WO2015118968A9 - 熱収縮性ポリエステル系フィルム - Google Patents

熱収縮性ポリエステル系フィルム Download PDF

Info

Publication number
WO2015118968A9
WO2015118968A9 PCT/JP2015/051870 JP2015051870W WO2015118968A9 WO 2015118968 A9 WO2015118968 A9 WO 2015118968A9 JP 2015051870 W JP2015051870 W JP 2015051870W WO 2015118968 A9 WO2015118968 A9 WO 2015118968A9
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
shrinkage
stretching
shrinkable polyester
Prior art date
Application number
PCT/JP2015/051870
Other languages
English (en)
French (fr)
Other versions
WO2015118968A1 (ja
Inventor
井上 雅文
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US15/116,759 priority Critical patent/US10189962B2/en
Priority to EP15746705.1A priority patent/EP3103619B1/en
Priority to CN201580007336.3A priority patent/CN105980134B/zh
Priority to CA2938651A priority patent/CA2938651C/en
Priority to KR1020167021596A priority patent/KR102183918B1/ko
Priority to ES15746705T priority patent/ES2714571T3/es
Publication of WO2015118968A1 publication Critical patent/WO2015118968A1/ja
Publication of WO2015118968A9 publication Critical patent/WO2015118968A9/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/146Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly transversely to the direction of feed and then parallel thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/003Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0017Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor characterised by the choice of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/40Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/42Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings
    • B29C63/423Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings specially applied to the mass-production of externally coated articles, e.g. bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/144Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2667/00Use of polyesters or derivatives thereof for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/744Labels, badges, e.g. marker sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a heat-shrinkable polyester film and a package.
  • the present invention is suitable for labeling and banding for binding lunch boxes and the like, and an amorphous component is used as a monomer component constituting polyester. It is a film that does not contain a large amount, and is a heat-shrinkable polyester film with very few scratches on the film surface.
  • a film that greatly shrinks in the width direction is widely used as a normal heat-shrinkable polyester film.
  • the film is stretched at a high magnification in the width direction in order to develop shrinkage characteristics in the width direction, but is orthogonal to the main shrinkage direction.
  • the longitudinal direction only low-stretching is often performed, and some are not stretched.
  • a film that is only stretched at a low magnification in the longitudinal direction or a film that is stretched only in the width direction has a drawback that the mechanical strength in the longitudinal direction is inferior.
  • the film When used as a banding film that binds bottle label films or lunch boxes, etc., the film must be annularly attached to the bottle or lunch container and then heat shrunk in the circumferential direction.
  • an annular body When attaching the adhesive film as a banding film, an annular body is formed so that the width direction of the film is the circumferential direction, and then the annular body is cut into a predetermined length and handed to a bottle or a lunch box. Must be worn with a cover. Therefore, it is difficult to attach a label film or a banding film made of a heat-shrinkable film that thermally shrinks in the width direction to a bottle or a lunch box at a high speed.
  • an ideal heat-shrinkable polyester film in which the longitudinal direction is the main shrinking direction and the mechanical strength is high in the longitudinal and transverse directions (see Patent Document 1).
  • it contains 10 mol% or more of one or more monomer components that can be amorphous components in all the polyester resin components, and the addition rate of the recycled raw material naturally has an upper limit.
  • distortion after shrinkage is caused by the fact that the main orientation direction of molecules is inclined from the longitudinal direction or the width direction of the film. Ideally for distortion, the tilt of the molecular orientation is small from the center to the edge of the film.
  • Patent Document 1 in a longitudinal stretching machine used for film formation, contact with a plurality of high temperature rolls having a temperature equal to or higher than the Tg of the film causes many scratches, which is not preferable in terms of appearance.
  • the neck-in occurs rapidly only near the end portion, the difference in molecular orientation angle is large near the end portion, and when the film near the end portion is shrunk because the molecular orientation angle is large, distortion occurs, It is not preferable in appearance.
  • the object of the present invention is to solve the problems of Patent Document 1 and have sufficient heat shrinkage characteristics in the main shrinkage direction, which is the longitudinal direction, without containing many monomer components that can be amorphous components.
  • a heat-shrinkable polyester film having a low thermal shrinkage rate in the width direction perpendicular to the shrinking direction, extremely few scratches on the film surface, high mechanical strength, a small molecular orientation angle difference, and a small thickness unevenness. There is.
  • a heat-shrinkable polyester system comprising ethylene terephthalate as a main constituent and a monomer component that can be an amorphous component in all polyester resin components in an amount of 0 mol% to 5 mol%, and the main shrinkage direction is the longitudinal direction.
  • a heat-shrinkable polyester film characterized by satisfying the following requirements (1) to (3). (1) The hot water heat shrinkage in the longitudinal direction is 15% or more and 60% or less when treated in warm water at 90 ° C for 10 seconds.
  • the heat-shrinkable polyester film described in any one of 1 to 5 above is used as a label or banding film base material, and the label or banding film is coated on at least a part of the outer periphery and heat-shrinked.
  • the problems of Patent Document 1 are solved, and the main shrinkage characteristic is sufficient in the main shrinkage direction, which is the longitudinal direction, without containing many monomer components that can be amorphous components.
  • the heat shrinkage rate is low, the film surface has very few scratches, the mechanical strength is high, the difference in molecular orientation angle in the width direction is small, and the thickness shrinkage is small.
  • the film can be provided.
  • heat-shrinkable polyester systems with high environmental friendliness that contain a large amount of polyester from recycled PET bottles and bio-derived materials The film can be provided.
  • the heat-shrinkable polyester film of the present invention has very few scratches on the surface, it is possible to obtain an excellent appearance.
  • the heat-shrinkable polyester film of the present invention can be suitably used for bottle film labels, and can be mounted very efficiently within a short time.
  • heat shrinkage is performed after mounting, it is possible to obtain a good finish with very little shrinkage, vertical draw and wrinkles.
  • the heat-shrinkable polyester film of the present invention can be suitably used as a banding film for binding containers such as lunch boxes, and can be mounted very efficiently within a short time. When heat-shrinked, it was possible to obtain a good finish with extremely little wrinkles, distortion and insufficient shrinkage due to heat-shrinking.
  • FIG. 1 The plastic container of the lunch box which evaluated the film distortion after shrinkage
  • ethylene terephthalate is a main constituent, and an amorphous component in all polyester resin components.
  • Tg ⁇ + ⁇ 40 °C After stretching in the width direction (transverse stretching) at a magnification of 3.5 times to 6 times at the following temperatures, it is 1.5 times to 2.5 times by widening the gap between the films at a temperature of Tg to Tg + 40 ° C
  • the tenter width is relaxed in the width direction by narrowing it by 5% or more and 30% or less after lateral stretching (hereinafter this stretching method is referred to as extension).
  • this stretching method A is referred to as a method A).
  • a polyester-based unstretched film similar to the above the film Tg or more in a state where the both ends of the width direction are held by clips in the tenter, After stretching in the width direction (lateral stretching) at a magnification of 3.5 to 6 times at a temperature of Tg + 40 ° C or less, the clip holding the film edge is opened in the tenter, and the film in the tenter The tension of the roll installed near the exit of the tenter is propagated, and the film is stretched by 1.5 times or more and 2.5 times or less in the longitudinal direction due to the speed difference between the tenter clip and the roll near the exit at a temperature of Tg to Tg ⁇ + 40 °C. Longitudinal stretching). Since the film is stretched longitudinally without being gripped in the width direction, the width of the film is reduced by 5% or more and 30% or less. (Hereinafter, this drawing method is referred to as drawing method B.)
  • the same polyester-based unstretched film as described above can be obtained by holding the film Tg while holding both ends in the width direction by clips in the tenter.
  • stretching in the width direction transverse stretching
  • the film is heated again to a temperature of Tg + 40 ° C or less in another tenter.
  • stretching longitudinal stretching
  • the width of the film is reduced by 5% or more and 30% or less (hereinafter, this stretching method is referred to as a stretching method C).
  • the film of the present invention is mainly composed of ethylene terephthalate.
  • the main component means that 95 mol% or more of all polymer components constituting the film is ethylene terephthalate.
  • Ethylene terephthalate may be all the constituent components of the polymer constituting the film, and as a method for polymerizing such polyethylene terephthalate (hereinafter sometimes simply referred to as PET), terephthalic acid and ethylene glycol, and if necessary, Direct polymerization method in which other dicarboxylic acid component and diol component are directly reacted, and dimethyl ester of terephthalic acid (including methyl ester of other dicarboxylic acid if necessary) and ethylene glycol (if necessary, other diol component is added) Any production method such as a transesterification method in which a transesterification reaction is carried out can be used.
  • PET polyethylene terephthalate
  • terephthalic acid and ethylene glycol and if necessary, Direct polymerization method in which other dicarboxylic acid component and diol component are directly reacted, and dimethyl ester of terephthalic acid (including methyl ester of other dicarboxylic acid if necessary
  • the intrinsic viscosity of polyethylene terephthalate is preferably in the range of 0.45 to 0.8. If the intrinsic viscosity is lower than 0.45, it is not preferable because it is crystallized by stretching and shrinkage is lowered. On the other hand, if it is larger than 0.8, the increase in filtration pressure becomes large and high-precision filtration becomes difficult, which is not preferable.
  • a PET bottle recycling raw material can be used among PET. (Hereafter, it may be simply referred to as a recycled material).
  • Recycled raw materials generally contain PET as a constituent component in order to improve moldability when making PET bottles, but generally contain a little isophthalic acid as a monomer component.
  • a polymer raw material containing a large amount of a monomer component that can be an amorphous component is not used in a large amount, but the recycled raw material may contain isophthalic acid. It is expressed that the amount is contained in the range of 0 to 5 mol%.
  • a monomer that can be an amorphous component a typical example is isophthalic acid, for example, neopentyl glycol, 1.4-cyclohexanedimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,2-diethyl 1,3-propanediol, 2n-butyl-2-ethyl-1,3-propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di-n-butyl- 1,3-propanediol and hexanediol can also be mentioned, and even if they are contained within the above-mentioned range, there is no problem.
  • isophthalic acid for example, neopentyl glycol, 1.4-cyclohexanedimethanol
  • isophthalic acid 1,4-cyclohexanedicar
  • a polyester raw material using ethylene glycol produced from a plant-derived raw material as a glycol component (hereinafter sometimes simply referred to as a biopolyester raw material) can be used.
  • the shrinkage amount in the longitudinal direction at 90 ° C is small when used as a banding film, and this is not preferable because wrinkles and tarmi will occur on the label after heat shrinkage. .
  • the hot water heat shrinkage rate in the longitudinal direction at 90 ° C. exceeds 60%, but in the present invention, usually about 60% is the upper limit of the heat shrinkage rate.
  • the lower limit of the hot shrinkage in the longitudinal direction at 90 ° C. is preferably 20%, more preferably 25%, and particularly preferably 30%.
  • the heat-shrinkable polyester film of the present invention is a film width direction calculated by the above formula 1 from the length before and after shrinkage when treated in warm water at 90 ° C. for 10 seconds without load. It is preferable that the hot water heat shrinkage ratio is -10% or more and 10% or less. If the hot-water heat shrinkage in the width direction at 90 ° C. exceeds 10%, the film length in the direction perpendicular to the shrinkage direction is shortened when the film is used as a label or a banding film. On the other hand, if it is less than -10%, the label length in the direction perpendicular to the main shrinkage direction becomes longer during heat shrinkage, which is not preferable because sagging tends to occur and wrinkles easily occur.
  • the hot water heat shrinkage in the width direction at 90 ° C. is preferably ⁇ 9% or more and 9% or less, more preferably ⁇ 8% or more and 8% or less, and further preferably ⁇ 7% or more and 7% or less. preferable.
  • the heat-shrinkable polyester film of the present invention is converted into a molecular orientation angle difference per 1 m of film width, which is a difference between the molecular orientation angle at one end edge in the film width direction and the molecular orientation angle at the opposite end edge.
  • the orientation twist index is preferably 15 ° / m or less.
  • the upper limit value of the orientation twist index is more preferably 13 ° / m or less, and further preferably 12 ° / m or less.
  • the orientation twist index is better as it approaches 0 ° / m, but even if it is 1 ° / m, there is no particular problem.
  • the molecular orientation axis means that the longitudinal direction of the film is the X axis, the width direction of the film is the Y axis, and the thickness direction of the film is the Z axis direction, when viewed on the XY plane of the film,
  • the direction with the highest degree of molecular orientation is called the molecular orientation axis.
  • the molecular orientation angle means an angle at which the molecular orientation axis is shifted from the film longitudinal direction or the film width direction when the molecular orientation axis is measured.
  • a method for measuring the molecular orientation angle first, rectangular samples are collected at the left and right edges facing each other in the width direction of the film.
  • the molecular orientation angle (angle in the molecular orientation axis direction) of the cut film sample is measured with a molecular orientation angle measuring device (MOA-6004) manufactured by Oji Scientific Instruments.
  • the molecular orientation angle is 0 degree in the longitudinal direction of the film, and when the direction of the molecular orientation axis is less than 45 degrees with respect to the longitudinal direction, the difference from 0 degree is greater than 45 degrees. Ask for.
  • the molecular orientation angle is measured by the above method, and the absolute value of the difference is calculated between By dividing by the interval in the width direction, the difference in molecular orientation angle per film unit width (1 m) (orientation twist index) is calculated.
  • Orientation twist index (absolute value of the difference in orientation angle of each sample sample taken from the left and right edges) ⁇ (interval between sample cut-out positions) ⁇ ⁇ ⁇ Equation 2
  • the difference in molecular orientation angle is very small at the central portion in the width direction of the film, so it is 15 ° / m or less.
  • the difference in molecular orientation is large near the edge of the film, exceeding 15 ° / m. This is because neck-in occurs only in the vicinity of the end portion because the stretching distance is short and abrupt stretching is performed.
  • a film having a temperature equal to or higher than Tg during film formation causes scratches on the film surface due to friction with the roll or displacement of the film when it comes into contact with the roll of the film forming machine.
  • scratches having a depth of 1 ⁇ m or more and a length of 3 mm or more present on the surface are preferably 100 pieces / m 2 or less. If the number of scratches exceeds 100 / m 2 , the appearance such as the design of the film is impaired, which is not preferable.
  • the scratches are more preferably 90 pieces / m 2 or less, further preferably 80 pieces / m 2 or less, and the lower limit is of course 0 pieces / m 2 .
  • the heat-shrinkable polyester film of the present invention preferably has a thickness unevenness of 10% or less in the longitudinal direction.
  • the thickness unevenness in the longitudinal direction is more than 10%, it is not preferable because printing spots are likely to occur during printing when creating labels and banding films, and shrinkage spots after heat shrinkage are likely to occur. Absent.
  • the thickness unevenness in the longitudinal direction is more preferably 9% or less, further preferably 8% or less, and particularly preferably 7% or less.
  • the thickness unevenness in the longitudinal direction is better as it approaches 0%, but the lower limit is 2%, which is practically acceptable.
  • the heat-shrinkable polyester film of the present invention preferably has a tensile fracture strength in the width direction of 80 to 200 MPa.
  • the measuring method of tensile fracture strength is demonstrated in an Example. If the above tensile fracture strength is less than 80 ⁇ ⁇ MPa, it is not preferable because the “waist” (stiffness) when attached to a container for labeling or banding film is weak. On the contrary, the tensile fracture strength exceeds 200 MPa. In this case, the cutting property (easy to tear) in the initial stage when tearing the label or banding film is unfavorable.
  • the lower limit of the tensile fracture strength is more preferably 100 MPa or more, more preferably 110 MPa or more, particularly preferably 120 MPa or more, and the upper limit is more preferably 190 MPa or less, further preferably 180 MPa or less, more preferably 170 MPa or less. Is particularly preferred.
  • the thickness of the heat-shrinkable polyester film of the present invention is not particularly limited, but is preferably 5 to 100 ⁇ m, more preferably 10 to 95 ⁇ m as a heat-shrinkable film for labeling or banding.
  • the heat-shrinkable polyester film of the present invention is not limited in terms of its production method.
  • the above-described polyester raw material is melt-extruded by an extruder to form an unstretched film, and the unstretched film The film can be obtained by biaxial stretching by the method described below.
  • the polyester raw material is preferably dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in such a manner, it is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder.
  • a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer.
  • the polyester raw material is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder.
  • any existing method such as a T-die method or a tubular method can be employed.
  • an unstretched film can be obtained by quenching the extruded sheet-like molten resin.
  • a method of rapidly cooling the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin on a rotating drum from a die and rapidly solidifying it can be suitably employed.
  • the obtained unstretched film can be stretched in the width direction under predetermined conditions, and then stretched in the longitudinal direction under predetermined conditions to obtain the heat-shrinkable polyester film of the present invention. It becomes.
  • preferable biaxial stretching for obtaining the heat-shrinkable polyester film of the present invention will be described in detail in consideration of the difference from the stretching method of the conventional heat-shrinkable polyester film.
  • a normal heat-shrinkable polyester film is produced by stretching an unstretched film in the direction in which it is desired to shrink. Although there was a high demand for heat-shrinkable polyester film that shrinks in the longitudinal direction from the past, simply stretching the unstretched film in the longitudinal direction significantly reduces the tensile fracture strength in the width direction. Since a wide film cannot be manufactured, it is not preferable in terms of productivity. In addition, since a normal heat-shrinkable polyester film uses a raw material containing a large amount of an amorphous component in order to impart heat-shrinkage characteristics, there is a limit to the ratio of mixing recycled raw materials.
  • Patent Document 1 discloses a method of stretching an unstretched film in the order of transverse stretching-heat treatment-longitudinal stretching under predetermined conditions in order to improve mechanical properties in the longitudinal direction and the width direction.
  • an amorphous monomer is contained in an amount of 10 mol% or more as a diol or dicarboxylic acid of the PET raw material, and there is a limit to the addition of the recycled raw material.
  • the film forming method described in Patent Document 1 is not preferable because the orientation twist index is large and the orientation angle is large at the end, which causes distortion when wound around a container such as a lunch box.
  • a plurality of rolls are brought into contact with the roll having a temperature equal to or higher than the film Tg of the longitudinal stretching machine in the longitudinal stretching, there is a problem that many scratches are generated on the surface due to friction and displacement with the film.
  • the present invention has made it possible to lower the orientation twist index by making the longitudinal stretching distance much longer than usual and uniformly causing the neck-in phenomenon that occurs during longitudinal stretching in the film width direction.
  • Neck-in is a phenomenon in which the film contracts in the width direction due to the force generated in the direction (width direction) perpendicular to the stretching direction during longitudinal stretching.
  • stretching is performed between the low-speed roll and the high-speed roll (several millimeters), so the effect of neck-in occurs only near the edge of the film, and the neck suddenly increases in the longitudinal direction.
  • the orientation angle near the end portion is greatly increased, and the orientation twist index is increased.
  • the stretch distance of the longitudinal stretching is greatly increased, so that the influence of neck-in can be generated in the entire width, and the neck-in that is gentle in the longitudinal direction is enabled, and the orientation twist index is reduced. Realized that.
  • the stretching method that greatly reduces scratches generated on the surface will be described below.
  • the present inventor has devised a method for forming a shrink film that is stretched in the longitudinal direction without being brought into contact with a roll of Tg or more of the film, and can greatly reduce scratches on the film surface.
  • the stretching method A after stretching in the longitudinal direction by using a simultaneous biaxial stretching machine and extending in the longitudinal direction by widening the clip interval, sufficient shrinkage without contact with the roll above Tg It was found that a film having a thickness can be formed.
  • the temperature of the film at the time when the film contacts the roll was set to Tg or less by providing a cooling zone in which the film was actively cooled before the film exited from the tenter outlet.
  • the preferred stretching ratio in the width direction, the stretching ratio in the longitudinal direction, the stretching distance, and the width shrinkage ratio during longitudinal stretching of the heat-shrinkable film of the present invention will be described.
  • the present inventors intentionally used a film that does not use an amorphous PET raw material, the stretching ratio is around 2 times, and the shrinkage in the stretching direction is high. It has been found that the shrinkage rate of the is reduced. From this research result, in order to stretch biaxially and contract in the longitudinal direction, it is preferable to stretch at an initial transverse stretching ratio of 3.5 to 6 times.
  • the shrinkage ratio in the width direction becomes high, and when shrinking as a label or banding film, defects such as wrinkles occur, which is not preferable. Further, when the unstretched film is stretched in the longitudinal direction without stretching in the width direction, the thickness unevenness in the longitudinal direction becomes large, which is not preferable.
  • the upper limit of the transverse stretching ratio is not particularly specified, but if it is higher than 6 times, stretching in the longitudinal direction is difficult (so-called breakage tends to occur), which is not preferable. More preferably, they are 3.7 times or more and 5.8 times or less, More preferably, they are 3.9 times or more and 5.6 times or less.
  • the draw ratio in the longitudinal direction is preferably 1.5 times or more and 2.5 times or less.
  • the shrinkage rate When shrinking as a label or banding film, the shrinkage rate is insufficient at 1.5 times or less, and at 2.5 times or more, the shrinkage rate in the width direction is greatly negative due to the high width shrinkage rate during longitudinal stretching. This is not preferable because it causes defects such as wrinkles. More preferably, they are 1.6 times or more and 2.4 times or less, More preferably, they are 1.8 times or more and 2.3 times or less.
  • the stretching distance in the longitudinal direction is preferably 1000 mm or more and 7000 mm or less.
  • a longitudinal stretching distance of 1000 mm or less is not preferable because a uniform neck-in does not occur across the entire width during longitudinal stretching. If it exceeds 7000 mm, the neck-in becomes too large, and the shrinkage rate in the width direction is greatly reduced, which is not preferable. More preferably, they are 1500 mm or more and 6500 mm or less, More preferably, they are 2000 mm or more and 6000 mm or less.
  • width shrinkage ratio during longitudinal stretching The amount of shrinkage in the width direction caused by necking in the longitudinal stretching is described as “width shrinkage ratio during longitudinal stretching”.
  • the width reduction ratio during the longitudinal stretching can be adjusted by the stretching ratio, the longitudinal stretching distance, and the presence or absence of a pinch roll, but is preferably 5% or more and 30% or less. If it is less than 5%, uniform neck-in in the width direction does not occur, and the orientation twist index cannot be reduced, which is not preferable.
  • the shrinkage rate in the width direction is greatly reduced to a large negative shrinkage, which is not preferable because it causes defects such as wrinkles. More preferably, they are 7% or more and 27% or less, More preferably, they are 10% or more and 24% or less.
  • the above pinch roll is a kind of nip roll that sandwiches the film between the rolls and accurately sends the film, pulls both ends of the film outward, and the film is sent to the position at the end of the film so that it is sent outward. Install the two nip rolls symmetrically in the width direction, and slightly tilt it into a letter C.
  • the packaging body of the present invention is formed by heat-shrinking a banding film (and a label) obtained from the heat-shrinkable polyester film of the present invention covering at least a part of the outer periphery of the packaging object.
  • the packaging object include plastic containers such as bento (including PET bottles for beverages, various bottles, cans, confectionery), paper boxes, and the like.
  • the banding film (and label) is heat-shrinked by about 5 to 70%. Adhere closely to the package. Note that the banding film (and the label) to be covered with the packaging object may be printed or may not be printed.
  • the banding film (and label) can be produced by rolling a rectangular film in the longitudinal direction and overlapping the ends to form a label, or roll a film wound up in a roll.
  • the tube is rounded in the longitudinal direction and the ends are overlapped and adhered to the film, and the tube-shaped body is cut to form a label.
  • the method for adhering the films can be performed using a known method such as fusing sealing, solvent adhesion, adhesion with a hot-melt adhesive, or adhesion with an energy ray curable adhesive.
  • Table 1 shows the composition of the raw materials used in the examples and comparative examples, the film stretching methods and the production conditions in the examples and comparative examples.
  • the evaluation method of a film is as follows.
  • Tg glass transition point
  • DSC220 differential scanning calorimeter
  • An unstretched film (5 mg) was heated from ⁇ 40 ° C. to 120 ° C. at a temperature rising rate of 10 ° C./min to obtain a temperature rising profile.
  • the temperature at the intersection of the base line extension below the glass transition temperature and the tangent indicating the maximum slope at the transition was taken as the glass transition temperature.
  • Heat shrinkage hot water heat shrinkage
  • the amount of light in that part is converted into an electrical signal by a CCD image sensor camera installed 500mm above the XY table, the electrical signal is amplified, differentiated, and compared with a threshold (threshold) level and a comparator to detect optical defects. Output a signal.
  • a CCD image sensor camera is used to input a flaw image, the video signal of the input image is analyzed according to a predetermined procedure, the size of the optical defect is measured, and the position of the defect of 50 ⁇ m or more is displayed. did. Optical defects were detected on both sides of the test piece. (2) Measurement of scratch size From the optical defects detected in (1) above, defects due to scratches were selected.
  • the above test piece was cut into an appropriate size, and observed using a three-dimensional shape measuring device TYPE550 manufactured by Micromap Co., Ltd. from the direction perpendicular to the surface of the test piece, and the size of the scratch was measured.
  • TYPE550 manufactured by Micromap Co., Ltd.
  • the unevenness of the scratches close to each other within 50 ⁇ m is considered as the same scratch, and the length and width of the rectangle with the smallest area covering the outermost part of those scratches are determined.
  • the length and width of the scratch were taken.
  • the difference in height between the highest and lowest scratches was taken as the depth, and the total number of scratches (pieces / m 2 ) with a depth of 1 ⁇ m or more and a length of 3 mm or more was determined.
  • the longitudinal direction of the film was sampled into a long roll of 30 m long ⁇ 40 mm wide and measured at a speed of 5 (m / min) using a continuous contact thickness gauge manufactured by Micron Measuring Instruments Co., Ltd.
  • the length direction of the film sample was set as the main shrinkage direction of the film.
  • the maximum thickness at the time of measurement was Tmax.
  • the minimum thickness was Tmin.
  • the average thickness was Tave.
  • Thickness unevenness ⁇ (Tmax. ⁇ Tmin.) / Tave. ⁇ ⁇ 100 (%) ⁇ ⁇ Formula 4
  • polyesters used in the examples and comparative examples are as follows.
  • Polyester 1 Polyethylene terephthalate (IV 0.75 dl / g)
  • Polyester 2 Polyethylene terephthalate (IV 0.75 dl / g) in which SiO 2 (Silicia 266 manufactured by Fuji Silysia) was added as a lubricant at a ratio of 8,000 ppm to the polyester in the production of the above polyester 1 -Polyester 3: Recycled raw material ⁇ Yono PET Bottle Recycling Co., Ltd. “Clear Pellet” (IV 0.63 dl / g, Polyester 3 contains 2 mol of isophthalic acid for all dicarboxylic acid components constituting the polyester. %).
  • Polyester 4 Bio-polyester raw material using bio-derived ethylene glycol (IV 0.62 dl / g)
  • Polyester 4 was prepared by the following manufacturing method. Magnesium acetate tetrahydrate was added to a mixture of terephthalic acid refined from petroleum-derived raw materials and ethylene glycol purified from plant-derived raw materials to a concentration of 70 ppm as Mg atoms in the polyester, and the temperature was 255 ° C at normal pressure. The esterification reaction was carried out. Thereafter, antimony trioxide in an amount of 280 ppm in the polyester as Sb atoms and trimethyl phosphate in an amount of 40 ppm in the polyester as P atoms were added, and further reacted at a temperature of 260 ° C.
  • a polyester chip of dl / g was obtained. When the biomass degree was measured, the biomass degree was 17%.
  • Example 1 The above-mentioned polyester 1 and polyester 2 were mixed at a weight ratio of 93: 7 and charged into an extruder. Thereafter, the mixed resin was melted at 280 ° C., extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C., and rapidly cooled to obtain an unstretched film having a thickness of 144 ⁇ m. The Tg of the unstretched film was 75 ° C. Thereafter, the unstretched film was guided to a simultaneous biaxial stretching machine. The unstretched film guided to the tenter is preheated until the film temperature reaches 100 ° C., and then stretched 4.0 times at 90 ° C.
  • Example 2 A heat-shrinkable film was continuously produced in the same manner as in Example 1 except that polyester 3 and polyester 2 were mixed at a weight ratio of 93: 7 and charged into an extruder.
  • the Tg of the unstretched film was 75 ° C. Further, the width shrinkage ratio during longitudinal stretching was 10%.
  • the characteristic of the obtained film was evaluated by the same method as Example 1. The evaluation results are shown in Table 2. As a result of the evaluation, the film had sufficient shrinkage, good shrinkage finish, and few scratches.
  • Example 3 A heat-shrinkable film was continuously produced in the same manner as in Example 1 except that polyester 4 and polyester 2 were mixed at a weight ratio of 93: 7 and charged into an extruder.
  • the Tg of the unstretched film was 75 ° C. Further, the width shrinkage ratio during longitudinal stretching was 10%. And the characteristic of the obtained film was evaluated by the same method as Example 1. The evaluation results are shown in Table 2. As a result of the evaluation, the film had sufficient shrinkage, good shrinkage finish, and few scratches.
  • Example 4 The above-mentioned polyester 1 and polyester 2 were mixed at a weight ratio of 93: 7 and charged into an extruder. Thereafter, the mixed resin was melted at 280 ° C., extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C., and rapidly cooled to obtain an unstretched film having a thickness of 136 ⁇ m. The Tg of the unstretched film was 75 ° C. Thereafter, this unstretched film was introduced into a transverse stretching machine. The unstretched film guided to the tenter was preheated until the film temperature reached 100 ° C., and then stretched 4.0 times at 90 ° C. in the transverse direction.
  • the clip holding the film edge was opened in the tenter, and the tension of the roll installed near the tenter outlet was propagated to the film in the tenter.
  • the roll speed in the vicinity of the tenter outlet was 2.0 times the clip speed of the tenter
  • the film was longitudinally stretched 2.0 times at 90 ° C. in the tenter.
  • a cooling zone for positively cooling the film was provided before the tenter outlet to cool the film.
  • the temperature of the film between the tenter outlet and the roll was 55 ° C.
  • the distance from the point where the hour clip was released to the roll near the tenter exit (longitudinal stretching distance) was 4000 mm.
  • the pinch roll was used so that it may not shrink too much at the film width direction at the time of longitudinal stretching.
  • the shrinkage ratio in the film width direction during longitudinal stretching was 15%.
  • a biaxially stretched film of about 20 ⁇ m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film.
  • Tg temperature of Tg or higher
  • the properties of the obtained film were evaluated by the method described above. The evaluation results are shown in Table 2. As a result of the evaluation, the film had sufficient shrinkage, good shrinkage finish, and few scratches.
  • Example 5 A heat-shrinkable film was continuously produced by the same method as in Example 4 except that the thickness of the unstretched film was 110 ⁇ m and the longitudinal stretch ratio was changed to 1.5 times. The shrinkage ratio in the film width direction during longitudinal stretching was 8%. The properties of the obtained film were evaluated by the same method as in Example 1. The evaluation results are shown in Table 2. As a result of the evaluation, the film had sufficient shrinkage, good shrinkage finish, and few scratches.
  • Example 6 A heat-shrinkable film was continuously produced in the same manner as in Example 4 except that the thickness of the unstretched film was 150 ⁇ m and the longitudinal stretch ratio was changed to 2.5 times. The shrinkage ratio in the film width direction during longitudinal stretching was 25%. The properties of the obtained film were evaluated by the same method as in Example 1. The evaluation results are shown in Table 2. As a result of the evaluation, the film had sufficient shrinkage, good shrinkage finish, and few scratches.
  • Example 7 A heat-shrinkable film was continuously produced in the same manner as in Example 4 except that the thickness of the unstretched film was 128 ⁇ m and no pinch roll was used during the longitudinal stretching. The shrinkage ratio in the film width direction during longitudinal stretching was 30%. The properties of the obtained film were evaluated by the same method as in Example 1. The evaluation results are shown in Table 2. As a result of the evaluation, the film had sufficient shrinkage, good shrinkage finish, and few scratches.
  • Example 8 The heat-shrinkable film was continuously applied in the same manner as in Example 4 except that the thickness of the unstretched film was 131 ⁇ m and the distance from the point where the clip was released to the roll near the tenter exit (longitudinal stretching distance) was changed to 5000 mm. Manufactured. The shrinkage ratio in the film width direction during longitudinal stretching was 18%. The properties of the obtained film were evaluated by the same method as in Example 1. The evaluation results are shown in Table 2. As a result of the evaluation, the film had sufficient shrinkage, good shrinkage finish, and few scratches.
  • Example 9 The heat-shrinkable film was continuously applied in the same manner as in Example 4 except that the thickness of the unstretched film was 128 ⁇ m and the distance from the point where the clip was released to the roll near the tenter exit (longitudinal stretching distance) was changed to 6000 mm. Manufactured. The shrinkage ratio in the film width direction during longitudinal stretching was 20%. The properties of the obtained film were evaluated by the same method as in Example 1. The evaluation results are shown in Table 2. As a result of the evaluation, the film had sufficient shrinkage, good shrinkage finish, and few scratches.
  • Example 10 The above-mentioned polyester 1 and polyester 2 were mixed at a weight ratio of 93: 7 and charged into an extruder. Thereafter, the mixed resin was melted at 280 ° C., extruded from a T-die, wound on a rotating metal roll cooled to a surface temperature of 30 ° C., and rapidly cooled to obtain an unstretched film having a thickness of 132 ⁇ m. The Tg of the unstretched film was 75 ° C. Thereafter, the unstretched film was introduced into a transverse stretching machine (first tenter). The unstretched film guided to the tenter was preheated until the film temperature reached 100 ° C., and then stretched 4.0 times at 90 ° C. in the transverse direction.
  • first tenter transverse stretching machine
  • the film was guided to a tenter with rolls capable of applying tension installed at the inlet and outlet.
  • the end of the film was not gripped with a clip, but heated with hot air, and the film in the second tenter was stretched longitudinally at 90 ° C. due to the difference in speed between the inlet and outlet rolls.
  • the speed difference was 2.0 times, and a pinch roll was used so as not to shrink too much in the film width direction.
  • a cooling zone for positively cooling the film was provided before the second tenter outlet to cool the film.
  • the temperature of the film between the tenter outlet and the roll was 55 ° C.
  • the distance (longitudinal stretch distance) between the inlet and outlet rolls of the second tenter was 4000 mm, and the shrinkage ratio in the film width direction was 17%.
  • a biaxially stretched film of about 20 ⁇ m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film.
  • the number of rolls having a temperature of Tg or higher was 0.
  • the properties of the obtained film were evaluated by the method described above. The evaluation results are shown in Table 2. As a result of the evaluation, the film had sufficient shrinkage, good shrinkage finish, and few scratches.
  • the stretching distance was 4 mm, and the shrinkage ratio in the film width direction was 2.0%.
  • the longitudinally stretched film was forcibly cooled by a cooling roll set at a surface temperature of 25 ° C.
  • the number of rolls having a temperature of Tg or higher was 10.
  • This stretching method was designated as a stretching method D, and the properties of the obtained film were evaluated by the methods described above. The evaluation results are shown in Table 2. As a result of the evaluation, the film had sufficient shrinkage, but the thickness unevenness was poor, the tensile strength at break in the width direction was low, and shrinkage distortion occurred in the sample at the end of the film, resulting in a film with many scratches.
  • Polyester 1 and polyester 2 were mixed at a weight ratio of 93: 7 and charged into an extruder. Thereafter, the mixed resin was melted at 280 ° C., extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C., and rapidly cooled to obtain an unstretched film having a thickness of 157 ⁇ m.
  • the Tg of the unstretched film was 75 ° C.
  • the unstretched film was guided to a transverse stretching machine (ordinary tenter). The unstretched film guided to the tenter was preheated until the film temperature reached 100 ° C., and then stretched 4.0 times at 90 ° C. in the transverse direction.
  • the film that has been laterally stretched and heat-treated in this manner is guided to a longitudinal stretching machine in which a plurality of roll groups are continuously arranged, and after preheating until the film temperature reaches 90 ° C. on 10 preheating rolls, The film was stretched twice using the roll speed difference. At this time, the stretching distance was 4 mm, and the shrinkage ratio in the film width direction was 2.0%. Thereafter, the longitudinally stretched film was forcibly cooled by a cooling roll set at a surface temperature of 25 ° C. Then, the cooled film was guided to a tenter (second tenter), and relaxed in the width direction by 5% while being heat-treated in an atmosphere of 90 ° C. for 8.0 seconds in the second tenter.
  • a tenter second tenter
  • the heat-shrinkable polyester film of the present invention has excellent characteristics as described above, it can be suitably used for banding film use for binding purposes such as bottle labeling and lunch boxes.
  • a package used as a label or banding film has a beautiful appearance.
  • the film has a sufficient heat shrinkage ratio in the longitudinal direction even when the content of the monomer component capable of forming an amorphous component in the polyester is very small, the recycled material ratio can be increased and the film is suitable for the environment.
  • the film surface has very few scratches and is excellent in appearance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Abstract

【課題】 非晶質成分となりうるモノマー成分を多く含まずとも、長手方向である主収縮方向に十分な熱収縮特性を有し、前記主収縮方向と直交する幅方向においては熱収縮率が低く、フィルム表面のキズが極めて少なく、機械的強度が高い上、分子配向角差が小さく、厚み斑が小さい熱収縮性ポリエステル系フィルムを提供すること。 【解決手段】 エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分が0モル%以上5モル%以下含有しているとともに、主収縮方向が長手方向である熱収縮性ポリエステル系フィルムであって、長手方向及び幅方向の熱収縮特性、幅方向の片端縁際の分子配向角と他端縁際の分子配向角との差である分子配向角差が特定の範囲を満足する熱収縮性ポリエステル系フィルム。

Description

熱収縮性ポリエステル系フィルム
 本発明は、熱収縮性ポリエステル系フィルム、及び包装体に関するものであり、詳しくは、ラベル用途や弁当容器等を結束するバンディング用途に好適で、ポリエステルを構成するモノマー成分として非晶性の成分を多量には含まないフィルムであり、フィルム表面のキズが極めて少ない熱収縮性ポリエステル系フィルムである。
 近年、ガラス瓶やPETボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(所謂、熱収縮性フィルム)が広範に使用されるようになってきている。そのような熱収縮性フィルムの内、ポリ塩化ビニル系フィルムは、耐熱性が低い上に、焼却時に塩化水素ガスを発生したり、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。それゆえ、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広汎に利用されるようになってきており、PET容器の流通量の増大に伴って、使用量が増加している傾向にある。
 また、通常の熱収縮性ポリエステル系フィルムとしては、幅方向に大きく収縮させるものが広く利用されている。そのように幅方向が主収縮方向である熱収縮性ポリエステル系フィルムは、幅方向への収縮特性を発現させるために幅方向に高倍率の延伸が施されているが、主収縮方向と直交する長手方向に関しては、低倍率の延伸が施されているだけであることが多く、延伸されていないものもある。そのように、長手方向に低倍率の延伸を施したのみのフィルムや、幅方向のみしか延伸されていないフィルムは、長手方向の機械的強度が劣るという欠点がある。
 ボトルのラベルフィルムや、弁当容器等を結束するバンディングフィルムとして用いる場合、フィルムを環状にしてボトルや弁当容器に装着した後に周方向に熱収縮させなければならないため、幅方向に熱収縮する熱収縮性フィルムをバンディングフィルムとして装着する際には、フィルムの幅方向が周方向となるように環状体を形成した上で、その環状体を所定の長さ毎に切断してボトルや弁当容器に手かぶせ等で装着しなければならない。したがって、幅方向に熱収縮する熱収縮性フィルムからなるラベルフィルムやバンディングフィルムを高速でボトルや弁当容器に装着するのは困難である。それゆえ、最近では、フィルムロールから直接、ボトルや弁当容器の周囲に巻き付けて装着することが可能な長手方向に熱収縮するフィルムが求められている。フィルム管状体を形成してシールするセンターシール工程や、裁断、手かぶせ等の加工が不要になり、高速で装着することも可能である。
 また、環境面からペットボトルのリサイクル原料を使用するフィルムへの要望が高い。通常の熱収縮性ポリエステルフィルムは、熱収縮特性を付与するため、非晶質成分を多く含む原料を用いるので、リサイクル原料を混合する比率には限界があり、リサイクル原料を多く含む熱収縮性ポリエステル系フィルムを提供することができていなかった。
 例えば、縦方向が主収縮方向となり、縦・横方向に機械的強度が高い理想的な熱収縮性ポリエステルフィルムが知られている(特許文献1参照)。しかし全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を10モル%以上含有するものであり、リサイクル原料の添加率には自ずと上限ができてしまう。
 また、収縮後のフィルムの外観に対する要望において、収縮後のゆがみが少ないことが求められる。収縮後のゆがみは、分子の主配向方向がフィルムの長手方向もしくは幅方向から傾いていることが原因で生じることが知られている。フィルムの中央部分から端部にわたって分子の配向の傾きが小さいことがゆがみに関しては理想的である。
 さらに、収縮フィルムの外観に関して、フィルム表面のキズの少なさが要望として存在する。フィルム表面のキズは、フィルムに印刷を施した際に、印刷抜けが生じる等の不良を発生させる。通常、フィルムを加熱延伸する際には、フィルムをTg以上に加熱する必要があるが、Tg以上の温度になったフィルムは、製膜機のロールに接触した際にロールとの摩擦やフィルムのズレによってフィルム表面にキズを生じさせる。一般的な縦延伸機を用いた場合、フィルムをTg以上の高温のロールに接触させて加熱するため、キズが生じやすい。
 例えば、特許文献1では、製膜に用いる縦延伸機において、フィルムのTg以上の温度になった複数の高温ロールに接触することで、キズが多数生じるため外観上好ましくない。また、端部付近でのみ急激にネックインが起こるために、端部付近で分子配向角の差が大きく、分子配向角が大きいため端部付近のフィルムを収縮させた際に、ゆがみが生じ、外観上好ましくない。
特許第4411556号公報
本発明の目的は、特許文献1の有する問題点を解決し、非晶質成分となりうるモノマー成分を多く含まずとも、長手方向である主収縮方向に十分な熱収縮特性を有し、前記主収縮方向と直交する幅方向においては熱収縮率が低く、フィルム表面のキズが極めて少なく、機械的強度が高い上、分子配向角差が小さく、厚み斑が小さい熱収縮性ポリエステル系フィルムを提供することにある。
 即ち、本発明は以下の構成よりなる。
1.エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分を0モル%以上5モル%以下含有しているとともに、主収縮方向が長手方向である熱収縮性ポリエステル系フィルムであって、下記要件(1)~(3)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
(1)90℃の温水中で10秒間に亘って処理した場合における長手方向の温湯熱収縮率が15%以上60%以下であること
(2)90℃の温水中で10秒間に亘って処理した場合における長手方向と直交する幅方向の温湯熱収縮率が-10%以上10%以下であること
(3) 幅方向の片端縁際の分子配向角と他端縁際の分子配向角との差である分子配向角差をフィルム1m当たりに換算した時、配向ねじれ指数が15°/m以下であること
2.表面に存在する深さ1μm以上、長さ3mm以上のキズが100個/m2以下であることを特徴とする上記第1に記載の熱収縮性ポリエステル系フィルム。
3.長手方向の厚みムラが10%以下であることを特徴とする上記第1又は2に記載の熱収縮性ポリエステル系フィルム。
4.主収縮方向と直交する方向である幅方向の引張破壊強さが80 MPa以上200 MPa以下であることを特徴とする上記第1~3のいずれかに記載の熱収縮性ポリエステル系フィルム。
5. 未延伸フィルムを幅方向に延伸し、その後、長手方向に延伸されてなる上記第1~4のいずれかを満足する熱収縮性ポリエステル系フィルムであって、フィルムのTg以上に加熱されたロールを使用することなく長手方向に延伸されてなることを特徴とする熱収縮性ポリエステル系フィルム。
6.上記1~5のいずれかに記載の熱収縮性ポリエステル系フィルムをラベルもしくはバンディングフィルムの基材とし、ラベルもしくはバンディングフィルムを少なくとも外周の一部に被覆して熱収縮させてなることを特徴とする包装体。
 本発明によれば、特許文献1の有する問題点を解決し、非晶質成分となりうるモノマー成分を多く含まずとも、長手方向である主収縮方向に十分な熱収縮特性を有し、前記主収縮方向と直交する幅方向においては熱収縮率が低く、フィルム表面のキズが極めて少なく、機械的強度が高い上、幅方向の分子配向角の差が小さく、厚み斑が小さい熱収縮性ポリエステル系フィルムの提供を可能とした。また、原料に非晶質成分となりうるモノマー成分を多く含ませる必要がないので、ペットボトルリサイクルポリエステルや、バイオ由来原料を用いたポリエステルを多量に含ませた環境対応性の高い熱収縮性ポリエステル系フィルムの提供を可能とした。本発明の熱収縮性ポリエステル系フィルムは、表面に存在するキズが極めて少ないため優れた外観性を得ることを可能とした。本発明の熱収縮性ポリエステル系フィルムは、本発明の熱収縮性ポリエステル系フィルムは、ボトルのフィルムラベルに好適に用いることができ、短時間の内に非常に効率良く装着することが可能である上に、装着後に熱収縮させた場合に、収縮不足、縦引け、シワのきわめて少ない良好な仕上がりを得ることを可能とした。また、本発明の熱収縮性ポリエステル系フィルムは、弁当等の容器を結束するバンディングフィルムとして好適に用いることができ、短時間の内に非常に効率良く装着することが可能となる上、装着後に熱収縮させた場合に、熱収縮によるシワ、ゆがみや収縮不足のきわめて少ない良好な仕上がりを得ることを可能とした。
延伸方式Aの概略を模式的に示す平面図である。 延伸方式Bの概略を模式的に示す平面図である。 延伸方式Cの概略を模式的に示す平面図である。 収縮後のフィルム歪みを評価した弁当のプラスチック容器を示す。 収縮後のフィルム歪みを評価したPETボトルの容器を示す。
 上記第1~5のいずれかに記載の熱収縮性ポリエステル系フィルムを連続的に製造するための好ましい製造方法としては、エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分が0モル%以上5モル%以下含有されたポリエステル系未延伸フィルムを、同時二軸延伸機を用いて、幅方向の両端際をクリップによって把持した状態でフィルムTg以上Tg + 40℃以下の温度で3.5倍以上6倍以下の倍率で幅方向に延伸(横延伸)した後、フィルムTg以上Tg + 40℃以下の温度でクリップの間隔を広げることで1.5倍以上から2.5倍以下の倍率で長手方向に延伸(縦延伸)しながら、テンター幅を横延伸後から5%以上30%以下狭めることで幅方向に弛緩することである(以下この延伸方式のことを延伸方式Aと記す)。
 また、上記製造方法と同様の効果が得られる、製造方法のひとつとしては、上記と同様のポリエステル系未延伸フィルムを、テンター内で幅方向の両端際をクリップによって把持した状態でフィルムTg以上、Tg + 40℃以下の温度で3.5以上6倍以下の倍率で幅方向に延伸(横延伸)した後、フィルム端部を把持しているクリップをテンター内で開放させ、テンター内のフィルムに対して、テンター出口付近に設置したロールの張力を伝播させ、フィルムTg以上Tg + 40℃以下の温度でテンターのクリップと出口付近のロールの速度差によって長手方向に1.5倍以上、2.5倍以下で延伸(縦延伸)することである。フィルムを幅方向に把持しない状態で縦延伸するため、フィルムの幅が5%以上30%以下狭まる。(以下この延伸方式のことを延伸方式Bと記す)
 また、上記2つの製造方法と同様の効果が得られる、製造方法のひとつとしては、上記と同様のポリエステル系未延伸フィルムを、テンター内で幅方向の両端際をクリップによって把持した状態でフィルムTg以上Tg+40℃以下の温度で3.5倍以上6倍以下の倍率で幅方向に延伸(横延伸)した後、再度別のテンター内でフィルムTg以上Tg + 40℃以下の温度にフィルムを加熱しながら、テンターの入口と出口に設置したロールの速度差によって長手方向に1.5倍以上、2.5倍以下で延伸(縦延伸)することである。フィルムを幅方向に把持しない状態で縦延伸するため、フィルムの幅が5%以上30%以下狭まる(以下、この延伸方式のことを延伸方式Cと記す)。
 本発明のフィルムは、エチレンテレフタレートを主たる構成成分とするものである。ここで主たる構成成分とは、フィルムを構成する全ポリマー構成成分のうち95モル%以上がエチレンテレフタレートであることを意味している。エチレンテレフタレートを主たる構成成分として用いることにより、優れた機械的強度と透明性を有することができる。
 エチレンテレフタレートがフィルムを構成するポリマーの全構成成分であってもよく、このようなポリエチレンテレフタレート(以下、単にPETということがある)の重合法としては、テレフタル酸とエチレングリコール、および必要に応じて他のジカルボン酸成分およびジオール成分を直接反応させる直接重合法、およびテレフタル酸のジメチルエステル(必要に応じて他のジカルボン酸のメチルエステルを含む)とエチレングリコール(必要に応じて他のジオール成分を含む)とをエステル交換反応させるエステル交換法等の任意の製造方法が利用され得る。
 ポリエチレンテレフタレートの固有粘度は、0.45から0.8の範囲が好ましい。固有粘度が0.45よりも低いと、延伸により結晶化して収縮性が低下し好ましくない。また、0.8より大きいと濾圧上昇が大きくなり高精度濾過が困難となり、あまり好ましくない。
 また本発明はPETの中でもペットボトルリサイクル原料を用いることができる。(以下、単にリサイクル原料と記すことがある)。リサイクル原料はペットボトルにする際の成形性を良くするために概ねPETを構成成分とするが、イソフタル酸がモノマー成分として少し含まれていることが一般的である。本発明においては、非晶質成分となりうるモノマー成分を多く含有するポリマー原料を多量に使用するものではないが、リサイクル原料にイソフタル酸が含まれていることがあるため、非晶性モノマーの含有量が0 mol%以上5 mol%以下の範囲で含まれていると表現している。
[規則91に基づく訂正 14.07.2015] 
 非晶質成分となり得るモノマーとしては、代表例はイソフタル酸であるが、例えば、ネオペンチルグリコール、1.4-シクロヘキサンジメタノール、イソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、2,2-ジエチル1,3-プロパンジオール、2n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオールを挙げることもでき、前記含有量の範囲で含まれていても特に差し支えない。
 また本発明は、植物由来の原料から生成したエチレングリコールをグリコール成分として用いたポリエステル原料(以下、単にバイオポリエステル原料と記すことがある)を用いることができる。
 また、本発明の熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、下式1により算出したフィルムの長手方向の熱収縮率(すなわち、90℃の温湯熱収縮率)が、15%以上60%以下であることが好ましい。
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%)・・式1
 90℃における長手方向の温湯熱収縮率が15%未満であると、バンディングフィルムとして使用する場合に、収縮量が小さいために、熱収縮した後のラベルにシワやタルミが生じてしまうので好ましくない。一方、90℃における長手方向の温湯熱収縮率は60%を上回っても特に問題は無いが、本発明においては通常60%程度が熱収縮率の上限である。なお、90℃における長手方向の温湯熱収縮率の下限値は20%であると好ましく、25%であるとより好ましく、30%であると特に好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、上式1により算出したフィルムの幅方向の温湯熱収縮率が、-10%以上10%以下であることが好ましい。90℃における幅方向の温湯熱収縮率が10%を上回ると、ラベルやバンディングフィルムとして用いた場合に熱収縮時に収縮方向と直交する方向のフィルムの長さが短くなるので好ましくない。一方、-10%を下回ると、熱収縮時に主収縮方向と直交方向のラベル長さが長くなり、たるみが生じてシワになり易いので好ましくない。なお、90℃における幅方向の温湯熱収縮率は、-9%以上9%以下であると好ましく、-8%以上8%以下であるとより好ましく、-7%以上7%以下であるとさらに好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、フィルム幅方向の片端縁際の分子配向角と対向する他端縁際の分子配向角の差である分子配向角差をフィルム幅1m当たりに換算した配向ねじれ指数を以下の方法で求めた時に、その配向ねじれ指数が15°/m以下であることが好ましい。なお配向ねじれ指数の上限値は13°/m以下であるとより好ましく、12°/m以下であるとさらに好ましい。配向ねじれ指数は0°/mに近づくほどよいが、1°/mであっても特に問題ない。
 本発明における分子配向軸とは、フィルムの長手方向をX 軸、フィルムの幅方向をY 軸、フィルムの厚み方向をZ 軸方向とした場合に、フィルムのX Y 平面上で見た場合に、最も分子配向度が大きい方向を分子配向軸と称する。そして、分子配向角とは上記分子配向軸を測定した場合の分子配向軸がフィルム長手方向又はフィルム幅方向からずれてくる角度を意味する。分子配向角の測定方法としては、まずフィルムの幅方向で対向する左右の端縁において、矩形のサンプルを採取する。切り出したフィルムサンプルについて分子配向角(分子配向軸方向の角度)を王子計測機器株式会社製の分子配向角測定装置(MOA-6004)で測定する。分子配向角は、フィルムの長手方向を0度とし、上記分子配向軸の方向が、長手方向を基準として45度より小さい時は0度からの差、45度より大きい時は90度からの差を求める。フィルムの幅方向で対向する左右の端縁から採取した矩形サンプルについて、上記方法により分子配向角を測定し、その差の絶対値を、下式2により、サンプルの切り出し位置(中央部分)同士の幅方向の間隔で除すことによってフィルム単位幅(1m)当たりの分子配向角度の差(配向ねじれ指数)を算出する。
  配向ねじれ指数 = (左右の端縁から採取した各サンプル分子配向角度の差の絶対値) ÷ (サンプルの切り出し位置同士の間隔) ・・・式2
  通常の二軸延伸を行った場合、フィルムの幅方向の中央部分では分子配向角の差は極めて小さいため、15°/m以下である。一方で、フィルム端部付近では分子配向の差が大きく、15°/mを上回る。これは、延伸距離が短く急激な延伸を行うために端部付近のみでネックインが起こるためである。
 製膜時にTg以上の温度になったフィルムは、製膜機のロールに接触した際にロールとの摩擦やフィルムのズレによってフィルム表面にキズを生じさせる。本発明の熱収縮性ポリエステル系フィルムでは、表面に存在する深さ1μm以上、長さ3mm以上のキズが100個/m2以下であることが好ましい。キズの数が100個/m2を上回ると、フィルムの意匠性等の外観を損なうため好ましくない。なお、キズは90個/m2以下であるとより好ましく、80個/m2以下であるとさらに好ましく、下限はもちろん0個/m2である。
 加えて、本発明の熱収縮性ポリエステル系フィルムは、長手方向の厚み斑が10%以下であることが好ましい。長手方向の厚み斑が10%を超える値であると、ラベルやバンディングフィルム作成の際の印刷時に印刷斑が発生し易くなったり、熱収縮後の収縮斑が発生し易くなったりするのであまり好ましくない。なお、長手方向の厚み斑は9%以下であるとより好ましく、8%以下であると更に好ましく、7%以下であれば特に好ましい。長手方向の厚み斑は0%に近づくほど良いが、下限は2%であって実用上構わない。
 本発明の熱収縮性ポリエステル系フィルムは、幅方向の引張破壊強さが80 MPa以上200 MPa以下であることが好ましい。なお、引張破壊強さの測定方法は実施例で説明する。上記引張破壊強さが80 MPaを下回ると、ラベル用途やバンディングフィルム用途として容器に装着する際の“腰”(スティフネス)が弱くなるので好ましくなく、反対に、引張破壊強さが200 MPaを上回ると、ラベルやバンディングフィルムを引き裂く際の初期段階におけるカット性(引き裂き易さ)が不良となるので好ましくない。なお、引張破壊強さの下限は、100 MPa以上がより好ましく、110 MPa以上がさらに好ましく、120 MPa以上が特に好ましく、上限は190 MPa以下がより好ましく、180 MPa以下がさらに好ましく、170 MPa以下が特に好ましい。
 本発明の熱収縮性ポリエステル系フィルムの厚みは、特に限定されるものではないが、ラベル用途やバンディング用途の熱収縮性フィルムとして5~100μmが好ましく、10~95μmがより好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、その製造方法について何ら制限される物ではないが、例えば、上記したポリエステル原料を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す方法により、二軸延伸することによって得ることができる。
 原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、200~300℃の温度で溶融しフィルム状に押し出す。かかる押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。
 そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金より回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
 さらに、得られた未延伸フィルムを、後述するように、所定の条件で幅方向に延伸した後に、所定の条件で長手方向に延伸し、本発明の熱収縮性ポリエステル系フィルムを得ることが可能となる。以下、本発明の熱収縮性ポリエステル系フィルムを得るための好ましい二軸延伸について、従来の熱収縮性ポリエステル系フィルムの延伸方法との差異を考慮しつつ詳細に説明する。
(熱収縮性ポリエステル系フィルムの好ましい延伸方法)
 通常の熱収縮性ポリエステル系フィルムは、収縮させたい方向に未延伸フィルムを延伸することによって製造される。従来から長手方向に収縮する熱収縮性ポリエステル系フィルムについての要求は高かったものの、未延伸フィルムを単純に長手方向に延伸するだけでは、幅方向の引張破壊強さが大幅に低くなる上に、幅の広いフィルムが製造できないため生産性の点で好ましくない。また、通常の熱収縮性ポリエステルフィルムは、熱収縮特性を付与するため、非晶質成分を多く含む原料を用いるので、リサイクル原料を混合する比率には限界がある。
 特許文献1には、長手方向と幅方向に機械的特性を向上させるために未延伸フィルムを所定の条件下で横延伸-熱処理―縦延伸の順に延伸する方法が示されている。しかし、この方法では非晶性モノマーがのPET原料のジオール又はジカルボン酸として10 mol%以上含まれており、リサイクル原料の添加に制限がある。また、特許文献1に記述の製膜方法では、配向ねじれ指数が大きく、端部では配向角が大きいために、弁当等の容器に巻いて収縮させた時に、ゆがみが生じるために好ましくない。さらに、縦延伸において縦延伸機のフィルムTg以上の温度になったロールに複数接触するため、フィルムとの摩擦やズレにより表面にキズが多数生じる問題がある。
 配向ねじれ指数を小さくし、収縮によるゆがみを解消する方法について以下に解説する。本発明は、研究の結果、縦延伸距離を通常よりも大幅に長くし、縦延伸時に生じるネックイン現象をフィルム幅方向に均一に生じさせることにより、配向ねじれ指数を下げることを可能とした。ネックインは、縦延伸時に延伸方向と直交する方向(幅方向)に生じる力により、フィルムが幅方向に収縮する現象である。通常の縦延伸機による縦延伸では、低速ロールと高速ロールの間 (数mm程度) で延伸するため、ネックインの影響はフィルムの端部付近のみに生じ、かつ長手方向に対して急激にネックインするため、端部付近の配向角が大幅に増加し配向ねじれ指数は大きくなる。本発明では、縦延伸の延伸距離を大幅に長くすることで、ネックインの影響を全幅において生じさせることができ、かつ長手方向に対して緩やかなネックインを可能とし、配向ねじれ指数を低減することを実現した。
 長手方向の延伸距離を大幅に長くし、均一ネックインを生じさせながら延伸する方法について以下に説明する。延伸方式Aにおいては、クリップ間隔を広げて長手方向に延伸すると同時に、テンター幅を徐々に狭くすることで均一にネックインさせることが可能となった。一方、延伸方式Bにおいては、テンター内でフィルムをクリップから開放した時点からテンター出口付近に設置したロールの間で延伸されるため、延伸距離は長く、均一なネックインを生じさせることが可能となった。また、延伸方式Cにおいても、テンターの入口付近のロールから出口付近のロールの間で延伸されるため延伸距離は長く、均一なネックインを生じさせることが可能となった。延伸方式Aを図1に、延伸方式Bを図2に、延伸方式Cを図3に示す。
 表面に生じるキズを大幅に低減させる延伸方式について以下に説明する。本発明者は研究の結果、フィルムのTg以上のロールに接触させずに、長手方向に延伸する収縮フィルムの製膜方法を考案し、フィルム表面のキズを大幅に減少させることを可能とした。上記の延伸方式Aにあるように同時二軸延伸機を用いて横延伸後、クリップ間隔を広げることにより長手方向に延伸することで、Tg以上のロールにフィルムが接触することなく十分な収縮性をもったフィルムを製膜できることがわかった。また、上記延伸方式Bにあるように、横延伸後にテンター内部で把持しているクリップを開放し、テンター出口付近に設置したロールの張力を伝播させることで長手方向に延伸した場合においても、Tg以上のロールに接触することなく収縮フィルムを製膜できることがわかった。また、フィルムがテンター出口から出る前にフィルムを積極的に冷却する冷却ゾーンを設けることで、フィルムがロールに接触する時点でのフィルムの温度をTg以下にした。さらに、上記延伸方式Cにあるように、フィルムをクリップに把持せずテンターに導入し、テンターの入口付近と出口付近に設置したロールの速度差によりテンター内で長手方向に延伸することで、Tg以上のロールにフィルムが接触することなく十分な収縮性をもったフィルムを製膜できることがわかった。なお、延伸方式Bと同様に、フィルムがテンター出口から出る前にフィルムを積極的に冷却する冷却ゾーンを設けることで、フィルムがロールに接触する時点でのフィルムの温度をTg以下にした。
 本発明の熱収縮性フィルムの好ましい幅方向の延伸倍率、長手方向の延伸倍率、延伸距離、縦延伸時の幅縮み率について記述する。
 本発明者は研究の結果意図的に非晶PET原料を使用しないフィルムは延伸倍率2倍前後が延伸方向の収縮率が高くなり、延伸倍率を3倍より高くすると結晶化が進行するため延伸方向の収縮率は低下することが分かった。この研究結果より、二軸に延伸して長手方向に収縮させるには最初の横延伸倍率を3.5倍以上6倍以下で延伸することが好ましい。3.5倍より低いと幅方向の収縮率が高くなり、ラベルやバンディングフィルムとして収縮させた際に、シワ等の不良が発生するため好ましくない。また、幅方向の延伸を行わず未延伸フィルムを長手方向に延伸した場合、縦方向の厚み斑が大きくなり好ましくない。横延伸倍率の上限は特に規定は無いが6倍より高いと、長手方向に延伸し難くなる(所謂、破断が生じやすくなる)ので好ましくない。より好ましくは3.7倍以上5.8倍以下であり、更に好ましくは3.9倍以上5.6倍以下である。長手方向の延伸倍率は1.5倍以上2.5倍以下が好ましい。1.5倍以下では収縮率が不足し、2.5倍以上では縦延伸時の幅縮み率が高くなることにより幅方向の収縮率は大きくマイナスとなることが原因で、ラベルやバンディングフィルムとして収縮させた際にシワ等の不良を生じさせるため好ましくない。より好ましくは1.6倍以上2.4倍以下であり、更に好ましくは1.8倍以上2.3倍以下である。
 長手方向の延伸距離は1000mm以上7000mm以下が好ましい。縦延伸距離が1000mm以下であると、縦延伸時に全幅で均一なネックインが生じないため好ましくない。7000mmを上回ると、ネックインが大きくなりすぎ幅方向の収縮率が大幅に低下するため好ましくない。より好ましくは1500mm以上、6500mm以下であり、さらに好ましくは、2000mm以上、6000mm以下である。
[規則91に基づく訂正 14.07.2015] 
 縦延伸のネックインによって生じる幅方向の収縮の量を「縦延伸時の幅縮み率」と記述する。縦延伸時の幅縮み率は、延伸前のフィルムの幅をX、延伸後のフィルムの幅をYとした時、以下の式3で表される。
縦延伸時の幅縮み率(%) = 100 (X-Y) / X ・・・式3
縦延伸時の幅縮み率は、延伸倍率、縦延伸距離、ピンチロールの有無によって調整可能であるが、5%以上、30%以下が好ましい。5%を下回ると、幅方向に均一なネックインが生じず、配向ねじれ指数を低減できないため好ましくない。また、30%を上回ると、幅方向の収縮率が大幅に減少して大きくマイナス収縮となるため、シワ等の不良を生じさせるため好ましくない。より好ましくは、7%以上、27%以下であり、さらに好ましくは10%以上、24%以下である。
 上記のピンチロールとは、ロールとロールの間でフィルムを挟み込み正確にフィルムを送るニップロールの一種であり、フィルム両端を外側に引っ張り、フィルムが外向きに送られるように、フィルム端部の位置に2つのニップロールを幅方向に左右対称にとりつけ、わずかであるがハの字に傾ける。
 本発明の包装体は、本発明の熱収縮性ポリエステル系フィルムから得られたバンディングフィルム(及びラベル)が、包装対象物の少なくとも外周の一部に被覆して熱収縮させて形成されるものである。包装対象物としては、(飲料用のPETボトルを始め、各種の瓶、缶、菓子や)弁当等のプラスチック容器、紙製の箱等を挙げることができる。なお、通常、それらの包装対象物に、熱収縮性ポリエステル系フィルムから得られるラベルを熱収縮させて被覆させる場合には、当該バンディングフィルム(及びラベル)を約5~70%程度熱収縮させて包装体に密着させる。なお、包装対象物に被覆されるバンディングフィルム(及びラベル)には、印刷が施されていても良いし、印刷が施されていなくても良い。
 バンディングフィルム(及びラベル)を作製する方法としては、長方形状のフィルムのを長手方向に丸めて端部を重ね合わせて接着してラベル状にするか、あるいは、ロール状に巻き取ったフィルムをロール長手方向に丸めて端部をフィルムに重ね合わせて接着して、チューブ状体としたものをカットしてラベル状とする。フィルム同士を接着する方法は、溶断シール、溶剤接着、ホットメルト接着剤による接着、エネルギー線硬化型接着剤による接着など、既知の方法を用いて行うことができる。
 以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。実施例、比較例で使用した原料の組成、実施例、比較例におけるフィルムの延伸方式、製造条件を、それぞれ表1に示す。
 [表1]
Figure JPOXMLDOC01-appb-I000001
また、フィルムの評価方法は下記の通りである。
[Tg(ガラス転移点)]
 セイコー電子工業株式会社製の示差走査熱量計(型式:DSC220)を用いて、JIS-K7121-1987に従って求めた。未延伸フィルム5mgを、-40℃から120℃まで、昇温速度10℃/分で昇温し、昇温プロファイルを得た。ガラス転移温度以下のベースラインの延長線と遷移部における最大傾斜を示す接線との交点の温度をガラス転移温度とした。
 [固有粘度 (IV)]
 ポリエステル0.2gをフェノール/1,1,2,2-テトラクロルエタン(60/40(重量比))の混合溶媒50ml中に溶解し、30℃でオストワルド粘度計を用いて測定した。単位はdl/g。
[熱収縮率(温湯熱収縮率)]
 フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中において、無荷重状態で10秒間処理して熱収縮させた後、フィルムの縦および横方向の寸法を測定し、上式1にしたがって、それぞれ熱収縮率を求めた。当該熱収縮率の大きい方向を主収縮方向とした。
[規則91に基づく訂正 14.07.2015] 
 [配向ねじれ指数]
 フィルムの幅方向の対向する左右の端縁において、長手方向;幅方向=140mm;100mmのサンプルを採取した。そして、それらの2つのサンプルについて、王子計測機器株式会社製の分子配向角測定装置(MOA-6004)を用いて分子配向角を測定した。
 そして、左右の端縁から採取した各サンプルの分子配向角度の差の絶対値を算出し、その差の絶対値を、下式2により、サンプルの切り出し位置(中央部分)同士のフィルム幅方向の間隔で除すことによって、単位幅(1m)当たりの分子配向角度の差を算出して、配向ねじれ指数とした。
 配向ねじれ指数 = (各サンプル分子配向角度の差の絶対値) ÷ (サンプルの切り出し位置同士の間隔) ・・・式2
[規則91に基づく訂正 14.07.2015] 
[収縮後のゆがみ(弁当箱のバンディング用途)]
 弁当のプラスチック容器(辺 150;150mm、高さ100mm)に対して、容器の本体部と蓋をフィルムが結束するように、容器の周方向をフィルムの収縮方向にして巻き付け、220℃で溶断シール後、設定温度90℃のシュリンクトンネルにて加熱収縮させた。図4において、プラスチック容器を置いた地面からフィルムの端まで長さを長さXとし、長さXを、5mmピッチで周方向(フィルム長手方向)に測定し、長さXの最大値と最小値の差をRとした。R.の大きいものを、収縮後のゆがみが大きいと判断し、基準は下記のようにした。
◎: R ≦1mm
○: 1mm < R ≦2mm
△: 2mm < R ≦3mm
☓: 3mm < R 
 上記評価を、製造したフィルムロールの中央部分と端部分の2つのサンプルにおいて実施した。
[収縮後のゆがみ(ボトルのラベル用途)]
 500mlのPETボトル(胴直径62mm、ネック部の最小直径25mm)に対して、ボトルの周方向がフィルムの主収縮方向(長手方向)になるようにフィルムを巻き付け、220℃で溶断シール後、設定温度90℃のシュリンクトンネルにて加熱収縮させた。図5において、ボトルを置いた地面からラベル上部の端までの長さを長さYとし、長さYを、5mmピッチで周方向(フィルム長手方向)に測定し、長さYの最大値と最小値の差をLとした。L.の大きいものを、収縮後のゆがみが大きいと判断し、基準は下記のようにした。
◎: L ≦1mm
○: 1mm < L ≦2mm
△: 2mm < L ≦3mm
☓: 3mm < L 
[規則91に基づく訂正 14.07.2015] 
[表面のキズ]
(1) キズの検出
 フィルム片16枚について、光学的に50μm以上の大きさと認識される光学欠点を検出した。
 光学欠点検出方法は、投光器として20W;2灯の蛍光灯をXYテーブル下方400mmに設置し、XYテーブル上に設けたスリット幅10mmのマスク上に測定対象の試験片を載せた。投光器と受光器を結ぶ線と、試験片表面の鉛直方向のなす角度を12°となるように光を入射すると、入射位置の試験片にキズが存在する場合に、その部分が光り輝く。その部分の光量をXYテーブル上方500mmに設置したCCDイメージセンサカメラで電気信号に変換し、その電気信号を増幅し、微分してスレッシュホールド(閾値)レベルとコンパレータで比較して、光学欠点の検出信号を出力する。また、CCDイメージセンサカメラを用いて、キズの画像を入力し、入力された画像のビデオ信号を所定の手順により解析して、光学欠点の大きさを計測し、50μm以上の欠点の位置を表示した。光学欠点の検出は、試験片の両面について行った。
(2)キズの大きさの測定
 上記(1)において検出される光学欠点部分から、キズによる欠点を選出した。上記の試験片を適当な大きさに裁断し、マイクロマップ社製3次元形状測定装置TYPE550を用いて、試験片表面に対して垂直方向から観察し、キズの大きさを測定した。試験片、すなわちフィルム表面に対して垂直方向から観察した時に、50μm以内に近接するキズの凹凸は同一のキズとして考え、それらのキズの最外部を覆う最小面積の長方形の長さ及び幅を、キズの長さおよび幅とした。キズの最も高い所と最も低いところの高さの差を深さとし、深さ1μm以上且つ長さ3mm以上の全キズの個数(個/m2)を求めた。
[引張破壊強さ]
 測定方向(フィルム幅方向)が140mm、測定方向と直交する方向(フィルム長手方向)が20mmの短冊状の試験片を作製した。万能引張試験機「DSS-100」(島津製作所製)を用いて、試験片の両端をチャックで片側20 mmずつ把持(チャック間距離100 mm)して、雰囲気温度23℃、引張速度200 mm/minの条件にて引張試験を行い、引張破壊時の強度(応力)を引張破壊強さとした。
[長手方向の厚み斑]
 フィルム長手方向を長さ30 m×幅40 mmの長尺なロール状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度で測定した。なお、上記したロール状のフィルム試料のサンプリングにおいては、フィルム試料の長さ方向をフィルムの主収縮方向とした。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下式4からフィルムの長手方向の厚み斑を算出した。
 厚み斑={(Tmax.-Tmin.)/Tave.}×100 (%)  ・・式4
 また、実施例および比較例に用いたポリエステルは以下の通りである。
・ポリエステル1:ポリエチレンテレフタレート(IV 0.75 dl/g)
・ポリエステル2:上記ポリエステル1の製造の際に、滑剤としてSiO(富士シリシア社製サイリシア266)をポリエステルに対して8,000ppmの割合で添加したポリエチレンテレフタレート(IV 0.75 dl/g)
・ポリエステル3:リサイクル原料 {よのペットボトルリサイクル(株)製 「クリアペレット」(IV 0.63 dl/g、なお、このポリエステル3は、ポリエステルを構成する全ジカルボン酸成分に対してイソフタル酸を2 mol%含んでいる)。
・ポリエステル4 : バイオ由来のエチレングリコールを使用したバイオポリエステル原料(IV 0.62 dl / g) 
 ポリエステル4は下記のような製造方法にて樹脂を調製した。石油由来の原料から精製したテレフタル酸と植物由来の原料から精製したエチレングリコールの混合物中に酢酸マグネシウム四水塩をポリエステル中にMg原子として70 ppmとなるように加え常圧化にて温度255℃でエステル化反応させた。その後Sb原子としてポリエステル中に280 ppmとなるような量の三酸化アンチモンおよびP原子としてポリエステル中に40 ppmとなるような量のリン酸トリメチルを加えさらに温度260℃で反応させた。 引き続いて、反応生成物を重縮合反応層に移し加熱昇温しながら反応系を徐々に減圧して133 Pa(1 mmHg)の減圧下、280℃で常法により重縮合を行い、IV=0.62 dl / gのポリエステルチップを得た。バイオマス度を測定したところ、バイオマス度は17%であった。
〔実施例1〕
 上記したポリエステル1とポリエステル2とを重量比93:7で混合して押出機に投入した。しかる後、その混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが144μmの未延伸フィルムを得た。未延伸フィルムのTgは75℃であった。しかる後、この未延伸フィルムを同時二軸延伸機に導いた。そして、テンターに導かれた未延伸フィルムを、フィルム温度が100℃になるまで予備加熱した後、横方向に90℃で4.0倍に延伸し、その後クリップ間隔を広げることにより90℃で縦方向に2.0倍に延伸した。この時縦延伸距離は2000mmであった。また、縦延伸の際にテンター幅を横延伸後から10% 狭めることで、フィルムを幅方向に弛緩させた。つまり縦延伸時の幅縮み率は10%であった。テンター後に両縁部を裁断除去することによって、約20μmの二軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。この一連のフィルム延伸製膜工程において、温度がTg以上であるロール数は0であった。また、この工程においてピンチロールは使用しなかった。そして、得られたフィルムの特性を上記の方法により評価した。評価結果を表2に示す。評価の結果、十分な収縮性を有し、収縮仕上がり性が良く、キズの少ないフィルムであった。
 [表2]
Figure JPOXMLDOC01-appb-I000002
〔実施例2〕
 ポリエステル3とポリエステル2を重量比93:7で混合して押出機に投入した以外は、実施例1と同様の方法によって熱収縮性フィルムを連続的に製造した。未延伸フィルムのTgは75℃であった。また、縦延伸時の幅縮み率は10%であった。そして、得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性を有し、収縮仕上がり性が良く、キズの少ないフィルムであった。
〔実施例3〕
 ポリエステル4とポリエステル2を重量比93:7で混合して押出機に投入した以外は、実施例1と同様の方法によって熱収縮性フィルムを連続的に製造した。未延伸フィルムのTgは75℃であった。また、縦延伸時の幅縮み率は10%であった。そして、得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性を有し、収縮仕上がり性が良く、キズの少ないフィルムであった。
〔実施例4〕
 上記したポリエステル1とポリエステル2とを重量比93:7で混合して押出機に投入した。しかる後、その混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが136μmの未延伸フィルムを得た。未延伸フィルムのTgは75℃であった。しかる後、この未延伸フィルムを横延伸機に導入した。テンターに導かれた未延伸フィルムを、フィルム温度が100℃になるまで予備加熱した後、横方向に90℃で4.0倍に延伸した。横延伸した後、フィルム端部を把持しているクリップをテンター内で開放させ、テンター内のフィルムに対して、テンター出口付近に設置したロールの張力を伝播させた。テンター出口付近のロール速度を、テンターのクリップ速度の2.0倍に設定することで、フィルムをテンター内において90℃で2.0倍に縦延伸した。テンター出口前にフィルムを積極的に冷却する冷却ゾーンを設け、フィルムを冷却した。テンター出口からロールの間にあるフィルムの温度は55℃であった。また、時クリップを開放した地点からテンター出口付近のロールまでの距離(縦延伸距離)は4000 mm であった。また、縦延伸時にフィルム幅方向に縮み過ぎないようにピンチロールを使用した。縦延伸時のフィルム幅方向の縮み率は15%であった。縦延伸後に両縁部を裁断除去することによって、約20μmの二軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。この一連のフィルム延伸製膜工程において、温度がTg以上であるロール数は0であった。得られたフィルムの特性を上記した方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性を有し、収縮仕上がり性が良く、キズの少ないフィルムであった。
〔実施例5〕
 未延伸フィルムの厚みを110μmにし、縦延伸倍率を1.5倍に変更した以外は、実施例4と同様の方法によって熱収縮性フィルムを連続的に製造した。縦延伸時のフィルム幅方向の縮み率は8%であった。得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性を有し、収縮仕上がり性が良く、キズの少ないフィルムであった。
〔実施例6〕
 未延伸フィルムの厚みを150μmにし、縦延伸倍率を2.5倍に変更した以外は、実施例4と同様の方法によって熱収縮性フィルムを連続的に製造した。縦延伸時のフィルム幅方向の縮み率は25%であった。得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性を有し、収縮仕上がり性が良く、キズの少ないフィルムであった。
〔実施例7〕
 未延伸フィルムの厚みを128μmにし、縦延伸時にピンチロールを使用しなかった以外は、実施例4と同様の方法によって熱収縮性フィルムを連続的に製造した。縦延伸時のフィルム幅方向の縮み率は30%であった。得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性を有し、収縮仕上がり性が良く、キズの少ないフィルムであった。
〔実施例8〕
 未延伸フィルムの厚みを131μmにし、クリップを開放した地点からテンター出口付近のロールまでの距離(縦延伸距離)を5000mmに変更した以外は、実施例4と同様の方法によって熱収縮性フィルムを連続的に製造した。縦延伸時のフィルム幅方向の縮み率は18%であった。得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性を有し、収縮仕上がり性が良く、キズの少ないフィルムであった。
〔実施例9〕
 未延伸フィルムの厚みを128μmにし、クリップを開放した地点からテンター出口付近のロールまでの距離(縦延伸距離)を6000mmに変更した以外は、実施例4と同様の方法によって熱収縮性フィルムを連続的に製造した。縦延伸時のフィルム幅方向の縮み率は20%であった。得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性を有し、収縮仕上がり性が良く、キズの少ないフィルムであった。
〔実施例10〕
 上記したポリエステル1とポリエステル2とを重量比93:7で混合して押出機に投入した。しかる後、その混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが132μmの未延伸フィルムを得た。未延伸フィルムのTgは75℃であった。しかる後、この未延伸フィルムを横延伸機(第一テンター)に導入した。テンターに導かれた未延伸フィルムを、フィルム温度が100℃になるまで予備加熱した後、横方向に90℃で4.0倍に延伸した。第一テンターで横延伸後、フィルムを、張力をかけることができるロールを入口と出口に設置したテンターに導いた。第二テンターではフィルムの端部をクリップで把持せず、熱風により加熱し、第二テンター内のフィルムを入口と出口のロールの速度差によって90℃で縦延伸した。速度差は2.0倍にし、フィルム幅方向に縮み過ぎないようにピンチロールを使用した。第二テンター出口前にフィルムを積極的に冷却する冷却ゾーンを設け、フィルムを冷却した。テンター出口からロールの間にあるフィルムの温度は55℃であった。第二テンターの入口と出口のロール間の距離(縦延伸距離)は4000mmとし、フィルム幅方向の縮み率は17%であった。縦延伸後に両縁部を裁断除去することによって、約20μmの二軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。この一連のフィルム延伸製膜工程において、温度がTg以上であるロール数は0であった。得られたフィルムの特性を上記した方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性を有し、収縮仕上がり性が良く、キズの少ないフィルムであった。
〔比較例1〕
 上記したポリエステル1とポリエステル2とを重量比93:7で混合して押出機に投入した。しかる後、その混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが40μmの未延伸フィルムを得た。未延伸フィルムのTgは75℃であった。しかる後、複数のロール群を連続的に配置した縦延伸機へ導き、10本の予熱ロール上でフィルム温度が90℃になるまで予備加熱した後に、ロールの速度差を用いて2倍に延伸した。この時、延伸距離は4mmであり、フィルム幅方向の縮み率は2.0%であった。しかる後、縦延伸したフィルムを、表面温度25℃に設定された冷却ロールによって強制的に冷却した。 このフィルム延伸製膜工程において、温度がTg以上であるロール数は10本であった。この延伸方式を延伸方式Dとし、得られたフィルムの特性を上記した方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性は有するものの、厚み斑が悪く、幅方向の引張破断強度が低い上に、フィルム端部のサンプルで収縮ゆがみが生じ、キズの多いフィルムであった。
〔比較例2〕
 ポリエステル1とポリエステル2とを重量比93:7で混合して押出機に投入した。しかる後、その混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが157μmの未延伸フィルムを得た。未延伸フィルムのTgは75℃であった。しかる後、その未延伸フィルムを、横延伸機(通常のテンター)に導いた。 そして、テンターに導かれた未延伸フィルムを、フィルム温度が100℃になるまで予備加熱した後、横方向に90℃で4.0倍に延伸した。 さらに、そのように横延伸、熱処理されたフィルムを、複数のロール群を連続的に配置した縦延伸機へ導き、10本の予熱ロール上でフィルム温度が90℃になるまで予備加熱した後に、ロールの速度差を用いて2倍に延伸した。この時、延伸距離は4mmであり、フィルム幅方向の縮み率は2.0%であった。しかる後、縦延伸したフィルムを、表面温度25℃に設定された冷却ロールによって強制的に冷却した。 そして、冷却後のフィルムをテンター(第2テンター)へ導き、当該第2テンター内で90℃の雰囲気下で8.0秒間に亘って熱処理しながら、幅方向へ5%弛緩を施した。第2テンター後に両縁部を裁断除去することによって、約20μmの二軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。この一連のフィルム延伸製膜工程において、温度がTg以上であるロール数は10本であった。この延伸方式を延伸方式Eとし、得られたフィルムの特性を上記した方法によって評価した。評価結果を表2に示す。評価の結果、十分な収縮性は有するものの、フィルム端部付近のサンプルで収縮ゆがみが生じ、キズの多いフィルムであった。
 本発明の熱収縮性ポリエステル系フィルムは、上記の如く優れた特性を有しているので、ボトルのラベル用途や弁当等の結束目的で使用するバンディングフィルム用途に好適に用いることができ、同フィルムがラベルやバンディングフィルムとして用いられた包装体は美麗な外観を有するものである。ポリエステル中に非晶質成分をとなりうるモノマー成分が極めて少ない含有量においても長手方向に十分な熱収縮率を有するフィルムであるので、リサイクル原料比率を高くすることができ、環境にも適したフィルムである上に、フィルム表面のキズが極めて少なく、外観に優れたフィルムである。
  1:テンター
  2:クリップオープナー
  3:クリップ
  4:延伸フィルム
  5:ロール
  6:プラスチック容器(蓋)
  7:プラスチック容器(本体) 
  8:フィルム
 

Claims (6)

  1.  エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分を0モル%以上5モル%以下含有しているとともに、主収縮方向が長手方向である熱収縮性ポリエステル系フィルムであって、下記要件(1)~(3)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
    (1)90℃の温水中で10秒間に亘って処理した場合における長手方向の温湯熱収縮率が15%以上60%以下であること
    (2)90℃の温水中で10秒間に亘って処理した場合における長手方向と直交する幅方向の温湯熱収縮率が-10%以上10%以下であること
    (3) 幅方向の片端縁際の分子配向角と他端縁際の分子配向角との差である分子配向角差をフィルム1m当たりに換算した配向ねじれ指数が15°/m以下であること
  2.  表面に存在する深さ1μm以上、長さ3mm以上のキズが100個/m2以下であることを特徴とする請求項1に記載の熱収縮性ポリエステル系フィルム。
  3.  長手方向の厚みムラが10%以下であることを特徴とする請求項1又は2に記載の熱収縮性ポリエステル系フィルム。
  4.  主収縮方向と直交する方向である幅方向の引張破壊強さが80 MPa以上200 MPa以下であることを特徴とする請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルム。
  5.  未延伸フィルムを幅方向に延伸し、その後、長手方向に延伸されてなる請求項1~4のいずれかを満足する熱収縮性ポリエステル系フィルムであって、フィルムのTg以上に加熱されたロールを使用することなく長手方向に延伸されてなることを特徴とする熱収縮性ポリエステル系フィルム。
  6.  請求項1~5のいずれかに記載の熱収縮性ポリエステル系フィルムをラベルもしくはバンディングフィルムの基材とし、ラベルもしくはバンディングフィルムを少なくとも外周の一部に被覆して熱収縮させてなることを特徴とする包装体。
PCT/JP2015/051870 2014-02-04 2015-01-23 熱収縮性ポリエステル系フィルム WO2015118968A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/116,759 US10189962B2 (en) 2014-02-04 2015-01-23 Heat-shrinkable polyester film
EP15746705.1A EP3103619B1 (en) 2014-02-04 2015-01-23 Heat-shrinkable polyester film
CN201580007336.3A CN105980134B (zh) 2014-02-04 2015-01-23 热收缩性聚酯系薄膜
CA2938651A CA2938651C (en) 2014-02-04 2015-01-23 Heat-shrinkable polyester film
KR1020167021596A KR102183918B1 (ko) 2014-02-04 2015-01-23 열수축성 폴리에스테르계 필름
ES15746705T ES2714571T3 (es) 2014-02-04 2015-01-23 Película de poliéster termorretráctil

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-019113 2014-02-04
JP2014019113 2014-02-04
JP2014183245A JP6269399B2 (ja) 2014-02-04 2014-09-09 熱収縮性ポリエステル系フィルム
JP2014-183245 2014-09-09

Publications (2)

Publication Number Publication Date
WO2015118968A1 WO2015118968A1 (ja) 2015-08-13
WO2015118968A9 true WO2015118968A9 (ja) 2015-11-05

Family

ID=53777775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051870 WO2015118968A1 (ja) 2014-02-04 2015-01-23 熱収縮性ポリエステル系フィルム

Country Status (9)

Country Link
US (1) US10189962B2 (ja)
EP (1) EP3103619B1 (ja)
JP (1) JP6269399B2 (ja)
KR (1) KR102183918B1 (ja)
CN (1) CN105980134B (ja)
CA (1) CA2938651C (ja)
ES (1) ES2714571T3 (ja)
TW (1) TWI653288B (ja)
WO (1) WO2015118968A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576367B (zh) * 2012-08-29 2017-04-01 東洋紡股份有限公司 熱收縮性聚酯系薄膜
WO2016039044A1 (ja) * 2014-09-09 2016-03-17 東洋紡株式会社 熱収縮性ポリエステル系フィルム及び包装体
WO2017029999A1 (ja) * 2015-08-19 2017-02-23 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP7056322B2 (ja) * 2018-03-30 2022-04-19 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP6927124B2 (ja) 2018-03-30 2021-08-25 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP6835214B2 (ja) * 2018-03-30 2021-02-24 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP7302694B2 (ja) * 2018-03-30 2023-07-04 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP7056325B2 (ja) * 2018-03-30 2022-04-19 東洋紡株式会社 熱収縮性ポリエステル系フィルム
TWI803697B (zh) * 2018-10-05 2023-06-01 日商東洋紡股份有限公司 雙軸配向聚醯胺膜以及聚醯胺膜輥
JP7457495B2 (ja) * 2019-06-04 2024-03-28 住友化学株式会社 光学フィルムの製造方法及び光学フィルムの製造装置
WO2020246420A1 (ja) * 2019-06-05 2020-12-10 東洋紡株式会社 縦(長手)方向を主収縮方向とする熱収縮性ポリエステル系フィルム
WO2021020167A1 (ja) * 2019-07-26 2021-02-04 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP7347524B2 (ja) * 2019-10-02 2023-09-20 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
WO2021085301A1 (ja) * 2019-10-31 2021-05-06 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール
JP7378313B2 (ja) * 2020-02-14 2023-11-13 グンゼ株式会社 熱収縮性フィルム及び熱収縮性ラベル
WO2023243486A1 (ja) * 2022-06-13 2023-12-21 東洋紡株式会社 レーザー印字用熱収縮性ポリエステル系フィルム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216032A (ja) * 1988-07-05 1990-01-19 Diafoil Co Ltd ポリエステル系収縮フィルム
JP2000178367A (ja) * 1998-10-05 2000-06-27 Toray Ind Inc ポリエステルフィルムおよびその製造方法
CN1543396B (zh) * 2001-08-17 2010-06-09 东洋纺织株式会社 热收缩性聚苯乙烯类树脂薄膜卷及其制造方法、热收缩性标签
JP4752360B2 (ja) * 2005-07-07 2011-08-17 東洋紡績株式会社 熱収縮性ポリエステル系フィルム及びラベルとその製造方法
JP4411556B2 (ja) 2006-06-14 2010-02-10 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法
JP4877056B2 (ja) * 2007-05-01 2012-02-15 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法
JP4968034B2 (ja) * 2007-12-12 2012-07-04 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法
JP4809419B2 (ja) * 2007-12-13 2011-11-09 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法
JP5577602B2 (ja) * 2008-02-27 2014-08-27 東洋紡株式会社 白色熱収縮性ポリエステル系フィルム及び包装体
KR101491876B1 (ko) * 2008-02-27 2015-02-09 도요보 가부시키가이샤 백색 열수축성 폴리에스테르계 필름, 백색 열수축성 폴리에스테르계 필름의 제조방법, 라벨, 및 포장체
JP5339061B2 (ja) * 2008-02-29 2013-11-13 東洋紡株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
KR20220043251A (ko) * 2012-07-24 2022-04-05 유니띠까 가부시키가이샤 냉간 성형용 폴리에스테르 필름 및 그 제조 방법

Also Published As

Publication number Publication date
CN105980134A (zh) 2016-09-28
EP3103619B1 (en) 2018-12-19
TWI653288B (zh) 2019-03-11
WO2015118968A1 (ja) 2015-08-13
US10189962B2 (en) 2019-01-29
EP3103619A1 (en) 2016-12-14
ES2714571T3 (es) 2019-05-29
JP2016193491A (ja) 2016-11-17
CN105980134B (zh) 2018-07-17
CA2938651A1 (en) 2015-08-13
TW201538620A (zh) 2015-10-16
EP3103619A4 (en) 2017-11-15
CA2938651C (en) 2022-03-22
KR102183918B1 (ko) 2020-11-27
KR20160117475A (ko) 2016-10-10
JP6269399B2 (ja) 2018-01-31
US20160347920A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6269399B2 (ja) 熱収縮性ポリエステル系フィルム
JP7254730B2 (ja) 非晶性のフィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
CN107428965B (zh) 热收缩性聚酯系薄膜及包装体
JP6597633B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP5408250B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP6927124B2 (ja) 熱収縮性ポリエステル系フィルム
KR20200138776A (ko) 열수축성 폴리에스테르계 필름
JP7119504B2 (ja) 熱収縮性ポリエステル系フィルム
WO2016067658A1 (ja) 熱収縮性ポリエステル系フィルム及び包装体
JP2022095616A (ja) 包装体および包装容器
JP2014195944A (ja) 熱収縮性ポリエステル系フィルム
KR20180044901A (ko) 열수축성 폴리에스테르계 필름 및 포장체
JP6844682B2 (ja) 熱収縮性ポリエステル系フィルムロール
KR20220038066A (ko) 열수축성 폴리에스테르계 필름
KR20230009902A (ko) 필름용 공중합 폴리에스테르 원료, 열수축성 폴리에스테르계 필름, 열수축성 라벨, 및 포장체
KR20230079116A (ko) 열수축성 폴리에스테르계 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2938651

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15116759

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167021596

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201605372

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2015746705

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746705

Country of ref document: EP