WO2015114916A1 - 操舵装置及びその操舵方法 - Google Patents

操舵装置及びその操舵方法 Download PDF

Info

Publication number
WO2015114916A1
WO2015114916A1 PCT/JP2014/080623 JP2014080623W WO2015114916A1 WO 2015114916 A1 WO2015114916 A1 WO 2015114916A1 JP 2014080623 W JP2014080623 W JP 2014080623W WO 2015114916 A1 WO2015114916 A1 WO 2015114916A1
Authority
WO
WIPO (PCT)
Prior art keywords
rudder
propeller
steering
plate
shaft
Prior art date
Application number
PCT/JP2014/080623
Other languages
English (en)
French (fr)
Inventor
佐々木 紀幸
栗林 定友
Original Assignee
株式会社ケイセブン
佐々木 紀幸
国立研究開発法人海上技術安全研究所
山中造船株式会社
かもめプロペラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケイセブン, 佐々木 紀幸, 国立研究開発法人海上技術安全研究所, 山中造船株式会社, かもめプロペラ株式会社 filed Critical 株式会社ケイセブン
Priority to KR1020167023678A priority Critical patent/KR102255356B1/ko
Priority to EP14881168.0A priority patent/EP3103715B1/en
Priority to ES14881168T priority patent/ES2781122T3/es
Priority to JP2015517301A priority patent/JP5833278B1/ja
Priority to EP19207096.9A priority patent/EP3626602B1/en
Priority to DK14881168.0T priority patent/DK3103715T3/da
Priority to CN202010510760.2A priority patent/CN111619781B/zh
Priority to CN201480074660.2A priority patent/CN105980246B/zh
Priority to KR1020217014608A priority patent/KR102344753B1/ko
Priority to PL14881168T priority patent/PL3103715T3/pl
Priority to US15/115,601 priority patent/US9937992B2/en
Publication of WO2015114916A1 publication Critical patent/WO2015114916A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • B63H25/382Rudders movable otherwise than for steering purposes; Changing geometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • B63H25/382Rudders movable otherwise than for steering purposes; Changing geometry
    • B63H25/383Rudders movable otherwise than for steering purposes; Changing geometry with deflecting means able to reverse the water stream direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • B63H5/15Nozzles, e.g. Kort-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H2025/066Arrangements of two or more rudders; Steering gear therefor

Definitions

  • the present invention is a steering device that enables high propulsion performance by reducing fuel consumption during ocean navigation (see, for example, Non-Patent Document 1), and propulsion of a propeller is improved by improving the rudder behind the conventional propeller.
  • the present invention relates to a steering mechanism and its steering method that can improve efficiency, use the rudder during braking, increase the steering ability at low boat speeds, and reduce the sound produced by the propeller and the rudder, and are suitable for water traffic ships.
  • Non-Patent Documents 2 and 3 propose to adopt a single-shaft propulsion and two-steering ship, focusing on the braking ability.
  • the two rudders are linked at right angles to the hull and turn backwards to close the wake and exert a powerful braking function. It works as a resistor for water flow and is not much different from the conventional technology.
  • patent document 1 As a prior invention of a two-sheet rudder.
  • priority is given to improvement in propulsion performance by the rudder plate "disposing two rudder plates in front or side of the propeller", and this braking ability is not dealt with.
  • a structure having two rudder shafts is also disclosed in FIG. 12 of Patent Document 1, and since the rudder plate rotates about the rudder shaft center included in the rudder plate surface, the rudder plate cannot go around the propeller wake.
  • a problem arises in the steering ability at high speed, which is a problem for coastal ships and patrol boats that cannot receive tugboat support.
  • Patent Document 2 If the rudder becomes two pieces, the utilization of the camber enters the field of view, but Patent Document 2 is limited to the use of the camber with the two-piece rudder arranged behind the propeller. If the rudder angle is 90 degrees, the rudder shaft drive mechanism also needs to be devised, and Patent Document 3 proposes a hydraulic motor drive mechanism that uses a rotary vane and is capable of a rudder angle of nearly 180 degrees. Patent Document 4 describes a proposal that can achieve a high propulsion efficiency by exerting a rectifying effect of the propeller wake in the region between the two rudders, but improves the propulsion performance by arranging the rudder in the wake of the propeller. The limit is visible.
  • Patent Document 4 disclosing a “steering direction and a moving direction display method for a two-rudder system” that displays a rudder position and a moving direction of a ship in a ship having two rudder
  • the enumerated steering modes (b) forward right turn and (e) right turn on the spot are disclosed, but from the positional relationship between the turning center position and the propeller of the propeller wake arrangement, No suggestion of invention has been received.
  • a ship is proposed in which two rudders are arranged on both sides of the propeller for the purpose of shortening the length of the propeller and the stern rudder (Patent Document 4).
  • FIG. 8 of Patent Document 4 there is a limit in the steering range, and it seems that it is difficult to create a deflection flow after the propeller.
  • the new rudder is required to reduce fossil fuel consumption and CO 2 generation by improving propulsion performance, ensure high turning performance and emergency braking capacity.
  • the rudder when traveling straight ahead, it is preferable that the rudder is not arranged in the wake behind the propeller, and during emergency braking, the rudder is preferably arranged in the wake behind the propeller, and the rudder can be steered to make a right angle with the hull.
  • a turning mechanism that achieves a steering angle is preferred.
  • the present invention has been made in view of the above problems, and in order to increase the propulsion efficiency of the propeller when traveling straight, the rudder is not positioned in the wake behind the propeller when traveling straight, and the hull is located behind the propeller during emergency braking.
  • An object of the present invention is to provide a steering device that enables emergency braking with a steering angle of 90 degrees, deflects and rectifies the water flow of the propeller for turning, and ensures turning performance.
  • the new rudder is further devised to move the rudder at the time of turning, recognizes the problem of ensuring turning performance at low speed, and solves the problem of not arranging the rudder behind the propeller. And its steering method.
  • a steering device having a drive mechanism for rotating a rudder shaft and a power mechanism for driving the rudder shaft, wherein the rudder shaft is rotatably arranged on both sides above the screw shaft, and each rudder shaft is a rudder
  • a steering apparatus characterized in that a plate is connected and suspended at an upper portion of a rudder plate, and two rudder plates can be turned from a propeller side to a propeller rear side by rotation of two rudder shafts.
  • two rudder shafts are rotatably disposed on both sides above the screw shaft, and the rudder shaft is connected to the rudder plate at the upper part of the rudder plate, and a power mechanism such as an electric servo motor or a hydraulic cylinder. Turns the two rudders from the side of the propeller to the downstream side of the propeller by the rotation of the two rudder shafts via the drive mechanism. When traveling straight ahead, the two rudders are placed on both sides of the propeller in parallel with the axle and do not interfere with the propeller water flow. Therefore, the propulsion performance is higher than that of the conventional propeller wake arrangement. Can be provided.
  • Two rudders are arranged on both sides of the propeller, and one of the two rudder configurations is smaller than the one rudder configuration, so a smaller rudder is sufficient.
  • High propulsion efficiency can be obtained.
  • the small rudder is preferably about half as long as the rudder length, for example.
  • the two rudder plates and the rear end of the propeller are brought close to each other, and a deflected flow of the propeller wake is generated at a large rudder angle to achieve high turning performance.
  • the power mechanism according to the first aspect of the present invention is a hydraulic cylinder having two rudder shafts by a cylinder shaft that is reciprocated linearly driven by a hydraulic cylinder that reciprocates by hydraulic pressure and a crank mechanism that converts reciprocating linear motion into rotational motion.
  • the bevel gear which is attached to the rudder shaft and can rotate the rudder shaft together with the bevel gear mechanism which converts the rotation surface from horizontal to vertical, and the electric servo motor mechanism or the hydraulic motor mechanism is described above. If the electric servo motor mechanism or the hydraulic motor mechanism is a vertical type, the rudder shaft may be directly driven by the hydraulic motor and the gear mechanism may be omitted.
  • the power mechanism according to claim 1 is a hydraulic cylinder
  • the drive mechanism is The steering apparatus according to claim 1, further comprising: a cylinder shaft that is reciprocally driven by a hydraulic cylinder that reciprocates by hydraulic pressure; and a rotary drive mechanism that freely rotates two rudder shafts by a crank mechanism.
  • the two rudder plates arranged on both sides of the propeller swivel around the propeller with the cylinder shaft that is reciprocally driven linearly by the hydraulic cylinder that reciprocates by hydraulic pressure and the two rudder shafts that reciprocally rotate in conjunction with the crank mechanism.
  • the rudder angle seen from the center of the axle can be changed.
  • the rudder plate rotates around the axis on the rudder plate on both sides of the propeller to obtain the rudder angle
  • the connecting crank mechanism is configured to rotate the two rudder shafts in conjunction with each other, the two rudder plates are rotated around the propeller in synchronization with each other, so that there is an advantage that the steering control mechanism is simple.
  • the power mechanism according to claim 1 is an electric servo motor mechanism or a hydraulic motor mechanism
  • the drive mechanism is A bevel gear attached to the rudder shaft and capable of rotating the rudder shaft with rotation;
  • the steering device is a bevel gear mechanism that vertically and horizontally converts a rotating surface.
  • the two rudder plates arranged on both sides of the propeller during the straight cruise are electric servos.
  • the motor mechanism or the hydraulic motor mechanism is driven, the rudder angle is independently changed along with the rudder shaft rotated by the bevel gear mechanism, the rudder plate is turned around the propeller, and at least one of the rudder plates is propeller. It can be moved to the downstream side and exhibits high turning performance.
  • the two rudder plates are arranged on both sides of the propeller when traveling straight, and the front end surface in the traveling direction of the ship configured to sandwich the propeller by the two rudder plates is the front end surface in the axial direction of the propeller.
  • the two rudders provide a function of increasing the propulsion efficiency of the propeller by rectifying the flow of water flowing into the propeller by the interaction thereof.
  • the rudder is positioned in front of the propeller in order to eliminate the rudder resistance force generated from the propeller water flow.
  • the effect given by the rudder according to the present invention is different in principle and effect from the rectification generating function by the rudder arranged behind the propeller.
  • the two rudder plates are arranged on both sides of the propeller when going straight, and the front end surface in the traveling direction of the space in which these propellers are sandwiched is the front end surface in the axial direction of the propeller.
  • the rudder plate is configured to have a length that is a position projecting in the bow direction from the water inflow surface configured by.
  • the region sandwiched between the two rudder plates protruding in the bow direction suppresses the disturbance of the water inlet to the propeller, provides a rectifying effect at the inlet, and provides two rudder on the propeller rotating surface.
  • the region sandwiched between the two there is an effect that the water flow is restricted, the wake of the propeller is rectified, the flow velocity of the wake is increased, and the turning performance is improved.
  • the stern shape of a large vessel is enlarged, and the flow of water from the upstream of the propeller cannot be formed in the streamline shape of the stern hull. The effect of action increases.
  • the two rudder plates are arranged on both sides of the propeller when traveling straight, and the stern direction rear end surface of the space configured to sandwich the propeller by the two rudder plates is composed of the axial rear end surface of the propeller.
  • the two rudder plates are configured to have a length that is projected in a stern direction from a water outflow surface that exhibits a rectifying action of a propeller water flow.
  • the rear end surface in the traveling direction of the space in which these propellers are sandwiched is the axial direction of the propeller.
  • the rudder plate length is configured so that it protrudes in the stern direction from the water outflow surface configured by the rear end surface of the rotation of the propeller, and the effect of increasing the propulsion efficiency by rectifying the water flow on the propeller discharge side As well as increasing the wake speed and turning There is an effect of increasing the capacity.
  • the two rudder plates are simultaneously opposed to each other with the propeller interposed therebetween, and turn around the propeller in the same direction.
  • the two propellers have the same movement and simplicity, and there is an advantage that maneuvering becomes easy.
  • the two rudder plates can turn in the same rotational direction while simultaneously facing each other with the propeller interposed therebetween, and can simultaneously turn in opposite directions.
  • Each can rotate in a free direction around each rudder shaft.
  • both of them face each other with the propeller interposed therebetween, and by turning around the propeller in the same direction, high turning performance such as generating a deflected water flow close to the thruster is provided.
  • the maximum braking action can be provided if a plane perpendicular to the screw shaft can be formed on the rear face of the propeller during braking.
  • This braking operation is realized by a freely rotating mechanism around the rudder shaft.
  • the distance between the two rudder plates and the rear end of the propeller should be small.
  • the turning radius can be reduced when the rudder plate is turned around the propeller. The distance between the plate and the rear end of the propeller is brought close to each other, and the effect of increasing the braking ability is exhibited.
  • the movable range can be increased and a large rudder angle can be obtained.
  • the rudder plate By turning the rudder plate around the propeller and taking a large rudder angle that is, for example, 90 degrees or more on the left and right, and a total range of 180 degrees or more, the rudder can also be used for marine braking, and high turning Performance can be secured.
  • the two steering plates move so as to substantially shield the propeller wake behind the propeller at the time of emergency stop, so that the restraining force is maximized.
  • the purpose of steering in this case is to reduce the time that the propeller rotates by inertia after resetting the propeller drive in a scene where a sudden stop is necessary, and to enable the propeller to reverse quickly.
  • the rudder plate is suspended from the rudder shaft.
  • the rudder plate is integrally formed by welding, pressing, forging, or the like, the structure becomes simple, and an advantageous effect is obtained in terms of strength and economy.
  • a structure in which the rudder plate is integrally formed into an inverted L-shape is the simplest among these, and provides the most advantageous effects in terms of strength and economy.
  • the steering apparatus according to the present invention is characterized in that the rudder plate has an airfoil shape and generates a thrust force for propelling the hull forward due to the camber effect. Thrust for propelling the hull forward can be generated by arranging it as a rudder plate in which a camber is formed inside in the flow between the two rudder plates. Although this thrust can be increased by increasing the camber (distance between the airfoil center line and the chord line), there is an optimum camber because the resistance increases at the same time. It is optimized by making the front width of the two rudder plates larger than the rear width and tilting it within 10 degrees with respect to the hull center line.
  • the rudder plate is limited to the chord length that is assigned when the chord length is arranged in the wake of the propeller, and the wing thickness of the rudder plate is also in the wake of the propeller.
  • the drive mechanism includes two independent modes in which the two rudder plates are driven to rotate independently of each other; A two-sheet same-direction mode in which the two rudder plates are both driven to turn in the same direction;
  • the steering apparatus according to any one of claims 1 and 3, wherein each steering mode can be freely switched and driven.
  • the two rudders are driven independently of each other so that a sufficient rudder force can be generated even if the boat speed is low.
  • This is a steering device that can be driven by being divided into two-same direction mode in which two rudder used are turned in the same direction.
  • the steering apparatus constituting the invention according to claim 1 is a basic frame that compensates for a decrease in steering force at low speeds and also improves the steering performance and steering performance during cruising.
  • the workpiece is a steering category, for example, at a ship speed in a range smaller than the predetermined ship speed as a boundary, the left and right rudder can steer the rudder shaft independently in a two-piece independent mode that is not constrained to each other. Define.
  • the steering performance of the present invention can be improved, steering performance at low ship speed, quiet navigation, and stoppage by separating either the two independent mode or the two identical direction mode.
  • the sudden braking ability is used properly, and the effect according to the scene is demonstrated.
  • the rudder plate on the side opposite to the direction of change of needle can be swung from the side of the propeller to the rear of the propeller by the rotation of the rudder shaft.
  • the other rudder-side rudder plate turns on the other side of the propeller from the side of the propeller to the rear of the propeller by the rotation of the rudder shaft until a rudder angle from 90 ° to the interference limit with other mechanisms is obtained.
  • the rudder side steering on the side opposite to the direction of the course of change is, for example, a rudder angle of 45 ° to 55 °, and the other rudder plate is a limit that exceeds 90 ° and does not interfere with other mechanisms such as a propeller and a screw shaft. For example, it is preferable to be able to turn to 105 °.
  • the rudder plate on the heel side opposite to the direction of change of needle turns from the side of the propeller to the rear of the propeller by the rotation of the rudder shaft, and simultaneously or before and after,
  • the other rudder-side rudder plate on the other side of the direction of change of needle turns by taking the rudder angle from the side of the propeller to the rear of the propeller by the rotation of the rudder shaft from 90 ° to the interference limit with other mechanisms, 11.
  • the steering method for a steering apparatus according to claim 10 wherein after the two rudder plates turn, the propeller rotational speed is further increased from the propeller rotational speed at the time of straight advance needle-holding ship speed.
  • the effect of increasing the steering ability is obtained by increasing the flow velocity / flow rate of the water flow flowing laterally.
  • the invention described in this claim enables the thruster to function in the rudder without increasing the ship speed even if a more powerful thruster function is exerted by the action of the propeller. The effect of giving is obtained.
  • the present invention it is possible to provide a high propulsion performance without the rudder being positioned in the wake of the propeller when traveling straight ahead, and in the emergency braking, a high control by the hull and the 90 degree rudder angle in the wake of the propeller.
  • An excellent effect is obtained in that a motive power is obtained, and a steering device is provided that ensures the turning performance by deflecting and rectifying the water flow of the propeller freely for turning.
  • a steering device and a steering method thereof are provided.
  • FIG. 1 is a stern side view of a ship equipped with a steering apparatus according to the first embodiment (a cross-sectional view of the inside of the ship),
  • FIG. 2 is a plan view during steering of the steering apparatus, and
  • FIG. 3 is a front view of the steering apparatus.
  • FIG. 4 is a perspective view of the steering apparatus.
  • the steering device includes a propeller 20 attached to the rear end 11a of the stern tube 11 of the hull 10, two rudder plates 30, and a drive mechanism that drives the rudder plate 30 via a rudder shaft 40. ing.
  • the two rudder plates 30 are arranged on both sides of the propeller 20.
  • a camber 31 is formed inside the two rudder plates 30.
  • the front ends of the two rudder plates protrude forward from the surface formed by the propeller rotation surface. This projecting length can extend forward as long as it does not interfere with the hull 10, but the length depends on the wave produced by the hull shape 10 and the economic ship speed, and is between the two rudder plates 30.
  • the two rudder plates 30 may be the rudder plate 30 without the camber 31, and in this case, the low fluid resistance of the rudder plate 30 and the rectification effect on the vortex generation near the stern are aimed.
  • the rudder plate 30 has an inverted L-shaped plate shape as shown in the front view 3 and is suspended and fixed to the rudder shaft 40 at the upper portion of the rudder plate.
  • the rudder shaft 40 is rotatably supported on the bottom portion of the hull 10. ing.
  • the rudder plate 30 turns around the propeller as shown in FIG.
  • the deflection angle of the deflection flow behind the propeller can be increased, and the turning performance is improved. Yes.
  • the two rudder plates 30 have a shape that generates thrust to propel the hull 10 forward by the effect of the camber 31.
  • the rudder plate 30 is thicker than the rear thickness and tilted within 10 degrees with respect to the hull center line, so that the steering plate 30 has an appropriate angle of attack and increases the propeller efficiency, while the vicinity of the stern of the hull 10 It is possible to obtain an optimum rudder plate shape with little resistance to the flow of the engine and to obtain a large forward thrust as a whole.
  • each drive shaft 40 is freely rotated using the bevel gear 120 and the electric servo motor mechanism 130. If the stern 11 is turned from the direction seen from the stern 11 in FIG. 1 so as to be closed at the same time, the two rudders can be positioned as shown in FIGS. 2 and 10, and emergency braking can be performed in an emergency.
  • the electric servo motor mechanism 130 exhibits the same effect whether it is a hydraulic servo motor mechanism or a mechanism that combines an electric servo motor and a hydraulic servo motor.
  • FIG. 7 shows the arrangement of the rudder plate 30 when traveling straight
  • FIG. 8 shows the turning state of the rudder plate 30 when turning right
  • FIG. 9 shows the rudder plate when turning left
  • FIG. 10 shows the turning state of the steering plate 30 during braking. If the two shafts can be driven independently by the drive mechanism shown in the perspective view of the gear drive mechanism of the steering apparatus according to the embodiment of FIG. 5, the turning of FIGS. 7 to 10 can be freely performed.
  • 30 is located on both sides of the propeller without being located in the wake of the propeller, providing an effect of providing high propulsion efficiency, and at the time of emergency braking, a steering angle of 90 degrees with the hull 10 is given in the wake of the propeller.
  • FIG. 11 shows a virtual position of the rudder plate 230 turned around the virtual rudder shaft 240 at the time of emergency braking when the rudder shaft is one axis, and a virtual turning arc locus 250 of the rudder plate in this case. Is additionally shown in FIG. If there are two rudder axles, the turning radius of the rudder plate is reduced by each turn. Therefore, when each of the two rudder axles has a turning mechanism, the rudder blade 230 can be brought closer to the position of the propeller than in the case of the one rudder axle.
  • the rudder angle can also be made close to perpendicular to the propeller screw shaft, and the braking effect can be maximized.
  • FIG. 6A and 6B show another form in which the gear drive mechanism of FIG. 5 is a crank mechanism.
  • the rudder shaft 40 is rotated by a mechanism including the hydraulic cylinder 100 and the crank mechanism 110, whereby the two rudder plates 30 can be freely turned.
  • This is a mode in which only hydraulic pressure is used as a power source, and since a hydraulic system / crank mechanism often used in ships can be used, the drive device according to the present invention can be realized at a lower cost.
  • the crank mechanism that drives the two rudder shafts is connected, and the two rudder shafts rotate in synchronization with each other.
  • the synchronized synchronous rotation of the two rudder shafts by the crank mechanism has the advantage of facilitating steering and a simple steering device mechanism.
  • the two rudder plates do not move together to substantially block the wake of the propeller, and it is not possible to increase the braking force in the case of a sudden stop. While placing the plates on both sides of the propeller and obtaining high propulsion performance, the rudder plate can be swiveled to the wake side of the propeller when turning the ship, and two effects of obtaining high turning performance can be enjoyed. .
  • FIG. 13 is a front view including a propeller of a steering plate portion of the steering apparatus according to the second embodiment
  • FIG. 14 is a side view thereof
  • FIG. 15 is a perspective view thereof.
  • the second embodiment is different from the first embodiment in the following points.
  • a 2nd form is a case where circular arc shape is included in the lower part of the inverted L-shaped rudder board of 1st Embodiment, Comprising:
  • the effect that the effect which a 1st form provides can be implement
  • the rudder shaft 40 that hangs down the rudder plate 30 is disposed at a distance D from the center of the propeller 20 to the side, and is rotatably fixed to the ship bottom 10.
  • D is a numerical value smaller than the propeller radius R.
  • the upper portion of the rudder plate 30 is formed in an inverted L shape, and the rudder plate 30 suspended from the ship bottom 10 is separated from the rudder shaft center by RD + ⁇ . ⁇ is up to the clearance between the propeller turning radius and the steering plate.
  • a central portion of the rudder plate 30, that is, a portion below the horizontal line passing through the central axis of the propeller has a quarter arc shape, and is configured to face a rudder plate that is also suspended from the opposite rudder shaft in a slightly spaced manner.
  • the parameters of R, D, and ⁇ are optimally designed in consideration of various factors such as propeller performance, rudder performance, and hull form.
  • the conventional steering device rotates around the rudder shaft center in a form in which the rudder shaft is included in the rudder plate plane. Compared to the case, the moment of inertia of rotation becomes larger in proportion to the square of the length of the arm to be turned. As a result, the power unit for driving the rudder shaft needs to be larger than the conventional type, which may cause inconvenience in terms of combination with the hull form and economical efficiency.
  • the steering apparatus according to the second embodiment shown in FIG. 13 requires a smaller power mechanism, thereby realizing energy saving. Energy saving is one of the objects of the present invention and is suitable for the purpose of the invention.
  • the camber 31 is formed on the opposing surfaces of the two rudder plates, that is, on the inner side of the rudder plate (FIG. 15).
  • the camber aims to improve the propulsion performance by the thrust generated from the airfoil.
  • the camber 31 is also formed in the first embodiment.
  • the rudder plate of the steering device according to the second form is such that the lower L-shaped rudder plate has a quarter arc shape so that the rudder plate is Since it becomes closer to the propeller and the water flow velocity in the vicinity of the camber is increased, the secondary effect that the thrust becomes larger and the propulsion performance is further improved can be expected.
  • FIG. 16 is a stern side view of a ship equipped with a steering device according to the third embodiment (a cross-sectional view inside the ship),
  • FIG. 17 is a front view of the steering device, and
  • FIG. 18 is a perspective view of a rudder portion of the steering device.
  • the rudder shaft 40 is rotatably arranged on each shaft at a distance D smaller than the radius R of the propeller 20 from the screw shaft center 5, and the rudder plate facing the propeller 20.
  • the rudder plate surface 30 is vertically arranged with a positive minimum distance ⁇ on the rotation surface of the propeller 20 from the outer edge of the propeller 20 having the radius R, and the rudder plate surface is rotated by the two rudder shafts 40.
  • r RD ⁇ (>0;R> D, ⁇ > 0)
  • Formula (1) Is defined as the turning radius, and by turning the rudder shaft, swivel from the side of the propeller to the wake side of the propeller with a radius r, a slim rudder is placed on both sides of the propeller, and each of the two rudders has a rudder shaft. Is attached off-center to the rudder plate, and each rudder shaft rotates independently.
  • This configuration forms a surface where the rudder surface of the rudder blade is separated from the rudder shaft, defines that the rotation axis by the rudder shaft does not exist on the plate of the rudder surface, and clarifies the significance of turning, It is defined that the rudder plate is located on the side separated by a distance ⁇ from the outer edge of the propeller rotation surface.
  • the rudder shaft has a more compact configuration that is arranged on the inner side of the propeller radius, and clarifies the difference from the rudder plate arrangement of the conventional two-steer steering device (see FIG. 2 of Patent Document 1). That is.
  • the turning radius can be further reduced, the turning moment of the steering plate can be reduced in proportion to the square of the turning radius r, the drive mechanism and the power mechanism can be reduced in size, and this leads to the energy saving promotion which is the object of the present invention. It is a form.
  • the turning radius r is equal to the propeller radius R.
  • the size of one rudder blade is defined by the relationship with the turning radius of the rudder blade considering the chord length of the rudder blade covering the propeller radius R.
  • the size of the two rudder plates arranged on both sides of the propeller is smaller than the rudder area where one of the two rudder configurations gives the same rudder performance with a single rudder configuration. can do. If the rudder height is the same, that is, the rudder width in the direction of the axis, conceptually the wing chord length can be made smaller than with a single rudder, and in this case the wing aspect ratio becomes larger. Yes. Wings with a large aspect ratio are narrower than those that satisfy the required specifications with a small rudder and give the same rudder performance with a single rudder in order to suppress a reduction in lift and an increase in drag due to wraparound from the tip of the wing. A small rudder, and a rudder surface that only receives a smaller fluid viscous resistance, high propulsion efficiency can be obtained during cruising.
  • the rudder axle 40 directly connected to the rotor 130 turns the rudder plate 30 connected to the rudder axle 40 freely.
  • the hydraulic chambers 132 and 133 have a semi-cylindrical partial space partitioned into vanes 134, and the vanes partitioning the spaces can rotate within a range of about 180 °. Can support angular range.
  • the power mechanism of the drive mechanism is the vane type hydraulic motor mechanism 140 and is directly coupled to the rudder shaft 40 as a mechanism dedicated to each rudder shaft 40 and viewed from the stern 11 in FIG. If the rudder plate 30 is turned so that it closes toward the center at the same time, the two rudder can be urgently braked in an emergency as shown in FIG. It can be positioned in the flow to maximize the braking force.
  • the drive mechanism 90 may be any mechanism as long as it is a separate power mechanism and drive mechanism 90 that can freely drive the two axes independently of each other, and the steering shaft with the electric servo motor mechanism as a power source. 40 may be driven directly, or the rudder shaft 40 may be driven via a speed reduction mechanism. Depending on the arrangement configuration of each device, the rotation plane may be converted into a vertical / horizontal plane as necessary.
  • the rudder shaft can be steered by switching to at least two steering modes of a two-sheet independent mode and a two-sheet same-direction mode.
  • the movement of the rudder will be described according to the steering mode, and the movement of the rudder plate in the third embodiment will be described with reference to the schematic diagrams of the plan view and the front view of FIGS.
  • the mechanism and the steering method that match the steering characteristics of the steering mode are as follows.
  • the steering is basically symmetrical about the propeller, and when turning the ship to the right, the right rudder is swung counterclockwise in front of the propeller, and the left rudder is turned. Similarly, when swiveling counterclockwise behind the propeller, a rightward deflected wake (flow FR indicated by the two-dot chain line in FIG. 20) is generated from the flow from the front (flow F indicated by the two-dot chain line in FIG. 20). The desired maneuverability can be obtained.
  • the left and right rudder are steered independently.
  • the steering in this independent mode is determined by the person, for example, the navigator and the captain. For example, when the ship speed decreases, the water flow speed and the discharge flow rate generated by the propeller become smaller and are not sufficient for turning, so that the two-wheel independent mode, which is a steering mode suitable for maneuvering at low speed, is operated.
  • the left and right rudders follow the two-same direction mode in which the steering angles oppose each other, and the performance is ensured by maneuvering suitable for the cruising speed.
  • This is a steering device that enables different steering depending on the steering mode of the two-sheet independent mode or the two-panel same-direction mode even with one steering.
  • FIG. 21 shows a turning state of the rudder plates 32 and 33 when the thrust flow is generated in the two-sheet independent mode of the invention according to the third embodiment and is steered in the direction of the surface rudder, for example.
  • the rudder plate 33 on the port side opposite to the direction of turning the rudder is rotated at the same time as the first stage of turning from the side of the propeller 20 to the propeller downstream side by the rotation of the rudder shaft 42.
  • the starboard side rudder plate 32 is pivotally driven so as to swivel from the side of the propeller 20 to the rear side of the propeller by the rotation of the rudder shaft 41 to obtain a rudder angle of 90 °.
  • the rotation speed of the propeller is increased as compared with that when the vehicle travels straight.
  • the port side rudder plate 33 on the opposite side to the direction of the course change is caused by the rotation of the rudder shaft 42 in the first stage to the side of the propeller.
  • the other starboard side rudder plate 32 pivots from the propeller side to the propeller wake side by the rotation of the rudder shaft 41 and turns 90 °.
  • FIG. 20 shows a two-same direction mode: a turning state of the rudder plate 30 at the time of turning the front rudder.
  • the two rudder plates 30 face each other at the same time with the propeller 20 in between, and if the two propellers turn in the same direction, the two propellers move in the same manner. It has the advantage of being simple and easy to maneuver.
  • the rudder plate on the opposite side to the direction of the course change for example, in the case of a surface rudder, the port side rudder plate is driven from the propeller side by the rotation of the port side rudder shaft.
  • the starboard side rudder plate turns from the side of the propeller to the wake side of the propeller by the rotation of the starboard side rudder, and the propeller wake is moved along the large rudder angle by a large rudder angle. It provides high turning performance with the steering force by reaction force.
  • the rudder force received by the rudder acts as a turning moment and contributes to the steering performance.
  • the other rudder is selectively turned from the side of the propeller to the upstream of the propeller by the rotation of the rudder shaft, and the rudder is disposed at a position sufficiently separated from the hull center line as compared with the conventional one.
  • a steering plate that turns to the front of the propeller gives a steering force by the reaction force received from the water flow at the ship's speed, and the one that turns to the rear of the other propeller changes the direction of the water flow after the propeller and Gives a turning force. Since the rudder is at a position sufficiently separated from the hull center line, the rudder force received by the rudder acts as a turning moment, and this steering apparatus provides the effect of contributing to the steering performance.
  • FIG. 7 shows the steering state of the rudder in the case of going straight.
  • the steering plate is the arrangement of the steering plate 30 shown in FIG.
  • An upward thick arrow indicates the direction of maneuvering of the ship, and a downward-pointing thin dotted arrow schematically represents the flow of water. That is, in the case of a straight marine vessel maneuvering boat, the two rudder plates 30 are held on both sides of the propeller 20.
  • the two rudders When going straight, the two rudders are maintained on both sides of the propeller in parallel with the axle. Since the propeller water flow is not disturbed, the blade drag received from the flow around the wing is reduced and higher propulsion performance can be provided as compared with the conventional two-rudder propeller arrangement. In this case, the rudder is not placed in the high-speed rotating flow behind the propeller, so there is no sound generated by the related propeller and the rudder behind it, and there is an incidental effect that quiet navigation is possible. An effect is also obtained, and this effect is particularly suitable for patrol ships and military ships.
  • the rudder plate turns the rudder angle by over 70 degrees in the two-piece independent mode, and the two rudder plates cooperate to make the wake of the propeller almost the same. Shield.
  • the propeller may then be reversed.
  • the steering angle can be turned up to a steering angle of 90 degrees or a steering angle of 105 degrees exceeding this.
  • the two rudder plates almost shield the wake behind the propeller directly behind it, and the stopping force is maximized.
  • the purpose of this steering is to reduce the time the propeller rotates by inertia after resetting the propeller drive in a scene where a sudden stop is necessary, and to enable the propeller to reverse quickly.
  • the reverse rotation of the propeller can be stopped to accelerate the reverse rotation of the propeller.
  • both rudder plates are turned 45 ° forward to the upstream side, both rudder plates receive the water flow of the ship speed, and the ship can be decelerated by the reaction force.
  • the two shafts are independently driven by the hydraulic motor mechanism 140, and the turning of FIGS. 20 to 21 can be freely performed.
  • the rudder angle range exceeds 70 degrees during emergency braking.
  • the rudder plates pivot around the propellers so that the rudder plates cooperate to substantially shield the propeller wake, and give a high braking force by giving the hull 10 and, for example, a 90 degree rudder angle in the wake of the propeller.
  • the steering apparatus 1 is provided that ensures the turning performance by deflecting and rectifying the water flow of the propeller 20 freely for turning the ship.
  • the fourth embodiment of the steering device is a case where the lower portion of the inverted L-shaped rudder plate of the third embodiment is bent to the propeller side and the L-shaped corner is also bent, and the steering device has a smaller effect given by the first embodiment.
  • the effect that it can be realized by a drive mechanism is provided. This will be described below. 22 is a front view including a propeller of a steering plate portion of a steering apparatus according to a fourth embodiment, FIG. 23 is a side view thereof, and FIG. 24 is a perspective view thereof.
  • the fourth embodiment is different from the third embodiment in the following points.
  • the inverted L-shaped rudder plate 30 When the inverted L-shaped rudder plate 30 is attached to the inner side from the rudder shaft 40 off-center with the L-shaped horizontal portion as an arm, in the case of the in-center configuration on the rudder shaft in the rudder plate surface in the conventional steering device.
  • the rotational moment of inertia is proportional to the square of the turning radius, and a large driving power mechanism is required for the rudder shaft, which may cause inconvenience in terms of compatibility with the hull form and economy. If it is possible to make the moment of inertia as small as possible so that a small steering device drive power source is sufficient, it is possible to provide a preferable steering device with excellent energy saving.
  • the rudder plate is a plate-like form similar to an inverted L-shape, it is the simplest configuration among the points formed integrally, the form of the rudder plate, and is most advantageous in terms of strength and economy. .
  • the integral formation may be performed by welding, pressing, forging, or the like, or by assembly such as bolt tightening or rivet tightening.
  • the bending process has the effect of increasing the rigidity, decreasing the plate thickness, and further reducing the moment of inertia.
  • FIG. 25 shows an experimental result graph of the steering force of the model model product device of the present invention when steering in the two-sheet independent mode of the model steering device according to the fourth embodiment.
  • the relationship between ship speed and rudder force was experimentally determined using an experimental model.
  • ⁇ Specifications of model steering device rudder, unit mm> Propeller diameter: 2400, rudder height: 3050, chord length: 1500 at 1950 or higher from the lower end, 1500 linearly decreasing toward the lower end, 1150 at the lower end, maximum plate thickness: 150, rudder axle center position: 600 from the axle center , Rudder shaft diameter: 340 ⁇ Result> FIG.
  • the present invention includes a rudder drive mechanism that changes the steering method of the rudder in the two-same direction mode and the two-independent mode and supports the change.
  • the steering force is 20% inferior to the conventional model, and the superiority of the steering method that specially provides the steering method in the two-sheet independent mode using the device according to the present invention. Sex can be confirmed.
  • the present invention can be applied to a steering portion of a watercraft, particularly a large ship, a coastal ship and a patrol ship that require agile maneuvering even at a low speed.

Abstract

【課題】 舵をプロペラ後流に配置せず、CO2 削減目標を達成する高推進効率を達成しつつ、低船速でも旋回性能を確保しつつ、静粛な舵を備え、船舶の制動に利用できるようにした操舵装置を提供する。 【解決手段】 舵軸を回転させる駆動機構と、これを駆動させる動力機構を有する操舵装置であって、前記舵軸は、スクリュー軸上方の両脇に回転自在に2軸配置され、各々の舵軸は、舵板を舵板上部で連結垂下し、2つの舵軸の回転により2枚の舵板をプロペラ側方からプロペラ後流側まで旋回可能であることを特徴とする操舵装置。

Description

操舵装置及びその操舵方法
 関連出願の相互参照
 本出願は、2014年1月31日に出願された日本国特許出願第2014-017401号「操舵装置」及び2014年3月14日に出願された日本国特許出願第2014-052040号「操舵装置」に対する優先権を主張するものであり、それらの内容が参照により本明細書に組み込まれる。
 本発明は、洋上航行中の燃料消費量の低減化(例えば非特許文献1参照)による高い推進性能を可能とする操舵装置であって、従来のプロペラ後方にある舵を改良してプロペラの推進効率を高め、舵を制動時に利用でき、低船速時の操舵能力を高めプロペラと舵の出す音を低下させる操舵機構及びその操舵方法に関し、水上交通船舶に好適なものである。
 従来の舵は、プロペラの後流の位置にあって抵抗体として作用する。舵をプロペラの後方に配さず、水平位置を同じとすれば、残るはプロペラの側方または前方への配置である。推進軸との干渉を考えると二舵以上の構成にせざるを得ない。一方、制動能力に着眼し、一軸推進二舵操船の採用を提案するのが非特許文献2、3である。この技術は、緊急時の急停止には、船体に対して直角に二枚の舵が連動しプロペラ後方に廻り後流を閉塞し、強力な制動機能を発揮できるとするが、舵がプロペラの水流の抵抗体として作用する点、従来技術と大差ない。二枚舵の先行発明として、特許文献1がある。同発明は、舵板が「二枚の前記舵板を前記プロペラの前方又は側方に配置する」ことによる推進性能の向上を優先し、この制動能力は手当てされない。他方、二舵軸を有する構成も特許文献1の図12に開示され、舵板面内に含まれる舵軸中心に舵板が回転するため舵板はプロペラ後流に廻り込めず、特に低船速時の操舵能力に課題が発生し、タグボートの支援を受けられぬ内航船舶や、巡視艇で問題となる。舵が二枚となれば、キャンバーの活用が視野に入るが、特許文献2は、プロペラ後流配置の二枚舵でのキャンバー使用に止まる。舵角が90度では舵軸駆動機構にも工夫が必要になり、特許文献3には、ロータリ・ベーンを用い、180度近く舵角可能に油圧モータ駆動機構が提案される。特許文献4には、二枚舵の挟む領域でプロペラ後流の整流効果を発揮し、高推進効率を実現できる提案が記載されるが、舵をプロペラの後流に配置し、推進性能の向上には、限界が見える。とりわけ、内航船では、港内でのタグボートによる曳航は期待できないため、低速航行時にも自らの操船により旋回能力を確保し、推進性能の向上を優先し、直進時に舵をプロペラ後流に配置しない構成では、変針時の舵の配置に工夫を要し、その機構の実現と操舵方法も同様である。この場合の操舵について低速航行時と巡航時を切り分けて課題が認識され又は示唆されている発明は見出されない。この点、二枚舵の操舵方法としては、二枚舵を有する船舶において舵位置と船舶の運動方向を表示する「二枚舵システム用運動方向表示方法」を開示する特許文献5の図4に列挙の操縦モード(b)前進右旋回、(e)その場右旋回、の舵配置が開示されるが、プロペラ後流配置の二枚舵の旋回中心位置とプロペラの位置関係からは本発明の示唆は受けていない。なお、艦尾のスペース拡充にプロペラと船尾舵の長さの短縮の目的で二枚の舵をプロペラの両脇に配置する船舶が提案される(特許文献4)。しかし、特許文献4の図8に示す構成では、操舵範囲に限界があり、また、プロペラ後流の偏向流を作り出すことに難がありそうである。
特開2014-73815 特開昭50-55094 特開2011-73526 特開2010-13087 特公平6-92240
https://www.mlit.go.jp/report/press/kaiji06_hh_000061.html 「船舶からのCO2削減技術開発支援事業の評価について」,添付資料「船舶からのCO2削減技術開発支援事業の評価について」,国土交通省海事局,平成25年3月29日。 新・舵取機械・舵システムの新しい概念―ロータリーベーン舵取機、ベクツィン・ラダーシステム(2)日本マリンエンジニアリング学会誌、第45巻 第3号 P97-104。 新・舵取機械・舵システムの新しい概念―シリングラダ―、ロータリ・ベーン舵取機、ベクツィン・ラダーシステム(1)日本マリンエンジニアリング学会誌、第45巻 第2号 P93-99。
 以上に示されるように、1軸推進1舵構成のもとで数々の推進性能向上を目的として工夫が重ねられてはいるが、同構成の制約条件の下での最適化に止まる。2軸推進構成のもとで旋回性能を確保する工夫もあるが機関の重畳というコスト面で問題がある。舵形状の工夫により旋回性能を確保しつつ、形状変更から生ずる性能減を補完する工夫もされているが、直進を主とする巡航推進性能の向上には限界がある。船尾の専用舵を不要とするコルトノズルは、推進効率性能の点で問題がある。ただ単に舵をプロペラの両脇に配置するだけでは、従来よりも高い推進性能は得られるとしても、高い旋回性能を追求するには不十分である。本発明は、化石燃料の利用による高速水流を提供できるプロペラ商船の時代の万能の舵を提供する、新しい舵である。
 新しい舵には、推進性能の向上による化石燃料消費量並びにCO2発生量の削減、高い旋回性能と緊急時の制動能力確保が求められる。
 そうすると巡航直進時には、舵はプロペラ後流に配置されていないことが好ましく、緊急制動時には、舵はプロペラ後流に配置され、かつ、舵は船体と直角をなすまで操舵できることが好ましく、90度の舵角を実現する旋回機構が好ましい。
 舵をプロペラの後流に配置せずとも、プロペラからの水流を偏向させて旋回能力を確保することが求められる。
 本発明は上記課題に鑑みてなされたもので、巡航直進時のプロペラの推進効率を高めるために巡航直進時には、舵がプロペラ後流に位置することなく、緊急制動時には、プロペラ後流で船体と90度の舵角による緊急制動を可能とし、プロペラの水流を旋回のために偏向整流させ、旋回性能を確保する操舵装置を提供することを目的とする。
 新しい舵には、変針時の舵の配置移動にさらに工夫し、低速時の旋回性能確保に課題を認識し、舵をプロペラ後流に配さない不都合を解決するというのも本発明の操舵装置及びその操舵方法である。
 この課題を解決した本発明は以下のとおりである。
[請求項1記載の発明]
 舵軸を回転させる駆動機構と、これを駆動させる動力機構を有する操舵装置であって、前記舵軸は、スクリュー軸上方の両脇に回転自在に2軸配置され、各々の舵軸は、舵板を舵板上部で連結垂下し、2つの舵軸の回転により2枚の舵板をプロペラ側方からプロペラ後流側まで旋回可能であることを特徴とする操舵装置。
[発明の作用効果]
 請求項1記載の発明は、舵軸がスクリュー軸上方両脇に回転自在に2軸配置され、舵軸は、舵板を舵板上部で連結垂下し、電気サーボモータ又は油圧シリンダ等の動力機構が駆動機構を介して2枚の舵を2つの舵軸の回転によりプロペラ側方からプロペラ後流側まで旋回させる。巡航直進時には、2枚の舵はプロペラの両脇に船軸と平行に配置され、プロペラ水流を邪魔することはないため、従来技術のプロペラ後流配置のものに比べて、より高い推進性能を提供できる。舵はプロペラの両脇に2枚配置し、1枚舵構成に比して2枚舵構成のうちの1枚は、より小さな舵で足りるため、より幅の狭い舵とし、より小さな流体粘性抵抗を受けるものとするので、高い推進効率が得られる。ここで小さな舵とは、例えば舵長で言えば、1枚舵構成の場合の半分程度の長さとすることが好ましい。操舵時には、舵軸を2つとし2枚の舵板に専属の舵軸を設け、2つの舵軸の回転により2枚の舵板をプロペラ側方からプロペラ後流側まで旋回させるため、旋回半径を小さくでき、2枚の舵板とプロペラの後端を近接させ、プロペラ後流の偏向流を大きな舵角で発生させて高い旋回性能を実現できる。ここで旋回半径を小さくとは、例えば、旋回半径をプロペラ半径の半分程度とすることが好ましい。
 請求項1記載の発明の動力機構は、油圧シリンダであって、油圧により往復動する油圧シリンダにより往復直線駆動されるシリンダ軸と往復直線動を回転運動に変換するクランク機構により2枚の舵軸を回転させるものでも、舵軸に取り付けられて回転とともに舵軸を回転し得るかさ歯車と、回転面を水平から垂直へ変換するかさ歯車機構から構成され、電気サーボモータ機構又は油圧モータ機構を上記動力機構とするものでもよいし、電気サーボモータ機構又は油圧モータ機構を縦型とすれば、舵軸は油圧モータにダイレクト駆動され、歯車機構を省略してもよい。
 請求項1記載の発明の動力機構は、油圧シリンダであって、
その駆動機構は、
油圧により往復動する油圧シリンダにより往復駆動されるシリンダ軸と
クランク機構により2枚の舵軸を自在に回転させる回転駆動機構からなる請求項1記載の操舵装置も好ましく、この場合、巡航直進時にプロペラの両脇に配置された2枚の舵板は、油圧により往復動する油圧シリンダにより往復直線駆動されるシリンダ軸とクランク機構により連動して往復回転する2枚の舵軸につれてプロペラのまわりを旋回し、その船軸中心から見た舵角が変えられる。この駆動機構による舵軸の回転により2枚舵のうち、そのひとつは後流側に移動させることで、プロペラの両脇で舵板が舵板上の軸まわりに回転して舵角を得る場合に比べて、より偏向した後流を生成することができ高い旋回性能を提供するという効果が得られる。動力源として船舶に通常装備されている油圧装置を用い、クランク機構により直線運動を回転運動へ変換し2つの舵軸を回転すると、操舵装置機構が従来の延長線上で済むという簡便性が得られ、経済性に優れる。連結クランク機構により2つの舵軸を連動して回転させる構成とすれば、2つの舵板は同期をとってプロペラのまわりを旋回するため、操舵制御機構が簡単で済むという利点もある。
 請求項1記載の発明の動力機構は、電気サーボモータ機構又は油圧モータ機構であって、
その駆動機構は、
舵軸に取り付けられて回転とともに舵軸を回転し得るかさ歯車と、
回転面を垂直水平変換するかさ歯車機構である請求項1記載の操舵装置とするのも好ましく、この場合には、巡航直進時にプロペラの両脇に配置された2枚の舵板は、電気サーボモータ機構又は油圧モータ機構が駆動されると、かさ歯車機構により回転駆動される舵軸につれて、各々独立に舵角が変えられ、舵板をプロペラまわりに旋回させ、少なくともそのうちひとつの舵板をプロペラ後流側に移動させることができ、高い旋回性能を発揮する。さらに船軸と垂直に交差する面までプロペラまわりに2枚の舵板を共に後流側に旋回移動させると完全な制動作用を提供できる。この点、前段に記載された操舵装置に比べて、2枚の舵が電気サーボモータ機構又は油圧モータ機構により独立に操舵制御されるため、柔軟な制御が可能で、操船の自由度が高まり、よりきめの細かい旋回機能を提供するという効果が得られる。
 本発明で、前記2枚の舵板は直進時にはプロペラの両脇に配置され、2枚の舵板によりプロペラを挟むように構成する空間の船の進行方向前端面がプロペラの軸方向前端面で構成される水流入面よりも船首方向に突出させた位置となる長さに2枚の舵板は構成され、プロペラ水流の整流作用を呈することを特徴とする請求項1項に記載の操舵装置とするのも好ましく、この場合には、2枚の舵は、その相互作用によりプロペラに流入する水の流れを整流してプロペラの推進効率を高める機能を提供する。単にプロペラ水流から発生する舵部抵抗力を排除するために舵をプロペラから離れた前方に位置させる方式では、このような整流作用は得られない。本発明に係る舵が与える効果は、プロペラ後流配置の舵による整流生成機能ともその原理・効果を異にするものである。この場合の操舵装置によれば、2枚の舵板は、直進時にはプロペラの両脇に配置され、これらがプロペラを挟むように構成する空間の船の進行方向前端面がプロペラの軸方向前端面で構成される水流入面よりも、船首方向に突出させた位置となる長さに舵板は構成される。このような構成では、船首方向に突出させた2枚の舵板に挟み込まれる領域により、プロペラへの水流入口の乱れを抑え、入口部での整流効果を与え、プロペラ回転面で2枚の舵に挟み込まれる領域では、水の流れが拘束され、プロペラ後流を整流化し後流の流速を速め、旋回性能を上げるという効果がある。積荷スペースを増加させる都合上、肥大船だと船尾形状を肥大させ、プロペラ上流からの水の流れを船尾船体の流線形状で形成させることができないため、本発明に係る2枚の舵の整流作用の効果が大きくなる。
 本発明で、2枚の舵板は、直進時にはプロペラの両脇に配置され、2枚の舵板によりプロペラを挟むように構成する空間の船尾方向後端面がプロペラの軸方向後端面で構成される水流出面よりも、船尾方向に突出させた位置となる長さに2枚の舵板は構成され、プロペラ水流の整流作用を呈することを特徴とする請求項1項に記載の操舵装置とするのも好ましく、この場合には、2枚の舵板は、直進時にプロペラの両脇に配置されたとき、これらがプロペラを挟むように構成する空間の船の進行方向後端面がプロペラの軸方向の回転後端面で構成される水流出面よりも、船尾方向に突出させた位置となるよう舵板長さは構成され、プロペラ排出側の水の流れを整流し、推進効率を高めるという効果を発揮するとともに後流の流速を速め、旋回性能を上げるという効果がある。
[請求項2記載の発明]
 前記2枚の舵板は、双方が同時にプロペラを挟んで対向し、同方向にプロペラのまわりを旋回可能である請求項1記載の操舵装置。
[発明の作用効果]
 本請求項に係る操舵装置によれば、2枚の舵板は双方が同時にプロペラを挟んで対向し、同方向にプロペラのまわりを旋回する。2枚のプロペラが同じ動きと単純になり、操船が容易になるという利点がある。船を右に向けるときには、右側の舵をプロペラの前方に反時計まわりに旋回移動させ、左側にある舵をプロペラの後方に同じく反時計まわりに旋回させると、スラスターに近い偏向水流が発生し、従来では見られなかった優れた操縦性が得られるという効果を発揮する。
[請求項3記載の発明]
 前記2枚の舵板は、双方が同時にプロペラを挟んで対向しながら同じ回転方向に旋回し、同時に互いに反対向きに旋回可能である請求項1又は2記載のいずれか1項に記載の操舵装置。
[発明の作用効果]
 本請求項に係る操舵装置によれば、2枚の舵板は、双方が同時にプロペラを挟んで対向しながら同じ回転方向に旋回し、同時に互いに反対向きに旋回することができる。各々が各舵軸まわりを自由な方向に回転することができる。この場合には、本請求項記載の発明のように双方が同時にプロペラを挟んで対向し、同方向にプロペラのまわりを旋回することにより、スラスターに近い偏向水流を発生させる等高い旋回性能を提供できるのみならず、制動時には共にプロペラの後面でスクリュー軸と垂直に交差する面を構成できれば、最大の制動作用を提供する。前記舵軸まわりの自在回転機構により、この制動動作を実現する。この制動作用をより効果的に働かせるためには、2枚の舵板とプロペラの後端との距離は小さい方がよい。請求項1に係る操舵装置では、舵軸を2つとし2枚の舵板に専属の舵軸を設けているため、プロペラまわりに舵板を旋回させるとき旋回半径を小さくでき、2枚の舵板とプロペラの後端との距離を近接させ、制動能力を高める効果を発揮する。
[請求項4記載の発明]
 舵角範囲が70度を超え、前記2枚の舵板が協働してプロペラ後流をほぼ遮蔽する請求項3記載の操舵装置。
 [発明の作用効果]
 電気サーボモータ機構又は油圧モータ機構の回転をかさ歯車を介して又は歯車を介さず自在回転するよう舵に直接伝達する構造を採用すると可動範囲が増大して大きな舵角を取ることが可能となる。舵板をプロペラまわりに旋回回動して例えば左右90度ずつ以上の計180度以上の範囲とされる大きな舵角を取ることで、舵を船舶の制動に利用できるようにもなり、高い旋回性能を確保できるようになる。本請求項に係る操舵装置によれば、緊急停止時に2枚の舵板がプロペラ後流をその真後ろでほぼ遮蔽する動きをするため、制止力は最大化させる効果を発揮する。この場合の操舵の目的は、急停止の必要な場面で、プロペラ駆動をリセットした後にプロペラが惰性で回っている時間を短縮し、早くプロペラの逆転を可能とすることである。
[請求項5記載の発明]
 前記舵板は、板状のものであって逆さL字型に成形された請求項1~3のいずれか1項に記載の操舵装置。
[発明の作用効果]
 舵板は舵軸に垂下されるが、舵板を溶接・プレス加工・鍛造加工等で一体形成するとその構造が単純となり、強度及び経済性の面で有利な効果を与える。舵板を逆さL字型に一体成形されるものは、中でも最も簡単な構成であって、強度及び経済性の面で最も有利な効果を与える。
[請求項6記載の発明]
 前記舵板は、2枚の舵板の対向する面にキャンバーを形成することを特徴とし、前進推力を発生させるものであることを特徴とする請求項5に記載の操舵装置。
[発明の作用効果]
 本請求項記載の操舵装置では、舵板を翼形とし、キャンバーの効果により船体を前方に推進する推力を発生させる形状としたことを特徴とする。2枚の舵板の間に流れの中で内側にキャンバーを形成した舵板として配置することで船体を前方に推進する推力を発生させることができる。キャンバー(翼型中心線と翼弦線との距離)を大きくすることでこの推力を大きくできるが、同時に抵抗が増すため最適なキャンバーが存在する。2枚の舵板の前方幅を後方幅に対して大きくし、船体中心線に対して10度以内傾けることで最適化される。
[請求項7記載の発明]
 前記舵板は、板状のものであって上部又は下部のうち少なくとも一方が舵軸側へ折曲げ成形されている請求項5に記載の操舵装置。
 [発明の作用効果]
 一部が舵軸側へ折曲げ成形されると、鉛直垂下の場合に比し、舵軸まわりの舵板慣性モーメントをより小さくすることができ、より小さな駆動動力機構で済み、運航もより省エネルギーを実現することができるという効果を与える。プロペラとキャンバーの過大な隙間を小さくし推力を確保する。
 [請求項8記載の発明]
 前記舵板は、その翼弦長がプロペラ後流に1枚舵板を配置した場合に割当てられるとした翼弦長を限度とし、前記舵板の翼厚さもプロペラ後流に1枚舵板を配置した場合に割当てられるとした翼厚よりも薄肉とする請求項1又は5に記載の操舵装置。
 [発明の作用効果]
 舵は巡航直進時にはプロペラの両脇に二枚配置され、1枚舵構成に比して二枚舵構成のうちの1枚は、1枚舵で同じ舵性能を与える舵面積よりも小さくし、翼弦長を1枚舵による場合よりも小さくすると翼のアスペクト比を大にし抗力を抑え、肉薄の小さな舵で高い推進効率が得られる。
[請求項9記載の発明]
 前記駆動機構は、前記2枚の舵板が互いに独立に旋回駆動される2枚独立モードと、
 前記2枚の舵板が共に同方向に旋回駆動される2枚同方向モードと、
 各モードを自在に切り替て駆動可能である請求項1又は3のいずれか1項に記載の操舵装置。
 [発明の作用効果]
 前記駆動機構を駆動する場合には、船速が小さくても十分な舵力を発生させることが可能なように2枚の舵は互いに独立に駆動される、2枚独立モードと、主として巡航時に使用される2枚の舵が同方向に旋回される、2枚同方向モードに切り分けて駆動可能とする操舵装置である。船速が低下する場合には、プロペラの生成する水流速度と排出流量は小さくなり、転舵するに十分でなくなるのであるから、船速が低下する領域では、巡航時とは異なる操舵によるのが妥当でありと発明者の思いは至った。そこで、本発明の操舵装置では、請求項1記載の発明を構成する操舵装置は、低速時の操舵力の減退を補い、合わせて巡航航行時の操舵性能と操縦性能の向上を実現する基本フレームワークは操舵カテゴリとして、例えば、所定の船速を境界として、その船速より小さい範囲の船速度では、左右の舵は独立に互いに拘束のない2枚独立モードで舵軸を操舵可能であると定義する。
 低速時又は巡航速度時において、2枚独立モード又は2枚同方向モードといずれか一方の操舵モードの切り分けにより、本発明の操縦性能の向上、低船速度での操舵能力、静音航行、停船時の急制動能力を場面に応じ使い分け、場面に応じた効果を発揮させる。
[請求項10記載の発明]
 前記2枚独立モードでは、変針方向と反対側の舷側の前記舵板は、前記舵軸の回転により前記プロペラ側方からプロペラ後方へ旋回可能であり、
これと同時に又は前後して、他方の変針方向側の舷側の舵板は前記舵軸の回転により前記プロペラ側方からプロペラ後方に90°から他機構との干渉限界までの舵角を取るまで旋回可能である請求項9記載の操舵装置。
 [発明の作用効果]
 本操舵装置により、変針方向の舷側側方へのスラスト流を生成する効果を得る。変針方向と反対側の舷側の舵板操舵は、例えば舵角45°~55°までであり、他方の舵板は、90°を超えプロペラやスクリュー軸等の他機構と干渉しない限度である、例えば105°まで旋回できることが好ましい。
 [請求項11記載の発明]
 2枚独立モードで、変針方向と反対側の舷側の前記舵板は、前記舵軸の回転により前記プロペラ側方からプロペラ後方へ旋回し、これと同時に又は前後して、
 他方の変針方向側の舷側の舵板が前記舵軸の回転により前記プロペラ側方からプロペラ後方に90°から他機構との干渉限界までの舵角を取るまで旋回し、
 前記2枚の舵板の旋回後、さらに、直進保針船速時のプロペラ回転数よりもプロペラ回転数を上げることを特徴とする請求項10記載の操舵装置の操舵方法。
 [発明の作用効果]
 本発明による操舵では、側方に流れる水流の流速・流量を増加させ、操舵能力を高めるという効果が得られる。特に、低船速時に舵を効かせたいとき、本請求項に記載された発明により、プロペラの働きでより強力なスラスター機能を発揮させても、船速を増加させずに舵にスラスターの働きを与えるという効果を得る。
 本発明によれば、巡航直進時には、舵がプロペラ後流に位置することなく、高い推進性能を与えるという効果を提供し、緊急制動時には、プロペラ後流で船体と90度の舵角による高い制動力を得られ、プロペラの水流を旋回のために自在に偏向整流させ、旋回性能を確保する操舵装置が提供されるという優れた効果を奏する。
 本発明によれば、本装置を用いて低速運航時にもスラスト流の生成による旋回能力をなお確保する操舵装置及びその操舵方法が提供されるというさらに優れた効果を奏し、さらに舵の水切り音を低減する操舵装置及びその操舵方法が提供される。
本操舵装置の第1の形態が適用される船舶の船尾側面図である。 第1の形態に係る操舵装置の操舵時の平面図である。 同装置の正面図である。 同装置の斜視図である。 同装置の歯車駆動機構斜視図である。 同装置の駆動機構の他の形態に係るクランク駆動機構斜視図である。 同装置の駆動機構の他の形態に係るクランク駆動機構斜視図である。 同装置の直進時の平面図・正面図である。 同装置の面舵旋回時の平面図・正面図である。 同装置の取舵回時の平面図・正面図である。 同装置の制動時の平面図・正面図である。 同装置の制動時の1軸旋回との比較図である。 同装置の舵板とプロペラの配置図である。 第2の形態(逆さL字型舵板の下部に円弧形状を含む場合)に係る操舵装置の舵板部のプロペラを含む正面図である。 同装置の側面図である。 同装置の斜視図である。 第3の形態に係る操舵装置を用いる船舶の船尾側面模式図である。 同装置の舵及び舵軸の正面模式図である。 同装置の舵及び舵軸の斜視模式図である。 同装置の駆動機構水平断面B-B‘模式図である。 同装置の2枚同方向モード時の面舵旋回時の平面模式図・正面模式図である。 同装置の2枚独立モード時の面舵旋回時の平面模式図・正面模式図である。 第4の形態(舵板に折り曲げ部を含む場合)に係る操舵装置の舵板部のプロペラを含む正面図である。 第4の形態に係る操舵装置を用いる船舶の船尾側面模式図である。 同装置斜視図である。 本発明の一形態に係るモデル操舵装置の2枚独立モード・2枚同方向モード別の操舵力の実験結果比較グラフ図である。
 以下に本操舵装置の各形態について説明する。図1は、第1の形態による操舵装置を装備した船舶の船尾側面図(船内は断面図)、図2は、同操舵装置の操舵時の平面図、図3は、同操舵装置の正面図、図4は、同操舵装置の斜視図である。
 第1の形態による操舵装置は、船体10の船尾管11の後端11aに取り付けられるプロペラ20と、2枚の舵板30と、舵板30を舵軸40を介して駆動する駆動機構を備えている。2枚の舵板30は、プロペラ20の両脇に配置されている。2枚の舵板30の内側には、キャンバー31が形成されている。2枚の舵板の前端はプロペラ回転面の形成する面よりも前方に突出している。この突出長さは船体10と干渉しない範囲で前方に伸長することができるが、その長さは、船体形10の造る波や経済的船速に依存し、2枚の舵板30の間に流れ込む水の整流作用と船板30のキャンバー31の生成する前進推力、水粘性抵抗等の使用態様にも依存し、これらの制約条件のもとに最適化すればよい。2枚の舵板30はキャンバー31を持たない舵板30とすることもでき、この場合には、舵板30の低い流体抵抗と船尾近傍の渦発生への整流効果を狙うこととなる。
 舵板30は、正面図3に示されるように逆さL字板状を呈しており、舵板上部で舵軸40に垂下固定され、舵軸40は船体10の船底部分に回転自在に支持されている。操舵時には、舵軸40の回転に連れて、舵板30はプロペラの周りを図2に示すように旋回する。舵板30が板面上の軸中心で回転するよりも図2に示すようにプロペラまわりを旋回することにより、プロペラ後流の偏向流の偏向角を増すことができ、旋回性能を向上させている。
 2枚の舵板30は、キャンバー31の効果により、船体10を前方に推進する推力を発生する形状としている。舵板30は、前方厚みを後方厚みに対して厚くし、船体中心線に対して10度以内傾けることで、適度な迎角を有した配置とし、プロペラ効率を増しつつ、船体10の船尾近傍の流れに対して抵抗が少ない最適な舵板形状とし、総じて大きな前方推力を得ることができる。
 駆動機構により舵軸40を回転するにあたり、図1並びに図5に示す駆動機構では、かさ歯車120と電気サーボモータ機構130を用いて各々の駆動軸を自在に回転させている。図1の船尾11から見る方向から中心に向かい同時に閉じるように旋回させれば、2枚の舵を図2及び図10に示すように位置させ、緊急時に緊急制動させることもできる。なお、電気サーボモータ機構130は、油圧サーボモータ機構でも、電気サーボモータと油圧サーボモータを組み合わせた機構でも同様の効果を発揮する。
 図7に示すのは、直進時の舵板30の配置であり、図8に示すのは、右旋回時の舵板30の旋回状態、図9に示すのは、左旋回時の舵板30の旋回状態、図10に示すのは、制動時の舵板30の旋回状態である。図5の形態に係る操舵装置の歯車駆動機構斜視図に示す駆動機構により、2軸が各々独立に駆動できれば、図7から図10の旋回が自在に可能となるので、巡航直進時には、舵板30がプロペラ後流に位置することなく、プロペラの両脇に位置して高い推進効率を与えるという効果を提供しつつ、緊急制動時には、プロペラ後流で船体10と90度の舵角を与えて高い制動力を得たり、プロペラ20の水流を船舶の旋回のために自在に偏向整流させ、旋回性能を確保する操舵装置が提供されることとなる。図11に示すのは、舵軸を1軸とした場合の緊急制動時の仮想舵軸240を中心として旋回した舵板230の仮想位置、この場合の舵板の仮想旋回円弧軌跡250を図2に追加図示したものである。2舵軸だと各々の旋回により舵板旋回半径が小さくなるため2舵軸各々旋回機構を持つ場合には、1舵軸の場合に比べてプロペラにより近接した位置に舵板230を近づけることができ、舵角もプロペラスクリュー軸に対して垂直に近づけることができ、制動効果を最大とすることができる。
 図6A、図6Bに示すのは、図5の歯車駆動機構をクランク機構とする他の形態を示すものである。図6Aに示すように、油圧シリンダ100とクランク機構110による機構で舵軸40を回転することで、2枚の舵板30を自在に旋回させることができる。油圧のみを動力源とするときの形態であって、船舶でよく用いられている油圧系統・クランク機構が利用できるため、より安価に本発明に係る駆動装置を実現できる。
 図6Bに示す操舵装置によれば、2つの舵軸を駆動するクランク機構は連結されており、2つの舵軸は連動同期して回転する。クランク機構による2つの舵軸の連動同期回転は、操舵を容易にし、操舵装置機構も簡便で済むという利点がある。この実施形態の場合には、2枚の舵板が協働してプロペラ後流をほぼ遮蔽する動きせず、急停止の場合の制動力を上げることは望めないが、直進時に2枚の舵板をプロペラの両脇に配置し高い推進性能を得ながら、船の転回時には舵板をプロペラの後流側へ旋回することができ、高い旋回性能を得るという2つの効果を享受することができる。
 図13は、第2の形態に係る操舵装置の舵板部のプロペラを含む正面図、図14は、同側面図、図15は、同斜視図を示す。第2の形態は、第1の形態と次の点で相違する。
 第2の形態は、第1の実施形態の逆さL字型舵板の下部に円弧形状を含む場合であって、第1の形態が与える効果をより小さな操舵装置駆動機構で実現できるという効果を提供する。以下説明する。
 第2の形態では、舵板30を垂下する舵軸40は、プロペラ20の中心から側方に距離Dに配置され、船底10に回転自在に固定されている。ここでDは、プロペラ半径Rより小さい数値である。舵板30の上部は逆さL字型に構成され、船底10から垂下されている舵板30は、舵軸中心から、R-D+αだけ離隔されている。αは、プロペラ回転半径と舵板とのすきまである。舵板30の中央部分、すなわち、プロペラ中心軸を通る水平線より下部は四分の一円弧状とし、反対側舵軸から同様に垂下される舵板とわずかに離隔対向するよう構成されている。ここで、R,D、αのパラメータはプロペラ性能、舵性能、船型等諸要素を考慮して最適設計される。
 逆さL字型舵板30をL字型の水平部を腕として舵軸40まわりに旋回するには、従来の操舵装置において舵板平面に舵軸が含まれる形態で舵軸中心まわりに回転する場合に比べ、回転の慣性モーメントが旋回させる腕の長さの二乗に比例し大きなものとなる。そうすると、舵軸を駆動する動力装置も従来型より大きなものが必要となり、船型との組み合わせ、経済性の面で不都合が生ずることもある。このような場合であっても、より小さな操舵装置駆動動力源で済むよう、できるだけ慣性モーメントを小さくすることが可能となれば、省エネルギー運航効率に優れたより好ましい操舵装置が提供できる。ここで、慣性モーメントIと回転中心からrの距離にある質点mの慣性モーメントは、
I=mr2   ・・・・・式(1)
であるから、図3に示す第1の形態に係る操舵装置の逆さL字型の舵板部のプロペラ中心線の水平軸線から下部分について、この形態を示す図13のように、舵板の一部を四分の一円弧形状とすると舵軸回転中心からの距離が減ぜられるので、その2乗に比例し慣性モーメントは小さくなる。
 必要とする駆動力は、慣性モーメントに比例し駆動エネルギーも慣性モーメントに比例するので、図13に示す第2の実施形態による操舵装置では、より小さな動力機構で済むこととなり、省エネルギーを実現する。省エネルギーは本発明の目的の一つであり、発明の趣旨に適うものである。
 第2の形態では、2枚の舵板の対向する面、すなわち舵板内側にキャンバー31が形成されている(図15)。キャンバーは、該翼形から生成される推力により、推進性能を向上することを狙いとしている。第1の実施形態でもキャンバー31は形成されているが、第2の形態による操舵装置の舵板は、逆さL字型の舵板下部が四分の一円弧形状とすることで、舵板がよりプロペラに近接するものとなり、キャンバー近傍の水流速が増速されるため、推力もより大きくなり、推進性能の向上もより大きくなるという副次効果も期待できる。
 次に、操舵装置の第3の形態について説明する。図16は、第3の形態による操舵装置を装備した船舶の船尾側面図(船内は断面図)、図17は、同操舵装置の正面図、図18は、同操舵装置の舵部分の斜視図の模式図である。
 第3の形態も第1の形態と同様、前記舵軸40はスクリュー軸中心5からプロペラ20の半径Rよりも小さい距離Dを隔て回転自在に各軸配置され、プロペラ20に面する前記舵板30の舵板面は、半径Rのプロペラ20の外縁よりプロペラ20の回転面上で正なる最小距離αを隔て鉛直配置され、其の舵板面は、2つの舵軸40の回転によりプロペラ20の側方からプロペラ20の後流側まで半径rが次式で表される離隔距離、
 r=R-D+α(>0;R>D,α>0) ・・・式(1)
を旋回半径として定め、舵軸の回転によりプロペラ側方からプロペラ後流側まで半径rで旋回させ、スリムな舵をプロペラの両脇に置き、2枚の舵はそれぞれ舵軸を持ち、舵軸は舵板に対して内側にオフセンターに取り付けられ、各舵軸は独立に回転することを特徴とする。この構成は、舵板の舵面が舵軸とは離隔する面を形成し、舵軸による回転軸が舵面の板上には存しないことを規定し、旋回の意義を明確にするとともに、舵板がプロペラ回転面外縁よりも距離α隔てた側方に位置することを規定している。舵軸は、プロペラ半径よりも内側に配置される、よりコンパクトな構成とし、従来の二枚舵の操舵装置の舵板配置(特許文献1の図2参照)との差異を明確化している。すなわち。旋回半径をより小さくし、舵板の旋回モーメントを旋回半径rの二乗に比例して小さくでき、駆動機構及び動力機構も小型化が可能となり、ひいては本願発明の目的である省エネルギー推進に通ずる点好ましい形態である。
 このようにパラメータ間の規定については、旋回半径rをより小さくするとしても、一つの舵板の翼弦長をプロペラ半径Rを覆うだけの長さとすれば、旋回半径rは、プロペラ半径Rの半分程度とするのが好ましく、一つの舵板の大きさは、プロペラ半径Rを覆う舵板の翼弦長を考慮した舵板の旋回半径との関係から規定され、結果として、プロペラの旋回モーメントの低減との調和が得られ好ましいのである。
 プロペラの両脇に二枚配置される舵板の大きさは、1枚舵構成に比して二枚舵構成のうちの1枚は、1枚舵で同じ舵性能を与える舵面積よりも小さくすることができる。同じ舵高さとすれば、すなわち、概念的に船軸方向の舵幅、翼で云えば翼弦長を1枚舵による場合よりも小さくでき、この場合には翼のアスペクト比がより大きくなっている。アスペクト比が大きい翼は、翼端からのまわり込みによる揚力の低下、抗力の増加を抑えるため、小さな舵で要求仕様を満たし、1枚舵で同じ舵性能を与えるものに比して、幅狭の小さな舵とし、より小さな流体粘性抵抗を受けるに過ぎない舵面とし、巡航時に高い推進効率が得られる。
 駆動・動力機構90により舵軸40を回転するにあたり、ロータリベーン式油圧モータ140により、ダイレクトに舵軸40は回転される(図18参照)。それで、二枚の舵板30はプロペラ20周りに自在に旋回されるとこととなる。すなわち、図19に示す駆動機構の断面図に示されるように、ベーン式油圧モータ140のベーン134により仕切られた油圧室132,133に動力機構により作動油が供給されると、ベーンにより分離される左右の油圧室132,133の圧力差によりベーン134に差動力が働き、ローター130が差動する。ローター130にダイレクトに連結された舵軸40は、舵軸40に連結されている舵板30を自在に旋回させることとなる。油圧室132,133は、半円柱状の一部空間をベーン134に仕切られ、これを仕切るベーンは、ほぼ180°の範囲を回動することができるから、90°を超えて例えば、広い舵角範囲をサポートすることができる。
 以上のような第3の形態では、駆動機構の動力機構をベーン式油圧モータ機構140とし、各舵軸40に専属の機構として、舵軸40とダイレクト結合され、図16の船尾11から見る方向から中心に向かい同時に閉じるように舵板30を旋回させれば、二枚の舵を図10のように緊急時に緊急制動させることもでき、90°を超えて105°まで最大限舵板を後流に位置させ、制動力を最大限発揮できる。なお、駆動機構90は、舵軸40を各独立に二軸を自在に駆動できる別々の動力機構及び駆動機構90であれば、どのような機構でもよく、電気サーボモータ機構を動力源として舵軸40をダイレクト駆動してもよいし、減速機構を介して、舵軸40を駆動してもよく、各機器の配置構成により、必要に応じ、回転面の垂直・水平面変換を行えばよい。
 前記駆動機構90を駆動する場合には、2枚独立モードと2枚同方向モードの少なくとも二つの操舵モードに切替えて舵軸を操舵できるのが好ましい。以下では、舵の動きを操舵モードに従い、第3の形態における舵板の動きを図7、図8、図20、図21の平面図・正面図の模式図を使用して説明する。操舵モードの操舵特性に合った機構と操舵方法とは、以下である。
 2枚同方向モードの変針操舵時には、基本的にプロペラを中心に対称に操舵し、船を右に向けるときには、右側の舵をプロペラの前方に反時計まわりに旋回移動させ、左側にある舵をプロペラの後方に同じく反時計まわりに旋回させると、前方からの流れ(図20の二点鎖線で示す流れF)から右向きの偏向後流(図20の二点鎖線で示す流れFR)が発生し、所望の操縦性が得られるという効果を発揮する。
 2枚独立モードでは左右の舵を独立に操舵する。この独立モードでの操舵を決定するのは、人に依り、例えば航海長であり、船長である。例えば、船速が低下するとプロペラの生成する水流速度と排出流量は小さくなり、転舵するに十分でなくなるから低速時の操船に相応しい操舵モードである2枚独立モードで操舵する。一方で、例えば、所定の船速より大きい範囲の巡航速度では、左右の舵は互いに対向する舵角をとる2枚同方向モードに従い、巡航速度に適した操縦で性能を確保する。一つの操舵であっても、操舵を2枚独立モード又は2枚同方向モードのいずれかの操舵モードにより異なる操舵を可能とする操舵装置である。
 図21は、第3の形態に係る発明の2枚独立モードでスラスト流を発生させ、例えば離岸時の:面舵方向への操舵時の舵板32,33の旋回状態を示す。2枚独立モードで、面舵変針方向と反対側の左舷側の舵板33は、前記舵軸42の回転によりプロペラ20の側方からプロペラ後流側に旋回させる第一の段階と、同時に一方の右舷側の舵板32は、前記舵軸41の回転によりプロペラ20の側方からプロペラ後流側に旋回させて90°の舵角を取るべく舵板が旋回駆動され、合わせて、次の段階としてプロペラ回転数は直進時よりも増速される。
 2枚独立モードでも低船速域では、通常の操舵では、プロペラの回転数は低く抑えられ、プロペラ水流が低速ならば、弱い偏流しか発生しないため、十分な旋回力は得られない。そこで、2枚独立モードでのスラスト流を発生させる面舵変針操船の場合には、変針方向と反対側の左舷側の舵板33は、第一の段階により前記舵軸42の回転によりプロペラ側方からプロペラ後流側に例えば45°旋回すると同時に又は第二の段階として、もう一方の右舷側の舵板32は、前記舵軸41の回転によりプロペラ側方からプロペラ後流側に旋回し90°~105°の大きな舵角を取ると、45°旋回した舵板33により左舷からプロペラ中心側に流れが集中し、中心部の圧力が高くなり、一方で90°の舵角を取る舵板32により右舷側右半円領域から後方へ排出されるプロペラ水流は遮断され、流れは側方に向かわざるを得ないが、プロペラ20の中心部付近の圧力に押され、流れは、変針方向(右)への右舷側方への流れが生成される。そうすると変針方向真横への側方流の排出により、スラスターに類似する操船が可能となる。取舵時にはこれと同様で、左右反転となる。
 ところで、プロペラ水流は、ほとんどは側方に向けて流れるから、プロペラ回転数を上げても前進船速はさほど速くはならない。一方で、プロペラ回転数を上げると側方へ流れる水流は速くなり、流量も増すから、横方向の操船力は飛躍的に高まる。すなわち、2枚独立モードでの変針操舵をする場合には、第三の段階として、プロペラ20の回転数を上げることで操舵能力は飛躍的に高まるという効果が得られる。この場合には、プロペラ回転数を上げてもプロペラの働きにより船は速度を増加することなく、舵はスラスターの働きをする。
 2枚同方向モードでの変針時は、変針方向と反対側の舵板を、前記舵軸の回転によりプロペラ側方からプロペラ後流側に旋回させ、選択的にもう一方の舵板は、もう一方の舵軸の回転によりプロペラ側方からプロペラ上流側に旋回させる。図20は、2枚同方向モード:面舵旋回時の舵板30の旋回状態であり、取舵時はこれと左右反転の動きとなる。この場合において、図20のように、前記二枚の舵板30は、双方が同時にプロペラ20を挟んで対向し、同方向にプロペラ20のまわりを旋回すれば、二枚のプロペラが同じ動きと単純になり、操船が容易になるという利点がある。船を右に向けるときには、右側の舵をプロペラの前方に反時計まわりに旋回移動させ、左側にある舵をプロペラの後方に同じく反時計まわりに旋回させると、舵角方向の偏向水流を発生させることができ反作用により舵角方向に船は旋回する。
 2枚同方向モードでの変針時には、変針方向と反対側の舵板は、例えば、面舵の場合には、左舷側の舵軸の回転により左舷側の舵板は、プロペラ側方からプロペラ後流側に旋回し、取舵の場合には右舷側の舵軸の回転により、右舷側の舵板は、プロペラ側方からプロペラ後流側に旋回し、大きな舵角によりプロペラ後流を大きな舵角沿いに偏向させ、反力による舵力で高い旋回性能を提供する。この場合に、舵は、十分に船体中心線から離隔した位置にあるためその受ける舵力は旋回モーメントを作用し、操舵性能に寄与するという作用効果が得られる。選択的にもう一方の舵板を、舵軸の回転によりプロペラ側方からプロペラよりも上流に旋回し、従来に比し、十分に船体中心線から離隔した位置に舵板は配置され、一方の舵板でプロペラの前方に旋回するものは、船速の水流から受ける反力により、操舵力を与え、他方のプロペラの後方に旋回するものは、プロペラ後流の水流の方向を変えて船の旋回力を与える。舵は、十分に船体中心線から離隔した位置にあるためその受ける舵力は旋回モーメントを作用し、操舵性能に寄与するという作用効果が本操舵装置で提供される。
 2枚同方向モードで直進時には、両舵板はプロペラの側方に配置される。プロペラの後方にある舵はプロペラにとって抵抗体であり、これがなくなったので船の推進効率が増加し、従来技術のプロペラ後方配置のものに比べて、より高い推進性能を提供できる。図7に示すのは、直進の場合の舵の操舵状態を示す。操舵モードに関わらず直進の場合に舵板は、図7に示す舵板30の配置である。上向きの太矢印は船の操船方向を示し、下向きの一点鎖線の細矢印は、水の流れを模式的に表したものである。すなわち、直進の保針操船の場合には、二つの前記舵板30は、プロペラ20の両脇側方に保持される。直進時には、二枚の舵はプロペラの両脇に船軸と平行に維持される。プロペラ水流を邪魔することはないため、従来技術のプロペラ後流配置の二舵のものに比べて、翼まわりの流れから受ける翼抗力が下がり、より高い推進性能を提供できる。この場合には、舵はプロペラ後流の高速回転流中に置かれないので、従来のプロペラとその後方にある舵が関係して出す音がなくなり、静粛な航行を可能とするという付随的な効果も得られ、この効果は、特に巡視船、軍用船に好適である。
 停止操船では、プロペラが停止されると、次の段階では舵板は、2枚独立モードで70度を超えて舵角を切り、前記二枚の舵板が協働してプロペラ後流をほぼ遮蔽する。選択的にその後プロペラを逆転してもよい。ここで、70度を超えて舵角を切るとは、舵角90度又はこれ超える舵角105度まで舵角を切れるのが好ましい。図10に示す舵板配置では、緊急停止時に二枚の舵板がプロペラ後流をその真後ろでほぼ遮蔽し制止力は最大化される。この操舵の目的は、急停止の必要な場面で、プロペラ駆動をリセットした後にプロペラが惰性で回っている時間を短縮し、早くプロペラの逆転を可能とすることである。このように、プロペラを逆転させる必要がある時、プロペラの逆転を止めてプロペラの逆転を早めることができる。なお、停止操船の初動時の減速段階として、両舵板を上流側に45°前方へ旋回させると船速の水流を両舵板が受けその反力で船を減速させることができる。
 図18に示す第3の形態に係る操舵装置1を用いれば、油圧モータ機構140により、二軸が各々独立に駆動され、図20から図21の旋回が自在に可能となるので、巡航直進時には、舵板30がプロペラ後流に位置することなく、プロペラ20の両脇に位置して高い推進効率を与えるという効果を提供しつつ、緊急制動時には、舵角範囲が70度を超え、前記二枚の舵板が協働してプロペラ後流をほぼ遮蔽するように舵板がプロペラ廻りを旋回し、プロペラ後流で船体10と、例えば、90度の舵角を与えて高い制動力を得たり、プロペラ20の水流を船舶の旋回のために自在に偏向整流させ、旋回性能を確保する操舵装置1が提供されることとなる。
 操舵装置の第4の形態は、第3の形態の逆さL字型舵板の下部をプロペラ側へ折り曲げ、L字コーナーも折り曲げる場合であって、第1の形態が与える効果をより小さな操舵装置駆動機構で実現できるという効果を提供する。以下説明する。
 図22は、第4の形態に係る操舵装置の舵板部のプロペラを含む正面図、図23は、同側面図、図24は、同斜視図を示す。第4の形態は、第3の形態と次の点で相違する。
 逆さL字型舵板30をL字型の水平部を腕として舵軸40からオフセンターに内側に取付けられると、従来の操舵装置において舵板面内に舵軸にインセンターの形態の場合に比べ、回転慣性モーメントが旋回半径の二乗に比例するものとなり、舵軸の駆動の動力機構も大きなものが要し、船形との相性、経済面で不都合も発生し得る。小さな操舵装置駆動動力源で済むよう、できるだけ慣性モーメントを小とすることが可能ならば、省エネルギーに優れ好ましい操舵装置が提供できる。図4に示す第1の形態に係る操舵装置の逆さL字型舵板の下部をプロペラ側へ折り曲げ、L字コーナーも角取りで舵軸回転中心からの質点距離が減ずると、慣性モーメントは小さくなり、駆動力もより小さな動力機構で済み本発明の目的である省エネルギーを実現する。このように舵板が逆さL字型に類する板状の形態であれば、一体形成される点、舵板の形態中でも最も簡単な構成であって、強度及び経済性の面で最も有利である。一体形成するには、溶接・プレス加工・鍛造加工等の加工によるものでも、ボルト締め、リベット締め等の組立によるのでも何れでもよい。この場合、折曲げ加工は剛性を増し、板厚を減少させ、慣性モーメントをさらに小さくする効果がある。
 図25には、第4の形態に係るモデル操舵装置の2枚独立モード時の操舵を実施する場合の本願発明モデル実施品装置の操舵力の実験結果グラフ図を示す。以下の諸元を元に、実験モデルにより、船速と舵力の関係を実験で求めた。
<モデル操舵装置舵まわりの諸元、単位mm>
プロペラ径:2400、舵高さ:3050、翼弦長:下端より1950以高で1500、下端へ向け線形減少し最下端で1150、最大板厚:150、舵軸中心位置:船軸中心から600、舵軸径:340
<結果>
 図25は横軸のモデル船相対船速に対する縦軸のモデル舵の相対舵力を示す。2枚同方向モードでは従来の1枚舵に比べ約20%舵力が増し、2枚独立モードでは、特に低速域で50%舵力が顕著に向上していることがわかる。2枚同方向モード時と2枚独立モード時で舵の操舵方法を変化させ、この変化を支える舵の駆動機構を備える本発明の実効性が確認されている。2枚同方向モードの操舵を低速速度域でも実施すると、操舵力は従来モデルよりも20%劣ってしまい、本願発明に係る装置を用いる2枚独立モードの操舵方法を特別に設ける操舵方法の優位性が確認できる。
 以上、本発明に係る実施の形態を説明したが、本発明は係る実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
 本発明は、水上船舶、特に肥大船、低速でも機敏な操船を必要とされる内航船及び巡視船等の操舵部分に適用可能なものである。
 1  操舵装置 
 2  推進装置 
 5  スクリュー軸
 10 船体
 11 船尾管
 12 後端
 20 プロペラ
 30 舵板
 31 キャンバー 
 40 舵軸
 90 駆動・動力機構
 100 油圧シリンダ
 110 クランク機構
 120 かさ歯車
 130 電気サーボモータ機構又は油圧モータ機構
 140 ロータリベーン式油圧モータ機構

Claims (11)

  1.  舵軸を回転させる駆動機構と、これを駆動させる動力機構を有する操舵装置であって、前記舵軸は、スクリュー軸上方の両脇に回転自在に2軸配置され、各々の舵軸は、舵板を舵板上部で連結垂下し、2つの舵軸の回転により2枚の舵板をプロペラ側方からプロペラ後流側まで旋回可能であることを特徴とする操舵装置。
  2.  前記2枚の舵板は、双方が同時にプロペラを挟んで対向し、同方向にプロペラのまわりを旋回可能である請求項1記載の操舵装置。
  3.  前記2枚の舵板は、双方が同時にプロペラを挟んで対向しながら同じ回転方向に旋回し、同時に互いに反対向きに旋回可能である請求項1又は2記載のいずれか1項に記載の操舵装置。
  4.  舵角範囲が70度を超え、前記2枚の舵板が協働してプロペラ後流をほぼ遮蔽する請求項3記載の操舵装置。
  5.  前記舵板は、板状のものであって逆さL字型に成形された請求項1~3のいずれか1項に記載の操舵装置。
  6.  前記舵板は、2枚の舵板の対向する面にキャンバーを形成することを特徴とし、前進推力を発生させるものであることを特徴とする請求項5に記載の操舵装置。
  7.  前記舵板は、板状のものであって上部又は下部のうち少なくとも一方が舵軸側へ折曲げ成形されている請求項5に記載の操舵装置。
  8.  前記舵板は、その翼弦長がプロペラ後流に1枚舵板を配置した場合に割当てられるとした翼弦長を限度とし、前記舵板の翼厚さもプロペラ後流に1枚舵板を配置した場合に割当てられるとした翼厚よりも薄肉とする請求項1又は5に記載の操舵装置。
  9.  前記駆動機構は、前記2枚の舵板が互いに独立に旋回駆動される2枚独立モードと、
     前記2枚の舵板が共に同方向に旋回駆動される2枚同方向モードと、
     各モードを自在に切り替て駆動可能である請求項1又は3のいずれか1項に記載の操舵装置。
  10.   前記2枚独立モードでは、変針方向と反対側の舷側の前記舵板は、前記舵軸の回転により前記プロペラ側方からプロペラ後方へ旋回可能であり、
    これと同時に又は前後して、他方の変針方向側の舷側の舵板は前記舵軸の回転により前記プロペラ側方からプロペラ後方に90°から他機構との干渉限界までの舵角を取るまで旋回可能である請求項9記載の操舵装置。
  11.  2枚独立モードで、変針方向と反対側の舷側の前記舵板は、前記舵軸の回転により前記プロペラ側方からプロペラ後方へ旋回し、これと同時に又は前後して、
     他方の変針方向側の舷側の舵板が前記舵軸の回転により前記プロペラ側方からプロペラ後方に90°から他機構との干渉限界までの舵角を取るまで旋回し、
     前記2枚の舵板の旋回後、さらに、直進保針船速時のプロペラ回転数よりもプロペラ回転数を上げることを特徴とする請求項10記載の操舵装置の操舵方法。
PCT/JP2014/080623 2014-01-31 2014-11-19 操舵装置及びその操舵方法 WO2015114916A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020167023678A KR102255356B1 (ko) 2014-01-31 2014-11-19 조타 장치 및 그 조타 방법
EP14881168.0A EP3103715B1 (en) 2014-01-31 2014-11-19 Steering device, and steering method therefor
ES14881168T ES2781122T3 (es) 2014-01-31 2014-11-19 Dispositivo de gobierno y procedimiento de gobierno para el mismo
JP2015517301A JP5833278B1 (ja) 2014-01-31 2014-11-19 操舵装置及びその操舵方法
EP19207096.9A EP3626602B1 (en) 2014-01-31 2014-11-19 Steering device and method for the steering device
DK14881168.0T DK3103715T3 (da) 2014-01-31 2014-11-19 Styreindretning og styringsfremgangsmåde dertil
CN202010510760.2A CN111619781B (zh) 2014-01-31 2014-11-19 操舵装置
CN201480074660.2A CN105980246B (zh) 2014-01-31 2014-11-19 操舵装置
KR1020217014608A KR102344753B1 (ko) 2014-01-31 2014-11-19 조타 장치 및 그 조타 방법
PL14881168T PL3103715T3 (pl) 2014-01-31 2014-11-19 Urządzenie sterujące i sposób jego sterowania
US15/115,601 US9937992B2 (en) 2014-01-31 2014-11-19 Steering device and method for steering the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-017401 2014-01-31
JP2014017401 2014-01-31
JP2014-052040 2014-03-14
JP2014052040 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015114916A1 true WO2015114916A1 (ja) 2015-08-06

Family

ID=53756511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080623 WO2015114916A1 (ja) 2014-01-31 2014-11-19 操舵装置及びその操舵方法

Country Status (10)

Country Link
US (1) US9937992B2 (ja)
EP (2) EP3103715B1 (ja)
JP (1) JP5833278B1 (ja)
KR (2) KR102255356B1 (ja)
CN (2) CN111619781B (ja)
DK (2) DK3626602T3 (ja)
ES (1) ES2781122T3 (ja)
FI (1) FI3626602T3 (ja)
PL (1) PL3103715T3 (ja)
WO (1) WO2015114916A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6014239B1 (ja) * 2015-08-31 2016-10-25 一夫 有▲吉▼ プロペラの推進力を高めて高速化した省エネ船
CN113148088A (zh) * 2021-04-30 2021-07-23 潘英立 漂移轮船
CN113443109A (zh) * 2021-07-15 2021-09-28 哈尔滨工程大学 一种海底声呐机器人的驱动装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO3051376T3 (ja) * 2015-01-27 2018-05-19
US10167071B2 (en) * 2017-03-23 2019-01-01 Townsend Marine Design, Inc. Dual differential rudder system
DE202019102807U1 (de) 2018-11-29 2020-03-05 Becker Marine Systems Gmbh Ruder für Schiffe und Doppelpropellerschiff mit zwei Rudern
JP7216531B2 (ja) * 2018-12-07 2023-02-01 株式会社ケイセブン 操舵装置
JP6608553B1 (ja) * 2019-03-14 2019-11-20 ジャパン・ハムワージ株式会社 輻輳海域の避航操船方法および避航操船システム
WO2021177213A1 (ja) 2020-03-02 2021-09-10 東京計器株式会社 操舵装置
JP2021146924A (ja) * 2020-03-19 2021-09-27 株式会社ケイセブン 船のプロペラの両側に配置される左舵と右舵を備えるゲートラダー
KR102452421B1 (ko) 2020-11-27 2022-10-07 대우조선해양 주식회사 선박용 게이트 러더 및 이를 구비한 선박
KR20220078066A (ko) 2020-12-03 2022-06-10 대우조선해양 주식회사 선박용 게이트 러더 및 이를 구비한 선박
WO2023044839A1 (zh) * 2021-09-26 2023-03-30 无锡市东舟船舶设备股份有限公司 一种舵叶装置和船舶

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1106851A (fr) * 1954-08-18 1955-12-23 Weserwerft Schiffs Und Maschb Disposition des gouvernails derrière les hélices de bateau avec au moins deux corpsde gouvernail
JPS5055094A (ja) 1973-09-19 1975-05-15
GB2033324A (en) * 1978-11-10 1980-05-21 Levi R Improvements in or relating to drive units for water craft
JPS5664900U (ja) * 1979-10-25 1981-05-30
JPH01501384A (ja) * 1986-11-20 1989-05-18 マリコ アクスゼセルスカプ 船の操縦装置
JPH02151595A (ja) * 1988-12-05 1990-06-11 Sumitomo Heavy Ind Ltd 1軸2舵船の舵
JPH0692240B2 (ja) 1992-04-30 1994-11-16 ジャパン・ハムワージ株式会社 二枚舵システム用運動方向表示方法
JP2010013087A (ja) 2008-07-02 2010-01-21 Koike Zosen Kaiun Kk 船舶
JP2011073526A (ja) 2009-09-30 2011-04-14 Japan Hamuwaaji Kk ロータリーべーン舵取機
JP2014073815A (ja) 2012-10-05 2014-04-24 National Maritime Research Institute 二枚舵システム及び二枚舵システムを装備した船舶

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB130639A (en) * 1918-02-27 1919-08-14 John George Aulsebrook Kitchen Improvements in or relating to Means for Reversing Screw Propelled Boats without Reversing the Propeller.
US2276163A (en) 1941-02-11 1942-03-10 Coolidge Richard Newell Watercraft
US2916005A (en) 1956-04-09 1959-12-08 John B Parsons Combined rudder and reverse control for marine craft
US3101693A (en) * 1959-07-27 1963-08-27 Schilling Karl Rudder control arrangement
US3872817A (en) * 1972-10-19 1975-03-25 Charles S Duryea Dual offset rudder system
JP2552217B2 (ja) 1992-03-13 1996-11-06 株式会社バンガード 運搬車用把手固定装置
JPH075038Y2 (ja) * 1992-08-03 1995-02-08 ジャパン・ハムワージ株式会社 2枚舵用舵取装置
US5445100A (en) * 1994-03-04 1995-08-29 Finkl; Anthony W. Dual rudder system for trimming planing-type hulls
JPH0966895A (ja) * 1995-08-31 1997-03-11 Nippon Souda Syst Kk 高揚力二枚舵装置
JP3751260B2 (ja) * 2001-05-09 2006-03-01 ジャパン・ハムワージ株式会社 大型船用二枚舵システム
US7144282B1 (en) * 2005-05-09 2006-12-05 The United States Of America As Represented By The Secretary Of The Navy Contoured rudder maneuvering of waterjet propelled sea craft
DE102006047755A1 (de) * 2006-10-06 2008-04-10 Wobben, Aloys Seitliches Schiffsruder
CN203946269U (zh) * 2014-05-14 2014-11-19 浙江海洋学院 一种船用插接式支架

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1106851A (fr) * 1954-08-18 1955-12-23 Weserwerft Schiffs Und Maschb Disposition des gouvernails derrière les hélices de bateau avec au moins deux corpsde gouvernail
JPS5055094A (ja) 1973-09-19 1975-05-15
GB2033324A (en) * 1978-11-10 1980-05-21 Levi R Improvements in or relating to drive units for water craft
JPS5664900U (ja) * 1979-10-25 1981-05-30
JPH01501384A (ja) * 1986-11-20 1989-05-18 マリコ アクスゼセルスカプ 船の操縦装置
JPH02151595A (ja) * 1988-12-05 1990-06-11 Sumitomo Heavy Ind Ltd 1軸2舵船の舵
JPH0692240B2 (ja) 1992-04-30 1994-11-16 ジャパン・ハムワージ株式会社 二枚舵システム用運動方向表示方法
JP2010013087A (ja) 2008-07-02 2010-01-21 Koike Zosen Kaiun Kk 船舶
JP2011073526A (ja) 2009-09-30 2011-04-14 Japan Hamuwaaji Kk ロータリーべーン舵取機
JP2014073815A (ja) 2012-10-05 2014-04-24 National Maritime Research Institute 二枚舵システム及び二枚舵システムを装備した船舶

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"New Conception of New Steering Machine Rudder System-Rotary Vane Steering Machine", VEC TWIN RUDDER SYSTEM (1) JOURNAL OF THE JAPAN INSTITUTE OF MARINE ENGINEERING, vol. 45, no. 2, pages 93 - 99
"New Conception of New Steering Machine Rudder System-Rotary Vane Steering Machine", VEC TWIN RUDDER SYSTEM (2) JOURNAL OF THE JAPAN INSTITUTE OF MARINE ENGINEERING, vol. 45, no. 3, pages 97 - 104
"Regarding Evaluation of Support for Technology Development for Curtailing CO from Marine Vessels", REGARDING EVALUATION OF SUPPORT FOR TECHNOLOGY DEVELOPMENT FOR CURTAILING CO FROM MARINE VESSELS, 29 March 2013 (2013-03-29)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6014239B1 (ja) * 2015-08-31 2016-10-25 一夫 有▲吉▼ プロペラの推進力を高めて高速化した省エネ船
CN113148088A (zh) * 2021-04-30 2021-07-23 潘英立 漂移轮船
CN113148088B (zh) * 2021-04-30 2023-02-24 潘英立 漂移轮船
CN113443109A (zh) * 2021-07-15 2021-09-28 哈尔滨工程大学 一种海底声呐机器人的驱动装置

Also Published As

Publication number Publication date
DK3626602T3 (da) 2024-02-26
EP3626602B1 (en) 2024-01-17
KR102255356B1 (ko) 2021-05-21
KR20160117518A (ko) 2016-10-10
US20170081010A1 (en) 2017-03-23
EP3626602A1 (en) 2020-03-25
KR102344753B1 (ko) 2021-12-28
DK3103715T3 (da) 2020-03-23
EP3103715A1 (en) 2016-12-14
PL3103715T3 (pl) 2020-08-24
CN105980246A (zh) 2016-09-28
CN111619781B (zh) 2022-04-19
JPWO2015114916A1 (ja) 2017-03-23
EP3103715A4 (en) 2017-11-08
EP3103715B1 (en) 2020-01-01
US9937992B2 (en) 2018-04-10
JP5833278B1 (ja) 2015-12-16
ES2781122T3 (es) 2020-08-28
CN105980246B (zh) 2020-07-03
CN111619781A (zh) 2020-09-04
FI3626602T3 (fi) 2024-04-02
KR20210059024A (ko) 2021-05-24

Similar Documents

Publication Publication Date Title
JP5833278B1 (ja) 操舵装置及びその操舵方法
JP6467152B2 (ja) 操舵装置
JP3751260B2 (ja) 大型船用二枚舵システム
JP6160804B2 (ja) 二枚舵システム及び二枚舵システムを装備した船舶
JP2014073815A5 (ja)
JP2016188033A (ja) 操舵装置
KR20090078340A (ko) 측방향 선박 러더
JP6971797B2 (ja) 操舵装置
JP6226241B2 (ja) シャフトブラケットを有する近接二軸船の推進装置、船舶
JP2013252774A (ja) 船舶
JP4575985B2 (ja) 船舶用の舵及び船舶
JP6554743B2 (ja) 近接二軸船のフィン付舵、船舶
JP2020090233A (ja) 操舵装置
US8881666B2 (en) Ship
JP7107668B2 (ja)
JP4362519B2 (ja) 舶用一軸二舵システムおよび一軸二舵船舶
EP4206070A1 (en) Rudder
JPH066195U (ja) 船舶用二枚舵装置
KR101323797B1 (ko) 선박
KR101323795B1 (ko) 선박
JP2012045968A (ja) 船舶用の舵、船舶、及び船舶の設計方法
WO2013153665A1 (ja) 船舶用舵

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015517301

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167023678

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014881168

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014881168

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15115601

Country of ref document: US