WO2015118913A1 - スパイラル型分離膜エレメント - Google Patents

スパイラル型分離膜エレメント Download PDF

Info

Publication number
WO2015118913A1
WO2015118913A1 PCT/JP2015/050731 JP2015050731W WO2015118913A1 WO 2015118913 A1 WO2015118913 A1 WO 2015118913A1 JP 2015050731 W JP2015050731 W JP 2015050731W WO 2015118913 A1 WO2015118913 A1 WO 2015118913A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
spiral
polyfunctional
skin layer
membrane element
Prior art date
Application number
PCT/JP2015/050731
Other languages
English (en)
French (fr)
Inventor
真哉 西山
順子 中野
井上 真一
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020167024193A priority Critical patent/KR20160119142A/ko
Priority to US15/114,182 priority patent/US20170007969A1/en
Priority to CN201580006103.1A priority patent/CN105939777B/zh
Publication of WO2015118913A1 publication Critical patent/WO2015118913A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion

Definitions

  • the present invention relates to a spiral separation membrane element including a supply-side channel material, a composite semipermeable membrane, and a permeation-side channel material.
  • a spiral separation membrane element is suitable for the production of ultrapure water, brine or desalination of seawater, etc., and is also included in dirt, which is a cause of pollution such as dye wastewater and electrodeposition paint wastewater. It can contribute to the closure of wastewater by removing and collecting pollution sources or effective substances. Moreover, it can be used for advanced treatments such as concentration of active ingredients in food applications and removal of harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields, shale gas fields, and the like.
  • Patent Literature a composite semipermeable membrane in which a skin layer containing a polyamide resin obtained by interfacial polymerization of a polyfunctional amine and a polyfunctional acid halide is formed on a porous support.
  • biofouling in which water-borne microorganisms adhere to the membrane and the water permeability of the membrane deteriorates, is a problem.
  • a method for suppressing biofouling include a treatment method for sterilizing microorganisms in water with an oxidizing agent.
  • the composite semipermeable membrane of Patent Document 1 has oxidation resistance (chlorine resistance) that can withstand long-term continuous operation at a chlorine concentration (free chlorine concentration of 1 ppm or more) that can suppress the growth of microorganisms.
  • chlorine resistance chlorine resistance
  • the composite semipermeable membrane could not be used.
  • a fluid separation element used for reverse osmosis filtration, ultrafiltration, microfiltration, etc. for example, a supply-side channel material that guides the supply-side fluid to the separation membrane surface, a separation membrane that separates the supply-side fluid,
  • a spiral type separation membrane element in which a unit comprising a permeate-side flow channel material that permeates a separation membrane and guides a permeate-side fluid separated from a supply-side fluid to a central tube is wound around a perforated central tube.
  • Such a spiral separation membrane element generally has a structure in which a supply-side flow path material is stacked while a separation membrane is folded in two, and a permeation-side flow path material stacked to form a supply-side fluid and a permeation-side fluid.
  • an adhesive is applied to the periphery (3 sides) of the separation membrane to produce a separation membrane unit, and one or more of these units are spirally wound around the central tube. Further, it is manufactured by sealing the periphery of the separation membrane.
  • the composite semipermeable membrane When the composite semipermeable membrane is used as a separation membrane used in such a spiral separation membrane element, the skin layer is damaged because the composite semipermeable membrane is pressurized from the supply-side channel material side during water treatment. There was a problem that it was easy to receive and the salt rejection rate gradually decreased.
  • An object of the present invention is to provide a spiral separation membrane element that is excellent in oxidation resistance and is less likely to decrease the salt rejection.
  • the present inventors have used N, N′-dimethylmetaphenylenediamine as a raw material for the skin layer, and the permeation-side channel material has a porosity of 40 to 75%. As a result of the adjustment, it was found that a spiral separation membrane element having excellent resistance to oxidation and having a low salt rejection rate can be obtained, and the present invention has been completed.
  • a skin layer containing a polyamide-based resin obtained by interfacial polymerization of a supply-side channel material and a polyfunctional amine component and a polyfunctional acid halogen component is formed on the surface of the porous support.
  • the polyfunctional amine component includes N, N′-dimethylmetaphenylenediamine,
  • the permeation-side flow path material relates to a spiral separation membrane element characterized by a porosity of 40 to 75%.
  • the present invention is characterized in that N, N'-dimethylmetaphenylenediamine is used as a polyfunctional amine component.
  • a skin layer having excellent oxidation resistance can be obtained.
  • skin layers made using N, N'-dimethylmetaphenylenediamine as the polyfunctional amine component are subject to physical damage compared to skin layers made using other polyfunctional amine components. It was easy to sink during water treatment.
  • the present inventors have found that by using a permeate-side channel material having a porosity of 40 to 75%, the skin layer is less likely to be depressed even when a high pressure is applied to the skin layer during water treatment. It was.
  • the porosity of the permeate-side channel material is less than 40%, the depression of the skin layer can be effectively suppressed, but this is not preferable because the permeation flux is greatly reduced.
  • the porosity of the permeate-side channel material exceeds 75%, it becomes impossible to support the pressure applied to the skin layer from the back surface (the porous support side), so that the depression of the skin layer can be effectively suppressed. Can not.
  • the permeate side channel material is a tricot knitted fabric.
  • the sinking of the skin layer can be more effectively suppressed.
  • the spiral separation membrane element of the present invention Since the spiral separation membrane element of the present invention has excellent oxidation resistance, it can be used even when a treatment method for sterilizing microorganisms in water with an oxidizing agent is employed. Moreover, conventionally, in order to remove microorganisms in water, pretreatment was performed using an ultrafiltration membrane or a microfiltration membrane, but by using the spiral separation membrane element of the present invention, pretreatment was performed. It can be omitted or simplified. Therefore, the water treatment method using the spiral separation membrane element of the present invention is more advantageous than the conventional water treatment method in terms of cost and ecological footprint. Moreover, since the spiral-type separation membrane element of the present invention is unlikely to be depressed in the skin layer during water treatment, the salt rejection is unlikely to decrease even when used for a long time.
  • a skin layer containing a polyamide resin obtained by interfacial polymerization of a supply-side channel material, a polyfunctional amine component and a polyfunctional acid halogen component is formed on the surface of the porous support. It includes a formed composite semipermeable membrane and a permeate-side channel material.
  • N, N′-dimethylmetaphenylenediamine is used as the polyfunctional amine component.
  • the polyfunctional amine component it is preferable to use only N, N′-dimethylmetaphenylenediamine, but the following aromatic, aliphatic, or alicyclic polyfunctional amine components are used as long as the effects of the present invention are not impaired.
  • a functional amine may be used in combination.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • examples include benzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, 2,4-diaminoanisole, amidole, xylylenediamine and the like. These may be used alone or in combination of two or more.
  • aliphatic polyfunctional amine examples include ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, and n-phenyl-ethylenediamine. These may be used alone or in combination of two or more.
  • Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine, and the like. . These may be used alone or in combination of two or more.
  • N, N′-dimethylmetaphenylenediamine and the polyfunctional amine are used in combination, it is preferable to use 85% by weight or more of N, N′-dimethylmetaphenylenediamine in the whole polyfunctional amine component, more preferably 95%. % By weight or more.
  • the polyfunctional acid halide component is a polyfunctional acid halide having two or more reactive carbonyl groups.
  • polyfunctional acid halide examples include aromatic, aliphatic, and alicyclic polyfunctional acid halides.
  • aromatic polyfunctional acid halides include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, chlorosulfonylbenzene dicarboxylic acid.
  • An acid dichloride etc. are mentioned.
  • Examples of the aliphatic polyfunctional acid halide include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide, adipoid Examples include luhalides.
  • Examples of the alicyclic polyfunctional acid halide include cyclopropane tricarboxylic acid trichloride, cyclobutane tetracarboxylic acid tetrachloride, cyclopentane tricarboxylic acid trichloride, cyclopentane tetracarboxylic acid tetrachloride, cyclohexane tricarboxylic acid trichloride, and tetrahydrofuran.
  • Examples thereof include tetracarboxylic acid tetrachloride, cyclopentane dicarboxylic acid dichloride, cyclobutane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
  • polyfunctional acid halides may be used alone or in combination of two or more.
  • an aromatic polyfunctional acid halide it is preferable to use an aromatic polyfunctional acid halide.
  • a polymer such as polyvinyl alcohol, polyvinyl pyrrolidone or polyacrylic acid, a polyhydric alcohol such as sorbitol or glycerin may be copolymerized.
  • the porous support for supporting the skin layer is not particularly limited as long as it can support the skin layer.
  • the material for forming the porous support include polysulfone, polyarylethersulfone such as polyethersulfone, polyimide, polyvinylidene fluoride, and the like. Polysulfone and polyarylethersulfone are preferably used from the viewpoint of stability.
  • the thickness of such a porous support is usually about 25 to 125 ⁇ m, preferably about 40 to 75 ⁇ m, but is not necessarily limited thereto.
  • the porous support may be reinforced by backing with a base material such as woven fabric or non-woven fabric.
  • the porous support may be a symmetric structure or an asymmetric structure, but an asymmetric structure is preferable from the viewpoint of achieving both the skin layer support function and liquid permeability.
  • the average pore diameter on the side of the porous support where the skin layer is formed is preferably 0.01 to 0.5 ⁇ m.
  • an epoxy resin porous sheet may be used as the porous support.
  • the average pore diameter of the epoxy resin porous sheet is preferably 0.01 to 0.4 ⁇ m.
  • the method for forming the skin layer containing the polyamide-based resin on the surface of the porous support is not particularly limited, and any known method can be used.
  • an interfacial condensation method is a method in which a skin layer is formed by bringing an amine solution containing a polyfunctional amine component into contact with an organic solution containing a polyfunctional acid halide component to cause interfacial polymerization.
  • a polyamide resin skin layer is directly formed on a porous support by interfacial polymerization on the porous support. Details of the conditions of the interfacial condensation method are described in JP-A-58-24303 and JP-A-1-180208, and those known techniques can be appropriately employed.
  • an amine solution coating layer comprising an amine solution containing N, N′-dimethylmetaphenylenediamine is formed on a porous support, and then an organic solution containing a polyfunctional acid halide component and an amine solution coating layer are formed. And a method of forming a skin layer by interfacial polymerization by contacting them.
  • the solvent for the amine solution examples include alcohols such as ethylene glycol, isopropyl alcohol, and ethanol, and mixed solvents of these alcohols and water. In particular, it is preferable to use ethylene glycol.
  • the concentration of the polyfunctional amine component in the amine solution is not particularly limited, but is preferably 0.1 to 5% by weight, more preferably 0.5 to 2% by weight.
  • concentration of the polyfunctional amine component is less than 0.1% by weight, defects such as pinholes are likely to occur in the skin layer, and the salt blocking performance tends to decrease.
  • concentration of the polyfunctional amine component exceeds 5% by weight, the polyfunctional amine component is likely to penetrate into the porous support, or the film thickness becomes too thick to increase the permeation resistance and increase the permeation flow. The bundle tends to decrease.
  • the concentration of the polyfunctional acid halide component in the organic solution is not particularly limited, but is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight. If the concentration of the polyfunctional acid halide component is less than 0.01% by weight, the unreacted polyfunctional amine component tends to remain, or defects such as pinholes are likely to occur in the skin layer, resulting in a decrease in salt blocking performance. Tend to. On the other hand, when the concentration of the polyfunctional acid halide component exceeds 5% by weight, the unreacted polyfunctional acid halide component tends to remain, or the film thickness becomes too thick to increase the permeation resistance, thereby increasing the permeation flux. It tends to decrease.
  • the organic solvent used in the organic solution is not particularly limited as long as it has low solubility in water, does not deteriorate the porous support, and dissolves the polyfunctional acid halide component.
  • These organic solvents may be used alone or as a mixed solvent of two or more.
  • an organic solvent having a boiling point of 130 to 250 ° C more preferably an organic solvent having a boiling point of 145 to 250 ° C.
  • an organic solvent having a boiling point of 160 to 250 ° C. particularly preferably an organic solvent having a boiling point of 180 to 250 ° C.
  • organic solvent having the boiling point examples include hydrocarbon solvents, which may be a simple substance or a mixture. In the case of a mixture, the average value of the distillation range is defined as the boiling point.
  • organic solvents include saturated hydrocarbons such as nonane, decane, undecane, dodecane, and tridecane; isoparaffinic solvents such as IP solvent 1620, IP clean LX, and IP solvent 2028; Exol D30, Exol D40, Examples include naphthenic solvents such as Exol D60, Exol D80, Naphthezol 160, Naphthezol 200, and Naphthezol 220.
  • isoparaffinic solvents or naphthenic solvents are preferable, and naphthenic solvents are particularly preferable in order to further improve the chlorine resistance.
  • additives can be added to the amine solution and the organic solution for the purpose of facilitating film formation and improving the performance of the resulting composite semipermeable membrane.
  • the additive include surfactants such as sodium dodecylbenzenesulfonate, sodium dodecylsulfate, and sodium laurylsulfate, sodium hydroxide that removes hydrogen halide generated by polymerization, trisodium phosphate, and triethylamine.
  • surfactants such as sodium dodecylbenzenesulfonate, sodium dodecylsulfate, and sodium laurylsulfate
  • sodium hydroxide that removes hydrogen halide generated by polymerization
  • trisodium phosphate triethylamine.
  • the time from application of the amine solution on the porous support to application of the organic solution depends on the composition of the amine solution, the viscosity, and the pore size of the surface layer of the porous support, but is 15 seconds or less. It is preferable that it is 5 seconds or less. If the application interval of the solution exceeds 15 seconds, the amine solution may penetrate and diffuse deep inside the porous support, and a large amount of unreacted polyfunctional amine component may remain in the porous support. . Further, the unreacted polyfunctional amine component that has penetrated deep inside the porous support tends to be difficult to remove even in the subsequent membrane cleaning treatment. In addition, you may remove an excess solution, after coat
  • the heating temperature is more preferably 70 to 200 ° C., particularly preferably 100 to 150 ° C.
  • the heating time is preferably about 30 seconds to 10 minutes, more preferably about 40 seconds to 7 minutes.
  • the thickness of the skin layer formed on the porous support is not particularly limited, but is usually about 0.01 to 100 ⁇ m, preferably 0.1 to 10 ⁇ m.
  • various conventionally known treatments may be performed in order to improve the salt blocking property, water permeability, oxidation resistance, and the like of the composite semipermeable membrane.
  • a dry type composite semipermeable membrane may be used.
  • a supply side channel material can use a well-known thing without a restriction
  • a permeate-side channel material having a porosity of 40 to 75% is used.
  • the porosity is preferably 50 to 70%, more preferably 55 to 65%.
  • a permeation side channel material for example, a net material, a knitted material, a mesh material, a grooved sheet, a corrugated sheet and the like can be used. Of these, it is particularly preferable to use a tricot knitted fabric.
  • the spiral-type separation membrane element of the present invention includes, for example, a supply-side fluid and a permeation-side fluid that are stacked with a supply-side channel material and a permeation-side channel material arranged between two folded composite semipermeable membranes.
  • a separation membrane unit is prepared by applying an adhesive for forming a sealing portion that prevents mixing of the composite semipermeable membrane to the periphery (three sides) of the composite semipermeable membrane, and one or more of the separation membrane units are arranged around the central tube. It is manufactured by winding it in a spiral shape and further sealing the periphery of the separation membrane unit.
  • Example 1 An amine solution was prepared by dissolving 3% by weight of N, N′-dimethylmetaphenylenediamine, 0.15% by weight of sodium lauryl sulfate, 2.5% by weight of triethylamine, and 5% by weight of camphorsulfonic acid in ethylene glycol.
  • acid chloride solution by dissolving 0.2% by weight of trimesic acid chloride and 0.4% by weight of isophthalic acid chloride in Exxsol D30 (manufactured by ExxonMobil, distillation range 130 to 160 ° C., boiling point 148 ° C.) was prepared.
  • the amine solution was apply
  • an acid chloride solution was applied to the surface of the amine solution coating layer. Thereafter, the excess solution was removed, and further kept in a hot air dryer at 100 ° C. for 5 minutes to form a skin layer containing a polyamide-based resin on the porous support to produce a composite semipermeable membrane.
  • test unit C40-B manufactured by Nitto Denko Corporation
  • a permeate-side channel material which is a tricot knitted fabric with a porosity of 57%, is laid, and the composite semipermeable membrane produced thereon is set
  • An aqueous solution containing NaCl and adjusted to pH 7 with NaOH is brought into contact with the composite semipermeable membrane by applying a differential pressure of 1.5 MPa at 25 ° C.
  • the permeation rate and conductivity of the permeated water obtained by this operation were measured, and the permeation flux (m 3 / m 2 ⁇ d) and the salt rejection (%) were calculated.
  • Salt rejection was calculated in advance using a correlation (calibration curve) between NaCl concentration and aqueous solution conductivity in advance.
  • Salt rejection (%) ⁇ 1 ⁇ (NaCl concentration in the permeate [mg / L]) / (NaCl concentration in the feed liquid [mg / L]) ⁇ ⁇ 100
  • Example 2-7 Comparative Examples 1 and 2
  • the permeation flux and the salt rejection rate were the same as in Example 1 except that the composite semipermeable membrane produced in Example 1 was used and the permeate-side channel material that is a tricot knitted fabric with the porosity shown in Table 1 was used. Was measured.
  • Reference examples 1 to 3 A composite semipermeable membrane was produced in the same manner as in Example 1 except that 3% by weight of metaphenylenediamine was used instead of 3% by weight of N, N′-dimethylmetaphenylenediamine in Example 1. Then, the permeation flux and the salt rejection were measured in the same manner as in Example 1 except that the produced composite semipermeable membrane was used and the permeate-side channel material that is a tricot knitted fabric with the porosity shown in Table 1 was used. did.
  • the spiral separation membrane element of the present invention is suitable for the production of ultrapure water, desalination of brackish water or seawater, etc., and from contamination that causes pollution such as dyeing waste water and electrodeposition paint waste water. It can contribute to the closure of wastewater by removing and recovering contained pollution sources or effective substances. Moreover, it can be used for advanced treatments such as concentration of active ingredients in food applications and removal of harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields, shale gas fields, and the like.

Abstract

 本発明は、従来のものよりも耐酸化剤性に優れ、かつ塩阻止率が低下しにくいスパイラル型分離膜エレメントを提供することを目的とする。本発明のスパイラル型分離膜エレメントは、供給側流路材と、多官能アミン成分と多官能酸ハロゲン成分とを界面重合して得られるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜と、透過側流路材とを含むものであり、前記多官能アミン成分は、N,N'-ジメチルメタフェニレンジアミンを含み、前記透過側流路材は、空隙率が40~75%であることを特徴とする。

Description

スパイラル型分離膜エレメント
 本発明は、供給側流路材、複合半透膜、及び透過側流路材を含むスパイラル型分離膜エレメントに関する。かかるスパイラル型分離膜エレメントは、超純水の製造、かん水または海水の脱塩などに好適であり、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化に寄与することができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。また、油田やシェールガス田などにおける排水処理に用いることができる。
 現在、複合半透膜としては、多官能アミンと多官能酸ハロゲン化物との界面重合によって得られるポリアミド樹脂を含むスキン層が多孔性支持体上に形成されたものが提案されている(特許文献1)。
 複合半透膜を用いた水処理工程においては、水中の微生物が膜に付着して、膜の水透過特性が低下するバイオファウリングが問題になっている。バイオファウリングを抑制する方法としては、例えば、酸化剤で水中の微生物を殺菌する処理方法が挙げられる。
 しかし、特許文献1の複合半透膜は、微生物の繁殖を抑制できる塩素濃度(遊離塩素濃度として1ppm以上)での長期間連続運転に耐え得る耐酸化剤性(耐塩素性)を有しておらず、酸化剤で水中の微生物を殺菌する処理方法を採用した場合には、前記複合半透膜を使用することができなかった。
 そのため、従来のものよりも耐酸化剤性に優れる複合半透膜の開発が望まれていた。
 また、従来より、逆浸透ろ過、限外ろ過、精密ろ過等に用いられる流体分離エレメントとして、例えば、供給側流体を分離膜表面へ導く供給側流路材、供給側流体を分離する分離膜、分離膜を透過し供給側流体から分離された透過側流体を中心管へと導く透過側流路材からなるユニットを有孔の中心管の周りに巻き付けたスパイラル型分離膜エレメントが知られている(特許文献2、3)。
 このようなスパイラル型分離膜エレメントは、一般的に分離膜を二つ折りにした間に供給側流路材を配置したものと、透過側流路材とを積み重ね、供給側流体と透過側流体の混合を防ぐ封止部を形成するため接着剤を分離膜周辺部(3辺)に塗布して分離膜ユニットを作製し、このユニットの単数または複数を中心管の周囲にスパイラル状に巻きつけて、更に分離膜周辺部を封止することによって製造される。
 このようなスパイラル型分離膜エレメントに用いられる分離膜として前記複合半透膜を用いた場合、水処理時に複合半透膜は供給側流路材側から加圧されるため、スキン層がダメージを受けやすく、塩阻止率が次第に低下するという問題があった。
特開2005-103517号公報 特開2000-354743号公報 特開2006-68644号公報
 本発明は、耐酸化剤性に優れ、かつ塩阻止率が低下しにくいスパイラル型分離膜エレメントを提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、スキン層の原料としてN,N’-ジメチルメタフェニレンジアミンを用い、透過側流路材の空隙率を40~75%に調整することにより、耐酸化剤性に優れ、かつ塩阻止率が低下しにくいスパイラル型分離膜エレメントが得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、供給側流路材と、多官能アミン成分と多官能酸ハロゲン成分とを界面重合して得られるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜と、透過側流路材とを含むスパイラル型分離膜エレメントにおいて、
 前記多官能アミン成分は、N,N’-ジメチルメタフェニレンジアミンを含み、
 前記透過側流路材は、空隙率が40~75%であることを特徴とするスパイラル型分離膜エレメント、に関する。
 本発明は、多官能アミン成分としてN,N’-ジメチルメタフェニレンジアミンを使用することを特徴とする。それにより、耐酸化剤性に優れるスキン層が得られる。しかし、多官能アミン成分としてN,N’-ジメチルメタフェニレンジアミンを使用して作製されたスキン層は、他の多官能アミン成分を使用して作製されたスキン層に比べて物理的ダメージを受けやすく、水処理時に陥没しやすかった。本発明者らは、空隙率が40~75%である透過側流路材を用いることによって、水処理時にスキン層に高い圧力がかかった場合でも、スキン層に陥没が生じにくくなることを見出した。
 透過側流路材の空隙率が40%未満の場合には、スキン層の陥没を効果的に抑制することができるが、透過流束が大きく低下するため好ましくない。一方、透過側流路材の空隙率が75%を超えると、スキン層にかかる圧力を背面(多孔性支持体側)から支えることができなくなるため、スキン層の陥没を効果的に抑制することができない。
 前記透過側流路材は、トリコット編物であることが好ましい。トリコット編物を用いることにより、スキン層の陥没をより効果的に抑制することができる。
 本発明のスパイラル型分離膜エレメントは、耐酸化剤性に優れるため、酸化剤で水中の微生物を殺菌する処理方法を採用した場合においても使用可能である。また、従来は、水中の微生物を除去するために、限外ろ過膜又は精密ろ過膜などを用いて前処理を行っていたが、本発明のスパイラル型分離膜エレメントを用いることにより、前処理を省略する、あるいは簡素化することが可能になる。そのため、本発明のスパイラル型分離膜エレメントを用いた水処理方法は、コスト、及びエコロジカル・フットプリントの観点において、従来の水処理方法に比べて有利である。また、本発明のスパイラル型分離膜エレメントは、水処理時にスキン層に陥没が生じにくいため、長期間使用しても塩阻止率が低下しにくい。
 以下、本発明の実施の形態について説明する。本発明のスパイラル型分離膜エレメントは、供給側流路材と、多官能アミン成分と多官能酸ハロゲン成分とを界面重合して得られるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜と、透過側流路材とを含むものである。
 まず、本発明で用いる複合半透膜について詳しく説明する。
 本発明においては、多官能アミン成分としてN,N’-ジメチルメタフェニレンジアミンを使用する。多官能アミン成分としては、N,N’-ジメチルメタフェニレンジアミンのみを使用することが好ましいが、本発明の効果を損なわない範囲で下記のような芳香族、脂肪族、又は脂環式の多官能アミンを併用してもよい。
 芳香族多官能アミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、2,4-ジアミノアニソール、アミドール、キシリレンジアミン等が挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。
 脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2-アミノエチル)アミン、n-フェニル-エチレンジアミン等が挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。
 脂環式多官能アミンとしては、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ピペラジン、2,5-ジメチルピペラジン、4-アミノメチルピペラジン等が挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。
 N,N’-ジメチルメタフェニレンジアミンと前記多官能アミンを併用する場合は、多官能アミン成分全体中にN,N’-ジメチルメタフェニレンジアミンを85重量%以上用いることが好ましく、より好ましくは95重量%以上である。
 多官能酸ハライド成分とは、反応性カルボニル基を2個以上有する多官能酸ハライドである。
 多官能酸ハライドとしては、芳香族、脂肪族、及び脂環式の多官能酸ハライドが挙げられる。
 芳香族多官能酸ハライドとしては、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライド、クロロスルホニルベンゼンジカルボン酸ジクロライド等が挙げられる。
 脂肪族多官能酸ハライドとしては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド等が挙げられる。
 脂環式多官能酸ハライドとしては、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、テトラハイドロフランジカルボン酸ジクロライド等が挙げられる。
 これら多官能酸ハライドは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能酸ハライドを用いることが好ましい。また、多官能酸ハライド成分の少なくとも一部に3価以上の多官能酸ハライドを用いて、架橋構造を形成することが好ましい。
 また、ポリアミド系樹脂を含むスキン層の性能を向上させるために、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などのポリマー、ソルビトール、グリセリンなどの多価アルコールなどを共重合させてもよい。
 スキン層を支持する多孔性支持体は、スキン層を支持しうるものであれば特に限定されない。多孔性支持体の形成材料としては、例えば、ポリスルホン、ポリエーテルスルホンのようなポリアリールエーテルスルホン、ポリイミド、ボリフッ化ビニリデンなど種々のものをあげることができるが、特に化学的、機械的、熱的に安定である点からポリスルホン、ポリアリールエーテルスルホンが好ましく用いられる。かかる多孔性支持体の厚さは、通常約25~125μm、好ましくは約40~75μmであるが、必ずしもこれらに限定されるものではない。なお、多孔性支持体は織布、不織布等の基材による裏打ちにて補強されていてもよい。
 前記多孔性支持体は、対称構造でも非対称構造でもよいが、スキン層の支持機能と通液性を両立させる観点から、非対称構造が好ましい。なお、多孔性支持体のスキン層形成側面の平均孔径は0.01~0.5μmであることが好ましい。
 また、多孔性支持体として、エポキシ樹脂多孔シートを用いてもよい。エポキシ樹脂多孔シートの平均孔径は0.01~0.4μmであることが好ましい。
 ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する方法は特に制限されず、あらゆる公知の手法を用いることができる。例えば、界面縮合法、相分離法、薄膜塗布法などが挙げられる。界面縮合法とは、具体的に、多官能アミン成分を含有するアミン溶液と、多官能酸ハライド成分を含有する有機溶液とを接触させて界面重合させることによりスキン層を形成し、該スキン層を多孔性支持体上に載置する方法や、多孔性支持体上での前記界面重合によりポリアミド系樹脂のスキン層を多孔性支持体上に直接形成する方法である。かかる界面縮合法の条件等の詳細は、特開昭58-24303号公報、特開平1-180208号公報等に記載されており、それらの公知技術を適宜採用することができる。
 本発明においては、N,N’-ジメチルメタフェニレンジアミンを含むアミン溶液からなるアミン溶液被覆層を多孔性支持体上に形成し、次いで多官能酸ハライド成分を含有する有機溶液とアミン溶液被覆層とを接触させて界面重合させることによりスキン層を形成する方法が好ましい。
 アミン溶液の溶媒としては、例えば、エチレングリコール、イソプロピルアルコール、及びエタノールなどのアルコール、これらアルコールと水との混合溶媒などが挙げられる。特に、エチレングリコールを用いることが好ましい。
 前記界面重合法において、アミン溶液中の多官能アミン成分の濃度は特に制限されないが、0.1~5重量%であることが好ましく、さらに好ましくは0.5~2重量%である。多官能アミン成分の濃度が0.1重量%未満の場合にはスキン層にピンホール等の欠陥が生じやすくなり、また塩阻止性能が低下する傾向にある。一方、多官能アミン成分の濃度が5重量%を超える場合には、多官能アミン成分が多孔性支持体中に浸透しやすくなったり、膜厚が厚くなりすぎて透過抵抗が大きくなって透過流束が低下する傾向にある。
 前記有機溶液中の多官能酸ハライド成分の濃度は特に制限されないが、0.01~5重量%であることが好ましく、さらに好ましくは0.05~3重量%である。多官能酸ハライド成分の濃度が0.01重量%未満の場合には、未反応多官能アミン成分が残留しやすくなったり、スキン層にピンホール等の欠陥が生じやすくなって塩阻止性能が低下する傾向にある。一方、多官能酸ハライド成分の濃度が5重量%を超える場合には、未反応多官能酸ハライド成分が残留しやすくなったり、膜厚が厚くなりすぎて透過抵抗が大きくなり、透過流束が低下する傾向にある。
 前記有機溶液に用いられる有機溶媒としては、水に対する溶解度が低く、多孔性支持体を劣化させず、多官能酸ハライド成分を溶解するものであれば特に限定されず、例えば、シクロヘキサン、ヘプタン、オクタン、及びノナン等の飽和炭化水素、1,1,2-トリクロロトリフルオロエタン等のハロゲン置換炭化水素などを挙げることができる。これら有機溶媒は1種単独で用いてもよく、2種以上の混合溶媒として用いてもよい。これらのうち、複合半透膜の耐酸化剤性をより向上させるために、沸点130~250℃の有機溶媒を用いることが好ましく、より好ましくは沸点145~250℃の有機溶媒であり、さらに好ましくは沸点160~250℃の有機溶媒であり、特に好ましくは沸点180~250℃の有機溶媒である。
 前記沸点を有する有機溶媒としては、例えば、炭化水素系溶媒が挙げられ、単体であってもよく、混合物であってもよい。混合物の場合は、蒸留範囲の平均値を沸点と定義する。このような有機溶媒としては、例えば、ノナン、デカン、ウンデカン、ドデカン、及びトリデカン等の飽和炭化水素;IPソルベント1620、IPクリーンLX、及びIPソルベント2028等のイソパラフィン系溶媒;エクソールD30、エクソールD40、エクソールD60、エクソールD80、ナフテゾール160、ナフテゾール200、及びナフテゾール220等のナフテン系溶媒が挙げられる。これらの中で、イソパラフィン系溶媒又はナフテン系溶媒が好ましく、耐塩素性能をより高めるためにはナフテン系溶媒が特に好ましい。
 前記アミン溶液や有機溶液には、製膜を容易にしたり、得られる複合半透膜の性能を向上させるための目的で各種の添加剤を加えることができる。前記添加剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、及びラウリル硫酸ナトリウム等の界面活性剤、重合により生成するハロゲン化水素を除去する水酸化ナトリウム、リン酸三ナトリウム、及びトリエチルアミン等の塩基性化合物、アシル化触媒、特開平8-224452号公報記載の溶解度パラメータが8~14(cal/cm1/2の化合物などが挙げられる。
 多孔性支持体上に前記アミン溶液を塗布してから前記有機溶液を塗布するまでの時間は、アミン溶液の組成、粘度及び多孔性支持体の表面層の孔径にもよるが、15秒以下であることが好ましく、さらに好ましくは5秒以下である。前記溶液の塗布間隔が15秒を超える場合には、アミン溶液が多孔性支持体の内部深くまで浸透・拡散し、未反応多官能アミン成分が多孔性支持体中に大量に残存する恐れがある。また、多孔性支持体の内部深くまで浸透した未反応多官能アミン成分は、その後の膜洗浄処理でも除去し難い傾向にある。なお、前記多孔性支持体上に前記アミン溶液を被覆した後、余分な溶液を除去してもよい。
 本発明においては、アミン溶液からなるアミン溶液被覆層と有機溶液との接触後、多孔性支持体上の過剰な有機溶液を除去し、多孔性支持体上の形成膜を70℃以上で加熱乾燥してスキン層を形成することが好ましい。形成膜を加熱処理することによりその機械的強度や耐熱性等を高めることができる。加熱温度は70~200℃であることがより好ましく、特に好ましくは100~150℃である。加熱時間は30秒~10分程度が好ましく、さらに好ましくは40秒~7分程度である。
 多孔性支持体上に形成したスキン層の厚みは特に制限されないが、通常0.01~100μm程度であり、好ましくは、0.1~10μmである。
 また、複合半透膜の塩阻止性、透水性、及び耐酸化剤性等を向上させるために、従来公知の各種処理を施してもよい。また、加工性や保存性に優れているという観点から、乾燥タイプの複合半透膜としてもよい。
 供給側流路材は公知のものを特に制限なく使用でき、例えば、ネット状材料、メッシュ状材料、溝付シート、波形シートなどを使用することができる。
 本発明においては、空隙率が40~75%である透過側流路材を用いる。空隙率は50~70%であることが好ましく、より好ましくは55~65%である。透過側流路材としては、例えば、ネット状材料、編物状材料、メッシュ状材料、溝付シート、波形シートなどを使用することができる。これらのうち、特にトリコット編物を用いることが好ましい。
 本発明のスパイラル型分離膜エレメントは、例えば、複合半透膜を二つ折りにした間に供給側流路材を配置したものと、透過側流路材とを積み重ね、供給側流体と透過側流体の混合を防ぐ封止部を形成するための接着剤を複合半透膜の周辺部(3辺)に塗布して分離膜ユニットを作製し、この分離膜ユニットの単数または複数を中心管の周囲にスパイラル状に巻きつけて、更に分離膜ユニットの周辺部を封止することによって製造される。
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。
 実施例1
 N,N’-ジメチルメタフェニレンジアミン3重量%、ラウリル硫酸ナトリウム0.15重量%、トリエチルアミン2.5重量%、及びカンファースルホン酸5重量%をエチレングリコールに溶解させてアミン溶液を調製した。また、トリメシン酸クロライド0.2重量%、及びイソフタル酸クロライド0.4重量%をエクソール(Exxsol)D30(エクソンモービル社製、蒸留範囲130~160℃、沸点148℃)に溶解させて酸クロライド溶液を調製した。そして、アミン溶液を多孔性支持体上に塗布し、その後余分なアミン溶液を除去することによりアミン溶液被覆層を形成した。次に、アミン溶液被覆層の表面に酸クロライド溶液を塗布した。その後、余分な溶液を除去し、さらに100℃の熱風乾燥機中で5分間保持し、多孔性支持体上にポリアミド系樹脂を含むスキン層を形成して複合半透膜を作製した。 
 テストユニットC40-B(日東電工社製)を用いて、空隙率57%のトリコット編物である透過側流路材を敷き、その上に作製した複合半透膜をセットし、0.15%のNaClを含みかつNaOHを用いてpH7に調整した水溶液を25℃で1.5MPaの差圧を与えて複合半透膜に接触させる。この操作によって得られた透過水の透過速度および電導度を測定し、透過流束(m/m・d)および塩阻止率(%)を算出した。塩阻止率は、NaCl濃度と水溶液電導度の相関(検量線)を事前に作成し、それらを用いて下式により算出した。 
 塩阻止率(%)={1-(透過液中のNaCl濃度[mg/L])/(供給液中のNaCl濃度[mg/L])}×100
 実施例2~7、比較例1及び2
 実施例1で作製した複合半透膜を用い、表1に記載の空隙率のトリコット編物である透過側流路材を用いた以外は実施例1と同様の方法で透過流束及び塩阻止率を測定した。
 参考例1~3
 実施例1において、N,N’-ジメチルメタフェニレンジアミン3重量%の代わりに、メタフェニレンジアミン3重量%を用いた以外は実施例1と同様の方法で複合半透膜を作製した。そして、作製した複合半透膜を用い、表1に記載の空隙率のトリコット編物である透過側流路材を用いた以外は実施例1と同様の方法で透過流束及び塩阻止率を測定した。
Figure JPOXMLDOC01-appb-T000001
 表1から、多官能アミン成分としてN,N’-ジメチルメタフェニレンジアミンを用いて作製した実施例1~7の複合半透膜は、耐酸化剤性に優れることがわかる。また、当該複合半透膜と特定の空隙率を有する透過側流路材とを併用することにより、塩阻止率が低下しにくくなることがわかる。一方、比較例1及び2では、空隙率が40~75%の範囲外の透過側流路材を用いたため、塩阻止率が大きく低下した。多官能アミン成分としてメタフェニレンジアミンを用いて作製した参考例1~3の複合半透膜の場合には、透過側流路材の空隙率の違いによって塩阻止率に大きな違いは見られなかった。
 本発明のスパイラル型分離膜エレメントは、超純水の製造、かん水または海水の脱塩などに好適であり、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化に寄与することができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。また、油田やシェールガス田などにおける排水処理に用いることができる。

Claims (2)

  1. 供給側流路材と、多官能アミン成分と多官能酸ハロゲン成分とを界面重合して得られるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜と、透過側流路材とを含むスパイラル型分離膜エレメントにおいて、
    前記多官能アミン成分は、N,N’-ジメチルメタフェニレンジアミンを含み、
    前記透過側流路材は、空隙率が40~75%であることを特徴とするスパイラル型分離膜エレメント。
  2. 前記透過側流路材は、トリコット編物である請求項1記載のスパイラル型分離膜エレメント。
     
PCT/JP2015/050731 2014-02-07 2015-01-14 スパイラル型分離膜エレメント WO2015118913A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167024193A KR20160119142A (ko) 2014-02-07 2015-01-14 스파이럴형 분리막 엘리먼트
US15/114,182 US20170007969A1 (en) 2014-02-07 2015-01-14 Spiral-type separation membrane element
CN201580006103.1A CN105939777B (zh) 2014-02-07 2015-01-14 螺旋型分离膜元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-022386 2014-02-07
JP2014022386A JP6521422B2 (ja) 2014-02-07 2014-02-07 スパイラル型分離膜エレメント

Publications (1)

Publication Number Publication Date
WO2015118913A1 true WO2015118913A1 (ja) 2015-08-13

Family

ID=53777721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050731 WO2015118913A1 (ja) 2014-02-07 2015-01-14 スパイラル型分離膜エレメント

Country Status (5)

Country Link
US (1) US20170007969A1 (ja)
JP (1) JP6521422B2 (ja)
KR (1) KR20160119142A (ja)
CN (1) CN105939777B (ja)
WO (1) WO2015118913A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6774841B2 (ja) 2016-10-28 2020-10-28 日東電工株式会社 複合半透膜、及びスパイラル型分離膜エレメント
EP3733268A4 (en) * 2017-12-28 2021-08-25 Kitagawa Industries Co., Ltd. WATER TREATMENT FLOW PATH ELEMENT
JP7072112B1 (ja) * 2021-11-05 2022-05-19 日東電工株式会社 複合半透膜、スパイラル型膜エレメント、水処理システム及び水処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500279A (ja) * 1992-05-13 1996-01-16 フルイド・システムズ・コーポレーション 薄フィルム複合膜
JP2003275545A (ja) * 2002-03-22 2003-09-30 Nitto Denko Corp スパイラル型膜エレメント及びその製造方法
JP2010131483A (ja) * 2008-12-02 2010-06-17 Kb Seiren Ltd 液体分離用流路形成材およびその製法
JP2010201303A (ja) * 2009-03-02 2010-09-16 Toray Ind Inc 複合半透膜
JP2012024756A (ja) * 2010-06-23 2012-02-09 Toray Ind Inc 複合半透膜の製造方法
JP2013000674A (ja) * 2011-06-17 2013-01-07 Yuasa Membrane System:Kk スパイラル型ろ過モジュール及びそれを用いた液処理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3813334A (en) * 1973-04-09 1974-05-28 Desalination Systems Porous backing material for semipermeable membrane cartridges
US5693227A (en) * 1994-11-17 1997-12-02 Ionics, Incorporated Catalyst mediated method of interfacial polymerization on a microporous support, and polymers, fibers, films and membranes made by such method
US6368507B1 (en) * 1998-10-14 2002-04-09 Saekan Industries Incorporation Composite polyamide reverse osmosis membrane and method of producing the same
JP3559475B2 (ja) * 1999-06-15 2004-09-02 日東電工株式会社 液体分離膜モジュール
JP2002095935A (ja) * 2000-09-25 2002-04-02 Nitto Denko Corp スパイラル型分離膜エレメント
JP4219161B2 (ja) * 2002-12-26 2009-02-04 日東電工株式会社 スパイラル型膜エレメント及びその製造方法
JP2005103517A (ja) * 2003-10-02 2005-04-21 Nitto Denko Corp 複合半透膜及びその製造方法
JP4484635B2 (ja) * 2004-09-02 2010-06-16 日東電工株式会社 スパイラル型逆浸透膜エレメント、およびその製造方法
JP4936435B2 (ja) * 2006-08-10 2012-05-23 日東電工株式会社 スパイラル型膜エレメント及びその製造方法
JPWO2015016253A1 (ja) * 2013-07-30 2017-03-02 東レ株式会社 分離膜エレメント

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500279A (ja) * 1992-05-13 1996-01-16 フルイド・システムズ・コーポレーション 薄フィルム複合膜
JP2003275545A (ja) * 2002-03-22 2003-09-30 Nitto Denko Corp スパイラル型膜エレメント及びその製造方法
JP2010131483A (ja) * 2008-12-02 2010-06-17 Kb Seiren Ltd 液体分離用流路形成材およびその製法
JP2010201303A (ja) * 2009-03-02 2010-09-16 Toray Ind Inc 複合半透膜
JP2012024756A (ja) * 2010-06-23 2012-02-09 Toray Ind Inc 複合半透膜の製造方法
JP2013000674A (ja) * 2011-06-17 2013-01-07 Yuasa Membrane System:Kk スパイラル型ろ過モジュール及びそれを用いた液処理方法

Also Published As

Publication number Publication date
JP2015147195A (ja) 2015-08-20
US20170007969A1 (en) 2017-01-12
KR20160119142A (ko) 2016-10-12
CN105939777B (zh) 2019-05-21
CN105939777A (zh) 2016-09-14
JP6521422B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6305729B2 (ja) 複合半透膜
KR102451858B1 (ko) 복합 반투막, 및 스파이럴형 분리막 엘리먼트
JP2012250192A (ja) 複合半透膜及びその製造方法
WO2016047696A1 (ja) スパイラル型膜エレメント
JP6522185B2 (ja) 複合半透膜
WO2015118894A1 (ja) 複合半透膜の製造方法
JP2008246419A (ja) 複合半透膜の製造方法
WO2016052427A1 (ja) 複合半透膜及びその製造方法、スパイラル型分離膜エレメント
JP6521422B2 (ja) スパイラル型分離膜エレメント
JP7300810B2 (ja) 複合半透膜及びその製造方法
JP6747926B2 (ja) スパイラル型分離膜エレメントの製造方法
JP6456671B2 (ja) 多孔性支持体、複合半透膜、及びスパイラル型分離膜エレメント
JP2017012987A (ja) 複合半透膜及びその製造方法
JP2015147192A (ja) 複合半透膜の製造方法
WO2016035681A1 (ja) 複合半透膜、分離膜エレメント、及びその製造方法
WO2017057692A1 (ja) スパイラル型分離膜エレメントの製造方法
JP2007090140A (ja) 乾燥複合半透膜の製造方法
JP2006095476A (ja) 複合逆浸透膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15747044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15114182

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167024193

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15747044

Country of ref document: EP

Kind code of ref document: A1