前記組成物を通液する工程を含むことを特徴とするものである。
 精製は、本発明の第2のクロマトグラフィーカラムを用いる以外は常法と同様であるが、例えば、標的物質を含む組成物を準備する準備工程と、本発明の第2のクロマトグラフィーカラムに前記組成物を通液する通液工程と、該通液工程により担体に吸着された標的物質を溶出させる溶出工程を含む方法が挙げられる。
 本発明の第2の精製方法は、タンパク質の精製に適し、イムノグロブリンの精製に特に適する。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例において、平均粒径(体積平均粒径)は、ベックマン・コールター社製レーザー回析・散乱法粒径分布測定装置(LS13 320)を用いて求めた。
〔実施例1-1 ジチオール架橋粒子〕
(1)多孔質粒子の合成
 358gの純水にポリビニルアルコール(クラレ社製 PVA-217)0.72gを添加し、55℃で4時間撹拌しポリビニルアルコールを溶解させた。これにドデシル硫酸ナトリウム(花王社製 エマール10G)0.18g、炭酸ナトリウム0.36gおよび亜硝酸ナトリウム0.18gを添加し、撹拌して水溶液(S-1)を調製した。
 一方、グリシジルメタクリレート(三菱レーヨン社製)8.23g、グリセロールモノメタクリレート(日油社製)1.37gおよびトリメチロールプロパントリメタクリレート(サートマー社製)4.12gからなる単量体組成物を、2-オクタノン(東洋合成社製)20.63gおよびアセトフェノン(井上香料製造所社製)5.30gの混液に溶解させ、単量体溶液(M-1)を調製した。
 次いで、上記水溶液(S-1)を、500mLセパラブルフラスコ内に全量投入し、温度計、撹拌翼および冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。次いで、セパラブルフラスコ内に上記単量体溶液(M-1)を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(AIBN)(和光純薬工業社製)0.97gを添加し、86℃で3.5時間撹拌した。
(2)親水化反応
 その後、上記反応液にチオグリセロール(旭化学工業社製)25.03gを添加し、86℃に温度を維持させたまま更に3時間撹拌した。
(3)架橋反応
 次いで、上記反応液を25℃まで冷却した後、ビス(2-メルカプトエチル)エーテル(東京化成)2.40gを反応液に添加し、その後温水バスにより加温し内温を85℃に維持して1時間撹拌した。次いで、反応液を25℃まで冷却した後、斯かる反応液をろ過し、純水とエタノールで洗浄した。洗浄した粒子をポリビンに移し、純水に分散させてデカンテーションを3回行い、小粒子を除いた。次いで、粒子の濃度が10質量%となるように純水に分散させ、ジチオール架橋粒子分散液(P-1)を得た。
 なお、分散液(P-1)中のジチオール架橋粒子の平均粒径は70μmであった。
〔実施例1-2 スルホキシド化粒子〕
 実施例1-1の操作(3)で得られたジチオール架橋粒子分散液を氷浴で冷却し、この分散液に過酸化水素(和光純薬工業社製)11.85gを添加した後、25℃で24時間転倒混和し、粒子をスルホキシド化した。その後、この反応液をろ過し、純水で洗浄し、更に、粒子の濃度が10質量%となるように純水に分散させ、スルホキシド化粒子分散液(P-2)を得た。
 なお、分散液(P-2)中のスルホキシド化粒子の平均粒径は70μmであった。
〔実施例1-3 スルホキシド化粒子〕
 実施例1-1の操作(1)および(2)と同様の操作で反応を行った後、反応液を25℃まで冷却し、3,6-ジオキサ-1,8-オクタンジチオール3.16gを反応液に添加し、その後温水バスにより加温し内温を85℃に維持して1時間撹拌した。次いで、反応液を25℃まで冷却した後、斯かる反応液をろ過し、純水とエタノールで洗浄した。洗浄した粒子をポリビンに移し、純水に分散させてデカンテーションを3回行い、小粒子を除いた。次いで、粒子の濃度が10質量%となるように純水に分散させ、ジチオール架橋粒子分散液を得た。
 次いで、得られたジチオール架橋粒子分散液を氷浴で冷却し、この分散液に過酸化水素(和光純薬工業社製)11.85gを添加した後、25℃で24時間転倒混和し、粒子をスルホキシド化した。その後、この反応液をろ過し、純水で洗浄し、更に、粒子の濃度が10質量%となるように純水に分散させ、スルホキシド化粒子分散液(P-3)を得た。
 なお、分散液(P-3)中のスルホキシド化粒子の平均粒径は70μmであった。
〔実施例1-4 スルホキシド化粒子〕
 実施例1-1の操作(1)および(2)と同様の操作で反応を行った後、反応液を25℃まで冷却し、1,2-エタンジチオール1.72gを反応液に添加し、その後温水バスにより加温し内温を85℃に維持して1時間撹拌した。次いで、反応液を25℃まで冷却した後、斯かる反応液をろ過し、純水とエタノールで洗浄した。洗浄した粒子をポリビンに移し、純水に分散させてデカンテーションを3回行い、小粒子を除いた。次いで、粒子の濃度が10質量%となるように純水に分散させ、ジチオール架橋粒子分散液を得た。
 次いで、得られたジチオール架橋粒子分散液を氷浴で冷却し、この分散液に過酸化水素(和光純薬工業社製)11.85gを添加した後、25℃で24時間転倒混和し、粒子をスルホキシド化した。その後、この反応液をろ過し、純水で洗浄し、更に、粒子の濃度が10質量%となるように純水に分散させ、スルホキシド化粒子分散液(P-4)を得た。
 なお、分散液(P-4)中のスルホキシド化粒子の平均粒径は67μmであった。
〔実施例1-5 ジアミン架橋粒子〕
 実施例1-1の操作(1)および(2)と同様の操作で反応を行った後、反応液を25℃まで冷却し、エチレンジアミン1.04gおよびN,N-ジイソプロピルエチルアミン(DIEA)3.12gを反応液に添加し、その後温水バスにより加温し内温を85℃に維持して1時間撹拌した。次いで、反応液を25℃まで冷却した後、斯かる反応液をろ過し、純水とエタノールで洗浄した。洗浄した粒子をポリビンに移し、純水に分散させてデカンテーションを3回行い、小粒子を除いた。次いで、粒子の濃度が10質量%となるように純水に分散させ、ジアミン架橋粒子分散液(P-5)を得た。
 なお、分散液(P-5)中のジアミン架橋粒子の平均粒径は69μmであった。
〔実施例1-6 ジオール架橋粒子〕
 実施例1-1の操作(1)および(2)と同様の操作で反応を行った後、反応液を25℃まで冷却し、3,6-ジオキサ-1,8-オクタンジオール2.61gを反応液に添加し、その後温水バスにより加温し内温を85℃に維持して1時間撹拌した。次いで、反応液を25℃まで冷却した後、斯かる反応液をろ過し、純水とエタノールで洗浄した。洗浄した粒子をポリビンに移し、純水に分散させてデカンテーションを3回行い、小粒子を除いた。次いで、粒子の濃度が10質量%となるように純水に分散させ、ジオール架橋粒子分散液(P-6)を得た。
 なお、分散液(P-6)中のジオール架橋粒子の平均粒径は68μmであった。
〔比較例1-1〕
 実施例1-1の操作(1)および(2)と同様の操作で反応を行った後、反応液を氷浴で冷却し、この分散液に過酸化水素(和光純薬工業社製)11.85gを添加した後、25℃で24時間転倒混和し、粒子をスルホキシド化した。その後、この反応液をろ過し、純水で洗浄し、更に、粒子の濃度が10質量%となるように純水に分散させ、粒子分散液(P-7)を得た。
 なお、分散液(P-7)中の粒子の平均粒径は57μmであった。
〔比較例1-2〕
 チオグリセロールの添加量を50.10gに変更した以外は、比較例1-1と同様の操作を行い、粒子分散液(P-8)を得た。
 なお、分散液(P-8)中の粒子の平均粒径は71μmであった。
〔比較例1-3〕
 358gの純水にポリビニルアルコール(クラレ社製 PVA-217)0.72gを添加し、55℃で4時間撹拌しポリビニルアルコールを溶解させた。これにドデシル硫酸ナトリウム(花王社製 エマール10G)0.18g、炭酸ナトリウム0.36gおよび亜硝酸ナトリウム1.8gを添加し、撹拌して水溶液(S-2)を調製した。
 一方、グリシジルメタクリレート(三菱レーヨン社製)1.4g、グリセロールモノメタクリレート(日油社製)2.8gおよびグリセロール-1,3-ジメタクリレート(新中村化学工業社製)9.8gからなる単量体組成物を、2-オクタノン(東洋合成社製)7.4gおよびアセトフェノン(井上香料製造所社製)21.6gの混液に溶解させ、単量体溶液(M-2)を調製した。
 次いで、上記水溶液(S-2)を、500mLセパラブルフラスコ内に全量投入し、温度計、撹拌翼および冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。次いで、セパラブルフラスコ内に上記単量体溶液(M-2)を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(AIBN)(和光純薬工業社製)0.97gを添加し、86℃で3.5時間撹拌した。その後、この反応液を冷却した後ろ過し、純水で洗浄し、更に、粒子の濃度が10質量%となるように純水に分散させ、粒子分散液(P-9)を得た。
 なお、分散液(P-9)中の粒子の平均粒径は48μmであった。
Figure JPOXMLDOC01-appb-T000061
〔試験例1-1 粒子の耐圧性評価〕
 実施例1-1で得られた多孔質粒子の流通特性を測定するために、内径16mm、長さ100mmのHR(High Resolution)カラムに分散液(P-1)を流し込み、GEヘルスケア社製AKTA Pilotを用いて、線流速450cm/hrで通液して、カラムに粒子を充填した。次いで、純水を通液し、段階的に線流速を上げていき、圧力損失1.9MPaの時の線流速を測定した。この線流速を測定可能線流速とし、以下の基準に従い耐圧性を評価した。また、分散液(P-1)を分散液(P-2)~(P-9)にそれぞれ変更し、実施例1-2~実施例1-6および比較例1-1~比較例1-3で得られた多孔質粒子についても耐圧性評価を行った。これら結果を表2に示す。
 (耐圧力性能評価基準)
 AA:測定可能線流速が2700cm/hr以上
 A:測定可能線流速が2400cm/hr以上2700cm/hr未満
 B:測定可能線流速が2400cm/hr未満
〔試験例1-2 粒子の親水性評価(親水性指標値:Vuv/Vcon比)〕
 1.0Mクエン酸三ナトリウム/0.1Mリン酸ナトリウムバッファー(pH6.6)40mLに国際公開第2012/086660号に記載のプロテインA0.15gを分散させたプロテインA分散液に、粒子分散液(P-1)を粒子乾燥質量換算で0.9g添加した。この分散液を25℃で5時間振とう撹拌し、プロテインAを粒子に固定した。
 得られたプロテインA固定粒子を、0.1Mリン酸ナトリウムバッファー(pH7.6)で洗浄した後、1.0Mチオグリセロール/0.1M硫酸ナトリウム水溶液(pH8.3)40mLに分散させ、25℃で24時間振とう撹拌した。
 その後、0.1Mリン酸ナトリウムバッファー(pH7.6)、0.5M水酸化ナトリウム水溶液、0.1Mクエン酸ナトリウムバッファー(pH3.2)で順次洗浄し、アフィニティクロマトグラフィー用充填剤を得た。
 次いで、上記アフィニティクロマトグラフィー用充填剤を、容量4mL(5mmφ×200mm長)のカラムに充填し、このカラムに、濃度1MのNaCl溶液にアセトンを1質量%溶かした溶液100μLを供し、20mMリン酸ナトリウム/150mM塩化ナトリウム水溶液(pH7.5)を溶出液として用いて溶出ピークを電導度検出器(GEヘルスケア社製AKTAprime plus)で検出し、線流速300cm/hrにおけるNaClとアセトンの溶出時間を測定した。
 得られたNaCl溶液とアセトン溶液の溶出時間の比(アセトン溶出時間/NaCl溶出時間=Vuv/Vcond)を、親水性を表す値とし、以下の基準に従い親水性を評価した。
 分散液(P-1)を分散液(P-2)~(P-9)にそれぞれ変更し、実施例1-2~実施例1-6および比較例1-1~比較例1-3で得られた多孔質粒子についても親水性評価を行った。これら結果を表2に示す。
 (親水性能評価基準)
 AA :Vuv/Vcondが1.06未満
 A  :Vuv/Vcondが1.06以上1.10未満
 B :Vuv/Vcondが1.10以上
〔試験例1-3 動的結合容量測定試験〕
 1.0Mクエン酸三ナトリウム/0.1Mリン酸ナトリウムバッファー(pH6.6)40mLに国際公開第2012/086660号に記載のプロテインA0.15gを分散させたプロテインA分散液に、粒子分散液(P-1)を粒子乾燥質量換算で0.9g添加した。この分散液を25℃で5時間振とう撹拌し、プロテインAを粒子に固定した。
 得られたプロテインA固定粒子を、0.1Mリン酸ナトリウムバッファー(pH7.6)で洗浄した後、1.0Mチオグリセロール/0.1M硫酸ナトリウム水溶液(pH8.3)40mLに分散させ、25℃で24時間振とう撹拌した。
 その後、0.1Mリン酸ナトリウムバッファー(pH7.6)、0.5M水酸化ナトリウム水溶液、0.1Mクエン酸ナトリウムバッファー(pH3.2)で順次洗浄し、アフィニティクロマトグラフィー用充填剤を得た。
 次いで、アフィニティクロマトグラフィー用充填剤について、GEヘルスケア社製AKTAprime plusを用いて、線流速60cm/hrにおけるタンパク質(ヒトIgG抗体、Equitech Bio社製 HGG-1000)に対するDBCを測定した。カラムは容量4mL(5mmφ×200mm長)のものを、タンパク質は20mMリン酸ナトリウム/150mM塩化ナトリウム水溶液(pH7.5)で25mg/mLに希釈したものをそれぞれ使用し、溶出先端10%ブレークスルーのときのタンパク質捕捉量とカラム充填体積からDBCを求めた。
 分散液(P-1)を分散液(P-2)~(P-9)にそれぞれ変更し、実施例1-2~実施例1-6および比較例1-1~比較例1-3で得られた多孔質粒子についても動的結合容量(DBC)測定を行った。これら結果を表2に示す。
 (動的結合容量評価基準)
 AA:55mg/mL以上
 A :53mg/mL以上55mg/mL未満
 B :50mg/mL以上53mg/mL未満
 C :48mg/mL以上50mg/mL未満
Figure JPOXMLDOC01-appb-T000062
 表2に示す通り、実施例1-1~実施例1-6の粒子は、比較例1-1、比較例1-2の親水化粒子と比べて測定可能線流速が高く、親水性と動的結合容量も同等以上であった。また、比較例1-3の非親水化粒子と比べて親水性と動的結合容量が高く、圧力性能は同等以上であった。
〔実施例2-1〕
 (1)360gの純水にポリビニルアルコール(クラレ社製 PVA-217)0.72gを添加し、加熱撹拌しポリビニルアルコールを溶解させ、冷却した後、ドデシル硫酸ナトリウム(花王社製 エマール10G)0.18g、炭酸ナトリウム(和光純薬社製)0.36gおよび亜硝酸ナトリウム(和光純薬社製)0.18gを添加し、撹拌して水溶液(S-3)を調製した。
 一方、グリシジルメタクリレート(三菱レーヨン社製)8.23g、グリセロールモノメタクリレート(日油社製)1.37g、およびトリメチロールプロパントリメタクリレート(サートマー社製)4.12gからなる単量体組成物を、2-オクタノン(東洋合成社製)20.63gおよびアセトフェノン(井上香料製造所社製)5.30gの混液に溶解させ、単量体溶液(M-3)を調製した。
 次いで、上記水溶液(S-3)を、500mLセパラブルフラスコ内に全量投入し、温度計、撹拌翼および冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。セパラブルフラスコ内に上記単量体溶液(M-3)を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(和光純薬工業社製)0.53gを添加し、内温を86℃にした。
 (2)その後、86℃に温度を維持させたまま、上記反応液に、連鎖移動剤として3,6-ジオキサ-1,8-オクタンジチオール(丸善油化社製)10.94gを添加し、3時間撹拌を行うことで、3,6-ジオキサ-1,8-オクタンジチオール存在下での重合反応を行った。
 (3)次いで、反応液を冷却した後、斯かる反応液をろ過し、純水とエタノールで洗浄した。洗浄した粒子を純水に分散させてデカンテーションを3回行い、小粒子を除いた。次いで、粒子の濃度が10質量%となるように粒子を純水に分散させた。この分散液を、3,6-ジオキサ-1,8-オクタンジチオール処理粒子分散液とする。
 (4)上記3,6-ジオキサ-1,8-オクタンジチオール処理粒子分散液に過酸化水素(和光純薬工業社製)4.30gを添加した後、25℃で24時間転倒混和し、粒子をスルホキシド化した。その後、この反応液をろ過し、純水で洗浄した。次いで、粒子の濃度が10質量%となるように粒子を純水に分散させた。この分散液を、スルホキシド化粒子分散液とする。
 (5)改変プロテインA(Repligen製 rSPA)0.15gを、1.0Mクエン酸三ナトリウム/0.1Mリン酸ナトリウムバッファー(pH6.6)40mLに分散させプロテインA分散液を得て、このプロテインA分散液に上記スルホキシド化粒子分散液(粒子乾燥質量換算で1g)を添加した。この分散液を25℃で5時間振とう撹拌し、プロテインAを粒子に固定した。
 生成したプロテインA固定粒子を、0.1Mリン酸ナトリウムバッファー(pH7.6)で洗浄した後、1.0Mチオグリセロール/0.1M硫酸ナトリウム水溶液(pH8.3)40mLに分散させ、25℃で17時間振とう撹拌することで、過剰量のチオグリセロールで未反応のエポキシ基を開環させた。
 その後、0.1Mリン酸ナトリウムバッファー(pH7.6)、0.5M水酸化ナトリウム水溶液、0.1Mクエン酸ナトリウムバッファー(pH3.2)で順次洗浄し、アフィニティ精製用担体2-1を得た。
〔実施例2-2〕
 (1)実施例2-1と同様の手順で水溶液(S-3)を調製した。一方、グリシジルメタクリレート8.87g、グリセロールモノメタクリレート1.48g、およびグリセリンジメタクリレート(新中村化学工業社製)4.44gからなる単量体組成物を、2-オクタノン(東洋合成社製)20.63gおよびアセトフェノン(井上香料製造所社製)5.30gの混液に溶解させ、単量体溶液(M-4)を調製した。
 次いで、上記水溶液(S-3)を、500mLセパラブルフラスコ内に全量投入し、温度計、撹拌翼および冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。セパラブルフラスコ内に上記単量体溶液(M-4)を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(和光純薬工業社製)0.53gを添加し、内温を86℃にした。
 (2)その後、86℃に温度を維持させたまま、上記反応液に、連鎖移動剤として1,2-エタンジチオール(和光純薬社製)5.65gを添加し、3時間撹拌を行うことで、1,2-エタンジチオール存在下での重合反応を行った。
 次いで、反応液を25℃まで冷却し、3,6-ジオキサ-1,8-オクタンジチオール(丸善油化社製)を45.56g添加して30分撹拌した後に温水バスによって再び加温し、内温が85℃に到達した時点から5時間撹拌することで、グリシジルメタクリレート由来のエポキシ基を一部架橋化した。
 その後、実施例2-1の工程(3)~(5)と同様の操作を行い、アフィニティ精製用担体2-2を得た。
〔実施例2-3〕
 (1)実施例2-1と同様の手順で水溶液(S-3)を調製した。一方、グリシジルメタクリレート8.79g、グリセロールモノメタクリレート1.46g、およびエチレングリコールジメタクリレート(新中村化学工業社製)4.40gからなる単量体組成物を、2-オクタノン(東洋合成社製)20.63gおよびアセトフェノン(井上香料製造所社製)5.30gの混液に溶解させ、単量体溶液(M-5)を調製した。
 次いで、上記水溶液(S-3)を、500mLセパラブルフラスコ内に全量投入し、温度計、撹拌翼および冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。セパラブルフラスコ内に上記単量体溶液(M-5)を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(和光純薬工業社製)0.53gを添加し、内温を86℃にした。
 (2)その後、86℃に温度を維持させたまま、上記反応液に、連鎖移動剤として1,3-プロパンジチオール(和光純薬社製)4.57gを添加し、3時間撹拌を行うことで、1,3-プロパンジチオール存在下での重合反応を行った。
 次いで、反応液を25℃まで冷却し、3,6-ジオキサ-1,8-オクタンジチオール(丸善油化社製)を45.56g添加して30分撹拌した後に温水バスによって再び加温し、内温が85℃に到達した時点から5時間撹拌することで、グリシジルメタクリレート由来のエポキシ基を一部架橋化した。
 その後、実施例2-1の工程(3)~(5)と同様の操作を行い、アフィニティ精製用担体2-3を得た。
〔実施例2-4〕
 (1)実施例2-1と同様の手順で水溶液(S-3)、単量体溶液(M-3)を調製した。
 次いで、上記水溶液(S-3)を、500mLセパラブルフラスコ内に全量投入し、温度計、撹拌翼および冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。セパラブルフラスコ内に上記単量体溶液(M-3)を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(和光純薬工業社製)0.53gを添加し、内温を86℃にした。
 (2)その後、86℃に温度を維持させたまま、上記反応液に、連鎖移動剤として2,2’-チオジエタンチオール(丸善油化社製)9.26gを添加し、3時間撹拌を行うことで、2,2’-チオジエタンチオール存在下での重合反応を行った。
 次いで、反応液を25℃まで冷却し、3,6-ジオキサ-1,8-オクタンジチオール(丸善油化社製)を45.56g添加して30分撹拌した後に温水バスによって再び加温し、内温が85℃に到達した時点から5時間撹拌することで、グリシジルメタクリレート由来のエポキシ基を一部架橋化した。
 その後、実施例2-1の工程(3)および(5)と同様の操作を行い、アフィニティ精製用担体2-4を得た。
〔実施例2-5〕
 (1)実施例2-1と同様の手順で水溶液(S-3)、単量体溶液(M-3)を調製した。
 次いで、上記水溶液(S-3)を、500mLセパラブルフラスコ内に全量投入し、温度計、撹拌翼および冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。セパラブルフラスコ内に上記単量体溶液(M-3)を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(和光純薬工業社製)0.53gを添加し、内温を86℃にした。
 (2)その後、86℃に温度を維持させたまま、上記反応液に、連鎖移動剤としてペンタエリスリトールテトラキス(3-メルカプトプロピオネート)10.94gを添加し、3時間撹拌を行うことで、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)存在下での重合反応を行った。
 次いで、反応液を25℃まで冷却し、3,6-ジオキサ-1,8-オクタンジチオール(丸善油化社製)を45.56g添加して30分撹拌した後に温水バスによって再び加温し、内温が85℃に到達した時点から5時間撹拌することで、グリシジルメタクリレート由来のエポキシ基を一部架橋化した。
 その後、実施例2-1の工程(3)および(5)と同様の操作を行い、アフィニティ精製用担体2-5を得た。
〔比較例2-1〕
 (1)実施例2-1と同様の手順で水溶液(S-3)、単量体溶液(M-3)を調製した。
 次いで、上記水溶液(S-3)を、500mLセパラブルフラスコ内に全量投入し、温度計、撹拌翼および冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。セパラブルフラスコ内に上記単量体溶液(M-3)を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(和光純薬工業社製)0.53gを添加し、内温を86℃にした。
 (2)その後、86℃に温度を維持させたまま、3時間撹拌を行うことで、重合反応を行った。
 次いで、反応液を25℃まで冷却し、1,2-エタンジチオールを45.56g添加して30分撹拌した後に温水バスによって再び加温し、内温が85℃に到達した時点から5時間撹拌することで、グリシジルメタクリレート由来のエポキシ基を一部架橋化した。
 その後、実施例2-1の工程(3)~(5)と同様の操作を行い、アフィニティ精製用担体2-6を得た。
〔比較例2-2〕
 (1)実施例2-2と同様の手順で水溶液(S-3)、単量体溶液(M-4)を調製した。
 次いで、上記水溶液(S-3)を、500mLセパラブルフラスコ内に全量投入し、温度計、撹拌翼および冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。セパラブルフラスコ内に上記単量体溶液(M-4)を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(和光純薬工業社製)0.53gを添加し、内温を86℃にした。
 (2)その後、86℃に温度を維持させたまま、3時間撹拌を行うことで、重合反応を行い、反応液を25℃まで冷却した。
 その後、実施例2-1の工程(3)および(5)と同様の操作を行い、アフィニティ精製用担体2-7を得た。
〔比較例2-3〕
 (1)実施例2-1と同様の手順で水溶液(S-3)を調製した。一方、グリシジルメタクリレート8.86g、グリセロールモノメタクリレート(日油社製)0.74g、およびトリメチロールプロパントリメタクリレート5.17gからなる単量体組成物を、2-オクタノン(東洋合成社製)20.63gおよびアセトフェノン(井上香料製造所社製)5.30gの混液に溶解させ、単量体溶液(M-6)を調製した。
 次いで、上記水溶液(S-3)を、500mLセパラブルフラスコ内に全量投入し、温度計、撹拌翼および冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。セパラブルフラスコ内に上記単量体溶液(M-6)を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(和光純薬工業社製)0.53gを添加し、内温を86℃にした。
 (2)その後、86℃に温度を維持させたまま、上記反応液に、連鎖移動剤としてチオグリセロール(旭化学工業社製)6.26gを添加し、3時間撹拌を行うことで、チオグリセロール存在下での重合反応を行った。
 次いで、反応液を25℃まで冷却し、1,2-エタンジチオールを45.56g添加して30分撹拌した後に温水バスによって再び加温し、内温が85℃に到達した時点から5時間撹拌することで、グリシジルメタクリレート由来のエポキシ基を一部架橋化した。
 その後、実施例2-1の工程(3)~(5)と同様の操作を行い、アフィニティ精製用担体2-8を得た。
〔試験例2-1 平均粒子径の測定〕
 実施例2-1~2-5および比較例2-1~2-3の各担体の平均粒子径を、レーザ回折散乱式粒度分布測定装置(ベックマン・コールター社製 LS13320)により測定した。結果を表3に示す。
〔試験例2-2 プロテインA結合量の定量〕
 実施例2-1~2-5および比較例2-1~2-3の各担体に結合したリガンドであるプロテインAの結合量を、ビシンコニン酸(BCA)試薬を用いて定量した。具体的には、固形分換算で1mgの担体をテストチューブに採取し、これをThermoFisher Scientific社のBCA Protein Assay Kitで定量した。反応は、37℃で30分間、転倒混和することによって行った。検量線は、担体に結合させたプロテインAと同一のものを用いて作成した。結果を表3に示す。
〔試験例2-3 動的結合容量(DBC)測定試験〕
 GEヘルスケア社製AKTAprime plusを用いて、線流速300cm/hrにおけるタンパク質(ヒトIgG抗体、Equitech Bio社製 HGG-1000)に対する実施例2-1~2-5および比較例2-1~2-3の各担体のDBCを測定した。カラム容器は容量4mL(5mmφ×200mm長)のものを、タンパク質は20mMリン酸ナトリウム/150mM塩化ナトリウム水溶液(pH7.5)で5mg/mLにタンパク質を溶解したものをそれぞれ使用し、溶出先端10%ブレークスルーのときのタンパク質捕捉量とカラム充填体積からDBCを求めた。結果を表3に示す。
〔試験例2-4 HCPの定量〕
 カラム容器(GEヘルスケア社製Tricorn10/50 column)に、実施例2-1~2-5および比較例2-1~2-3の各担体を、充填高さ約5cmで充填してカラムを作製した。得られたカラムをGEヘルスケア社製AKTA Prime Plusにそれぞれ接続し、20mMリン酸ナトリウムバッファー(pH7.5)を5カラム容量(カラム容積の5倍)、流速1mL/分にて通液し、平衡化させた。
 次いで、モノクローナル抗体Trastuzumabを含有するCHO細胞培養上清を、約23mg抗体/mL担体の負荷量で、流速1mL/分にてカラムに通液した。
 次いで、20mMリン酸ナトリウムバッファー(pH7.5)、20mMリン酸ナトリウム/1M塩化ナトリウムバッファー(pH7.5)、および20mMリン酸ナトリウムバッファー(pH7.5)を、それぞれ5カラム容量、流速1mL/分にてカラムに順次通液した。
 その後、50mMクエン酸ナトリウムバッファー(pH3.2)を、流速1mL/分にてカラムに通液し、カラム内に捕捉されていたモノクローナル抗体を溶出させ、Abs.280>100mAuの溶出フラクションを回収した。
 そして、分光光度計を用い、回収したフラクション中に含有される抗体濃度(mg/mL)を測定した。また、Cygnus Technologies社製 CHO HCP ELISA kit,3Gを用い、回収したフラクション中に含有されるHost Cell Protein(HCP)の濃度(ng/mL)を測定した。さらにHCPの濃度を抗体濃度で除することにより、単位抗体量当たりのHCP量を算出し、以下の基準に従い評価した。結果を表3に示す。
 (HCP定量評価基準)
 AA:HCP量が1500ppm未満
 A:HCP量が1500ppm以上3000ppm未満
 B:HCP量が3000ppm以上
〔試験例2-5 担体の耐圧性能評価〕
 実施例2-1~2-5および比較例2-1~2-3の各担体を、濃度が10質量%となるように純水にそれぞれ分散させた。カラム充填後の担体の体積が20mLとなる量の分散液を、内径16mm、長さ100mmのHR(High Resolution)カラム容器に流し込み、GEヘルスケア社製AKTA Pilotを用いて、線流速450cm/hrで通液して、カラムに担体を充填した。次いで、純水を通液し、段階的に線流速を上げていき、圧力損失1.9MPaの時の線流速を測定した。この線流速を測定可能線流速とし、以下の基準に従い耐圧性能を評価した。結果を表3に示す。
 (耐圧力性能評価基準)
 AA:測定可能線流速が2700cm/hr以上
 A:測定可能線流速が2400cm/hr以上2700cm/hr未満
 B:測定可能線流速が2400cm/hr未満
Figure JPOXMLDOC01-appb-T000063
 表3の結果から、重合中に多官能チオール化合物を連鎖移動触媒として添加して、固相担体を構成する高分子の末端を架橋構造(21)で互いに架橋させることによって、優れた防汚性を有し、耐圧性能に優れ、標的物質に対する動的結合容量が大きい担体が得られることが分かる。

Claims (26)

  1.  式(1)で表される2~4価の構造を有する樹脂を含むことを特徴とする
     固相担体。
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、
     R1は、n価の有機基を示し、
     X1は、それぞれ独立して、下記式(2)、(3)、(4)または(5)で表される2価の基を示し、
     nは2~4の整数を示す。〕
    Figure JPOXMLDOC01-appb-C000002
    〔式(2)中、
     R2は、炭素数1~2の2価の炭化水素基を示し、
     Y1は、チオ基、スルフィニル基、オキシ基またはイミノ基を示す。〕
    Figure JPOXMLDOC01-appb-C000003
    〔式(3)中、
     Y1は、前記と同義である。〕
    Figure JPOXMLDOC01-appb-C000004
    〔式(4)中、
     R3は、カルボニル基または*-(C=O)-NH-を示し(*は、式(4)中のY1と結合する位置を示す)、
     Y1は、前記と同義である。〕
    Figure JPOXMLDOC01-appb-C000005
  2.  nが2である請求項1に記載の固相担体。
  3.  X1が、式(2)、(3)または(4)で表される2価の基であり、Y1が、チオ基またはスルフィニル基である請求項1または2に記載の固相担体。
  4.  更に、チオ基またはスルフィニル基と、ヒドロキシ基とを有する1価の基を有する請求項1~3のいずれか1項に記載の固相担体。
  5.  前記チオ基またはスルフィニル基と、ヒドロキシ基とを有する1価の基が、式(6-1)または(6-2)で表される、請求項4に記載の固相担体。
    Figure JPOXMLDOC01-appb-C000006
    〔式(6-1)中、
     R4は、炭素数1~2の2価の炭化水素基を示し、
     R5は、炭素数1~10の1価の有機基を示し、
     Y3は、チオ基またはスルフィニル基を示す。〕
    Figure JPOXMLDOC01-appb-C000007
    〔式(6-2)中、
     R5およびY3は前記と同義である。〕
  6.  粒子である、請求項1~5いずれか1項に記載の固相担体。
  7.  多孔質粒子である、請求項6に記載の固相担体。
  8.  更に、リガンドを固定可能な官能基を有する請求項1~7のいずれか1項に記載の固相担体。
  9.  請求項1~8のいずれか1項に記載の固相担体を担体とするクロマトグラフィーカラム用充填剤。
  10.  請求項8に記載の固相担体にリガンドを固定したアフィニティクロマトグラフィー用充填剤。
  11.  前記リガンドがタンパク質である請求項10に記載のアフィニティクロマトグラフィー用充填剤。
  12.  請求項9~11のいずれか1項に記載の充填剤がカラム容器に充填されているクロマトグラフィーカラム。
  13.  標的物質を含む組成物を用意する工程と、請求項12に記載のクロマトグラフィーカラムに前記組成物を通液する工程を含むことを特徴とする標的物質の精製方法。
  14.  下記式(8)で表される1価の基、下記式(9)で表される1価の基、カルボキシ基、コハク酸イミドオキシ基、ホルミル基およびイソシアネート基から選ばれる1種以上の官能基を有する固相と、下記式(10)で表される架橋剤とを接触させる工程を含むことを特徴とする固相担体の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    〔式(8)中、
     R7は炭素数1~2の2価の炭化水素基を示す。〕
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    〔式(10)中、
     R1は、n価の有機基を示し、
     Y2は、チオ基、オキシ基またはイミノ基を示し、
     nは2~4の整数を示す。〕
  15.  固相担体と、リガンドまたはリガンドを結合するための反応性基と、を有するアフィニティ精製用担体であって、
     前記リガンドまたはリガンドを結合するための反応性基が、固相担体に結合しており、
     前記固相担体を構成する高分子の末端の一部または全部が、下記式(21)で表される架橋構造で互いに架橋されている、
     アフィニティ精製用担体。
    Figure JPOXMLDOC01-appb-C000011
    〔式(21)中、
     R21は、n2価の有機基を示し、
     X21は、それぞれ独立して、チオ基、スルフィニル基またはスルホニル基を示し、
     n2は、2以上の整数を示す。〕
  16.  前記固相担体を構成する高分子が、スチレン系モノマーに由来する構造単位、ビニルケトン系モノマーに由来する構造単位、(メタ)アクリロニトリル系モノマーに由来する構造単位、(メタ)アクリレート系モノマーに由来する構造単位および(メタ)アクリルアミド系モノマーに由来する構造単位から選ばれる1種または2種以上を有する高分子である、請求項15に記載のアフィニティ精製用担体。
  17.  前記架橋構造が、固相担体の重合前或いは重合中に下記式(33)で表される多官能チオール化合物を添加して導入されるものである、請求項15または16に記載のアフィニティ精製用担体。
    Figure JPOXMLDOC01-appb-C000012
    〔式(33)中、R21およびn2は、前記と同義である。〕
  18.  前記固相担体が、固相担体の重合後に下記式(22)で表される架橋剤を添加して導入される架橋構造を更に有する、請求項17に記載のアフィニティ精製用担体。
    Figure JPOXMLDOC01-appb-C000013
    〔式(22)中、
     R22は、炭素数1~10の2価の有機基を示し、
     X22およびX23は、それぞれ独立して、ヒドロキシ基、アミノ基またはチオール基を示す。〕
  19.  X22およびX23が、チオール基である、請求項18に記載のアフィニティ精製用担体。
  20.  式(22)で表される架橋剤を添加して導入された架橋構造中のチオ基を酸化してなる、請求項19に記載のアフィニティ精製用担体。
  21.  前記リガンドまたはリガンドを結合するための反応性基が、リガンドである、請求項15~20のいずれか1項に記載のアフィニティ精製用担体。
  22.  前記リガンドが、タンパク質またはペプチドである、請求項21に記載のアフィニティ精製用担体。
  23.  請求項15~22のいずれか1項に記載のアフィニティ精製用担体を担体とする、
     クロマトグラフィーカラム用充填剤。
  24.  請求項23に記載の充填剤がカラム容器に充填されている、
     クロマトグラフィーカラム。
  25.  標的物質を含む組成物を用意する工程と、
     請求項24に記載のクロマトグラフィーカラムに前記組成物を通液する工程を含むことを特徴とする、
     標的物質の精製方法。
  26.  標的物質が、標的タンパク質である、請求項25に記載の精製方法。
PCT/JP2015/053422 2014-02-06 2015-02-06 固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法 WO2015119255A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015561063A JP6276786B2 (ja) 2014-02-06 2015-02-06 固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-021240 2014-02-06
JP2014021240 2014-02-06
JP2014132610 2014-06-27
JP2014-132610 2014-06-27
JP2014200168 2014-09-30
JP2014-200168 2014-09-30

Publications (1)

Publication Number Publication Date
WO2015119255A1 true WO2015119255A1 (ja) 2015-08-13

Family

ID=53778052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053422 WO2015119255A1 (ja) 2014-02-06 2015-02-06 固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法

Country Status (2)

Country Link
JP (1) JP6276786B2 (ja)
WO (1) WO2015119255A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039545A1 (ja) 2017-08-23 2019-02-28 Jsr株式会社 クロマトグラフィー用担体、リガンド固定担体、クロマトグラフィーカラム、標的物質の精製方法、及びクロマトグラフィー用担体の製造方法
WO2020095963A1 (ja) 2018-11-06 2020-05-14 Jsr株式会社 有機硫黄化合物の製造方法、担体、当該担体の製造方法、リガンド固定担体、クロマトグラフィーカラム及び標的物質の検出又は単離方法
WO2020189593A1 (ja) * 2019-03-20 2020-09-24 三菱ケミカル株式会社 重合体、分離剤、重合体の製造方法、化合物の分離方法及び化合物の製造方法
WO2022202467A1 (ja) 2021-03-25 2022-09-29 Jsr株式会社 クロマトグラフィー用担体の製造方法、クロマトグラフィーカラムの製造方法、及びクロマトグラフィー用担体
WO2022202466A1 (ja) 2021-03-25 2022-09-29 Jsr株式会社 クロマトグラフィー用担体の製造方法、クロマトグラフィーカラムの製造方法、及びクロマトグラフィー用担体
JP7186338B1 (ja) * 2021-06-28 2022-12-08 昭和電工株式会社 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム
WO2023276549A1 (ja) * 2021-06-28 2023-01-05 昭和電工株式会社 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム
WO2023058409A1 (ja) 2021-10-05 2023-04-13 Jsr株式会社 クロマトグラフィー担体をカラムに充填する方法、スラリーの保存方法、及びスラリー

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153755A (ja) * 1985-12-27 1987-07-08 Showa Denko Kk クロマトグラフイ−用吸着担体
JPS636463A (ja) * 1986-06-27 1988-01-12 Tokuyama Soda Co Ltd 反応性重合体粒子の製造方法
JPS6310604A (ja) * 1986-06-30 1988-01-18 Nippon Zeon Co Ltd クロマトグラフイ−充てん剤用重合体
JPH115817A (ja) * 1997-06-17 1999-01-12 Nof Corp 重合性高分子とその重合体
JP2005517196A (ja) * 2002-02-15 2005-06-09 リンドナー,ヴォルフガング エナンチオ選択的カチオン交換材料
WO2006132333A1 (ja) * 2005-06-09 2006-12-14 Tosoh Corporation 親水性に優れた新規充填剤、及びその製造方法
JP2008156617A (ja) * 1994-09-23 2008-07-10 Massey Univ クロマトグラフ用樹脂およびその使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153755A (ja) * 1985-12-27 1987-07-08 Showa Denko Kk クロマトグラフイ−用吸着担体
JPS636463A (ja) * 1986-06-27 1988-01-12 Tokuyama Soda Co Ltd 反応性重合体粒子の製造方法
JPS6310604A (ja) * 1986-06-30 1988-01-18 Nippon Zeon Co Ltd クロマトグラフイ−充てん剤用重合体
JP2008156617A (ja) * 1994-09-23 2008-07-10 Massey Univ クロマトグラフ用樹脂およびその使用方法
JPH115817A (ja) * 1997-06-17 1999-01-12 Nof Corp 重合性高分子とその重合体
JP2005517196A (ja) * 2002-02-15 2005-06-09 リンドナー,ヴォルフガング エナンチオ選択的カチオン交換材料
WO2006132333A1 (ja) * 2005-06-09 2006-12-14 Tosoh Corporation 親水性に優れた新規充填剤、及びその製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200043990A (ko) 2017-08-23 2020-04-28 제이에스알 가부시끼가이샤 크로마토그래피용 담체, 리간드 고정 담체, 크로마토그래피 칼럼, 표적 물질의 정제 방법 및 크로마토그래피용 담체의 제조 방법
WO2019039545A1 (ja) 2017-08-23 2019-02-28 Jsr株式会社 クロマトグラフィー用担体、リガンド固定担体、クロマトグラフィーカラム、標的物質の精製方法、及びクロマトグラフィー用担体の製造方法
JPWO2019039545A1 (ja) * 2017-08-23 2020-10-01 Jsr株式会社 クロマトグラフィー用担体、リガンド固定担体、クロマトグラフィーカラム、標的物質の精製方法、及びクロマトグラフィー用担体の製造方法
JP7026116B2 (ja) 2017-08-23 2022-02-25 Jsr株式会社 クロマトグラフィー用担体、リガンド固定担体、クロマトグラフィーカラム、標的物質の精製方法、及びクロマトグラフィー用担体の製造方法
JP7367694B2 (ja) 2018-11-06 2023-10-24 Jsr株式会社 有機硫黄化合物の製造方法、担体、当該担体の製造方法、リガンド固定担体、クロマトグラフィーカラム及び標的物質の検出又は単離方法
WO2020095963A1 (ja) 2018-11-06 2020-05-14 Jsr株式会社 有機硫黄化合物の製造方法、担体、当該担体の製造方法、リガンド固定担体、クロマトグラフィーカラム及び標的物質の検出又は単離方法
CN112969532B (zh) * 2018-11-06 2024-02-09 Jsr株式会社 载体及其制造方法、色谱柱和目标物质的检测或分离方法
CN112969532A (zh) * 2018-11-06 2021-06-15 Jsr株式会社 有机硫化合物的制造方法、载体、该载体的制造方法、固定有配体的载体、色谱柱和目标物质的检测或分离方法
JPWO2020095963A1 (ja) * 2018-11-06 2021-10-21 Jsr株式会社 有機硫黄化合物の製造方法、担体、当該担体の製造方法、リガンド固定担体、クロマトグラフィーカラム及び標的物質の検出又は単離方法
EP3878551A4 (en) * 2018-11-06 2022-08-24 JSR Corporation METHOD OF PREPARING AN ORGANIC SULFUR COMPOUND, SUPPORT, METHOD OF PREPARING SUCH SUPPORT, LIGAND IMMOBILIZING SUPPORT, CHROMATOGRAPHIC COLUMN, AND METHOD OF DETECTING OR ISOLATING A TARGET SUBSTANCE
JPWO2020189593A1 (ja) * 2019-03-20 2020-09-24
WO2020189593A1 (ja) * 2019-03-20 2020-09-24 三菱ケミカル株式会社 重合体、分離剤、重合体の製造方法、化合物の分離方法及び化合物の製造方法
WO2022202466A1 (ja) 2021-03-25 2022-09-29 Jsr株式会社 クロマトグラフィー用担体の製造方法、クロマトグラフィーカラムの製造方法、及びクロマトグラフィー用担体
WO2022202467A1 (ja) 2021-03-25 2022-09-29 Jsr株式会社 クロマトグラフィー用担体の製造方法、クロマトグラフィーカラムの製造方法、及びクロマトグラフィー用担体
JP7186338B1 (ja) * 2021-06-28 2022-12-08 昭和電工株式会社 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム
WO2023276549A1 (ja) * 2021-06-28 2023-01-05 昭和電工株式会社 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム
US11857949B2 (en) 2021-06-28 2024-01-02 Resonac Corporation Packing material and method for producing the same, and column for size exclusion chromatography
WO2023058409A1 (ja) 2021-10-05 2023-04-13 Jsr株式会社 クロマトグラフィー担体をカラムに充填する方法、スラリーの保存方法、及びスラリー

Also Published As

Publication number Publication date
JPWO2015119255A1 (ja) 2017-03-30
JP6276786B2 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6276786B2 (ja) 固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法
JP6617169B2 (ja) 固相担体、固相担体の製造方法、アフィニティ精製用担体、アフィニティクロマトグラフィー用充填剤の製造方法、アフィニティクロマトグラフィー用充填剤、クロマトグラフィーカラムおよび精製方法
Gama et al. Monoliths: Synthetic routes, functionalization and innovative analytical applications
EP3162809B1 (en) Carrier for affinity chromatography
AU2009238686B2 (en) Chromatography medium
KR101354476B1 (ko) 크로마토그래피 매질 성능을 향상시키기 위한 그라프팅 방법
Acquah et al. Development and characteristics of polymer monoliths for advanced LC bioscreening applications: A review
JP5826180B2 (ja) 分離マトリックス
Du Peptide immobilized monolith containing tentacle-type functionalized polymer chains for high-capacity binding of immunoglobulin G
JP7026116B2 (ja) クロマトグラフィー用担体、リガンド固定担体、クロマトグラフィーカラム、標的物質の精製方法、及びクロマトグラフィー用担体の製造方法
WO2013147255A1 (ja) 液体クロマトグラフィー用充填剤、液体クロマトグラフィー用カラム及び液体クロマトグラフィー装置
CN117377521A (zh) 具有分级多层结构的合成聚合物多孔介质及其设计、合成、改性和液相色谱应用
Khaparde et al. Development of a metal/chelate polyhydroxyethylmethacrylate monolith capillary for selective depletion of immunoglobulin G from human plasma for proteomics
Perçin et al. Gelatin-immobilised poly (hydroxyethyl methacrylate) cryogel for affinity purification of fibronectin
JP2007506095A (ja) ポリエーテル分離用マトリックス及び分離方法
JP4929635B2 (ja) マレイミド基含有多孔質架橋ポリスチレン粒子及びその製造方法
Ding et al. Preparation of pH‐responsive metal chelate affinity polymer for adsorption and desorption of insulin
JP6602533B2 (ja) 担体の製造方法、担体、クロマトグラフィーカラム、及び目的物質の精製方法
Yu et al. RECENT DEVELOPMENT AND APPLICATION OF MONOLITHIC COLUMNS.
WO2022202466A1 (ja) クロマトグラフィー用担体の製造方法、クロマトグラフィーカラムの製造方法、及びクロマトグラフィー用担体
WO2022202467A1 (ja) クロマトグラフィー用担体の製造方法、クロマトグラフィーカラムの製造方法、及びクロマトグラフィー用担体
CN112969532A (zh) 有机硫化合物的制造方法、载体、该载体的制造方法、固定有配体的载体、色谱柱和目标物质的检测或分离方法
WO2017146225A1 (ja) アフィニティクロマトグラフィー用多孔質担体、リガンド結合多孔質担体、標的物の精製方法、及び抗体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746696

Country of ref document: EP

Kind code of ref document: A1