WO2023276549A1 - 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム - Google Patents

充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム Download PDF

Info

Publication number
WO2023276549A1
WO2023276549A1 PCT/JP2022/022597 JP2022022597W WO2023276549A1 WO 2023276549 A1 WO2023276549 A1 WO 2023276549A1 JP 2022022597 W JP2022022597 W JP 2022022597W WO 2023276549 A1 WO2023276549 A1 WO 2023276549A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
filler
glycidyl
group
polyol
Prior art date
Application number
PCT/JP2022/022597
Other languages
English (en)
French (fr)
Inventor
直樹 内山
謙 小木戸
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to EP22832707.8A priority Critical patent/EP4206243A1/en
Priority to US18/026,978 priority patent/US11857949B2/en
Priority to CN202280006541.8A priority patent/CN116322974B/zh
Priority to JP2022560519A priority patent/JP7186338B1/ja
Publication of WO2023276549A1 publication Critical patent/WO2023276549A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Definitions

  • the present invention relates to a packing material for size exclusion chromatography for protein purification. More particularly, it relates to fillers with high alkali resistance.
  • Size exclusion chromatography which separates molecules in order of molecular size, is widely used to separate water-soluble macromolecules such as polysaccharides, peptides, proteins, DNA, and RNA. Size exclusion chromatography has the advantage of being able to separate and fractionate biopolymers, especially proteins, because it can treat biopolymers under mild conditions. be.
  • the separated and fractionated biopolymers are used for biochemical reactions and for industrial uses such as foods, pharmaceuticals, and chemistry, and the market has been remarkably expanding and growing in recent years.
  • the packing material has a different problem and requirement than the analysis column, which is the high efficiency of preparative separation that can recover the separated product. It has become desired to be able to suppress these non-specific adsorption even when containing various components such as , and to enable washing and regeneration with a high-strength alkali.
  • Patent Document 1 The applicant has proposed a filler for size exclusion chromatography using a methacrylate-based monomer in International Publication No. 2018/155241 (Patent Document 1).
  • Patent Document 1 a monomer having a glycidyl group and a cross-linking agent are polymerized in the presence of a polymerization initiator, the obtained porous particles made of the copolymer are hydrophilized with a sugar alcohol, and then residual glycidyl is added.
  • a filler having undergone a process of ring-opening the group with a mineral acid has been disclosed, there is a demand for higher alkali resistance.
  • Patent Document 2 the surface of crosslinked polymer particles using a monomer having a special structure among methacrylyl monomers having improved resistance to alkaline aqueous solution is hydrophilized Filling agents are disclosed. Since the monomer used in Patent Document 2 is not a general-purpose monomer, it is difficult to obtain easily and easily, and there is a problem that the cost is high.
  • the object of the present invention is to solve the problems seen above. More specifically, the object of the present invention is to provide a packing material for size exclusion chromatography with high alkali resistance and a method for producing the same.
  • the present inventors have made intensive studies to solve the above problems, and as a result, bonded an alkylene group to a porous particle composed of a crosslinked copolymer of a monomer having a glycidyl group and a crosslinking agent.
  • the inventors have found that a filler having a structure in which a polyol is bound to one end has high alkali resistance, and have completed the present invention. That is, the present invention relates to the following matters.
  • a porous organic polymer carrier containing 60 to 95 mol% of repeating units derived from glycidyl methacrylate and 5 to 40 mol% of repeating units derived from a polyfunctional monomer, one end of at least one alkylene group selected from a straight-chain alkylene group, a cycloalkylene group, and a straight-chain alkylcycloalkylene group having 4 to 9 carbon atoms, bonded by a glycidyl group derived from glycidyl methacrylate, A filler characterized in that the other end of the alkylene group is bound to any one end of the polyol via an ether bond.
  • a method for producing the filler according to any one of [1] to [7], A step (A) of polymerizing raw material monomers containing glycidyl methacrylate and a polyfunctional monomer in the presence of a diluent and a polymerization initiator to obtain a carrier ⁇ , which is a porous organic polymer carrier; A glycidyl group derived from glycidyl methacrylate of the carrier ⁇ is reacted with one hydroxyl group of a diol compound containing an alkylene group containing a linear or aliphatic ring having 4 to 9 carbon atoms in its structure to convert the alkylene group.
  • a column for size exclusion chromatography wherein the packing material according to any one of [1] to [7] is packed in a casing for liquid chromatography.
  • a filler with high alkali resistance and suitable for fractionation can be obtained. This makes it possible to speed up the separation process. Furthermore, the filler can be produced using inexpensive raw materials and a simple process, and can be easily applied even on an industrial scale where a large amount of filler is used.
  • filler refers to those that can be used alone as fillers, and also includes those that can be used by modifying the surface according to the purpose.
  • (meth)acryl means acryl and methacryl, and the same applies to “(meth)acryloyl”.
  • the filler of this embodiment has a structure in which a specific skeleton is bound to a porous organic polymer carrier as shown below.
  • the porous organic polymer carrier (hereinafter abbreviated as carrier ⁇ ) contains 60 to 95 mol% of repeating units derived from glycidyl methacrylate and 5 to 40 mol% of repeating units derived from a polyfunctional monomer. do.
  • the carrier ⁇ of the present embodiment can also be obtained by using glycidyl acrylate.
  • a polyfunctional monomer is a compound that has two or more ethylenic double bonds in the molecule.
  • the polyfunctional monomer those having two or more (meth)acryloyl groups in the molecule are preferable.
  • alkanediol di(meth)acrylate alkane has 1 to 12 carbon atoms
  • trimethylolpropane tri(meth)acrylate ditrimethylolpropane tetra(meth)acrylate
  • pentaerythritol tetra(meth)acrylate penta Examples thereof include erythritol penta(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate and the like, and also polyfunctional urethane(meth)acrylate and the like.
  • These compounds may be used alone or in combination of two or more.
  • Ethylene glycol dimethacrylate, glycerin-1,3-dimethacrylate may be 50 mol% or more of the total amount of the polyfunctional monomer, preferably 80 mol% or more, and from the viewpoint of pore formation, the total amount is ethylene glycol. More preferred are dimethacrylate and/or glycerin-1,3-dimethacrylate.
  • the copolymer contains 95 mol % or more of the glycidyl methacrylate and the polyfunctional monomer in total as monomer units, it may contain other monomer units within a range that does not significantly change the properties of the porous particles.
  • monomers having a glycidyl group include 3,4-epoxycyclohexylmethyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether and the like, as well as methyl (meth)acrylate and ethyl (meth)acrylate. .
  • the degree of cross-linking of the copolymer is 5-40 mol%, preferably 5-35 mol%, more preferably 8-25 mol%.
  • At least one alkylene group having 4 to 9 carbon atoms selected from a straight-chain alkylene group, a cycloalkylene group, a straight-chain alkylcycloalkylene group, and a cycloalkyldialkylene group is used as the carrier ⁇ . One end is attached.
  • One end of the alkylene group is bonded to the carrier ⁇ via an ether bond formed by a ring-opening reaction of a glycidyl group derived from glycidyl methacrylate contained in the carrier ⁇ .
  • the other end of the alkylene group is directly or indirectly bonded to the polyol via an ether bond.
  • Ether bonds include both those derived from polyols and those derived from epoxy compounds used when introducing polyols such as epichlorohydrin.
  • Such structures have a structure having a hydrophobic skeleton forming a hydrophobic layer derived from an alkylene group on the carrier surface and a hydrophilic skeleton forming a hydrophilic layer derived from a polyol on the surface of the hydrophobic layer.
  • Such structures are preferably introduced at a density of 500 ⁇ mol/g to 2000 ⁇ mol/g, preferably 700 ⁇ mol/g to 1800 ⁇ mol/g, relative to the dry weight of the carrier.
  • the introduction density can be measured from the amount of glycidyl groups, the amount of polyol, and the amount of glycidyl groups introduced midway in the production method described later, and the introduction density is adjusted by adjusting these. is also possible.
  • An alkylene group is a straight-chain alkyl or cycloalkyl having 4 to 9 carbon atoms, or alkyl such as straight-chain alkylcycloalkyl (alkylcycloalkyl, cyclodialkyl), to hydrocarbons at both ends of the longest chain.
  • alkylcycloalkyl straight-chain alkylcycloalkyl (alkylcycloalkyl, cyclodialkyl)
  • it is a divalent group in which one hydrogen is removed from the hydrocarbon at the farthest position in the cyclic structure.
  • the straight chain or aliphatic ring may have an alkyl group as a side chain.
  • alkylene groups include butylene, hexylene, heptylene, 1,4-cyclohexylene, 1-methylene-4-cyclohexyl, and cyclohexane-1,4-dimethylene. If the number of carbon atoms is too small, the alkali resistance may be insufficient, and if the number of carbon atoms is too large, non-specific adsorption may occur and the intended fractionation may not be possible. It is preferable that the alkylene group contains at least one of a butylene group and a cyclohexane-1,4-dimethylene group, because alkali resistance and inhibition of non-specific adsorption are well-balanced, and the intended preparative separation efficiency is good.
  • the polyol preferably contains two or more hydroxyl groups, is stable to alkali, and has sufficient hydrophilicity, such as polyether polyol and polylactone polyol.
  • the polyol is directly or indirectly bonded to the alkylene group constituting the hydrophobic skeleton via an ether bond. At least one hydroxyl group remains in the alkylene-bonded polyol.
  • a diol compound is used as a raw material for introducing an alkylene group that constitutes a hydrophobic skeleton, two hydroxyl groups of the diol compound are both changed into ether-bonded oxygen by reaction, and at least one hydroxyl group remains in the polyol. It is distinguished from the component of origin.
  • polyols include various known saturated and unsaturated low-molecular-weight glycols such as ethylene glycol, diethylene glycol and triethylene glycol, and polyalkylene glycols such as polyethylene polyol and polyethylene glycol.
  • tritol such as glycerin; tetritol such as erythritol and threitol; pentitols such as arabinitol and xylitol; hexitols such as sorbitol and mannitol; sugar alcohols such as heptitols such as boremitol and perseitol. It is also possible to use
  • These polyols are distinguished from the above-mentioned alkylene groups having 4 to 9 carbon atoms in terms of chain length and hydroxyl group-containing structure when bonded via an ether bond.
  • the average molecular weight of the polyol is not particularly limited, it is not particularly limited as long as it is 5000 or less. When the average molecular weight of the polyol is 5000 or more, the inside of the pores of the carrier ⁇ may be clogged and the intended fractionation may not be possible.
  • the polyols used in the present invention are desirably polyols with an octanol-water partition coefficient (logP) of -1.2 or less.
  • Octanol-water partition coefficients (logP) are for example ethylene glycol (-1.36), triethylene glycol (-1.98), polyethylene glycol (lower than -1.98), sorbitol (-2.20), glycerin ( -1.76), isopropylene glycol (-1.07), and 1,4-butanediol (-0.88).
  • polyols that do not have a structure that induces hydrolysis by alkali such as esters, thioesters, carbonates, thiocarbonates, carbamates, thiocarbamates, and siloxanes, are desirable in that they are stable to alkalis.
  • the weight average molecular weight of the polyols is not particularly limited, it may be 50 or more in terms of hydrophilicity, and 200 or less in terms of ease of introduction.
  • ethylene glycol, polyethylene glycol, erythritol, sorbitol, and boremitol, which are easy to introduce, are particularly preferable, and ethylene glycol, polyethylene glycol, and sorbitol, which are available at low cost, are more preferable.
  • the polyol may be bonded to the alkylene group via an ether bond, and may be directly bonded. You may couple
  • the filler of the present invention is schematically represented by the following chemical formula, but the present invention is not particularly limited to this example.
  • the filler of this embodiment can be produced by the following steps (A) to (D).
  • a glycidyl group derived from glycidyl methacrylate of the support ⁇ is reacted with one hydroxyl group of a diol compound containing an alkylene group containing a linear or aliphatic ring having 4 to 9 carbon atoms in its structure to convert the alkylene group.
  • a carrier ⁇ is prepared from a copolymer having glycidyl methacrylate and polyfunctional monomer units.
  • Carrier ⁇ is obtained by copolymerizing these monomers in the presence of a diluent and a polymerization initiator.
  • porous particles can be produced by referring to the methods described in JP-A-2007/170907, WO2006/132333, and the like.
  • the concentration of glycidyl methacrylate in the raw material monomer is 60 to 95 mol%, preferably 70 to 95 mol%.
  • the polyfunctional monomer concentration in the raw material monomer is 5 mol % to 40 mol %, preferably 5 mol % to 30 mol %.
  • a diluent is added to the monomer mixture and polymerized.
  • a diluent is an organic solvent which is soluble in the monomer mixture but inert to the polymerization reaction and which does not dissolve the resulting copolymer. After the polymerization is completed, the diluent is removed by washing or the like, so that the diluent portion becomes hollow and porous pores are formed in the carrier ⁇ particles.
  • diluents include aromatic hydrocarbons such as toluene, xylene, diethylbenzene, dodecylbenzene and chlorobenzene; saturated hydrocarbons such as hexane, heptane, pentane, octane, nonane and decane; isoamyl alcohol and hexyl alcohol.
  • heptyl alcohol octyl alcohol, nonyl alcohol
  • aliphatic halogenated hydrocarbons such as dichloromethane, dichloroethane, trichloroethane
  • ethyl acetate propyl acetate, butyl acetate, pentyl acetate, diethyl succinate
  • benzoin Aliphatic or aromatic esters such as methyl acid, ethyl benzoate and propyl benzoate can be used.
  • the amount of the diluent added affects the exclusion limit molecular weight of the filler and the volume % of the pore volume (indicating the ratio of the pore volume to the total volume of the filler particles). For this reason, it is added by appropriately adjusting the amount.
  • the amount of these diluents added is 0.8 to 4.0 times, preferably 1.0 to 3.0 times, the total volume of the raw material monomers at the temperature at the time of preparation.
  • the polymerization initiator used during polymerization is not particularly limited as long as it is a known radical polymerization initiator that generates radicals.
  • examples include azo initiators such as 2,2'-azobisisobutyronitrile, 2,2'-azobis(methyl isobutyrate), and 2,2'-azobis(2,4-dimethylvaleronitrile). be able to.
  • 2,2'-azobis(2,4-dimethylvaleronitrile) is preferably used because of its affinity of chemical structure.
  • concentration of the polymerization initiator is not particularly limited, it is preferably 0.1 to 5 parts by weight per 100 parts by weight of the total amount of monomers.
  • An oil phase containing monomers is prepared by the monomer mixture, diluent, and polymerization initiator.
  • the oil phase is stirred and suspended in an aqueous medium containing a suitable dispersion stabilizer to form oil droplets.
  • the copolymer is produced as porous particles having an appropriate particle size.
  • oil droplets can be produced by dripping a monomer solvent containing a diluent into an aqueous medium through microchannels formed in a porous membrane or a quartz substrate. be able to.
  • a known dispersion stabilizer can be used as the dispersion stabilizer contained in the aqueous medium.
  • Water-soluble polymer compounds such as gelatin, sodium polyacrylate and polyvinyl alcohol are usually used.
  • Polyvinyl alcohol is generally used.
  • the concentration of the dispersion stabilizer is preferably 0.1-5% by mass relative to the aqueous medium.
  • the aqueous medium may contain salts and other water-soluble components in addition to water.
  • salts include commonly used salts such as sodium chloride and calcium chloride. Since the solubility varies depending on the salts used, the concentration cannot be generally specified, but for example, sodium chloride can be dissolved at 0.1 to 15% by mass, and calcium chloride can be dissolved at 1 to 40% by mass. Salts are added for salting out.
  • the suspension polymerization reaction is usually heated to 40-100°C under stirring, and the reaction is carried out under atmospheric pressure for 5-16 hours.
  • the monomers contained in the respective oil droplets are polymerized while containing the diluent, and the polymer grows like a network, so porous particles can be obtained by removing the diluent later.
  • the porous particles can be easily separated from the aqueous medium by filtration or the like.
  • the diluent is removed by washing with a solvent such as acetone or methanol. After drying, the obtained porous particles having glycidyl groups are classified by a sieve or an air classifier.
  • the carrier ⁇ thus obtained in step (A) is porous particles having glycidyl groups derived from glycidyl methacrylate, and has the above-described average particle size and pores.
  • Step (B) Next, the glycidyl group derived from glycidyl methacrylate of the carrier ⁇ is reacted with a diol compound containing in its structure a linear or aliphatic ring-containing alkylene group having 4 to 9 carbon atoms to obtain a carrier composed of a porous organic polymer. get ⁇ .
  • Glycidyl groups present on the surface of the porous particles are ring-opened and react with the terminal hydroxyl groups of the diol compound to bind the diol compound to the porous particles via ether bonds derived from the terminal hydroxyl groups.
  • the alkylene portion of this diol compound ultimately constitutes the hydrophobic portion of the filler.
  • Diol compounds include 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,4-cyclohexanediol, 4-(hydroxymethyl)cyclohexanol, 1 , 4-cyclohexanedimethanol and the like.
  • the alkali resistance is high and the hydrophobicity is not too strong, so that the induction of non-specific adsorption can be suppressed.
  • the amount of the diol compound used is preferably from 100 parts by mass to 2000 parts by mass with respect to 100 parts by mass of the carrier ⁇ .
  • the amount of the diol compound used is preferably 100 mol % to 2000 mol % with respect to the glycidyl methacrylate contained in the carrier ⁇ .
  • the amount of the diol compound used and the reaction conditions so that 80 mol % or more, preferably 90 mol % or more of the glycidyl methacrylate contained in the carrier ⁇ reacts with the diol compound.
  • boron trifluoride diethyl ether complex zinc borofluoride, trimethylsilyltrifluoromethanesulfonic acid, sulfuric acid, trifluoromethanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, etc.
  • the amount of the catalyst is preferably 0.1 to 100 parts by mass, more preferably 0.5 to 20 parts by mass, relative to 100 parts by mass of the carrier ⁇ . Within this range, the diol compound can be introduced, and the reaction of the ester groups of the porous particles can be prevented.
  • the obtained carrier ⁇ is washed with dimethylsulfoxide or the like to remove excess diol compounds, catalysts, and the like.
  • a glycidyl group is introduced into the carrier ⁇ using epichlorohydrin to obtain the carrier ⁇ . That is, the hydrogen atom of one of the unreacted hydroxyl groups of the diol compound introduced into the carrier ⁇ undergoes an elimination reaction with the chlorine atom of epichlorohydrin, and the carrier ⁇ is derived from the structure of epichlorohydrin- A glycidyl group is introduced via OCH 2 CH(OH)CH 2 —.
  • any glycidyl group-containing compound can be used, and specific examples include 1,4-butanediol diglycidyl ether, ethylene glycol diglycidyl ether, and glycerol diglycidyl ether.
  • epichlorohydrin is preferably used because it is easy to introduce.
  • a glycidyl group-containing compound such as epichlorohydrin is performed by adding 100 to 300 parts by mass of a glycidyl group-containing compound relative to the mass of the support ⁇ in the presence of a catalyst in a solvent such as dimethylsulfoxide or the like.
  • the reaction is carried out by adding together with the carrier ⁇ and stirring uniformly.
  • a glycidyl group is introduced to the end of the diol compound bound to the carrier ⁇ that is not bound to the carrier ⁇ .
  • a glycidyl group-containing compound such as epichlorohydrin may be used in excess with respect to the amount of one unreacted hydroxyl group of the diol compound introduced into the carrier ⁇ . Assuming that 100% of the group has been introduced, it is preferably in the range of 100 mol % to 1000 mol % with respect to the terminal hydroxyl group (mol) of the alkylene group.
  • Alkali metal hydroxides are used as the catalyst, and examples thereof include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • the amount used is preferably 1 to 100 parts by mass, more preferably 5 to 50 parts by mass, per 100 parts by mass of the carrier ⁇ .
  • Step (D) A carrier ⁇ into which a glycidyl group has been introduced is reacted with a polyol in the presence of water to immobilize one end of the polyol to obtain a carrier ⁇ .
  • a catalyst may be used, and the aforementioned alkali metal hydroxide can be used.
  • a terminal hydroxyl group of any one of the polyol compounds reacts with a glycidyl group, and the terminal of the polyol compound is introduced onto the surface of the carrier ⁇ via an ether structure. Since the polyol compound has multiple hydroxyl groups, at least one hydroxyl group remains. Also in the step (D), the reaction can be carried out by adding the alkali metal hydroxide to the coexistence of the carrier ⁇ and the polyol compound in the solvent, followed by heating and stirring.
  • the amount of water may be 1 to 3 times the weight of the dry carrier ⁇ .
  • the amount of the polyol compound used is preferably 10 to 1500 parts by mass with respect to 100 parts by mass of the carrier ⁇ . If the amount of the polyol compound is too small, the amount of the polyol compound to be introduced tends to be insufficient, resulting in insufficient hydrophilicity.
  • the amount of the polyol compound used is preferably in the range of 100 mol % to 20,000 mol % with respect to the glycidyl groups (mol) introduced into the carrier ⁇ . If the amount of the polyol compound is too small, the amount of the polyol compound to be introduced tends to be insufficient, resulting in insufficient hydrophilicity.
  • the resulting carrier ⁇ that is, the filler of the present embodiment is washed with water to remove excess polyol compounds and alkali metal hydroxides.
  • unreacted glycidyl groups may remain in the obtained filler. If glycidyl groups remain, the hydrophobicity of the filler increases, and there is concern that, for example, highly hydrophobic water-soluble compounds such as proteins may be hydrophobically adsorbed. Therefore, it is desirable to ring-open the remaining glycidyl groups with a mineral acid in order to further increase the hydrophilicity.
  • mineral acids examples include sulfuric acid, nitric acid, and hydrochloric acid. Among these, sulfuric acid is particularly preferred.
  • concentration of the mineral acid to be used may be about 0.01M to 1.0M, particularly preferably about 0.1 to 0.5M. If the mineral acid is 0.01 M or more, the ring opening will be sufficiently performed, and if the mineral acid is 1.0 M or less, the ester group etc. in the carrier will be hydrolyzed to form an ionic functional group. Nor. The resulting particles are easily washed with water to remove excess mineral acid.
  • the average particle size of the filler is not particularly limited as long as it is 10 ⁇ m or more, but it is preferably in the range of 15 to 100 ⁇ m from the viewpoint of column packing properties.
  • the average particle size is represented by the volume-converted average particle size.
  • the volume-converted average particle diameter is a value obtained by an image analysis type particle size distribution analyzer. When an image analysis type particle size distribution measuring device is used to determine the volume-converted average particle size of particles, a two-dimensional particle image (still image is preferable), the equivalent circle diameter of each particle (the diameter of a circle having the same area as the projected area of the particle image) is obtained, the volume of each particle is calculated from the equivalent circle diameter, and averaged based on the volume.
  • each particle is regarded as a sphere having the same diameter as the equivalent circle diameter.
  • a flow type particle image analyzer (trade name: FPIA-3000, manufactured by Sysmex Corporation) can be used.
  • the average particle size of the filler can be adjusted by adjusting the polymerization conditions during the production of the carrier.
  • the filler has pores.
  • the size of the pores is appropriately selected depending on the purpose.
  • the filler of this embodiment has suitable hydrophilicity and exclusion limit molecular weight. Hydrophilicity and exclusion limit molecular weight can be adjusted by the type and amount of diluent or the ratio of glycidyl methacrylate and polyfunctional monomer. The average particle size and pore size of the filler do not change depending on the surface structure.
  • the exclusion limit molecular weight is 1,000,000 to 100,000,000, more preferably 50,000,000 to 20,000,000. Within this range, proteins can be efficiently separated.
  • the exclusion limit molecular weight is determined by connecting a column filled with packing material to a high-performance liquid chromatograph, using ion-exchanged water as a mobile phase at a flow rate of 1.0 mL per minute, injecting standard substances of various molecular weights into the column, and eluting them. It can be determined by a generally known method using capacitance.
  • a differential refractive index detector (trade name: RI-201H, manufactured by Showa Denko KK) is used for detection, and a pullulan standard (trade name: Shodex (registered trademark) STANDARD P-82, Showa Denko Co., Ltd.) is used.
  • the exclusion limit molecular weight is appropriately selected according to the molecular weight of the protein. For example, when separating huge proteins such as IgM with a molecular weight of about 900,000 and IgG with a molecular weight of about 150,000, if the exclusion limit is less than 1,000,000, IgM enters the exclusion limit region and separation becomes impossible.
  • a high-performance size exclusion chromatography column can be obtained by packing this packing material into a liquid chromatography housing, and a chromatography apparatus equipped with this size exclusion chromatography column can be obtained. can be done. Further, by using this column for size exclusion chromatography, it is possible to provide a separation method and a fractionation method for biopolymers, in which the biopolymers can be separated with high precision using an aqueous eluent and further fractionated. can.
  • PVA-224 polyvinyl alcohol with a saponification degree of 87.0% to 89.0%, manufactured by Kuraray Co., Ltd.
  • An aqueous phase was prepared by dissolving 10.0 g of sodium chloride as a salting-out agent.
  • the aqueous phase and the oil phase were transferred to a separable flask and dispersed at a rotation speed of 430 rpm for 20 minutes with a stirring rod equipped with a half-moon stirring blade, after which the inside of the reactor was replaced with nitrogen and reacted at 60° C. for 16 hours. . Thereafter, the resulting polymer was transferred onto a glass filter and thoroughly washed with hot water of about 50 to 80° C., denatured alcohol and water in this order to obtain 100.4 g of porous particles (carrier ⁇ 1).
  • carrier ⁇ 1 was transferred to a separable flask, and 150 g of diethylene glycol dimethyl ether and 150 g of 1,4-butanediol (920 mol % with respect to glycidyl methacrylate) were transferred to a 1 L separable flask and dispersed with stirring. After that, 1.5 ml of boron trifluoride diethyl ether complex was added, and the temperature was raised to 80° C. while stirring at 200 rpm, and the reaction was carried out for 4 hours.
  • the porous particles (carrier ⁇ 1) bound with a diol compound containing an alkylene group in its structure were separated by filtration and washed with 1 L of ion-exchanged water to obtain 152 g of carrier ⁇ 1.
  • the progress of the reaction was confirmed by the following procedure. A portion of the dry porous particles introduced with an alkylene group is mixed with potassium bromide, pelletized under pressure, and then subjected to FT-IR (trade name: Nicolet (registered trademark) iS10, manufactured by Thermo Scientific Co., Ltd.). ) to confirm the absorbance peak height at 908 cm ⁇ 1 due to the glycidyl group in the infrared absorption spectrum.
  • the introduced density of glycidyl groups in the obtained carrier ⁇ 1 was measured by the following procedure.
  • carrier ⁇ 1 5.0 g was collected and the dry mass was found to be 1.47 g.
  • the same amount of carrier ⁇ 1 was weighed into a separable flask, dispersed in 40 g of water, and 16 mL of diethylamine was added while stirring at room temperature, followed by heating to 50° C. and stirring for 4 hours. After completion of the reaction, the reactant was transferred onto a glass filter and thoroughly washed with water to obtain porous particles A into which diethylamine was introduced.
  • the obtained porous particles A were transferred to a beaker, dispersed in 150 mL of a 0.5 mol/L potassium chloride aqueous solution, and titrated with 0.1 mol/L hydrochloric acid when the pH reached 4.0 as the neutralization point. From this, the amount of diethylamine introduced into the diethylamine-introduced porous particles 1 was calculated, and the density of glycidyl groups of the carrier ⁇ 1 was calculated from the following formula. As a result, the density of glycidyl groups was 880 ⁇ mol/g.
  • the filler was dispersed in 150 mL of a 0.5 mol/L potassium chloride aqueous solution, and titration was performed with a 0.1 mol/L sodium hydroxide aqueous solution at the time when the pH reached 7.0 as the neutralization point. Based on this, the amount of carboxy groups before hydrolysis contained in the filler was calculated according to the following formula.
  • the apparent volume of the filler is measured after preparing a slurry by dispersing 4 g of the filler in water, transferring the slurry to a graduated cylinder, and allowing it to stand for a sufficient time. Volume.
  • the filler was weighed into a separable flask, 20 mL of a 5 mol/L sodium hydroxide aqueous solution was added, and the mixture was treated at 50°C for 20 hours while stirring at 200 rpm. After cooling, the filler was filtered off and then washed with a 0.1 mol/L HCl aqueous solution and water in that order, and the amount of carboxyl groups contained in the obtained filler was calculated by the same method as above. From the difference in the amount of carboxyl groups before and after the reaction with 5 mol/L aqueous sodium hydroxide solution, the amount of carboxyl groups produced by the reaction with 5 mol/L aqueous sodium hydroxide solution was calculated. As a result, the amount of carboxyl groups produced was 21 ⁇ mol/mL.
  • the alkali resistance is evaluated to be high.
  • ⁇ Non-specific adsorption evaluation> The resulting filler was packed in a stainless steel column (manufactured by Sugiyama Shoji Co., Ltd.) having an inner diameter of 8 mm and a length of 300 mm by an equilibrium slurry method. Using the obtained column, a non-specific adsorption test was performed by the method shown below.
  • the column filled with the packing material is subjected to Shimadzu Corporation HPLC system (liquid feed pump (trade name: LC-10AT, manufactured by Shimadzu Corporation), autosampler (trade name: SIL-10AF, manufactured by Shimadzu Corporation), It was connected to a photodiode array detector (trade name: SPD-M10A, manufactured by Shimadzu Corporation), and a 50 mmol/L sodium phosphate buffer aqueous solution was passed as a mobile phase at a flow rate of 0.6 mL/min.
  • Shimadzu Corporation HPLC system liquid feed pump (trade name: LC-10AT, manufactured by Shimadzu Corporation), autosampler (trade name: SIL-10AF, manufactured by Shimadzu Corporation), It was connected to a photodiode array detector (trade name: SPD-M10A, manufactured by Shimadzu Corporation), and a 50 mmol/L sodium phosphate buffer aqueous solution was passed as a mobile phase at a flow rate of 0.6 mL/min.
  • the elution volumes of each sample from the column packed with packing material 1 were 8.713 mL, 9.691 mL, 9.743 mL, 10.396 mL, 11.053 mL, 11.645 mL, and the molecular weight of the sample and It was confirmed that the permutation of elution volumes was consistent and non-specific adsorption was not induced. If there is no contradiction in the order of the molecular weight of the sample and the elution volume, there is no non-specific adsorption, and it is indicated as ⁇ in Table 1. If there is a contradiction, non-specific adsorption is induced, so it is indicated as ⁇ . did. [Example 2] After obtaining porous particles (carrier ⁇ 1) in the same manner as in Example 1, filler 2 was obtained as follows.
  • the resulting porous particles (carrier ⁇ 2) bound with a diol compound containing an alkylene group in its structure were separated by filtration and washed with 1 L of deionized water to obtain 165 g of carrier ⁇ 2.
  • the progress of the reaction was confirmed by the following procedure. A portion of the dry porous particles introduced with an alkylene group is mixed with potassium bromide, pelletized under pressure, and then subjected to FT-IR (trade name: Nicolet (registered trademark) iS10, manufactured by Thermo Scientific Co., Ltd.). ) to confirm the absorbance peak height at 908 cm ⁇ 1 due to the glycidyl group in the infrared absorption spectrum.
  • the introduced density of glycidyl groups in the obtained carrier ⁇ 2 was measured in the same manner as in Example 1. As a result, the density of glycidyl groups was 900 ⁇ mol/g.
  • ⁇ Step (D): Introduction reaction of polyol> Carrier ⁇ 2 was weighed onto a 150 g glass filter and thoroughly washed with diethylene glycol dimethyl ether. After washing, the porous particles were transferred to a separable flask, and 150 g of diethylene glycol dimethyl ether and 150 g of ethylene glycol (log P ⁇ 1.36) (5760 mol % with respect to glycidyl group) were transferred to a 1 L separable flask and dispersed with stirring.
  • the obtained filler 2 was evaluated for alkali resistance in the same manner as in Example 1. As a result, the amount of carboxyl groups produced was 15.2 ⁇ mol/mL, confirming that Filler 2 had excellent alkali resistance.
  • Example 3 Carrier ⁇ 2 was obtained in the same manner as in Example 2. 150 g of the obtained carrier ⁇ 2 was weighed onto a glass filter and thoroughly washed with diethylene glycol dimethyl ether.
  • porous particles were transferred to a separable flask and mixed with 150 g of diethylene glycol dimethyl ether, polyethylene glycol #200 (manufactured by Kanto Kagaku Co., Ltd., average molecular weight 190-210, logP not clear, but tetraethylene glycol (Mw 194), a close compound. ) has a log P of ⁇ 2.02) (1790 mol % with respect to glycidyl groups) 150 g was transferred to a 1 L separable flask and stirred and dispersed. After that, 1.5 mL of boron trifluoride diethyl ether complex was added, and the mixture was heated to 80° C.
  • Carrier ⁇ 3 was sieved to 16 to 37 ⁇ m to obtain 140.5 g of filler 3.
  • the obtained filler 3 was evaluated for alkali resistance in the same manner as in Example 1. As a result, the amount of carboxyl groups produced was 16.1 ⁇ mol/mL, confirming that Filler 3 has excellent alkali resistance.
  • the obtained filler 3 was evaluated for non-specific adsorption in the same manner as in Example 1.
  • the elution volumes of each sample were 8.517 mL, 9.241 mL, 9.47 mL, 10.034 mL, 10.484 mL, and 11.927 mL. It was confirmed that specific adsorption was not induced.
  • Glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation) 33.2 g, glycerin-1,3-dimethacrylate (trade name: NK Ester 701, Shin-Nakamura Chemical Co., Ltd.) 5.9 g , 58.7 g of diethyl succinate, and 1.9 g of 2,2'-azobis(2,4-dimethylvaleronitrile) were used as the oil phase.
  • the amount of glycidyl methacrylate used was 90.0 mol % of the total amount of monomers, and the amount of glycerin-1,3-dimethacrylate used was 10.0 mol % of the total amount of monomers.
  • the obtained filler 4 was evaluated for alkali resistance in the same manner as in Example 1. As a result, the amount of carboxyl groups produced was 11.5 ⁇ mol/mL, and it was confirmed that Filler 4 had excellent alkali resistance.
  • the obtained filler 4 was evaluated for non-specific adsorption in the same manner as in Example 1.
  • the elution volumes of each sample were 7.52 mL, 8.214 mL, 8.451 mL, 9.062 mL, 9.511 mL, and 11.915 mL. It was confirmed that specific adsorption was not induced.
  • the amount of glycidyl methacrylate used was 66.2 mol% of the total amount of monomers, and the amount of glycerin-1,3-dimethacrylate used was 33.8 mol% of the total amount of monomers.
  • the obtained filler 5 was evaluated for alkali resistance in the same manner as in Example 1. As a result, the amount of carboxyl groups produced was 18.3 ⁇ mol/mL, confirming that Filler 5 has excellent alkali resistance.
  • the obtained filler 5 was evaluated for non-specific adsorption in the same manner as in Example 1.
  • the elution volumes of each sample were 8.692 mL, 9.434 mL, 9.625 mL, 10.236 mL, 10.759 mL, and 12.457 mL, indicating a consistent permutation of sample molecular weight and elution volume, and It was confirmed that specific adsorption was not induced.
  • Example 6 Glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation) 33.2 g, ethylene glycol dimethacrylate (trade name: NK Ester 1G, Shin-Nakamura Chemical Co., Ltd.) 5.9 g, butyl acetate 29 Filler 6 was obtained in the same manner as in Example 3, except that .3 g, 29.3 g of chlorobenzene, and 1.9 g of 2,2'-azobis(2,4-dimethylvaleronitrile) were used as the oil phase.
  • the amount of glycidyl methacrylate used was 88.7 mol % of the total amount of monomers, and the amount of ethylene glycol dimethacrylate used was 11.3 mol % of the total amount of monomers.
  • the obtained filler 6 was evaluated for alkali resistance in the same manner as in Example 1. As a result, the amount of carboxyl groups produced was 12.5 ⁇ mol/mL, and it was confirmed that Filler 6 had excellent alkali resistance.
  • Example 1 the obtained filler 6 was evaluated for non-specific adsorption in the same manner as in Example 1.
  • the elution volumes of each sample were 9.613 mL, 10.427 mL, 10.444 mL, 11.066 mL, 11.582 mL, and 12.575 mL, and the permutation of sample molecular weights and elution volumes was consistent and non-contradictory. It was confirmed that specific adsorption was not induced.
  • Step D of Example 1 was performed on the porous particles (carrier ⁇ 1) obtained in the same manner as in Example 1.
  • the obtained filler 7 was evaluated for alkali resistance in the same manner as in Example 1. As a result, the amount of carboxyl groups formed in Filler 7 was 120.3 ⁇ mol/mL, resulting in poor alkali resistance.
  • Example 2 the obtained filler 7 was evaluated for non-specific adsorption in the same manner as in Example 1.
  • the elution volume of each sample was 8.606 mL, 9.769 mL, 9.9567 mL, 10.703 mL, 11.470 mL, 12.112 mL, consistent with the permutation of sample molecular weight and elution volume, It was confirmed that non-specific adsorption was not induced.
  • Filler 8 was obtained in the same manner as in Example 1, except that 150 g of ethylene glycol was used instead of 1,4-butanediol as the alkylene group-introducing agent.
  • the obtained filler 8 was evaluated for alkali resistance in the same manner as in Example 1. As a result, the amount of carboxyl groups formed in filler 8 was 108.4 ⁇ mol/mL, indicating poor alkali resistance.
  • the obtained filler 8 was evaluated for non-specific adsorption in the same manner as in Example 1.
  • the elution volumes of each sample were 9.708 mL, 9.8946 mL, 10.6452 mL, 11.5374 mL, and 12.1656 mL. Confirmed that it was not induced.
  • the non-specific adsorption evaluation of the obtained filler 9 was performed in the same manner as in Example 1.
  • the elution volumes of the respective samples were 8.590 mL, 10.316 mL, 9.603 mL, 10.484 mL, 13.863 mL, and 12.861 mL, creating a discrepancy in the permutation of sample molecular weight and elution volume. It was confirmed that specific adsorption was induced. Therefore, evaluation of alkali resistance was not performed.
  • the non-specific adsorption evaluation of the obtained filler 10 was performed in the same manner as in Example 1.
  • the elution volumes of the respective samples were 9.991 mL, 10.15 mL, 10.063 mL, 10.691 mL, 12.172 mL, and 11.531 mL, resulting in a discrepancy in the permutation of sample molecular weight and elution volume. It was confirmed that specific adsorption was induced. Therefore, evaluation of alkali resistance was not performed.
  • the obtained filler 11 was evaluated for non-specific adsorption in the same manner as in Example 1.
  • the elution volumes of the respective samples were 8.872 mL, 10.131 mL, 9.82 mL, 10.422 mL, 12.782 mL, and 12.553 mL, creating a discrepancy in the permutation of sample molecular weight and elution volume, and It was confirmed that specific adsorption was induced. Therefore, evaluation of alkali resistance was not performed.
  • Table 1 shows the results of the above examples and comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

アルカリ耐性が高く、非特異吸着が抑制された、サイズ排除クロマトグラフィーに用いる充填剤およびその製造方法を提供する。 グリシジルメタクリレートから誘導される繰り返し単位を60~95mol%と、多官能性モノマーから誘導される繰り返し単位を5~40mol%と、を含有する多孔質有機高分子担体に、 炭素数4~9である、直鎖アルキレン基、シクロアルキレン基、直鎖アルキルシクロアルキレン基から選ばれる少なくとも1種のアルキレン基の一方の末端が、 グリシジルメタクリレートに由来するグリシジル基により結合してなり、 前記アルキレン基の他方の末端は、エーテル結合を介して、ポリオールのいずれか1つの末端と結合していることを特徴とする充填剤。

Description

充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム
 本発明は、タンパク質精製用のサイズ排除クロマトグラフィーの充填剤に関する。さらに詳しくは、アルカリ耐性が高い充填剤に関する。
 分子の大きさの順に分離するサイズ排除クロマトグラフィーは多糖類、ペプチド、タンパク質、DNA、RNAの様な水溶性高分子を分離する際に広く利用されている。サイズ排除クロマトグラフィーは、とりわけタンパク質等の生体高分子の分離、分取においては、生体高分子を穏和な条件で処理できるため、生体高分子の変性が少ない状態で分離、分取できるといった利点がある。分離、分取された生体高分子は生化学反応への応用や食品、製薬、化学等の工業的用途に使用され、近年市場が著しく拡大成長している。
 その需要に対応するため工業スケールに即した大量処理可能な分離、分取用の充填剤が望まれている。特に、今後の市場拡大が見込まれる遺伝子治療薬分野では、ウイルスベクターやウイルス様粒子などの精製プロセスの生産性の大幅改善を目指すために、充填剤の機能改善がさらに望まれるようになっている。特に分子サイズの大きいウイルスベクターやウイルス様粒子の精密分離精製に使用でき、培養液から精製までの一連の工程を通して精密サイズ分離が簡便であることが望まれるようになっている。
 このため充填剤には、分析カラムとは異なる課題・要件である、分離されて出てきたものを回収できる分取効率が良く、たとえば発酵生産物に由来するバイオ医薬品に含まれる不純物や不明成分などの多様な成分を含む場合でもこれらの非特異吸着を抑制でき、さらには高強度のアルカリで洗浄再生を可能にすることが望まれるようになった。
 しかしながら、このような耐アルカリ性を有する充填剤は、いまだ提案されていない。
 なお、本出願人は、国際公開第2018/155241号公報(特許文献1)にて、メタクリレート系モノマーを用いたサイズ排除クロマトグラフィー用充填剤について提案している。特許文献1では、グリシジル基を持った単量体と架橋剤とを重合開始剤の存在下で重合し、得られた共重合体からなる多孔質粒子を糖アルコールで親水化し、その後に残グリシジル基を鉱酸により開環する工程を経た充填剤が開示されているものの、アルカリ耐性についてはより高度なものが求められている。
 また、特許第5315691号公報(特許文献2)には、アルカリ水溶液への耐性が向上したメタアクロリルモノマーのうち特殊な構造を有するモノマーを用いた架橋重合体粒子の表面を親水化処理した充填剤が開示されている。特許文献2で使用されるモノマーは、汎用的なモノマーではないため、容易に簡単に入手することが困難であり、コストが高くなるという問題点があった。
国際公開第2018/155241号公報 特許第5315691号公報
 このように、様々な報告があるが、依然として、アルカリ耐性が高く、分取に適した充填剤が望まれていた。
 本発明は上記に見られる問題点を解決することを課題とする。より特定すれば、本発明の課題は、アルカリ耐性の高いサイズ排除クロマトグラフィー用の充填剤およびその製造方法を提供することにある。
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、グリシジル基を持った単量体と架橋剤との架橋共重合体からなる多孔質粒子にアルキレン基を結合させ、アルキレンのもう一方の末端にポリオールが結合した構造を有する充填剤は、アルカリ耐性が高いことを見出し、本発明を成すに至った。すなわち本発明は以下の事項に関する。
[1]グリシジルメタクリレートから誘導される繰り返し単位を60~95mol%と、多官能性モノマーから誘導される繰り返し単位を5~40mol%と、を含有する多孔質有機高分子担体に、
 炭素数4~9である、直鎖アルキレン基、シクロアルキレン基、直鎖アルキルシクロアルキレン基から選ばれる少なくとも1種のアルキレン基の一方の末端が、
 グリシジルメタクリレートに由来するグリシジル基により結合してなり、
 前記アルキレン基の他方の末端は、エーテル結合を介して、ポリオールのいずれか1つの末端と結合していることを特徴とする充填剤。
[2]前記多官能性モノマーが、2つ以上の(メタ)アクリロイル基を含有する(メタ)アクリロイル系モノマーである、[1]に記載の充填剤。
[3]前記多官能性モノマーが、エチレングリコールジメタクリレート、グリセリン-1,3-ジメタクリレートのいずれかを少なくとも含む、[1]又は[2]に記載の充填剤。
[4]前記アルキレン基が、ブチレン、シクロヘキサン-1,4-ジメチレンのいずれかを含む、[1]~[3]のいずれか1項に記載の充填剤。
[5]前記ポリオールが、ポリオールにより開環したグリシジル基に由来するエーテル結合を介して結合してなる、[1]~[4]のいずれか1項に記載の充填剤。
[6]前記ポリオールが、エチレングリコール、ポリエチレングリコール、ソルビトールのいずれかを含む、[1]~[4]のいずれか1項に記載の充填剤。
[7]サイズ排除クロマトグラフィー用である[1]~[6]のいずれか1項に記載の充填剤。
[8][1]~[7]のいずれか1項に記載の充填剤の製造方法であり、
 グリシジルメタクリレートと多官能性モノマーとを含む原料モノマーを、希釈剤および重合開始剤の存在下で重合して、多孔質有機高分子担体である担体αを得る工程(A)と、
 前記担体αのグリシジルメタクリレートに由来するグリシジル基を、炭素数4~9である直鎖、あるいは脂肪族環を含むアルキレン基を構造に含むジオール化合物の一方の水酸基と反応させて、前記アルキレン基を構造に含むジオール化合物の末端が結合された担体βを得る工程(B)と、
 前記担体βに結合された前記アルキレン基を構造に含むジオール化合物の他方の水酸基とエピクロロヒドリンを反応させて前記担体βにグリシジル基が導入された担体γを得る工程(C)と、
 前記担体γのグリシジル基とポリオールの水酸基を、水存在下に反応させ、ポリオールのいずれか1つの末端がエーテル結合として結合された担体δを得る工程(D)とを有する。
[9][1]~[7]のいずれか1項に記載の充填剤が、液体クロマトグラフィー用筐体に充填されてなる、サイズ排除クロマトグラフィー用カラム。
 本発明によれば、アルカリ耐性の高く、分取に適した充填剤が得られる。このことにより分離処理の高速化が可能である。さらに、該充填剤は、安価な原料、簡便な工程で製造することが可能であり、大量の充填剤を使用する工業用スケールにおいても適用が容易である。
 以下、本発明の実施形態を詳細に説明するが、以下の説明において例示される材料、寸法等は一例であって、本実施形態はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 なお、充填剤とは、それ単独で充填剤として使用可能なものであるとともに、表面を目的に応じて改質して使用することも可能のものも含む。
 また、本明細書において、「(メタ)アクリル」は、アクリル及びメタクリルを意味し、「(メタ)アクリロイル」も同様である。
[充填剤]
 本実施形態の充填剤は、以下に示す、多孔質有機高分子担体に、特定の骨格が結合した構造を有する。
(多孔質有機高分子担体)
 多孔質有機高分子担体(以後、担体αと略す)は、グリシジルメタクリレートから誘導される繰り返し単位を60~95mol%と、多官能性モノマーから誘導される繰り返し単位を5~40mol%と、を含有する。好ましくは、グリシジルメタクリレートから誘導される繰り返し単位を65~95mol%と、多官能性モノマーから誘導される繰り返し単位を5~35mol%、さらに好ましくは、グリシジルメタクリレートから誘導される繰り返し単位を75~92mol%と、多官能性モノマーから誘導される繰り返し単位を8~25mol%の比率で含有する。多官能性モノマーから誘導される繰り返し単位の比率が低い場合に、最終的な充填剤は、背圧が高くなり使用に適さないことがあり、多官能性モノマーから融合される繰り返し単位の比率が高い場合に非特異吸着を生じて、目的の分取ができないことがある。なお、グリシジルアクリレートを使用しても本実施形態の担体αを得ることは可能である。
 多官能性モノマーは分子内に2つ以上のエチレン性二重結合を有する化合物である。多官能性モノマーとしては、分子内に2つ以上の(メタ)アクリロイル基を有するものが好ましい。具体的には、アルカンジオールジ(メタ)アクリレート(アルカンの炭素数は1~12)、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられ、その他、多官能ウレタン(メタ)アクリレート等も挙げられる。これら化合物は1種のみ用いても2種以上を併用してもよい。
 好ましくは、エチレングリコールジメタクリレート、グリセリン-1,3-ジメタクリレートのいずれか1種を少なくとも含む。多官能性モノマーの全量に対し50mol%以上がエチレングリコールジメタクリレート、グリセリン-1,3-ジメタクリレートであればよく、好ましくは80mol%以上であり、細孔形成などの観点で、全量がエチレングリコールジメタクリレートおよび/またはグリセリン-1,3-ジメタクリレートであることがさらに好ましい。
 前記共重合体は、モノマー単位として、前記グリシジルメタクリレートおよび多官能性モノマーを合計で95mol%以上含めば、多孔質粒子の性質を大幅に変化させない範囲で、他のモノマー単位を含んでもよい。他のモノマーとして、グリシジル基を持つ単量体としては、3、4-エポキシシクロヘキシルメチルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等の他、メチル(メタ)アクリレート、エチル(メタ)アクリレートなども使用できる。
 共重合体の架橋度は、5mol%~40mol%、好ましくは5mol%~35mol%であり、より好ましくは8~25mol%である。
  前記架橋度は、
    (多官能性モノマーの合計モル数/全モノマーの合計モル数)×100
      =  架橋度(mol%)
で表す。
 架橋度が低い場合に、最終的な充填剤は、サイズ排除クロマトグラフィー用カラムの背圧が高くなり使用に適さないことがあり、架橋度が高いと非特異吸着を生じて、目的の分取ができないことがある。
(表面構造)
 本実施形態では、前記担体αに炭素数4~9である、直鎖アルキレン基、シクロアルキレン基、直鎖アルキルシクロアルキレン基、シクロアルキルジアルキレン基から選ばれる少なくなくとも1種のアルキレン基の一方の末端が結合している。前記アルキレン基の一方の末端は、担体αに含まれるグリシジルメタクリレートに由来するグリシジル基が開環反応して生成したエーテル結合を介して、担体αと結合している。また、前記アルキレン基の他方の末端は、エーテル結合を介して、直接又は間接的にポリオールと結合している。エーテル結合は、ポリオール由来のものでも、たとえばエピクロロヒドリンなどのポリオールを導入する際に使用したエポキシ化合物由来のものもいずれも含まれる。すなわち、担体表面に、アルキレン基に由来した疎水層を形成する疎水骨格を有し、更に疎水層表面にポリオールに由来する親水層を形成する親水性骨格を有する構造である。このような構造は、担体の乾燥質量に対して、500μmol/g~2000μmol/g、好ましくは700μmol/g~1800μmol/gの密度で導入されることが好ましい。導入密度は、グリシジル基の量や、ポリオールの量、さらに後述する製造方法において、途中で導入されるグリシジル基の量などから、測定可能であり、これらを調整することで、導入密度を調整することも可能である。
 アルキレン基は、炭素数4~9である、直鎖アルキルあるいはシクロアルキル、または直鎖アルキルシクロアルキル(アルキルシクロアルキル、シクロジアルキル)などのアルキルから、分子鎖が最も長い鎖の両末端の炭化水素、シクロアルキルの場合は環状構造の最も遠い位置の炭化水素から、それぞれ1個ずつ水素が外れた2価基である。また、直鎖や脂肪族環に、側鎖としてアルキル基を有していてもよい。
 アルキレン基として具体的には、ブチレン、ヘキシレン、ヘプチレン、1,4-シクロヘキシレン、1-メチレン-4-シクロヘキシル、シクロヘキサン-1,4-ジメチレンなどが挙げられる。炭素数が少ないとアルカリ耐性が不十分となることがあり、多すぎると、非特異吸着を生じる場合があり、目的の分取ができないことがある。前記アルキレン基が、ブチレン基、シクロヘキサン-1,4-ジメチレン基の少なくともいずれを含むことが、アルカリ耐性および非特異吸着抑制などがバランスよく優れ、目的の分取効率がよいので好ましい。
 ポリオールとしては、水酸基を2個以上含有し、アルカリに安定であり、十分な親水性を有するものが好ましく、たとえば、ポリエーテルポリオール、ポリラクトンポリオールなどである。当該ポリオールは、エーテル結合を介して、直接又は間接的に前記疎水骨格を構成するアルキレン基と結合している。アルキレン基と結合したポリオールには少なくとも1個の水酸基が残っている。疎水骨格を構成するアルキレン基の導入原料としてジオール化合物を用いた場合、ジオール化合物の2個の水酸基は、両方とも反応によりエーテル結合酸素へ変化しており、少なくとも1個の水酸基が残っているポリオール由来の構成部とは区別される。
 ポリオールの具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール等の飽和及び不飽和の各種公知の低分子グリコール類、ポリエチレンポリオール、ポリエチレングリコール等のポリアルキレングリコール等が挙げられる。さらにグリセリンのようなトリトール類;エリスリトール、トレイトールのようなテトリトール類;アラビニトール、キシリトールのようなペンチトール類;ソルビトール、マンニトールのようなヘキシトール類;ボレミトール、ペルセイトールのようなヘプチトール類などの糖アルコールを用いることも可能である。これらのポリオール類は、エーテル結合を介して結合したときに、前記した炭素数4~9のアルキレン基とは、鎖長や水酸基を有する構造などの点で区別される。
 ポリオールの平均分子量は特に制限されないが、5000以下であれば特に制限されない。ポリオールの平均分子量が5000以上である場合、担体αの細孔内が閉塞され、目的の分取ができないことがある。
 本発明で使用される、ポリオール類は、オクタノール水分配係数(logP)が、-1.2以下であるポリオールであるものが望ましい。オクタノール水分配係数(logP)は、たとえばエチレングリコール(-1.36)、トリエチレングリコール(-1.98)、ポリエチレングリコール(-1.98より低い)、ソルビトール(-2.20)、グリセリン(-1.76)、イソプロピレングリコール(-1.07)、1,4-ブタンジオール(-0.88)となる。
 また、ポリオール類は、エステル、チオエステル、カーボネート、チオカーボネート、カルバメート、チオカルバメート、シロキサンなどのアルカリによる加水分解を誘発する構造を有さないものが、アルカリに安定であるという点で望ましい。
 ポリオール類の重量平均分子量は、特に制限されないものの、親水性という点で50以上であればよく、導入の容易さなどの点で、200以下であればよい。
 上述したポリオールの中でも特に、導入が容易なエチレングリコール、ポリエチレングリコール、エリスリトール、ソルビトール、ボレミトールが好ましく、安価での入手が可能なエチレングリコール、ポリエチレングリコール、ソルビトールがより好ましい。
 前記ポリオールは、エーテル結合を介して、前記アルキレン基に結合していればよく、直接結合することも可能であるが、後述のようにグリシジル基を導入する際に使用したエピクロロヒドリンによる構造を介して間接的に前記アルキレン基に結合してもよい。
 ポリオールの一例をポリエチレングリコールにしたときに、本発明の充填剤は、模式的に以下の化学式で表されるが、本発明はこの一例に特に限定されない。
Figure JPOXMLDOC01-appb-C000001
(充填剤の製造方法)
 本実施形態の充填剤は、以下の工程(A)~(D)により製造することができる。
 グリシジルメタクリレートと多官能性モノマーとを含む原料モノマーを、希釈剤および重合開始剤の存在下で重合して、多孔質有機高分子担体である担体αを得る工程(A)と、
 前記担体αのグリシジルメタクリレートに由来するグリシジル基を、炭素数4~9である直鎖、あるいは脂肪族環を含むアルキレン基を構造に含むジオール化合物の一方の水酸基と反応させて、前記アルキレン基を構造に含むジオール化合物の末端が結合された担体βを得る工程(B)と、
 前記担体βに結合された前記アルキレン基を構造に含むジオール化合物の他方の水酸基とエピクロロヒドリンを反応させて前記担体βにグリシジル基が導入された担体γを得る工程(C)と、
 前記担体γのグリシジル基とポリオールの水酸基を、水存在下に反応させ、ポリオールの一方の末端がエーテル結合として結合された担体δを得る工程(D)とを有する。
[工程(A)]
 グリシジルメタクリレートおよび多官能性をモノマー単位とする共重合体からな担体αを調製する。担体αはこれらの単量体を希釈剤および重合開始剤の存在下で共重合することによって得られる。これらの多孔質粒子は、特開2007/170907、WO2006/132333等の記載の方法を参考に製造することができる。
 前記原料モノマー中のグリシジルメタクリレート濃度は、60~95mol%であり、好ましくは70~95mol%であることが望ましい。前記原料モノマー中の前記多官能性モノマー濃度は、5mol%~40mol%であり、好ましくは5mol%~30mol%であることが望ましい。
 また、前記したように、他の単量体成分を含んでいてもよい。
 担体αに細孔を導入するため、単量体混合物に希釈剤を添加し重合する。希釈剤とは、単量体混合物に溶解するが重合反応には不活性で、さらに生成した共重合体を溶解しない性質の有機溶媒である。重合終了後、希釈剤を洗浄等により取り除くことで希釈剤部分が空洞になり担体α粒子中に多孔性細孔が形成される。
 希釈剤としては、例えばトルエン、キシレン、ジエチルベンゼン、ドデシルベンゼン、クロロベンゼンのような芳香族系炭化水素類;ヘキサン、ヘプタン、ペンタン、オクタン、ノナン、デカンのような飽和炭化水素類;イソアミルアルコール、ヘキシルアルコール、へプチルアルコール、オクチルアルコール、ノニルアルコールのようなアルコール類;ジクロルメタン、ジクロルエタン、トリクロルエタンのような脂肪族ハロゲン化炭化水素類;酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、コハク酸ジエチル、安息香酸メチル、安息香酸エチル、安息香酸プロピルのような脂肪族あるいは芳香族エステルなどを用いることができる。これらの希釈剤は単独でまたは2種類以上混合して使用することができる。
 その希釈剤の添加量は充填剤の排除限界分子量や細孔容積の体積%(充填剤粒子の全容積に対する細孔容積の割合を示す)に影響を与える。このため、適宜その量を調節して加えられる。これらの希釈剤の添加量は仕込み時温度での原料モノマーの合計容積の0.8倍~4.0倍、好ましくは1.0~3.0倍の容積で使用する。
 重合時に使用される重合開始剤は、ラジカルを発生する公知のラジカル重合開始剤であれば特に限定されない。例えば、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(イソ酪酸メチル)、 2,2'-アゾビス(2,4-ジメチルバレロニトリル)のようなアゾ系開始剤を挙げることができる。このうち、化学構造の親和性から、2,2'-アゾビス(2,4-ジメチルバレロニトリル)を用いることが望ましい。重合開始剤の濃度に特に限定はないが単量体の総量100質量部に対して0.1~5質量部が好ましい。
 単量体混合物、希釈剤、重合開始剤によって、単量体を含む油相が準備される。油相は、適当な分散安定剤を含んだ水性媒体中で撹拌懸濁させ、油滴の状態にする。その状態で重合(懸濁重合)することにより、共重合体が適当な粒径を持つ多孔質粒子として生成される。油滴の作製方法には、上記の撹拌によるものの他に、希釈剤を含む単量体溶媒を多孔質膜、あるいは石英基板に形成されたマイクロ流路を通じて水性媒体中に滴下する方法を適用することができる。
 水性媒体に含まれる分散安定剤としては公知のものが使用できる。通常、ゼラチン、ポリアクリル酸ナトリウム、ポリビニルアルコールなどの水溶性高分子化合物が用いられる。一般には、ポリビニルアルコールが用いられる。分散安定剤の濃度は、水性媒体に対して0.1~5質量%が好ましい。
 水性媒体は、水のほかに塩類その他の水溶性成分を含んでもよい。塩類としては、塩化ナトリウム、塩化カルシウムなど一般に用いられるものが挙げられる。使用する塩類により溶解度に違いがあるため、濃度は一概に規定できないが、例えば塩化ナトリウムでは0.1~15質量%、塩化カルシウムでは1~40質量%溶解して使用することも可能である。塩類は塩析用に添加される。
 懸濁重合反応は窒素ガス置換後、通常、撹拌下で40~100℃に加熱し、大気圧下で5~16時間反応を行う。このときそれぞれの油滴に含まれる単量体は、希釈剤を含んだ状態で重合し、網状に重合体が成長するため、あとで希釈剤を除去することにより多孔質粒子が得られる。反応後、多孔質粒子はろ過等によって水性媒体から容易に分離することができる。さらに、アセトン、メタノールのような溶媒で洗浄し、希釈剤の除去を行う。乾燥後、得られたグリシジル基を有する多孔質粒子は、篩や風力分級装置によって分級される。
 こうして工程(A)で得られる担体αはグリシジルメタクリレートに由来するグリシジル基を有する多孔質粒子であり、前記したような平均粒径および細孔を有する。
[工程(B)]
 つぎに担体αのグリシジルメタクリレートに由来するグリシジル基を、炭素数4~9である直鎖、あるいは脂肪族環を含むアルキレン基を構造に含むジオール化合物と反応させて多孔質有機高分子からなる担体βを得る。多孔質粒子の表面に存在するグリシジル基が開環し、ジオール化合物の末端水酸基と反応して、末端水酸基に由来するエーテル結合を介して、ジオール化合物が多孔質粒子に結合する。このジオール化合物のアルキレン部分が最終的に充填剤の疎水部を構成する。
 具体的には、触媒を含んだ溶液の存在下、ジオール化合物と担体αとを反応させる。ジオール化合物としては、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,4-シクロヘキサンジオール、4-(ヒドロキシメチル)シクロヘキサノール、1,4-シクロヘキサンジメタノールなどが挙げられる。炭素数が前記範囲にあるとアルカリ耐性が高く、しかも疎水性が強くなりすぎることもないため非特異吸着の誘発を抑制できる。
 ジオール化合物の使用量としては、担体α100質量部に対して100質量部から2000質量部とすることが好ましい。
 また、ジオール化合物の使用量としては、担体αに含まれるグリシジルメタクリレートに対し、100mol%~2000mol%とすることが好ましい。
 ジオール化合物がいずれも前記範囲にあれば、アルカリ耐性および非特異吸着抑制などがバランスよく優れ、目的の分取効率がよいので充填剤を得ることができる。
 担体αに含まれるグリシジルメタクリレートが、80mol%以上、好ましくは90mol%以上がジオール化合物と反応するように、ジオール化合物の使用量や反応条件を調整することが好ましい。
 触媒としては、三弗化ホウ素ジエチルエーテル錯体、ホウ弗化亜鉛、トリメチルシリルトリフルオロメタンスルホン酸、硫酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸などを使用できる。触媒は、担体α100質量部に対して0.1質量部から100質量部であることが好ましく、0.5質量部から20質量部とすることがより好ましい。この範囲にあればジオール化合物の導入が可能となり、多孔質粒子のエステル基などが反応することを防ぐことができる。
 得られた担体βはジメチルスルホキシドなどで洗浄することにより、余分なジオール化合物、触媒などが取り除かれる。
[工程(C)]
 次に、エピクロロヒドリンを用いて前記担体βにグリシジル基を導入し、担体γを得る。すなわち、担体βに導入されているジオール化合物の未反応である片方の水酸基の水素原子とエピクロロヒドリンの塩素原子が脱離反応し、担体βに、エピクロロヒドリンの構造に由来する-OCH2CH(OH)CH2-を介してグリシジル基が導入される。
 なおエピクロロヒドリン以外にも、グリシジル基含有化合物であれば利用でき、具体的には、1,4-ブタンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテルが挙げられる。このうち、導入が容易であるといった理由でエピクロロヒドリンが好ましく使用される。
 エピクロロヒドリンなどのグリシジル基含有化合物の導入は、無溶媒またはジメチルスルホキシド等の溶媒中で触媒存在下に、前記担体βの質量に対して100質量部~300質量部のグリシジル基含有化合物を担体βとともに添加して均一に撹拌する反応により行われる。これにより、担体βに結合しているジオール化合物の担体βと結合していない方の末端に、グリシジル基が導入される。
 エピクロロヒドリンなどのグリシジル基含有化合物は、担体βに導入されているジオール化合物の未反応である片方の水酸基の量に対し、過剰であればよく、グリシジルメタクリレートに由来するグリシジル基に、アルキレン基が100%と導入されたと仮定し、アルキレン基末端水酸基(mol)に対して、100mol%~1000mol%の範囲にあることが好ましい。
 触媒としては、アルカリ金属水酸化物が使用され、たとえば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を例示することができる。その使用量としては、担体β100質量部に対して1質量部から100質量部であることが好ましく、さらに5質量部から50質量部とすることがより好ましい。
[工程(D)]
 グリシジル基が導入された担体γと、ポリオールとを、水存在下に反応させ、ポリオールのいずれか1つの末端を固定化して担体δを得る。このとき必要に応じて、触媒を用いてもよく、前記したアルカリ金属水酸化物を使用することができる。
 ポリオール化合物のいずれか1つの末端水酸基とグリシジル基とが反応して、エーテル構造を介して、ポリオール化合物の末端が、担体γ表面に導入される。ポリオール化合物は複数の水酸基を有しているので、少なくとも一つの水酸基は残留する。工程(D)でも溶媒中に担体γとポリオール化合物を共存させたところに、アルカリ金属水酸化物を添加し、加熱撹拌することにより反応を行うことができる。水は乾燥担体γ質量に対して1倍から3倍質量であればよい。
 ポリオール化合物の使用量としては、担体γ100質量部に対して10質量部から1500質量部とすることが好ましい。ポリオール化合物の量が少ないと、導入量が少なく親水性が不十分となる傾向があり、また多すぎても溶解に必要な溶媒量が増えることがある。
 前記担体γに導入されたグリシジル基(mol)に対して、ポリオール化合物の使用量は100mol%~20,000mol%の範囲にあることが好ましい。ポリオール化合物の量が少ないと、導入量が少なく親水性が不十分となる傾向があり、また多すぎても溶解に必要な溶媒量が増えることがある。
 得られた担体δ、すなわち本実施形態の充填剤は水で洗浄することにより、余分なポリオール化合物、アルカリ金属水酸化物が取り除かれる。
 また得られた充填剤中には未反応のグリシジル基が残存していることがある。グリシジル基が残存すると充填剤の疎水性が上がり、例えばタンパク質のような疎水性の高い水溶性化合物を疎水的吸着する懸念がある。そのため親水性をより高めるために残存するグリシジル基を鉱酸で開環しておくことが望ましい。
 鉱酸としては、硫酸、硝酸、塩酸等を例示することができる。このうち、硫酸が特に好ましい。使用される鉱酸の濃度は、0.01Mから1.0M程度であれば良く、0.1から0.5M程度とすることが特に好ましい。鉱酸が0.01M以上であれば、開環が十分に行われ、また鉱酸が1.0M以下であれば、担体中のエステル基等が加水分解されイオン性の官能基が生成することもない。得られた粒子は水で洗浄することにより、余分な鉱酸が容易に取り除かれる。
(充填剤の特性)
 充填剤の平均粒径は、10μm以上であれば特に制限されないが、カラム充填性などの観点から、15~100μmの範囲にあることが好ましい。ここで、平均粒径は、体積換算平均粒径で表される。体積換算平均粒径とは、画像解析式粒度分布測定装置によって得られた値である。粒子の体積換算平均粒径に画像解析式粒度分布測定装置を用いる場合、2000個以上の架橋重合体粒子を画像解析式粒度分布測定装置で撮像して得られた二次元の粒子像(静止画像が好ましい)から各粒子の円相当径(粒子像の投影面積と同じ面積を持つ円の直径)を得て、その円相当径から各粒子の体積を算出して、体積を基準に平均化した粒子径である。このとき、各粒子は、上記の円相当径と同一の直径を有する球体とみなす。画像解析式粒度分布測定装置としては、例えば、フロー式粒子像分析装置(商品名:FPIA-3000、シスメックス(株)製)を用いることができる。なお充填剤の平均粒径は、担体製造時の重合条件によって調整可能である。
 充填剤は細孔を有する。細孔の大きさは目的に応じて適宜選択される。
 本実施形態の充填剤は、好適な親水性および排除限界分子量を有する。親水性や排除限界分子量は希釈剤の種類、量、あるいはグリシジルメタクリレートおよび多官能性モノマーの比率によって調整可能である。充填剤の平均粒径、細孔径は、表面構造によって変化しない。
 タンパク質の精製に好適な、排除限界分子量は1,000,000~100,000,000より好ましくは50,000,000~20,000,000である。この範囲にあると、タンパク質の分離が効率的に行うことが可能である。
 排除限界分子量は、充填剤を充填したカラムを高速液体クロマトグラフに接続し、イオン交換水を移動相として1.0mL毎分の流速で、種々の分子量の標準物質をカラムに注入し、その溶出容量を用いて、一般に知られた方法により求めることが可能である。本実施形態では、検出には示差屈折率検出器(商品名:RI-201H、昭和電工社製)を使用し、標準物質にはプルランスタンダード(商品名:Shodex(登録商標) STANDARD  P-82、昭和電工社製)を使用する。
 なお、巨大なタンパク質をサイズ排除クロマトグラフィーで分離するためには排除限界分子量はタンパク質の分子量に応じて、適宜選択される。例えば分子量約90万のIgMと分子量約15万のIgGといった巨大なタンパク質を分離する際、排除限界が100万未満であるとIgMが排除限界領域に入ってしまい分離が不可能となる。
 このため、この充填剤を液体クロマトグラフィー用筐体に充填することにより高性能のサイズ排除クロマトグラフィー用カラムを得ることができ、さらにこのサイズ排除クロマトグラフィー用カラムを備えたクロマトグラフィー装置を得ることができる。また、このサイズ排除クロマトグラフィー用カラムを用いることにより、水系溶離液で生体高分子を精度よく分離し、さらに分取することができる、生体高分子の分離方法および分取方法を提供することができる。
 また、耐アルカリ性が高いので、洗浄再利用が可能であり、長期間連続使用が可能となる。
 以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
[実施例1]
<工程(A):グリシジル基を有する多孔質粒子の合成>
 希釈剤であるコハク酸ジエチル58.7gに、グリシジルメタクリレート(商品名:ブレンマーG(登録商標) 日油(株)製)27.8g、グリセリン-1,3-ジメタクリレート(商品名:NKエステル701、新中村化学工業(株))11.3g、2,2'-アゾビス(2,4-ジメチルバレロニトリル)1.9gを溶解し、30分間窒素ガスをバブリングし、油相を準備した。
 次に、油相とは別に、イオン交換水480gに、分散安定剤であるPVA-224((株)クラレ製、けん化度87.0%-89.0%のポリビニルアルコール)10.0gと、塩析剤である塩化ナトリウム10.0gとを溶解させた水相を準備した。
 水相と油相をセパラブルフラスコに移し、半月型撹拌羽を取り付けた撹拌棒で430rpmの回転速度で20分間分散させた後、反応器内を窒素で置換し、60℃で16時間反応した。その後、得られた重合物をグラスフィルター上に移し、50~80℃程度の温水、変性アルコール、水の順番で十分に洗浄し、多孔質粒子(担体α1)を100.4g得た。グリシジルメタクリレートの使用量は、単量体総量に対し79.8mol%、グリセリン-1,3-ジメタクリレートの使用量は、単量体総量に対し20.2mol%であった。
<工程(B):アルキレン基の導入反応>
 上記担体α1を98gグラスフィルター上に測りとり、ジエチレングリコールジメチルエーテルで十分に洗浄した。洗浄後、担体α1をセパラブルフラスコに移し、ジエチレングリコールジメチルエーテル150g、1,4-ブタンジオール150g(グリシジルメタクリレートに対し920mol%)を1Lセパラブルフラスコに移し撹拌分散した。その後、三弗化ホウ素ジエチルエーテル錯体1.5mlを加え200rpmにて撹拌しながら80℃へ昇温して4時間反応を行った。冷却後、アルキレン基を構造に含むジオール化合物が結合された多孔質粒子(担体β1)をろ別した後、イオン交換水1Lで洗浄し、担体β1を152g得た。反応の進行は、以下の手順により確認した。アルキレン基を導入した乾燥多孔質粒子の一部を、臭化カリウムと混合し、圧力をかけペレット化した後にFT-IR(商品名:Nicolet(登録商標) iS10、サーモサイエンティフィック(株)製)で測定し、赤外吸収スペクトルにおけるグリシジル基による908cm-1の吸光度のピーク高さを確認した。その結果、FT-IRによる908cm-1の吸光度ピークは観測されなかった。
<工程(C):グリシジル基の導入反応>
 担体β1を150gグラスフィルター上に測りとり、ジメチルスルホキシドで十分に洗浄した。洗浄後、担体β1をセパラブルフラスコに移し、ジメチルスルホキシド262.5gとエピクロロヒドリン150gとを加え、室温で撹拌し、さらに30%水酸化ナトリウム水溶液(関東化学(株)製)37.5mlを加え、30℃に加熱し、6時間撹拌した。反応終了後、多孔質粒子をグラスフィルター上に移し、水、アセトン、水の順番で十分に洗浄し、グリシジル基が導入された多孔質粒子(担体γ1)を172g得た。
 得られた担体γ1のグリシジル基の導入密度を、以下の手順により測定した。
 担体γ1を5.0g採取して、乾燥質量を求めた結果、1.47gであった。次に、同じ量の担体γ1を、セパラブルフラスコに測りとり、水40gに分散させ、室温で撹拌しながらジエチルアミン16mLを加えた後、50℃に加熱し、4時間撹拌した。反応終了後、反応物をグラスフィルター上に移し、水で十分に洗浄し、ジエチルアミンの導入された多孔質粒子Aを得た。
 得られた多孔質粒子Aをビーカーに移し、0.5mol/L塩化カリウム水溶液150mLに分散させ、pH4.0となった時点を中和点として0.1mol/L塩酸で滴定した。このことにより、ジエチルアミンの導入された多孔質粒子1に導入されたジエチルアミンの量を算出し、以下に示す式により、担体γ1のグリシジル基の密度を算出した。その結果、グリシジル基の密度は880μmol/gであった。
 グリシジル基の密度(μmol/g)={0.1×中和点での塩酸容積(μL)/グリシジル基が導入された多孔質粒子の乾燥質量(g)}
<工程(D):ポリオールの導入反応>
 担体γ1を150g、水600mL、D-ソルビトール(logP=-2.20、関東化学(株)製)1000g(グリシジル基に対して13000mol%)を3Lセパラブルフラスコに移し撹拌分散した。その後、水酸化カリウム10gを加え200rpmにて撹拌しながら60℃へ昇温して15時間反応を行った。冷却後、反応物をろ別した後、水で十分に洗浄し、ポリオールの導入された多孔質粒子(担体δ1)152gを得た。得られた担体δ1を篩にて16~37μmに分級し、140.5gの充填剤1を得た。
<耐アルカリ性評価>
 耐アルカリ性の評価は、以下の手順により、水酸化ナトリウムの加水分解によるカルボキシ基生成量を算出することで行った。
 まず、充填剤4gを0.5mol/L塩化カリウム水溶液150mLに分散させ、pH7.0となった時点を中和点として0.1mol/L水酸化ナトリウム水溶液で滴定した。このことから、以下の式により、充填剤に含まれている加水分解前のカルボキシ基の量を算出した。
カルボキシ基の量(μmol/mL)=0.1×中和時点での水酸化ナトリウム水溶液容積(μL)/充填剤の見かけ容積(mL)
 ここで、充填剤の見かけ容積は、充填剤4gを水に分散させスラリー液を調製し、メスシリンダーにスラリー液を移し替えた後、十分な時間静置させた後に測定された充填剤相の容積である。
 続いて、充填剤4gをセパラブルフラスコに測り取り、5mol/L水酸化ナトリウム水溶液20mLを加え、200rpmにて攪拌しながら50℃で20時間、処理を行った。冷却後、充填剤を濾別した後、0.1mol/L HCl水溶液、水の順で洗浄し、得られた充填剤に含まれているカルボキシ基量を、先ほどと同様の手法により算出した。5mol/L水酸化ナトリウム水溶液と反応させる前後でのカルボキシ基の量の差より、5mol/L水酸化ナトリウム水溶液との反応によるカルボキシ基生成量を算出した。その結果、カルボキシ基生成量は21μmol/mLであった。
 なお、カルボキシ基生成量が40μmol/mL以下であれば、アルカリ耐性は高いものと評価する。
<非特異吸着評価>
 得られた充填剤を8mm内径、300mm長のステンレスカラム((株)杉山商事製)に平衡スラリー法で充填した。得られたカラムを用いて、以下に示す方法により、非特異吸着試験を行った。
 前記充填剤を充填したカラムを島津製作所HPLCシステム(送液ポンプ(商品名:LC-10AT、(株)島津製作所製)、オートサンプラ(商品名:SIL-10AF、(株)島津製作所製)、フォトダイオードアレイ検出器(商品名:SPD-M10A、(株)島津製作所製))に接続して、50mmol/Lリン酸ナトリウム緩衝水溶液を移動相として0.6mL/分の流速で通水した。溶媒として移動相と同じリン酸ナトリウム水溶液を用いて、0.7mg/mLのThyroglobulin(Mw6.7×105)、0.6mg/mLのγ-globurin(Mw1.6×105)、0.96mg/mLのBSA(Mw6.65×104)、0.7mg/mLのribonuclease(Mw1.3×104)、0.4mg/mLのAprotinin(Mw6.5×103)、0.02mg/mLのuridine(Mw 244)(以上、メルク・シグマアルドリッチ製)の各サンプル溶液を作製し、それぞれオートサンプラから10μL注入する。波長280nmのフォトダイオードアレイ検出器を用いて観測されたそれぞれの溶出時間を比較し、溶出容量の順列と、分子量の大きさの順列に矛盾がないことを確認する。
 その結果、充填剤1を充填したカラムからのそれぞれのサンプルの溶出容量は8.713mL、9.691mL、9.743mL、10.396mL、11.053mL、11.645mLであり、サンプルの分子量と、溶出容量の順列に矛盾がなく、非特異吸着が誘発されていないことを確認した。 なおサンプルの分子量と溶出容量の順序に矛盾がない場合は、非特異吸着がなく、表1にて、〇と表記し、矛盾がある場合は、非特異吸着が誘発されているので×と表記した。
[実施例2]
 実施例1と同様にして多孔質粒子(担体α1)を得た後、以下のようにして充填剤2を得た。
 上記担体α1を98gグラスフィルター上に測りとり、ジエチレングリコールジメチルエーテルで十分に洗浄した。洗浄後、多孔質粒子1をセパラブルフラスコに移し、ジエチレングリコールジメチルエーテル150g、1,4-シクロヘキサンジメタノール150g(グリシジル基に対し580mol%)を1Lセパラブルフラスコに移し撹拌分散した。その後、三弗化ホウ素ジエチルエーテル錯体1.5mlを加え200rpmにて撹拌しながら80℃へ昇温して4時間反応を行った。冷却後、得られたアルキレン基を構造に含むジオール化合物が結合された多孔質粒子(担体β2)をろ別した後、イオン交換水1Lで洗浄し、担体β2を165g得た。反応の進行は、以下の手順により確認した。アルキレン基を導入した乾燥多孔質粒子の一部を、臭化カリウムと混合し、圧力をかけペレット化した後にFT-IR(商品名:Nicolet(登録商標) iS10、サーモサイエンティフィック(株)製)で測定し、赤外吸収スペクトルにおけるグリシジル基による908cm-1の吸光度のピーク高さを確認した。その結果、FT-IRによる908cm-1の吸光度ピークは観測されなかった。
<工程(C):グリシジル基の導入反応>
 担体β2を150gグラスフィルター上に測りとり、ジメチルスルホキシドで十分に洗浄した。洗浄後、担体β2をセパラブルフラスコに移し、ジメチルスルホキシド262.5gとエピクロロヒドリン150gとを加え、室温で撹拌し、さらに30%水酸化ナトリウム水溶液(関東化学(株)製)37.5mlを加え、30℃に加熱し、6時間撹拌した。反応終了後、多孔質粒子をグラスフィルター上に移し、水、アセトン、水の順番で十分に洗浄し、グリシジル基が導入された多孔質粒子(担体γ2)を180g得た。
 得られた担体γ2のグリシジル基の導入密度を、実施例1と同様に測定した。その結果、グリシジル基の密度は900μmol/gであった。
<工程(D):ポリオールの導入反応>
 担体γ2を150gグラスフィルター上に測りとり、ジエチレングリコールジメチルエーテルで十分に洗浄した。洗浄後、多孔質粒子をセパラブルフラスコに移し、ジエチレングリコールジメチルエーテル150g、エチレングリコール(logP=-1.36)150g(グリシジル基に対し5760mol%)を1Lセパラブルフラスコに移し撹拌分散した。その後、三弗化ホウ素ジエチルエーテル錯体1.5mLを加え200rpmにて撹拌しながら80℃へ昇温して4時間反応を行った。冷却後、反応物をろ別した後、水で十分に洗浄し、ポリオールが導入された多孔質粒子(担体δ2)を152g得た。担体δ2を篩にて16~37μmに分級し、140.5gの充填剤2を得た。
 得られた充填剤2の耐アルカリ性評価を実施例1と同様にして行った。その結果、カルボキシ基生成量は15.2μmol/mLであり、充填剤2は優れた耐アルカリ性を有することを確認した。
 さらに、得られた充填剤2の非特異吸着評価を実施例1と同様にして行った。その結果、それぞれのサンプルの溶出容量は8.814mL、9.635mL、9.778mL、10.37mL、10.898mL、12.347mLであり、サンプルの分子量と溶出容量の順列に矛盾がなく、非特異吸着が誘発されていないことを確認した。
[実施例3]
 実施例2と同様にして担体γ2を得た。得られた担体γ2を150gグラスフィルター上に測りとり、ジエチレングリコールジメチルエーテルで十分に洗浄した。洗浄後、多孔質粒子をセパラブルフラスコに移し、ジエチレングリコールジメチルエーテル150g、ポリエチレングリコール#200(関東化学(株)製、平均分子量190~210、logPは明確でないが、近しい化合物のテトラエチレングリコール(Mw 194)のlogPは-2.02)(グリシジル基に対し1790mol%)150gを1Lセパラブルフラスコに移し撹拌分散した。その後、三弗化ホウ素ジエチルエーテル錯体1.5mLを加え200rpmにて撹拌しながら80℃へ昇温して4時間反応を行った。冷却後、反応物をろ別した後、水で十分に洗浄し、ポリオールの導入された多孔質粒子(担体δ3)を152g得た。担体δ3を篩にて16~37μmに分級し、140.5gの充填剤3を得た。
 得られた充填剤3の耐アルカリ性評価を実施例1と同様にして行った。その結果、カルボキシ基生成量は16.1μmol/mLであり、充填剤3は優れた耐アルカリ性を有することを確認した。
 さらに、得られた充填剤3の非特異吸着評価を実施例1と同様にして行った。その結果、それぞれのサンプルの溶出容量は8.517mL、9.241mL、9.47mL、10.034mL、10.484mL、11.927mLであり、サンプルの分子量と溶出容量の順列に矛盾がなく、非特異吸着が誘発されていないことを確認した。
[実施例4]
 グリシジルメタクリレート(商品名:ブレンマーG(登録商標) 日油(株)製)33.2g、グリセリン-1,3-ジメタクリレート(商品名:NKエステル701、新中村化学工業(株))5.9g、コハク酸ジエチル58.7g、2,2'-アゾビス(2,4-ジメチルバレロニトリル)1.9gを油相とした以外は、実施例3と同様にして、充填剤4を得た。グリシジルメタクリレートの使用量は、単量体総量に対し90.0mol%、グリセリン-1,3-ジメタクリレートの使用量は単量体総量に対し10.0mol%であった。
 得られた充填剤4の耐アルカリ性評価を実施例1と同様にして行った。その結果、カルボキシ基生成量は11.5μmol/mLであり、充填剤4は優れた耐アルカリ性を有することを確認した。
 さらに、得られた充填剤4の非特異吸着評価を実施例1と同様にして行った。その結果、それぞれのサンプルの溶出容量は7.52mL、8.214mL、8.451mL、9.062mL、9.511mL、11.915mLであり、サンプルの分子量と溶出容量の順列に矛盾がなく、非特異吸着が誘発されていないことを確認した。
[実施例5]
 グリシジルメタクリレート(商品名:ブレンマーG(登録商標) 日油(株)製)21.5g、グリセリン-1,3-ジメタクリレート(商品名:NKエステル701、新中村化学工業(株))17.6g、コハク酸ジエチル58.7g、2,2'-アゾビス(2,4-ジメチルバレロニトリル)1.9gを油相とした以外は実施例3と同様にして、充填剤5を得た。
 グリシジルメタクリレートの使用量は、単量体総量に対し66.2mol%、グリセリン-1,3-ジメタクリレートの使用量は単量体総量に対し33.8mol%であった。
 得られた充填剤5の耐アルカリ性評価を実施例1と同様にして行った。その結果、カルボキシ基生成量は18.3μmol/mLであり、充填剤5は優れた耐アルカリ性を有することを確認した。
 さらに、得られた充填剤5の非特異吸着評価を実施例1と同様にして行った。その結果、それぞれのサンプルの溶出容量は8.692mL、9.434mL、9.625mL、10.236mL、10.759mL、12.457mLであり、サンプルの分子量と溶出容量の順列に矛盾がなく、非特異吸着が誘発されていないことを確認した。
[実施例6]
 グリシジルメタクリレート(商品名:ブレンマーG(登録商標) 日油(株)製)33.2g、エチレングリコールジメタクリレート(商品名:NKエステル1G、新中村化学工業(株))5.9g、酢酸ブチル29.3g、クロロベンゼン29.3g、2,2'-アゾビス(2,4-ジメチルバレロニトリル)1.9gを油相とした以外は実施例3と同様にして、充填剤6を得た。グリシジルメタクリレートの使用量は、単量体総量に対し88.7mol%、エチレングリコールジメタクリレートの使用量は単量体総量に対し11.3mol%であった。
 得られた充填剤6の耐アルカリ性評価を実施例1と同様にして行った。その結果、カルボキシ基生成量は12.5μmol/mLであり、充填剤6は優れた耐アルカリ性を有することを確認した。
 さらに、得られた充填剤6の非特異吸着評価を実施例1と同様にして行った。その結果、それぞれのサンプルの溶出容量は9.613mL、10.427mL、10.444mL、11.066mL,11.582mL,12.575mLであり、サンプルの分子量と溶出容量の順列に矛盾がなく、非特異吸着が誘発されていないことを確認した。
[比較例1]
 実施例1と同様にして得られた多孔質粒子(担体α1)に対し、実施例1の工程Dを実施した。
<工程(D):ポリオールの導入反応>
 担体α1を98g、水600mL、D-ソルビトール(関東化学(株)製)1000g(グリシジル基に対して3050mol%)を3Lセパラブルフラスコに移し撹拌分散した。その後、水酸化カリウム10gを加え200rpmにて撹拌しながら60℃へ昇温して15時間反応を行った。冷却後、反応物をろ別した後、水で十分に洗浄し、ポリオールの導入された多孔質粒子(担体δ7)130gを得た。担体δ7を篩にて16~37μmに分級し、115gの充填剤7を得た。
 得られた充填剤7の耐アルカリ性評価を実施例1と同様にして行った。その結果、充填剤7のカルボキシ基生成量は120.3μmol/mLであり、耐アルカリ性が劣る結果となった。
 さらに、得られた充填剤7の非特異吸着評価を実施例1と同様にして行った。その結果、それぞれのサンプルの溶出容量は、8.606mL、9.769mL、9.9567mL、10.703mL、11.470mL、12.112mLであり、サンプルの分子量と溶出容量の順列に矛盾がなく、非特異吸着が誘発されていないことを確認した。
[比較例2]
 アルキレン基導入剤として1,4-ブタンジオールの代わりにエチレングリコール150gを用いたこと以外は、実施例1と同様にして充填剤8を得た。
 得られた充填剤8の耐アルカリ性評価を実施例1と同様にして行った。その結果、充填剤8のカルボキシ基生成量は108.4μmol/mLであり、耐アルカリ性が劣る結果となった。
 さらに、得られた充填剤8の非特異吸着評価を実施例1と同様にして行った。その結果、それぞれのサンプルの溶出容量は、9.708mL、9.8946mL、10.6452mL、11.5374mL、12.1656mLであり、サンプルの分子量と溶出容量の順列に矛盾がなく、非特異吸着が誘発されていないことを確認した。
 [比較例3]
 グリシジル基の導入、およびポリオールの導入を行わなかったこと以外は、実施例2と同様にして充填剤9を得た。すなわち、実施例2の工程(B)で得られた担体β2を充填剤9とした。
 得られた充填剤9の非特異吸着評価を実施例1と同様にして行った。その結果、それぞれのサンプルの溶出容量は8.590mL、10.316mL、9.603mL、10.484mL、13.863mL、12.861mLであり、サンプルの分子量と溶出容量の順列に矛盾が生じ、非特異吸着が誘発されていることを確認した。このため耐アルカリ性評価は行わなかった。
[比較例4]
 アルキレン基導入剤として1,4-ブタンジオールの代わりに1,10-デカンジオール150g(グリシジルメタクリレートに対し480mol%)を用いたこと以外は、実施例1と同様にして充填剤10を得た。
 得られた充填剤10の非特異吸着評価を実施例1と同様にして行った。その結果、それぞれのサンプルの溶出容量は9.991mL、10.15mL、10.063mL、10.691mL、12.172mL、11.531mLであり、サンプルの分子量と溶出容量の順列に矛盾が生じ、非特異吸着が誘発されていることを確認した。このため耐アルカリ性評価は行わなかった。
[比較例5]
 グリシジルメタクリレート(商品名:ブレンマーG(登録商標) 日油(株)製)13.7g、グリセリン-1,3-ジメタクリレート(商品名:NKエステル701、新中村化学工業(株))25.4g、コハク酸ジエチル58.7g、2,2'-アゾビス(2,4-ジメチルバレロニトリル)1.9gを油相とした以外は実施例3と同様にして、充填剤11を得た。グリシジルメタクリレートの使用量は、単量体総量に対し46.4mol%、グリセリン-1,3-ジメタクリレートの使用量は単量体総量に対し53.6mol%であった。
 得られた充填剤11の非特異吸着評価を実施例1と同様にして行った。その結果、それぞれのサンプルの溶出容量は8.872mL、10.131mL、9.82mL、10.422mL、12.782mL、12.553mLであり、サンプルの分子量と溶出容量の順列に矛盾が生じ、非特異吸着が誘発されていることを確認した。このため耐アルカリ性評価は行わなかった。
 なお、実施例1~6および比較例1~5で得られた充填剤の排除限界分子量はいずれも100万以上であることを確認した。
[比較例6]
 グリシジルメタクリレート(商品名:ブレンマーG(登録商標) 日油(株)製)37.1g、グリセリン-1,3-ジメタクリレート(商品名:NKエステル701、新中村化学工業(株))2.0g、コハク酸ジエチル58.7g、2,2'-アゾビス(2,4-ジメチルバレロニトリル)1.9gを油相とした以外は実施例3と同様にして、充填剤12を得た。グリシジルメタクリレートの使用量は、単量体総量に対し96.7mol%、グリセリン-1,3-ジメタクリレートの使用量は単量体総量に対し3.3mol%であった。
 得られた充填剤12を用い、ステンレスカラムへの充填を試みた。しかし、背圧が高く送液困難となり、充填が行えなかった。このためいずれの評価も行うことができなかった。
 以上の実施例・比較例の結果を表1に示す。
 以上の結果から、本発明の構成を採用することで、非特異吸着の抑制されたアルカリ耐性の高い充填剤が得られる。
 なお、疎水部を設けなかったり、アルキレン鎖が短い場合、比較例1および2に示すように、アルカリ耐性が低くなる。また、アルキレン鎖が長すぎたり、親水部を設けないものは、疎水性が強くなり、比較例3および4に示すように、非特異吸着を誘発することが判明した。また多官能性モノマーから誘導される繰り返し単位が多い比較例5では、非特異吸着を誘発することが判明し、多官能性モノマーから誘導される繰り返し単位が少ない比較例6では、装置にかかる背圧が高くなり、カラムに充填困難となることが判明した。
Figure JPOXMLDOC01-appb-T000002

Claims (9)

  1.  グリシジルメタクリレートから誘導される繰り返し単位を60~95mol%と、多官能性モノマーから誘導される繰り返し単位を5~40mol%と、を含有する多孔質有機高分子担体に、
     炭素数4~9である、直鎖アルキレン基、シクロアルキレン基、直鎖アルキルシクロアルキレン基から選ばれる少なくとも1種のアルキレン基の一方の末端が、
     グリシジルメタクリレートに由来するグリシジル基により結合してなり、
     前記アルキレン基の他方の末端は、エーテル結合を介して、ポリオールのいずれか1つの末端と結合していることを特徴とする充填剤。
  2.  前記多官能性モノマーが、2つ以上の(メタ)アクリロイル基を含有する(メタ)アクリロイル系モノマーである、請求項1に記載の充填剤。
  3.  前記多官能性モノマーが、エチレングリコールジメタクリレート、グリセリン-1,3-ジメタクリレートのいずれかを少なくとも1種含む、請求項2に記載の充填剤。
  4.  前記アルキレン基が、ブチレン、シクロヘキサン-1,4-ジメチレンのいずれかを含む、請求項1に記載の充填剤。
  5.  前記ポリオールが、ポリオールにより開環したグリシジル基に由来するエーテル結合を介して結合してなる、請求項1に記載の充填剤。
  6.  前記ポリオールが、エチレングリコール、ポリエチレングリコール、ソルビトールのいずれかを含む、請求項1に記載の充填剤。
  7.  サイズ排除クロマトグラフィー用である請求項1~6のいずれか1項に記載の充填剤。
  8.  請以下の(A)~(D)の工程を有する、請求項1~6のいずれか1項に記載の充填剤の製造方法;
     グリシジルメタクリレートと多官能性モノマーとを含む原料モノマーを、希釈剤および重合開始剤の存在下で重合して、多孔質有機高分子担体である担体αを得る工程(A)、
     前記担体αのグリシジルメタクリレートに由来するグリシジル基を、炭素数4~9である直鎖、あるいは脂肪族環を含むアルキレン基を構造に含むジオール化合物の一方の水酸基と反応させて、前記アルキレン基を構造に含むジオール化合物の末端が結合された担体βを得る工程(B)、
     前記担体βに結合された前記アルキレン基を構造に含むジオール化合物の他方の水酸基とエピクロロヒドリンを反応させて前記担体βにグリシジル基が導入された担体γを得る工程(C)、および
     前記担体γのグリシジル基とポリオールの水酸基を、水存在下に反応させ、ポリオールのいずれか1つの末端がエーテル結合として結合された担体δを得る工程(D)。
  9.  請求項7に記載の充填剤が、液体クロマトグラフィー用筐体に充填されてなる、サイズ排除クロマトグラフィー用カラム。
PCT/JP2022/022597 2021-06-28 2022-06-03 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム WO2023276549A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22832707.8A EP4206243A1 (en) 2021-06-28 2022-06-03 Filler, method for producing same, and column for size exclusion chromatography
US18/026,978 US11857949B2 (en) 2021-06-28 2022-06-03 Packing material and method for producing the same, and column for size exclusion chromatography
CN202280006541.8A CN116322974B (zh) 2021-06-28 2022-06-03 填充剂及其制造方法以及尺寸排阻色谱用柱
JP2022560519A JP7186338B1 (ja) 2021-06-28 2022-06-03 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021106844 2021-06-28
JP2021-106844 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023276549A1 true WO2023276549A1 (ja) 2023-01-05

Family

ID=84691324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022597 WO2023276549A1 (ja) 2021-06-28 2022-06-03 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム

Country Status (1)

Country Link
WO (1) WO2023276549A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132333A1 (ja) 2005-06-09 2006-12-14 Tosoh Corporation 親水性に優れた新規充填剤、及びその製造方法
JP2007170907A (ja) 2005-12-20 2007-07-05 Showa Denko Kk アルコキシアルキルアクリレートがグラフト重合した充填剤
WO2015119255A1 (ja) * 2014-02-06 2015-08-13 Jsr株式会社 固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法
WO2018155241A1 (ja) 2017-02-27 2018-08-30 昭和電工株式会社 サイズ排除クロマトグラフィー用の充填剤およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132333A1 (ja) 2005-06-09 2006-12-14 Tosoh Corporation 親水性に優れた新規充填剤、及びその製造方法
JP5315691B2 (ja) 2005-06-09 2013-10-16 東ソー株式会社 親水性に優れた新規充填剤、及びその製造方法
JP2007170907A (ja) 2005-12-20 2007-07-05 Showa Denko Kk アルコキシアルキルアクリレートがグラフト重合した充填剤
WO2015119255A1 (ja) * 2014-02-06 2015-08-13 Jsr株式会社 固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法
WO2018155241A1 (ja) 2017-02-27 2018-08-30 昭和電工株式会社 サイズ排除クロマトグラフィー用の充填剤およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UEKI YUJI, UMEMURA TOMONARI, LI JINXIANG, ODAKE TAMAO, TSUNODA KIN-ICHI: "Preparation and Application of Methacrylate-Based Cation-Exchange Monolithic Columns for Capillary Ion Chromatography", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 76, no. 23, 1 December 2004 (2004-12-01), US , pages 7007 - 7012, XP093018339, ISSN: 0003-2700, DOI: 10.1021/ac040079g *

Similar Documents

Publication Publication Date Title
JP5315691B2 (ja) 親水性に優れた新規充填剤、及びその製造方法
JP5504596B2 (ja) 多孔性セルロースゲル、その製造方法及びその用途
JP5250985B2 (ja) 充填床用新規充填剤及びその用途
US20220176273A1 (en) Packing material for size exclusion chromatography and method for producing the same
WO2008058349A1 (en) Materials, methods and systems for purification and/or seperation
JP4609493B2 (ja) クロマトグラフィー用モノリス分離媒体及びその製造方法
JP6981364B2 (ja) 分離剤、分離方法及び化合物の製造方法
JP7186338B1 (ja) 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム
US11041068B2 (en) Solid support
WO2023276549A1 (ja) 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム
WO2023276550A1 (ja) 充填剤およびその製造方法、並びにサイズ排除クロマトグラフィー用カラム
US6255385B1 (en) Polyhydroxy polymers substituted with styryl ether groups and gels and surfaces prepared from them
Horák et al. A novel hydrophilic crosslinker in preparation of hydrophilic sorbents
JP2011252723A (ja) 有機ポリマーモノリスから構成される分離媒体、これを用いた逆相液体クロマトグラフィー用カラム、及びそれらの製造方法
JP2005503571A (ja) 架橋された三次元ポリマー網状構造、その調製方法、それを含む支持体材料及びその使用
JP2017083363A (ja) アフィニティークロマトグラフィー用担体、クロマトグラフィーカラム、精製方法、及び該方法で精製された標的物質
KR20030095564A (ko) 크로마토그래피용 컬럼 충전제의 제조방법
WO2019187377A1 (ja) 充填剤用基材、充填剤用基材の製造方法、充填剤およびタンパク質の精製方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022560519

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022832707

Country of ref document: EP

Effective date: 20230330

NENP Non-entry into the national phase

Ref country code: DE