WO2015109653A1 - 热回收变频多联式热泵系统及其控制方法 - Google Patents

热回收变频多联式热泵系统及其控制方法 Download PDF

Info

Publication number
WO2015109653A1
WO2015109653A1 PCT/CN2014/074046 CN2014074046W WO2015109653A1 WO 2015109653 A1 WO2015109653 A1 WO 2015109653A1 CN 2014074046 W CN2014074046 W CN 2014074046W WO 2015109653 A1 WO2015109653 A1 WO 2015109653A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic expansion
valve
expansion valve
heat exchanger
indoor
Prior art date
Application number
PCT/CN2014/074046
Other languages
English (en)
French (fr)
Inventor
刘敏
王远鹏
张文强
曹锐
李亚军
李永梅
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Priority to ES14879349.0T priority Critical patent/ES2693245T3/es
Priority to US15/114,269 priority patent/US10132530B2/en
Priority to EP18198012.9A priority patent/EP3441697B1/en
Priority to EP14879349.0A priority patent/EP3101369B1/en
Publication of WO2015109653A1 publication Critical patent/WO2015109653A1/zh
Priority to US16/150,065 priority patent/US11035597B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Heat recovery frequency conversion multi-type heat pump system and control method thereof The application is submitted to the Chinese Patent Office on January 27, 2014, the application number is 201410039143.3, and the invention name is "heat recovery frequency conversion multi-type heat pump system and its control method" Priority of Chinese Patent Application, the entire contents of which is incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of variable frequency multi-junction heat pump technology, and in particular to a heat recovery variable frequency multi-connected heat pump system and a control method therefor.
  • a variable frequency multi-connected heat pump system is a complex refrigeration system with complex structure, large system, highly coupled internal parameters, and diverse boundary conditions.
  • the multi-unit heat pump system generally consists of one or more outdoor units 01, one or more indoor units 02, a central control network (CS-NET) 03, a refrigerant line 04, and a branch tube 05. And a communication line 06, a plurality of outdoor units form an outdoor unit, and the central control network controls the outdoor unit through a communication line, and the outdoor unit is connected to the indoor unit through a refrigerant pipe and a branch pipe.
  • the outdoor unit of the multi-unit heat pump system can effectively reduce the equipment cost, and can realize centralized management of each indoor unit. It can start one indoor unit separately or multiple indoor units at the same time. Start the run, making the control more flexible.
  • the prior art uses the system heat recovery method to realize the simultaneous operation of indoor unit refrigeration and heating.
  • it is necessary to use a plurality of four-way reversing valves to realize the distribution of the refrigerant and the recovery of the exhaust heat, resulting in complicated system piping and control and high cost.
  • the prior art is applied in the rainy season and in the wet area, and can only be cooled and dehumidified by means of cooling.
  • the object of the present invention is to provide a heat recovery frequency conversion multi-type heat pump system, which solves the problem that the prior art needs to use a plurality of four-way reversing valves to realize the system heat recovery operation, resulting in complicated system piping and control. High cost technical issues.
  • a heat recovery frequency conversion multi-type heat pump system comprising an outdoor unit and at least two indoor units, wherein the outdoor unit and the indoor unit are connected by a high-pressure liquid pipe, a high-pressure air pipe and a low-pressure return pipe;
  • the outdoor unit includes: a four-way valve (4), an outdoor heat exchanger (5), an outdoor electronic expansion valve (6), a second electromagnetic valve (10), a third electromagnetic valve (11), and at least one compressor (1) ;
  • the exhaust end of the compressor (1) is connected to the A end of the four-way valve (4); the B end of the four-way valve (4) is connected to the outdoor heat exchanger (5), and the outdoor heat exchanger (5) The other end is connected to the high pressure liquid pipe through the outdoor electronic expansion valve (6); the C end of the four-way valve (4) is connected to the suction end of the compressor (1); the D end of the four-way valve (4) and the low pressure
  • the return air pipe is connected; a third electromagnetic valve (11) is connected between the high pressure air pipe and the low pressure return air pipe; one end of the second electromagnetic valve (10) is connected to the A end of the four-way valve (4), and the other end is connected to the third end. Between the solenoid valve (11) and the high pressure gas pipe;
  • Each indoor unit includes a first indoor heat exchanger (16), a first electronic expansion valve (15), a second indoor heat exchanger (18), and a second electronic expansion valve (17);
  • One end of the first indoor heat exchanger (16) is connected to the high pressure gas pipe, and the other end of the first indoor heat exchanger (16) is connected to the high pressure liquid pipe through the first electronic expansion valve (15);
  • One end of the device (18) is connected to the low pressure return pipe, and the other end of the second indoor heat exchanger (18) is connected to the high pressure liquid pipe through the second electronic expansion valve (17).
  • an oil separator (2) is connected between the exhaust end of the compressor (1) and the A end of the four-way valve (4).
  • the oil separator (2) is connected to the suction end of the compressor (1) through the first solenoid valve (8) and the capillary tube (9).
  • a check valve (3) is connected between the oil separator (2) and the A end of the four-way valve (4).
  • a gas-liquid separator (7) is connected between the C end of the four-way valve (4) and the suction end of the compressor (1).
  • a liquid side shutoff valve (12) is disposed on the high pressure liquid pipe; a gas side shutoff valve (13) is disposed on the low pressure return pipe; and an exhaust cut valve (14) is disposed on the high pressure gas pipe.
  • the embodiment of the present invention further provides a control method of the first heat recovery frequency conversion multi-type heat pump system.
  • the control When the heat pump system is in a full cooling condition, the control performs the following operations: the A end of the four-way valve (4) is connected to the B end, C end and D end are connected; second solenoid valve (10) is closed, third solenoid valve (11) is open; outdoor electronic expansion valve (6) is fully open; first electronic expansion valve (15), second of each indoor unit The electronic expansion valve (17) throttles and depressurizes; through the above operation, the refrigerant discharged from the exhaust end of the compressor (1) is condensed by the outdoor heat exchanger (5), and flows through the first electron of each indoor unit on the one hand Expansion valve (15), first indoor heat exchanger (16), third electromagnetic valve (11) to four-way valve (4) D end, and on the other hand, second electronic expansion valve (17) flowing through each indoor unit The second indoor heat exchanger (18) to the four-way valve (4) D end, and then enters the suction end of the compressor (1) through the C end of the four-way valve (4).
  • the embodiment of the invention further provides a control method for the second heat recovery variable frequency multi-type heat pump system.
  • the control performs the following operations: the A end and the D end of the four-way valve (4) are connected, The B end is connected to the C end; the second solenoid valve (10) is opened, the third electromagnetic valve (11) is closed; the outdoor electronic expansion valve (6) is throttled and depressurized; the first electronic expansion valve (15) of each indoor unit, The second electronic expansion valve (17) is throttled and depressurized; the refrigerant discharged from the exhaust end of the compressor (1) by the above operation flows out from the A and D ends of the four-way valve (4) to the respective chambers.
  • Second indoor heat exchanger the control performs the following operations: the A end and the D end of the four-way valve (4) are connected, The B end is connected to the C end; the second solenoid valve (10) is opened, the third electromagnetic valve (11) is closed; the outdoor electronic expansion valve (6) is throttled and depressurized; the first electronic expansion valve (15)
  • the embodiment of the invention also provides a third heat recovery variable frequency multi-type heat pump system control method.
  • the control performs the following operations: The A-end and the B-end of the four-way valve (4) are connected. , the C end is connected to the D end; the second electromagnetic valve (10) is opened, the third electromagnetic valve (11) is closed; the outdoor electronic expansion valve (6) is fully open; and the first electronic expansion valve of some indoor units in all indoor units (15) Fully open, second electronic expansion valve (17) fully closed, the first electronic expansion valve of the remaining indoor unit
  • the fully closed, second electronic expansion valve (17) is throttled and depressurized; the refrigerant discharged from the exhaust end of the compressor (1) through the above operation flows on the one hand through the second solenoid valve (10), An indoor heat exchanger (16), a first electronic expansion valve (15), and on the other hand, flow through the A and B ends of the four-way valve (4) to the outdoor heat exchanger (5) for condensation, and flow through the outdoor electronic expansion
  • the valve (6) is merged with the refrigerant flowing out of the first electronic expansion valve (15), and then flows through the second electronic expansion valve (17) of the remaining indoor unit, and the indoor heat exchanger.
  • the embodiment of the invention further provides a fourth heat recovery variable frequency multi-type heat pump system control method.
  • the control performs the following operations: the A end and the B end of the four-way valve (4) Connected, C end and D end are connected; second solenoid valve (10) is open, third solenoid valve (11) is closed; outdoor electronic expansion valve (6) is fully open; first electronic expansion valve (15) of each indoor unit
  • the second and second electronic expansion valves (17) are throttled and depressurized; the refrigerant discharged from the exhaust end of the compressor (1) through the above operation flows on the one hand through the outdoor heat exchanger (5), and on the other hand flows through a second electromagnetic valve (10), a first indoor heat exchanger (16), a first indoor heat exchanger (16) and a refrigerant flowing out of the outdoor heat exchanger (5) are merged to a second electronic expansion valve
  • the embodiment of the invention further provides a fifth heat recovery frequency conversion multi-type heat pump system control method.
  • the control performs the following operations: the A end of the four-way valve (4) The B end is connected, the C end is connected to the D end; the second electromagnetic valve (10) is opened, the third electromagnetic valve (11) is closed; the outdoor electronic expansion valve (6) is fully open; and the first indoor unit of all the indoor units is first The electronic expansion valve (15) is fully open, and the second electronic expansion valve (17) is throttled and depressurized.
  • the first electronic expansion valve (15) of the remaining indoor unit is closed, and the second electronic expansion valve (17) is throttled and stepped down;
  • the above operation causes the refrigerant discharged from the exhaust end of the compressor (1) to flow through the outdoor heat exchanger (5), the second electronic expansion valve (17) of the remaining indoor unit, and the second indoor heat exchanger (18).
  • the embodiment of the invention also provides a sixth heat recovery variable frequency multi-type heat pump system control method.
  • the control performs the following operations: the A end of the four-way valve (4) Connected to the B end, the C end and the D end are connected; the second solenoid valve (10) is opened, the third electromagnetic valve (11) is closed; the outdoor electronic expansion valve (6) is fully closed; and the first electronic expansion valve of each indoor unit ( 15) Fully open; the second electronic expansion valve (17) of some indoor units in all indoor units is throttled and the second electronic expansion valve (17) of the other indoor units is fully closed; 1) The refrigerant discharged from the exhaust end flows through the second solenoid valve (10), and flows through the first indoor heat exchanger (16) and the first electronic expansion valve (15) of the part of the indoor unit, on the other hand Flow through the remaining indoor unit first indoors a heat exchanger (16), a first electronic expansion valve (15); after the refrigerant flowing out of the first electronic expansion valve
  • the present invention is based on a four-way reversing valve design three-control heat recovery multi-joint heat pump system, the indoor unit has two sets of electronic expansion valves and two sets of replacement
  • the heat exchanger enables any indoor unit in the system to independently operate three conditions of cooling, heating or heat recovery and dehumidification. Under multiple conditions, the system has six kinds of working conditions, namely, full cooling condition and full thermal operation. Conditions, usually heat recovery conditions, usually heat recovery dehumidification conditions, heat recovery dehumidification and refrigeration mixing conditions, heat recovery dehumidification and heating mixing conditions.
  • the principle of heat recovery and dehumidification is to use the heat of the condenser to improve the lower air temperature during low temperature dehumidification, so as to achieve the purpose of not dehumidifying or dehumidifying, thereby improving the thermal comfort and system efficiency of the system, and effectively improving The cooling capacity and heating capacity of the system.
  • the application of the present invention can be effectively expanded.
  • Figure 1 is a schematic diagram of the connection of a multi-connected heat pump system
  • FIG. 2 is a schematic diagram of a system according to a specific embodiment of the present invention.
  • FIG. 3 is a schematic view showing the operation of a full refrigeration condition according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing the operation of a full heating condition according to a specific embodiment of the present invention.
  • Figure 5 is a schematic view showing the operation of a general heat recovery condition according to a specific embodiment of the present invention.
  • FIG. 6 is a schematic diagram of operation of a heat recovery dehumidification condition according to a specific embodiment of the present invention.
  • FIG. 7 is a schematic diagram of operation of a heat recovery dehumidification and refrigeration mixing operation according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of operation of a heat recovery dehumidification and heating mixing operation according to an embodiment of the present invention
  • FIG. 9 is a system according to another embodiment of the present invention; schematic diagram.
  • the multi-type heat pump system of the present embodiment is composed of an outdoor unit 01 and two indoor units 02, 02'.
  • the outdoor unit 01 includes: a compressor 1, an oil separator 2, a check valve 3, a four-way valve 4, an outdoor heat exchanger 5, an outdoor electronic expansion valve 6, a gas-liquid separator 7, a first solenoid valve 8, and a capillary tube 9.
  • the second electromagnetic valve 10 the third electromagnetic valve 11, the liquid side shutoff valve 12, the gas side shutoff valve 13, and the exhaust cut valve 14.
  • the first indoor unit 02 includes: a first indoor electronic expansion valve 15, a first indoor heat exchanger 16, a second indoor electronic expansion valve 17, a second indoor heat exchanger 18, and a fourth branch pipe 05.
  • the components and configurations of the second indoor unit 02' are the same as those of the first indoor unit 02, and include a first electronic expansion valve 15, a first indoor heat exchanger 16, a second electronic expansion valve 17, a second indoor heat exchanger 18, and a Four branch tubes 05.
  • the compressor 1 is an inverter compressor and may be composed of one or more units in parallel. Outdoor heat exchanger 5. First indoor heat exchanger 16. Second indoor heat exchanger 18. It is an air-cooled aluminum foil fin-copper tube heat exchanger or an aluminum finned microchannel heat exchanger.
  • the fan of the outdoor unit blows air through the outdoor heat exchanger 5 to exchange heat between the air and the refrigerant.
  • the indoor fan blows the return air through the second indoor heat exchanger 18 and the first indoor heat exchanger 16 in sequence, that is, the air enters from the indoor air return port, first exchanges heat with the second indoor heat exchanger 18, and then The first indoor heat exchanger 16 exchanges heat, and finally flows out of the indoor unit from the air outlet.
  • the connection relationship of the components in the outdoor unit 01 is: the exhaust end of the compressor 1 is connected to the inlet end of the oil separator 2, the outlet end of the oil separator 2 is connected to one end of the check valve 3, and the other end of the check valve 3 One end is connected to the A end of the four-way valve 4, the B end of the four-way valve 4 is connected to one end of the outdoor heat exchanger 5, and the other end of the outdoor heat exchanger 5 is connected to one end of the outdoor electronic expansion valve 6, and the outdoor electronic expansion valve The other end of 6 is connected to one end of the liquid side shutoff valve 12, and the C end of the four-way valve 4 is connected to one end of the gas-liquid separator 7.
  • the other end of the gas-liquid separator 7 is connected to the suction end of the compressor 1; the D-end of the four-way valve 4 is connected to one end of the third electromagnetic valve 11 and one end of the gas-side shut-off valve 13, and the third electromagnetic valve 11
  • the other end of the exhaust valve 14 and one end of the exhaust valve 14 are connected to one end of the second solenoid valve 10, and the other end of the second solenoid valve 10 is connected to the A end of the four-way valve 4; the oil outlet end of the oil separator 2
  • One end of the solenoid valve 8 is connected, the other end of the first solenoid valve 8 is connected to one end of the capillary 9, and the other end of the capillary 9 is connected to the suction end of the compressor 1.
  • the connection between the outdoor unit 01 and the indoor unit 02, 02' is: the other end of the liquid side shutoff valve 12 passes through the first branch pipe 051 and the fourth branch pipe 05 and one end of the first electronic expansion valve 15 and the second electronic expansion
  • One end of the valve 17 is connected, the other end of the first electronic expansion valve 15 is connected to one end of the first indoor heat exchanger 16, and the other end of the first indoor heat exchanger 16 is passed through the third branch pipe 053 and the exhaust cut valve 14
  • the other end is connected; the other end of the second electronic expansion valve 17 is connected to one end of the second indoor heat exchanger 18, and the other end of the second indoor heat exchanger 18 is passed through the second branch pipe 052 and the other end of the gas side shutoff valve 13 connection.
  • the system When all the indoor units in the system are in the cooling condition, the system is in full cooling operation, as shown in Figure 3. Under this condition, the A end of the four-way valve 4 of the outdoor unit is connected to the B end, the C end is connected to the D end, the second solenoid valve 10 is closed, the third solenoid valve 11 is opened, and the outdoor electronic expansion valve 6 is fully opened.
  • the indoor unit 02, 02' the first electronic expansion valve 15 and the second electronic expansion valve 17 are throttled and depressurized.
  • the outdoor heat exchanger 5 is a condenser, and the first indoor heat exchanger 16 and the second indoor heat exchanger 18 are both evaporators.
  • the high-pressure gas refrigerant discharged from the exhaust end of the compressor 1 passes through the oil separator 2, the check valve 3, and the A and B ends of the four-way valve 4, and is condensed by the outdoor heat exchanger 5 to become a high-pressure liquid refrigerant, and the liquid side
  • the shutoff valve 12, the first branch pipe 051 and the fourth branch pipe 05 are divided into two refrigerants, one refrigerant sequentially flows through the first electronic expansion valve 15 of the indoor unit 02, 02', and the first indoor heat exchanger 16.
  • the second branch pipe 052 and the gas side shutoff valve 13 merge with the first refrigerant, merge and enter the gas-liquid separator 7 through the 0 and C ends of the four-way valve 4, and then enter the compressor 1 after gas-liquid separation. Gas end.
  • the high-pressure gas refrigerant discharged from the exhaust end of the compressor 1 passes through the oil separator 2 to the check valve 3, and the high-pressure gas refrigerant flowing out from the check valve 3 is divided into two, one from the A, D of the four-way valve 4.
  • the end flows out, and sequentially flows through the gas side shutoff valve 13, the second branch pipe 052, the second indoor heat exchanger 18 of the indoor unit 02, 02', and the second indoor electronic expansion valve 17; the other refrigerant from the second electromagnetic
  • the valve 10 flows out, and then flows through the exhaust shutoff valve 14, the third branch pipe 053, the first indoor heat exchanger 16 of the indoor unit 02, 02', and the first electronic expansion valve 15 in this order.
  • the two refrigerants merge at the fourth branch pipe 05, they sequentially flow through the first branch pipe 051, the liquid side shutoff valve 12, the outdoor electronic expansion valve 6, the outdoor heat exchanger 5, the C-end of the four-way valve 4, and the gas-liquid separation. Finally, the compressor 7 enters the suction end of the compressor 1.
  • the system When some indoor units are in heating conditions and some are in cooling conditions, the system is in normal heat recovery conditions.
  • the first indoor unit 02 performs heating and the second indoor unit 02' performs cooling as an embodiment, as shown in FIG.
  • the A end of the four-way valve 4 of the outdoor unit communicates with the B end, the C end and the D end communicate, the second solenoid valve 10 opens, the third solenoid valve 11 closes, and the outdoor electronic expansion valve 6 is fully opened.
  • the first electronic expansion valve 15 In the indoor unit 02, the first electronic expansion valve 15 is fully opened, the second electronic expansion valve 17 is fully closed, and in the indoor unit 02', the second indoor electronic expansion valve 17 is throttled, and the first indoor electronic expansion valve 15 is fully closed. .
  • the first indoor heat exchangers 16 of the outdoor heat exchanger 5 and the indoor unit 02 serve as condensers, the second indoor heat exchanger 18 of the indoor unit 02' functions as an evaporator, and the second indoor heat exchanger 18 of the indoor unit 02 and The first indoor heat exchanger 16 of the indoor unit 02' does not have a heat exchange effect.
  • the high-pressure gas refrigerant flowing out of the check valve 3 is divided into two, and one refrigerant sequentially flows through the second electromagnetic valve 10 and the exhaust cut-off valve 14 and then enters the heating first indoor unit 02, and then flows through the first An indoor heat exchanger 16, a first indoor electronic expansion valve 15 and a fourth branch pipe 05 enter the first branch pipe 051; the other refrigerant flows out through the A and B ends of the four-way valve 4, and is condensed by the condenser 5. After that, it becomes a high-pressure liquid refrigerant, and flows through the outdoor electronic expansion valve 6 and the liquid-side shutoff valve 12 to enter the first branch pipe 051 as well.
  • the two refrigerants merge into the second indoor unit 02' of the refrigeration after the first branch pipe 051 merges, and then flow through the fifth branch pipe 05, the second electronic expansion valve 17, and the second indoor heat exchanger 18, and then flow out.
  • Second indoor The machine 02' enters the gas-liquid separator 7 through the D, C ends of the second branch pipe 052, the gas side shutoff valve 13 and the four-way valve 4, and finally enters the suction end of the compressor 1.
  • the first electronic expansion valve 15 is fully opened, and the second indoor electronic expansion valve 17 is throttled and stepped down.
  • the first indoor heat exchanger 16 functions as a condenser, and heats the exhaust air by the refrigerant to increase the temperature of the air.
  • the second indoor heat exchanger 18 serves as an evaporator for cooling and dehumidifying the air.
  • the refrigerant condensed and exchanged by the outdoor heat exchanger 5 and the high-pressure liquid refrigerant condensed and exchanged by the first indoor heat exchanger 16 are merged in the fourth branch pipe 05, and sequentially flow through the second indoor electronic expansion valve 17,
  • the two indoor heat exchangers 18, the second branch pipe 052, and the 0 and C ends of the four-way valve 4 enter the gas-liquid separator 7 to complete the flow circuit of the refrigerant.
  • FIG 7 a schematic diagram of heat recovery and dehumidification operation in some rooms and cooling operation in some rooms.
  • the only difference between the mixed operating condition and the normal heat recovery dehumidification condition is that the first indoor electronic expansion valve 15 of the indoor unit 02' performing the cooling operation is fully closed, so that the second indoor heat exchanger 16 cannot be replaced. Heat effect.
  • the connection between the outdoor unit and the indoor unit, the valve opening and closing rules, and the flow of the refrigerant are the same as those in the normal heat recovery and dehumidification conditions, and will not be described again.
  • Fig. 8 a schematic diagram of heat recovery and dehumidification operation for some rooms and heating operation for some rooms.
  • the outdoor electronic expansion valve 6 is fully closed, and the outdoor heat exchanger 5 does not perform heat exchange.
  • the first electronic expansion valve 15 of the indoor unit 02 is fully open, the second electronic expansion valve 17 is throttled, the first electronic expansion valve 15 of the indoor unit 02' is fully opened, and the second indoor electronic expansion valve 17 is fully closed.
  • the first indoor heat exchanger 16 of the indoor unit 02 serves as a condenser
  • the second indoor heat exchanger 18 serves as an evaporator
  • the first indoor heat exchanger 16 of the indoor unit 02' serves as a condenser
  • the second indoor heat exchanger 18 does not. Heat exchange.
  • the high-pressure refrigerant gas discharged from the exhaust end of the compressor 1 flows through the second solenoid valve 10 and the exhaust gas interception Stop valve 14, then enter the third branch pipe 053 and divide into two, a refrigerant flows through the first indoor heat exchanger 16 of the indoor unit 02 and the first electronic expansion valve 15 and then enters the fourth branch pipe 05; The other refrigerant flows through the first indoor heat exchanger 16, the first electronic expansion valve 15, the fifth branch pipe 05 of the indoor unit 02', and then enters the fourth branch of the indoor unit 02 after passing through the first branch pipe 051. Tube 05.
  • the two refrigerants merge at the fourth branch pipe 05 of the indoor unit 02, they pass through the second electronic expansion valve 17, the second indoor heat exchanger 18, the second branch pipe 052, the gas side shutoff valve 13, and the four-way valve. After the D and C ends of 4, the gas-liquid separator 7 is entered to complete the refrigerant circuit.
  • the multi-type heat pump system of the present embodiment is composed of an outdoor unit 01 and three indoor units 02, 02', 02", and the outdoor unit includes two inverter compressors connected in parallel.
  • the tubes of the indoor unit 02 pass through the branch pipe 051 respectively.
  • ', 052', 053' are connected to the pipeline of the indoor unit 02'.
  • the rest of the structure and implementation conditions are the same as those of the specific embodiment 1, and will not be described here.
  • the method provided by the present invention can be applied to a system composed of an outdoor unit and at least two indoor units.
  • the specific embodiment 1 includes, but is not limited to, two indoor units as an example.
  • the specific embodiment 2 of the present invention includes, but is not limited to, three embodiments of the indoor unit as an example to specifically describe the implementation manner of the present invention.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
  • a computer-usable storage medium including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a bootable computer or other programmable data processing device.
  • a computer readable memory that operates in a particular manner, causing instructions stored in the computer readable memory to produce an article of manufacture comprising instruction means implemented in one or more flows and/or block diagrams of the flowchart The function specified in the box or in multiple boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种热回收变频多联式热泵系统及控制方法,该系统包括室外机和至少两个室内机,该系统为基于一个四通换向阀设计的三管制热回收多联式热泵系统,其一个室内机具备两套电子膨胀阀及两套换热器,使系统中任意室内机可独立运行制冷、制热或热回收除湿三种工况,多联条件下系统可运行6种工况,即全制冷工况、全制热工况、通常热回收工况、通常热回收除湿工况、热回收除湿及制冷混合工况、热回收除湿及制热混合工况。其中,热回收除湿工况利用冷凝器排热来提高低温除湿时较低的出风温度,以达到不降温除湿或升温除湿的目的,从而提高系统热舒适性及系统效率,且能有效提高系统的制冷量及制热量。

Description

热回收变频多联式热泵系统及其控制方法 本申请要求在 2014 年 1 月 27 日提交中国专利局、 申请号为 201410039143.3、 发明名称为 "热回收变频多联式热泵系统及其控制方法" 的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明属于变频多联式热泵技术领域, 具体地说, 是涉及一种热回收变 频多联式热泵系统及其控制方法。 背景技术 变频多联式热泵系统是一种结构复杂、 系统庞大、 内部参数高度耦合、 边界条件多样的复杂制冷系统, 具有覆盖负荷需求变化大、 连接室内机数量 多、 运行条件复杂多变等特点, 是空调发展的一个重要方向。 如图 1 所示, 多联式热泵系统一般由一台或多台室外机 01、 一台或多台室内机 02、 中央控 制网络( CS-NET ) 03、 制冷剂管路 04、 分歧管 05以及通信线 06组成, 多台 室外机组成室外机组, 中央控制网络通过通信线对室外机组进行控制, 室外 机通过制冷剂管路及分歧管与室内机相连。 与多台家用空调相比, 多联式热 泵系统的室外机共用, 可有效降低设备成本, 并可实现各室内机的集中管理, 可单独启动一台室内机运行, 也可多台室内机同时启动运行, 使得控制更加 灵活。
目前, 随着人们对居住舒适性要求的提高, 工程应用上会出现多联机热 泵系统中部分室内机进行制冷而另一部分室内机进行制热的情况。 为了充分 发挥多联机热泵系统的节能优势, 现有技术釆用系统热回收的方式实现室内 机制冷及制热同时运行的需求。 但均需要釆用多个四通换向阀实现制冷剂的 分配及排热的回收, 导致系统管路及控制复杂且成本较高。 此外, 现有技术 应用在梅雨季节及潮湿区域时, 只能釆用制冷的方式进行降温除湿, 当环境 温度较低时, 会导致除湿效果差且出风温度低下, 热舒适性较差。 发明内容 本发明的目的在于提供一种热回收变频多联式热泵系统, 解决了现有技 术需釆用多个四通换向阀才能够实现系统热回收运行, 造成系统管路及控制 复杂且成本高的技术问题。
为解决上述技术问题, 本发明釆用以下技术方案予以实现:
一种热回收变频多联式热泵系统, 包括室外机和至少两个室内机, 室外 机与室内机之间通过高压液管、 高压气管和低压回气管相接;
室外机包括: 四通阀 (4)、 室外换热器 (5)、 室外电子膨胀阀 (6)、 第 二电磁阀 ( 10 )、 第三电磁阀 ( 11 )和至少一个压缩机 ( 1 );
压缩机 ( 1 )的排气端与四通阀 (4)的 A端相接; 四通阀 (4)的 B端与 室外换热器(5)相接, 室外换热器(5) 的另一端通过室外电子膨胀阀 (6) 与高压液管相接; 四通阀 (4) 的 C端与压缩机(1 ) 的吸气端相接; 四通阀 (4)的 D端与低压回气管相接; 高压气管与低压回气管之间连接有第三电磁 阀 (11 ); 第二电磁阀 (10) 的一端连接在四通阀 (4) 的 A端, 另一端连接 在第三电磁阀 (11 )与高压气管之间;
每个室内机均包括第一室内换热器 (16)、 第一电子膨胀阀 (15)、 第二 室内换热器(18)、 第二电子膨胀阀 (17);
第一室内换热器 (16) 的一端与高压气管相接, 第一室内换热器 (16) 的另一端通过第一电子膨胀阀 (15)与高压液管相接; 第二室内换热器(18) 的一端与低压回气管相接, 第二室内换热器 (18) 的另一端通过第二电子膨 胀阀 (17)与高压液管相接。
可选的, 压缩机(1 ) 的排气端与四通阀 (4) 的 A端之间连接有油分离 器(2)。
可选的, 油分离器(2)通过第一电磁阀(8)和毛细管(9)与压缩机(1 ) 的吸气端相接。
可选的, 油分离器(2) 与四通阀 (4) 的 A端之间连接有单向阀 (3)。 可选的, 四通阀 (4) 的 C端与压缩机(1 )吸气端之间连接有气液分离 器(7)。
可选的, 高压液管上设置有液侧截止阀 (12); 低压回气管上设置有气侧 截止阀 (13); 高压气管上设置有排气截止阀 (14)。 本发明实施例还提供第一种热回收变频多联式热泵系统的控制方法, 在 热泵系统处于全制冷工况时, 控制执行以下操作: 四通阀 (4) 的 A端与 B 端连通、 C端与 D端连通; 第二电磁阀 (10)关闭, 第三电磁阀 (11 )打开; 室外电子膨胀阀 (6)全开; 各个室内机的第一电子膨胀阀 (15)、 第二电子 膨胀阀 (17) 节流降压; 通过以上操作以使压缩机(1 ) 的排气端排出的制冷 剂经室外换热器(5)冷凝, 一方面流经各个室内机的第一电子膨胀阀 (15)、 第一室内换热器 (16)、 第三电磁阀 (11 ) 至四通阀 (4) D 端, 另一方面流 经各个室内机的第二电子膨胀阀 (17)、 第二室内换热器(18)至四通阀 (4) D端, 之后通过四通阀 ( 4 ) 的 C端进入压缩机 ( 1 ) 的吸气端。
本发明实施例还提供第二种热回收变频多联式热泵系统的控制方法, 在 热泵处于全制热工况时, 控制执行以下操作: 四通阀 (4) 的 A端与 D端连 通、 B端与 C端连通; 第二电磁阀 (10)打开, 第三电磁阀 (11 ) 关闭; 室 外电子膨胀阀 (6) 节流降压; 各个室内机的第一电子膨胀阀 (15)、 第二电 子膨胀阀 (17)均节流降压; 通过以上操作以使压缩机(1 ) 的排气端排出的 制冷剂一方面从四通阀 (4) 的 A、 D端流出至各个室内机的第二室内换热器
( 18)、 第二电子膨胀阀 (17), 另一方面从第二电磁阀 (10) 流出至各个室 内机的第一室内换热器(16)、 第一电子膨胀阀 (15); 第一电子膨胀阀 (15) 和第二电子膨胀阀 (17) 的制冷剂汇合后, 流经室外电子膨胀阀 (6)、 室外 换热器(5)、 四通阀 (4) 的^ C端进入压缩机(1 ) 的吸气端。
本发明实施例还提供第三种热回收变频多联式热泵系统的控制方法, 在 热泵系统处于通常热回收工况时, 控制执行以下操作: 四通阀(4)的 A端与 B端连通、 C端与 D端连通; 第二电磁阀 ( 10 )打开, 第三电磁阀 ( 11 ) 关 闭; 室外电子膨胀阀 (6)全开; 所有室内机中的部分室内机的第一电子膨胀 阀 (15)全开、 第二电子膨胀阀 (17)全闭, 其余室内机的第一电子膨胀阀
( 15 )全闭、 第二电子膨胀阀 ( 17 )节流降压; 通过以上操作以使压缩机 ( 1 ) 的排气端排出的制冷剂一方面流经第二电磁阀 (10)、 第一室内换热器(16)、 第一电子膨胀阀(15), 另一方面流经四通阀(4)的 A、 B端流出至室外换热 器 (5)冷凝, 流经室外电子膨胀阀 (6)后与第一电子膨胀阀 (15) 流出的 制冷剂汇流, 再依次流经其余室内机的第二电子膨胀阀 (17)、 室内换热器
( 18 ), 之后通过四通阀 ( 4 ) 的 D、 C端进入压缩机 ( 1 ) 的吸气端。 本发明实施例还提供第四种热回收变频多联式热泵系统的控制方法, 在 热泵系统处于通常热回收除湿工况时, 控制执行以下操作: 四通阀 (4) 的 A 端与 B端连通、 C端与 D端连通; 第二电磁阀 (10)打开, 第三电磁阀 (11 ) 关闭; 室外电子膨胀阀(6)全开; 各个室内机的第一电子膨胀阀(15)全开、 第二电子膨胀阀 (17)节流降压; 通过以上操作以使压缩机(1 ) 的排气端排 出的制冷剂一方面流经室外换热器(5), 另一方面流经第二电磁阀 (10)、 第 一室内换热器 (16), 第一室内换热器 (16) 与室外换热器 (5) 流出的制冷 剂汇流至第二电子膨胀阀 (17)、 第二室内换热器 (18)后通过四通阀 (4) 的 D、 C端进入压缩机 ( 1 ) 的吸气端。
本发明实施例还提供第五种热回收变频多联式热泵系统的控制方法, 在 热泵系统处于热回收除湿及制冷混合工况时,控制执行以下操作: 四通阀(4) 的 A端与 B端连通、 C端与 D端连通; 第二电磁阀 (10)打开, 第三电磁阀 (11 ) 关闭; 室外电子膨胀阀 (6)全开; 所有室内机中的部分室内机的第一 电子膨胀阀 (15)全开、 第二电子膨胀阀 (17) 节流降压, 其余室内机的第 一电子膨胀阀 (15) 关闭、 第二电子膨胀阀 (17) 节流降压; 通过以上操作 以使压缩机(1 ) 的排气端排出的制冷剂一方面流经室外换热器(5)、 其余室 内机的第二电子膨胀阀 (17)、 第二室内换热器 (18), 另一方面流经第二电 磁阀 (10)、 部分室内机的第一室内换热器 (16); 第一室内换热器 (16) 与 室外换热器 (5) 流出的制冷剂汇流至第二电子膨胀阀 (17)、 第二室内换热 器(18), 流经部分室内机的第二室内换热器(18)与流经其余室内机的第二 室内换热器( 18 )的制冷剂汇流后通过四通阀(4 )的 D、 C端进入压缩机( 1 ) 的吸气端。
本发明实施例还提供第六种热回收变频多联式热泵系统的控制方法, 在 热泵系统处于热回收除湿及制热混合工况时,控制执行以下操作: 四通阀 ( 4 ) 的 A端与 B端连通、 C端与 D端连通; 第二电磁阀 (10)打开, 第三电磁阀 (11 )关闭; 室外电子膨胀阀(6)全闭; 各个室内机的第一电子膨胀阀(15) 全开; 所有室内机中的部分室内机的第二电子膨胀阀 (17) 节流降压, 其余 室内机的第二电子膨胀阀 (17)全闭; 通过以上操作以使压缩机(1 ) 的排气 端排出的制冷剂流经第二电磁阀 (10), —方面流经部分室内机的第一室内换 热器(16)及第一电子膨胀阀 (15), 另一方面依次流经其余室内机第一室内 换热器 (16 )、 第一电子膨胀阀 (15 ); 从第一电子膨胀阀 (15 ) 流出的制冷 剂汇合后, 依次流经第二电子膨胀阀 (17 )、 第二室内换热器 (18 )、 四通换 向阀 (4 ) 的 D、 C端后进入压缩机 ( 1 ) 的吸气端。
与现有技术相比, 本发明的优点和积极效果是: 本发明基于一个四通换 向阀设计三管制的热回收多联式热泵系统, 其室内机具备两套电子膨胀阀及 两套换热器, 使系统中任意室内机可独立运行制冷、 制热或热回收除湿三种 工况, 多联条件下系统具备 6种的工况运行的功能, 即全制冷工况、 全制热 工况、 通常热回收工况、 通常热回收除湿工况、 热回收除湿及制冷混合工况、 热回收除湿及制热混合工况。 其中, 热回收除湿的原理是利用冷凝器排热来 提高低温除湿时较低的出风温度, 以达到不降温除湿或升温除湿的目的, 从 而提高系统热舒适性及系统效率, 且能有效提高系统的制冷量及制热量。 通 过系统 6种运行功能选择, 可有效扩大本发明的应用场合。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作简要介绍, 显而易见地, 下面描述中的附图仅仅是本发 明的一些实施例, 对于本领域的普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
图 1为多联式热泵系统连接示意图;
图 2为本发明具体实施例系统示意图;
图 3为本发明具体实施例全制冷工况运行示意图;
图 4为本发明具体实施例全制热工况运行示意图;
图 5为本发明具体实施例通常热回收工况运行示意图;
图 6为本发明具体实施例热回收除湿工况运行示意图;
图 7为本发明具体实施例热回收除湿及制冷混合工况运行示意图; 图 8为本发明具体实施例热回收除湿及制热混合工况运行示意图; 图 9为本发明另一具体实施例系统示意图。 具体实施方式 为了使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本 发明作进一步地详细描述, 显然, 所描述的实施例仅仅是本发明一部份实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的 范围。
具体实施例 1 :
本实施例以两个室内机为例, 对本发明的实现方式进行具体说明: 如图 2所示, 本实施例的多联式热泵系统由室外机 01和两个室内机 02、 02' 构成。 室外机 01包括: 压缩机 1、 油分离器 2、 单向阀 3、 四通阀 4、 室 外换热器 5、 室外电子膨胀阀 6、 气液分离器 7、 第一电磁阀 8、 毛细管 9、 第 二电磁阀 10、 第三电磁阀 11、 液侧截止阀 12、 气侧截止阀 13和排气截止阀 14。
第一室内机 02包括: 第一室内电子膨胀阀 15、 第一室内换热器 16、 第 二室内电子膨胀阀 17、 第二室内换热器 18和第四分歧管 05。
第二室内机 02' 的部件及构成与第一室内机 02相同,包括第一电子膨胀 阀 15、 第一室内换热器 16、 第二电子膨胀阀 17、 第二室内换热器 18和第四 分歧管 05。
压缩机 1 为变频压缩机, 可由一台或多台以并联的形式组合构成。 室外 换热器 5、 第一室内换热器 16、 第二室内换热器 18、 为风冷铝箔翅片-铜管换 热器或铝制翅片式微通道换热器。
实际应用中, 室外机的风扇吹动空气流过室外换热器 5进行空气与制冷 剂间的热交换。 室内机风扇吹动回风依次流经第二室内换热器 18和第一室内 换热器 16 , 即空气从室内机回风口进入, 先与第二室内换热器 18换热后, 再 与第一室内换热器 16换热, 最后从出风口流出室内机。
室外机 01内各部件的连接关系为: 压缩机 1的排气端与油分离器 2的入 口端连接, 油分离器 2的出气端与单向阀 3的一端连接, 单向阀 3的另一端 与四通阀 4的 A端连接, 四通阀 4的 B端与室外换热器 5的一端连接, 室外 换热器 5的另一端与室外电子膨胀阀 6的一端连接, 室外电子膨胀阀 6的另 一端与液侧截止阀 12的一端连接,四通阀 4的 C端与气液分离器 7的一端连 接, 气液分离器 7的另一端与压缩机 1的吸气端的连接; 四通阀 4的 D端与 第三电磁阀 11的一端及气侧截止阀 13的一端连接, 第三电磁阀 11的另一端 及排气截止阀 14的一端均与第二电磁阀 10的一端连接, 第二电磁阀 10的另 一端与四通阀 4的 A端连接; 油分离器 2的出油端与第一电磁阀 8的一端连 接, 第一电磁阀 8的另一端与毛细管 9的一端连接, 毛细管 9的另一端与压 缩机 1的吸气端连接。
室外机 01与室内机 02、 02' 之间的连接是: 液侧截止阀 12的另一端通 过第一分歧管 051及第四分歧管 05与第一电子膨胀阀 15的一端及第二电子 膨胀阀 17的一端连接, 第一电子膨胀阀 15的另一端与第一室内换热器 16的 一端连接,第一室内换热器 16的另一端通过第三分歧管 053与排气截止阀 14 的另一端连接; 第二电子膨胀阀 17的另一端与第二室内换热器 18的一端连 接, 第二室内换热器 18的另一端通过第二分歧管 052与气侧截止阀 13的另 一端连接。
下面对本实施例多联式热泵系统所处各工况下各部件启闭规则及制冷剂 的 动进行说明:
1 )全制冷工况运行
当系统中所有室内机均处于制冷工况时, 系统处于全制冷工况运行, 如 图 3所示。 该工况下, 室外机的四通阀 4的 A端与 B端连通、 C端与 D端连 通, 第二电磁阀 10关闭, 第三电磁阀 11打开, 室外电子膨胀阀 6全开。 室 内机 02、 02' 中, 第一电子膨胀阀 15、 第二电子膨胀阀 17均节流降压。 室 外换热器 5为冷凝器, 第一室内换热器 16、 第二室内换热器 18均为蒸发器。
压缩机 1排气端排出的高压气态制冷剂通过油分离器 2、 单向阀 3、 四通 阀 4的 A、 B端, 经室外换热器 5冷凝后成为高压液态制冷剂, 经液侧截止阀 12、 第一分歧管 051及第四分歧管 05后分为两股制冷剂, 一股制冷剂依次流 经室内机 02、 02' 的第一电子膨胀阀 15、 第一室内换热器 16、 第三分歧管 053、排气截止阀 14和第三电磁阀 11 ;另一股制冷剂依次流经室内机 02、 02' 的第二电子膨胀阀 17、 第二室内换热器 18、 第二分歧管 052、 气侧截止阀 13 后与第一股制冷剂汇合, 汇合后经四通阀 4的0、 C端进入气液分离器 7 , 进 行气液分离后进入压缩机 1的吸气端。
2 )全制热工况运行 当系统中所有室内机均处于制热工况时, 系统处于全制热工况运行, 如 图 4所示。 该工况下, 室外机的四通阀 4的 A端与 D端连通、 B端与 C端连 通, 第二电磁阀 10打开, 第三电磁阀 11关闭, 室外电子膨胀阀 6节流降压。 室内机 02、 02' 的第一电子膨胀阀 15、 第二电子膨胀阀 17起节流作用。 室 外换热器 5为蒸发器, 第一室内换热器 16、 第二室内换热器 18均为冷凝器。
压缩机 1排气端排出的高压气态制冷剂通过油分离器 2至单向阀 3、从单 向阀 3流出的高压气态制冷剂分为两股, 一股从四通阀 4的 A、 D端流出, 依次流经气侧截止阀 13、 第二分歧管 052、 室内机 02、 02' 的第二室内换热 器 18和第二室内电子膨胀阀 17; 另一股制冷剂从第二电磁阀 10流出, 之后 依次流经排气截止阀 14、 第三分歧管 053、 室内机 02、 02' 的第一室内换热 器 16和第一电子膨胀阀 15。 两股制冷剂在第四分歧管 05汇合后, 依次流经 第一分歧管 051、 液侧截止阀 12、 室外电子膨胀阀 6、 室外换热器 5、 四通阀 4的 C端和气液分离器 7 , 最后进入压缩机 1的吸气端。
3 )通常热回收工况运行
当部分室内机处于制热工况, 部分处于制冷工况时, 系统处于通常热回 收工况。 以第一室内机 02进行制热且第二室内机 02'进行制冷作为实施例进 行说明, 如图 5所示。 此时, 室外机的四通阀 4的 A端与 B端连通、 C端与 D端连通, 第二电磁阀 10打开, 第三电磁阀 11关闭, 室外电子膨胀阀 6全 开。 室内机 02中, 第一电子膨胀阀 15全开, 第二电子膨胀阀 17全闭, 室内 机 02' 中, 第二室内电子膨胀阀 17起节流作用, 第一室内电子膨胀阀 15全 闭。 室外换热器 5和室内机 02的第一室内换热器 16均作为冷凝器, 室内机 02'的第二室内换热器 18作为蒸发器,室内机 02的第二室内换热器 18和室内 机 02'的第一室内换热器 16均不起换热作用。
从单向阀 3 流出的高压气态制冷剂分为两股, 一股制冷剂依次流经第二 电磁阀 10、 排气截止阀 14后进入制热的第一室内机 02, 再依次流经第一室 内换热器 16、第一室内电子膨胀阀 15及第四分歧管 05后进入第一分歧管 051 ; 另一股制冷剂经四通阀 4的 A、 B端流出,经冷凝器 5冷凝后成为高压液态制 冷剂, 流经室外电子膨胀阀 6及液侧截止阀 12后同样进入第一分歧管 051。 这两股制冷剂在第一分歧管 051汇合后进入制冷的第二室内机 02', 再依次流 经第五分歧管 05、 第二电子膨胀阀 17和第二室内换热器 18后流出第二室内 机 02', 再经第二分歧管 052、 气侧截止阀 13和四通阀 4的 D、 C端进入气液 分离器 7 , 最后进入压缩机 1的吸气端。
4 )通常热回收除湿工况
当系统在梅雨季节或低温高湿环境运行时, 一方面需要对室内除湿, 另 一方面需要提升出风温度, 以防止出风温度过低导致热舒适性差。 当所有室 内机均处于热回收除湿工况时, 其制冷剂流动示意图如图 6所示。 通常热回 收除湿工况下, 室外机 01内各部件的连接、 阀启闭规则及换热器功能与通常 热回收工况的完全相同, 不再赘述。
室内机 02、 02' 中, 第一电子膨胀阀 15全开, 第二室内电子膨胀阀 17 节流降压。 第一室内换热器 16作为冷凝器, 利用制冷剂排热加热出风, 以提 升出风温度。 第二室内换热器 18作为蒸发器, 对空气进行降温除湿。
经室外换热器 5冷凝换热的制冷剂与经第一室内换热器 16冷凝换热后的 高压液态制冷剂在第四分歧管 05汇合后依次流经第二室内电子膨胀阀 17、第 二室内换热器 18、第二分歧管 052、四通阀 4的0、 C端后进入气液分离器 7 , 完成制冷剂的流动回路。
5 )热回收除湿及制冷混合工况
如图 7 所示, 为部分房间进行热回收除湿运行且部分房间进行制冷运行 的示意图。 该混合运行工况与通常热回收除湿工况相比, 唯一的不同点在于 进行制冷运行的室内机 02' 的第一室内电子膨胀阀 15全闭,使第二室内换热 器 16不起换热作用。 除此以外, 室外机及室内机的连接、 阀门启闭规则及制 冷剂的流动均与通常热回收除湿工况相同, 不再赘述。
6 )热回收除湿及制热混合工况
如图 8所示, 为部分房间进行热回收除湿运行且部分房间进行制热运行 的示意图。 该混合运行工况下, 室外电子膨胀阀 6全闭, 室外换热器 5不进 行换热作用。 室内机 02的第一电子膨胀阀 15全开, 第二电子膨胀阀 17节流 降压, 室内机 02' 的第一电子膨胀阀 15全开, 第二室内电子膨胀阀 17全闭。 室内机 02的第一室内换热器 16作为冷凝器,第二室内换热器 18作为蒸发器, 室内机 02' 的第一室内换热器 16作为冷凝器, 第二室内换热器 18不起换热 作用。
压缩机 1排气端排出的高压制冷剂气体全部流经第二电磁阀 10及排气截 止阀 14, 再进入第三分歧管 053并分为两股, 一股制冷剂依次流经室内机 02 的第一室内换热器 16及第一电子膨胀阀 15后进入第四分歧管 05; 另一股制 冷剂依次流经室内机 02' 的第一室内换热器 16、 第一电子膨胀阀 15、 第五分 歧管 05 , 再通过第一分歧管 051后进入室内机 02的第四分歧管 05。 两股制 冷剂在室内机 02的第四分歧管 05汇合后, 再流经第二电子膨胀阀 17、 第二 室内换热器 18、 第二分歧管 052、 气侧截止阀 13和四通阀 4的 D、 C端后进 入气液分离器 7 , 完成制冷剂回路。
具体实施例 2:
本实施例的多联式热泵系统由室外机 01和三个室内机 02、 02' 、 02" 组 成, 室外机中包括两个并联的变频压缩机。 室内机 02 的管路分别通过分歧 管 051 ' 、 052' 、 053' 与室内机 02' 的管路进行汇流。 其余部分结构、 实 现工况与具体实施例 1相同, 此处不再赘述。
需要说明的是, 本发明提供的方法可以应用在由室外机和至少两个室内 机组成的系统中, 本发明具体实施例 1 中包括但不限于以两个室内机为例对 本发明的实现方式进行具体说明, 同样的, 本发明具体实施例 2 中包括但不 限于以三个室内机为例对本发明的实现方式进行具体说明。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种热回收变频多联式热泵系统, 包括室外机和至少两个室内机, 其 特征在于: 所述室外机与室内机之间通过高压液管、 高压气管和低压回气管 相接;
所述室外机包括: 四通阀 (4)、 室外换热器(5)、 室外电子膨胀阀 (6)、 第二电磁阀 ( 10 )、 第三电磁阀 ( 11 )和至少一个压缩机 ( 1 );
所述压缩机(1 ) 的排气端与四通阀 (4) 的 A端相接; 所述四通阀 (4) 的 B端与室外换热器(5)相接, 室外换热器(5) 的另一端通过室外电子膨 胀阀( 6 )与高压液管相接; 四通阀( 4 )的 C端与压缩机( 1 )的吸气端相接; 四通阀(4)的 D端与低压回气管相接; 所述高压气管与低压回气管之间连接 有第三电磁阀 (11 ); 所述第二电磁阀 (10) 的一端连接在四通阀 (4) 的 A 端, 另一端连接在第三电磁阀 (11 )与高压气管之间;
所述每个室内机均包括第一室内换热器 (16)、 第一电子膨胀阀 (15)、 第二室内换热器 (18)、 第二电子膨胀阀 (17);
所述第一室内换热器(16)的一端与高压气管相接,第一室内换热器(16) 的另一端通过第一电子膨胀阀 (15) 与高压液管相接; 所述第二室内换热器 ( 18) 的一端与低压回气管相接, 第二室内换热器 (18) 的另一端通过第二 电子膨胀阀 (17)与高压液管相接。
2、 根据权利要求 1所述的热回收变频多联式热泵系统, 其特征在于: 所 述压缩机(1 ) 的排气端与四通阀 (4) 的 A端之间连接有油分离器(2)。
3、 根据权利要求 2所述的热回收变频多联式热泵系统, 其特征在于: 所 述油分离器 (2)通过第一电磁阀 (8)和毛细管 (9) 与压缩机( 1 ) 的吸气 端相接。
4、 根据权利要求 2所述的热回收变频多联式热泵系统, 其特征在于: 所 述油分离器(2) 与四通阀 (4) 的 A端之间连接有单向阀 (3)。
5、 根据权利要求 1所述的热回收变频多联式热泵系统, 其特征在于: 所 述四通阀 (4) 的 C端与压缩机(1 )吸气端之间连接有气液分离器(7)。
6、 根据权利要求 1所述的热回收变频多联式热泵系统, 其特征在于: 所 述高压液管上设置有液侧截止阀 (12); 所述低压回气管上设置有气侧截止阀 (13); 所述高压气管上设置有排气截止阀 (14)。
7、 一种根据权利要求 1所述的热回收变频多联式热泵系统的控制方法, 其特征在于: 在所述热泵系统处于全制冷工况时, 控制执行以下操作:
四通阀 (4) 的 A端与 B端连通、 C端与 D端连通;
第二电磁阀 (10) 关闭, 第三电磁阀 (11 )打开;
室外电子膨胀阀 (6)全开;
各个室内机的第一电子膨胀阀 (15)、 第二电子膨胀阀 (17)节流降压; 通过所述操作以使压缩机(1 )的排气端排出的制冷剂经室外换热器(5) 冷凝,一方面流经各个室内机的第一电子膨胀阀(15)、第一室内换热器(16)、 第三电磁阀 (11 )至四通阀 (4) D端, 另一方面流经各个室内机的第二电子 膨胀阀 (17)、 第二室内换热器 (18) 至四通阀 (4) D 端, 之后通过四通阀 (4) 的 C端进入压缩机 ( 1 ) 的吸气端。
8、 一种根据权利要求 1所述的热回收变频多联式热泵系统的控制方法, 其特征在于: 在所述热泵处于全制热工况时, 控制执行以下操作:
四通阀 (4) 的 A端与 D端连通、 B端与 C端连通;
第二电磁阀 (10)打开, 第三电磁阀 (11 ) 关闭;
室外电子膨胀阀 (6)节流降压;
各个室内机的第一电子膨胀阀(15)、 第二电子膨胀阀(17)均节流降压; 通过所述操作以使压缩机( 1 )的排气端排出的制冷剂一方面从四通阀(4 ) 的 A、 D端流出至各个室内机的第二室内换热器 ( 18 )、第二电子膨胀阀 ( 17 ), 另一方面从第二电磁阀 (10)流出至各个室内机的第一室内换热器(16)、 第 一电子膨胀阀 (15); 第一电子膨胀阀 (15)和第二电子膨胀阀 (17) 的制冷 剂汇合后, 流经室外电子膨胀阀 (6)、 室外换热器(5)、 四通阀 (4) 的8、 C端进入压缩机 ( 1 ) 的吸气端。
9、 一种根据权利要求 1所述的热回收变频多联式热泵系统的控制方法, 其特征在于: 在所述热泵系统处于通常热回收工况时, 控制执行以下操作: 四通阀 (4) 的 A端与 B端连通、 C端与 D端连通;
第二电磁阀 (10)打开, 第三电磁阀 (11 ) 关闭;
室外电子膨胀阀 (6)全开;
所有室内机中的部分室内机的第一电子膨胀阀 (15)全开、 第二电子膨 胀阀 (17)全闭, 其余室内机的第一电子膨胀阀 (15)全闭、 第二电子膨胀 阀 (17) 节流降压;
通过所述操作以使压缩机 ( 1 )的排气端排出的制冷剂一方面流经第二电 磁阀 (10)、 第一室内换热器(16)、 第一电子膨胀阀 (15), 另一方面流经四 通阀 (4)的 A、 B端流出至室外换热器(5)冷凝, 流经室外电子膨胀阀 (6) 后与第一电子膨胀阀 (15) 流出的制冷剂汇流, 再依次流经所述其余室内机 的第二电子膨胀阀 (17)、 室内换热器(18), 之后通过四通阀 (4) 的 D、 C 端进入压缩机 ( 1 ) 的吸气端。
10、 一种根据权利要求 1所述的热回收变频多联式热泵系统的控制方法, 其特征在于: 在所述热泵系统处于通常热回收除湿工况时, 控制执行以下操 作:
四通阀 (4) 的 A端与 B端连通、 C端与 D端连通;
第二电磁阀 (10)打开, 第三电磁阀 (11 ) 关闭;
室外电子膨胀阀 (6)全开;
各个室内机的第一电子膨胀阀 (15)全开、 第二电子膨胀阀 (17) 节流 降压;
通过所述操作以使压缩机 ( 1 )的排气端排出的制冷剂一方面流经室外换 热器 (5), 另一方面流经第二电磁阀 (10)、 第一室内换热器 (16), 第一室 内换热器( 16 )与室外换热器( 5 )流出的制冷剂汇流至第二电子膨胀阀( 17 )、 第二室内换热器(18)后通过四通阀 (4)的0、 C端进入压缩机(1 )的吸气 端。
11、 一种根据权利要求 1所述的热回收变频多联式热泵系统的控制方法, 其特征在于: 在所述热泵系统处于热回收除湿及制冷混合工况时, 控制执行 以下操作:
四通阀 (4) 的 A端与 B端连通、 C端与 D端连通;
第二电磁阀 (10)打开, 第三电磁阀 (11 ) 关闭;
室外电子膨胀阀 (6)全开;
所有室内机中的部分室内机的第一电子膨胀阀 (15)全开、 第二电子膨 胀阀 (17) 节流降压, 其余室内机的第一电子膨胀阀 (15) 关闭、 第二电子 膨胀阀 (17)节流降压; 通过所述操作以使压缩机( 1 )的排气端排出的制冷剂一方面流经室外换 热器(5)、 所述其余室内机的第二电子膨胀阀 (17)、 第二室内换热器(18), 另一方面流经第二电磁阀 (10)、 所述部分室内机的第一室内换热器 (16); 第一室内换热器(16)与室外换热器(5)流出的制冷剂汇流至第二电子膨胀 阀(17)、第二室内换热器(18), 流经所述部分室内机的第二室内换热器(18) 与流经所述其余室内机的第二室内换热器 (18) 的制冷剂汇流后通过四通阀 (4) 的0、 C端进入压缩机(1 ) 的吸气端。
12、 一种根据权利要求 1所述的热回收变频多联式热泵系统的控制方法, 其特征在于: 在所述热泵系统处于热回收除湿及制热混合工况时, 控制执行 以下操作:
四通阀 (4) 的 A端与 B端连通、 C端与 D端连通;
第二电磁阀 (10)打开, 第三电磁阀 (11 ) 关闭;
室外电子膨胀阀 (6)全闭;
各个室内机的第一电子膨胀阀 (15)全开;
所有室内机中的部分室内机的第二电子膨胀阀 (17) 节流降压, 其余室 内机的第二电子膨胀阀 (17)全闭;
通过所述操作以使压缩机(1 ) 的排气端排出的制冷剂流经第二电磁阀 (10), 一方面流经所述部分室内机的第一室内换热器(16)及第一电子膨胀 阀 (15), 另一方面依次流经所述其余室内机第一室内换热器 ( 16)、 第一电 子膨胀阀 (15); 从第一电子膨胀阀 (15)流出的制冷剂汇合后, 依次流经第 二电子膨胀阀 (17)、 第二室内换热器 (18)、 四通换向阀 (4) 的0、 C端后 进入压缩机(1 ) 的吸气端。
PCT/CN2014/074046 2014-01-27 2014-03-25 热回收变频多联式热泵系统及其控制方法 WO2015109653A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES14879349.0T ES2693245T3 (es) 2014-01-27 2014-03-25 Sistema de bomba de calor de división múltiple de frecuencia variable de recuperación de calor y procedimiento de control del mismo
US15/114,269 US10132530B2 (en) 2014-01-27 2014-03-25 Heat recovery variable-frequency multi-split heat pump system and control method thereof
EP18198012.9A EP3441697B1 (en) 2014-01-27 2014-03-25 Heat recovery variable-frequency multi-split heat pump system and control method thereof
EP14879349.0A EP3101369B1 (en) 2014-01-27 2014-03-25 Heat recovery variable-frequency multi-split heat pump system and control method thereof
US16/150,065 US11035597B2 (en) 2014-01-27 2018-10-02 Outdoor unit of an air conditioning system, air conditioning system, and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410039143.3 2014-01-27
CN201410039143.3A CN103759455B (zh) 2014-01-27 2014-01-27 热回收变频多联式热泵系统及其控制方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/114,269 A-371-Of-International US10132530B2 (en) 2014-01-27 2014-03-25 Heat recovery variable-frequency multi-split heat pump system and control method thereof
US16/150,065 Continuation US11035597B2 (en) 2014-01-27 2018-10-02 Outdoor unit of an air conditioning system, air conditioning system, and control method thereof

Publications (1)

Publication Number Publication Date
WO2015109653A1 true WO2015109653A1 (zh) 2015-07-30

Family

ID=50526732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074046 WO2015109653A1 (zh) 2014-01-27 2014-03-25 热回收变频多联式热泵系统及其控制方法

Country Status (5)

Country Link
US (2) US10132530B2 (zh)
EP (2) EP3441697B1 (zh)
CN (1) CN103759455B (zh)
ES (2) ES2929389T3 (zh)
WO (1) WO2015109653A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154673B (zh) * 2014-09-01 2016-04-20 广东志高暖通设备股份有限公司 一种三管制热回收多联机系统的制冷方法及系统
CN105823267B (zh) * 2015-01-08 2020-06-05 开利公司 热泵系统及其调节方法
CN104534725A (zh) * 2015-01-23 2015-04-22 珠海格力电器股份有限公司 空调器
KR102404082B1 (ko) * 2015-06-08 2022-05-31 삼성전자주식회사 공기 조화기 및 그 제어 방법
CN107351624B (zh) * 2016-05-10 2020-08-25 比亚迪股份有限公司 热泵空调系统及电动汽车
CN107356003B (zh) 2016-05-10 2021-04-20 比亚迪股份有限公司 热泵空调系统及电动汽车
JP6721546B2 (ja) * 2017-07-21 2020-07-15 ダイキン工業株式会社 冷凍装置
CN107356009B (zh) * 2017-07-25 2021-05-04 广东美的暖通设备有限公司 多联机系统及其低温控制方法
EP3690331A4 (en) * 2017-09-29 2020-11-18 Daikin Industries, Ltd. AIR CONDITIONING SYSTEM
KR102337394B1 (ko) * 2017-10-12 2021-12-08 엘지전자 주식회사 공기조화기
CN108007010B (zh) * 2017-11-29 2020-03-24 青岛海信日立空调系统有限公司 一种热泵系统
CN108870807B (zh) * 2018-03-21 2020-03-24 青岛海信日立空调系统有限公司 多联机系统的回油控制方法和装置、计算机存储介质
JP6823681B2 (ja) * 2018-03-30 2021-02-03 ダイキン工業株式会社 冷凍装置
CN108775725B (zh) * 2018-05-21 2020-12-15 广东美的暖通设备有限公司 三管制多联机的室内机及三管制多联机
CN109813008A (zh) * 2019-03-14 2019-05-28 王立华 一种增焓型冷热全能效回收热泵
CN109959076B (zh) * 2019-04-10 2021-12-07 重庆大学 一种房间温控通风系统及其控制方法
CN112013474A (zh) * 2019-05-30 2020-12-01 广东美的制冷设备有限公司 空调器及其控制方法
CN112013475A (zh) * 2019-05-30 2020-12-01 广东美的制冷设备有限公司 空调器及其控制方法
CN110207419B (zh) * 2019-06-25 2022-03-29 广东美的暖通设备有限公司 多联机系统
CN110410902A (zh) * 2019-07-22 2019-11-05 南京天加环境科技有限公司 一种可全热回收并精确调节热回收量的空调系统
CN110500668A (zh) * 2019-08-14 2019-11-26 珠海格力电器股份有限公司 三管制多联机的模式切换装置、空调系统及其控制方法
CN110486967A (zh) * 2019-08-27 2019-11-22 珠海凌达压缩机有限公司 一种空调系统及其控制方法
JP6860112B1 (ja) 2019-09-30 2021-04-14 ダイキン工業株式会社 冷凍サイクル装置
CN112710101B (zh) * 2019-10-24 2024-06-21 广东美的制冷设备有限公司 空调器及其控制方法
CN112797675A (zh) * 2019-10-28 2021-05-14 广东美的制冷设备有限公司 空调器及其控制方法
CN112797496A (zh) * 2019-10-28 2021-05-14 广东美的制冷设备有限公司 空调室内机、空调器及其控制方法
CN110762792B (zh) * 2019-10-29 2021-02-23 青岛海信日立空调系统有限公司 一种空调器的控制方法及空调器
CN110849019A (zh) * 2019-11-21 2020-02-28 青岛海尔空调器有限总公司 一种热泵式空调系统及其控制方法
KR20210083047A (ko) * 2019-12-26 2021-07-06 엘지전자 주식회사 공기조화장치
CN111121156B (zh) * 2020-01-20 2021-06-04 青岛海信日立空调系统有限公司 一种多联空调机
CN111503724B (zh) * 2020-04-26 2024-02-23 青岛海尔空调器有限总公司 空调器、空调器的控制系统及方法
WO2021225175A1 (ja) * 2020-05-08 2021-11-11 ダイキン工業株式会社 冷凍サイクルシステム、熱源ユニット、および冷凍サイクル装置
CN112524799A (zh) * 2020-12-04 2021-03-19 广东爱尼智能家电制造有限公司 一种多功能空调热泵热水机组
CN112902510A (zh) * 2021-03-17 2021-06-04 常州市威硕自动化科技有限公司 基于温度值和湿度值的电子膨胀阀多段线性控制方法及系统
CN115235139B (zh) * 2022-06-23 2023-07-28 宁波奥克斯电气股份有限公司 一种三管制多联机空调系统及控制方法、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114406A (zh) * 1994-02-18 1996-01-03 三洋电机株式会社 多室空调器及其运行方法
JP2001227841A (ja) * 2000-02-18 2001-08-24 Sanyo Electric Co Ltd マルチ型空気調和装置
CN1483974A (zh) * 2002-06-12 2004-03-24 Lg������ʽ���� 多单元空调器及其控制方法
JP2010216755A (ja) * 2009-03-18 2010-09-30 Sanden Corp 冷却加熱装置

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2693930A (en) * 1949-07-20 1954-11-09 M T Gossett Electromagnetic reversing valve
JPS5336154A (en) * 1976-09-16 1978-04-04 Kokusai Denshin Denwa Co Ltd Method of reading out digital function generator
US4644756A (en) * 1983-12-21 1987-02-24 Daikin Industries, Ltd. Multi-room type air conditioner
US4878357A (en) * 1987-12-21 1989-11-07 Sanyo Electric Co., Ltd. Air-conditioning apparatus
JP2975612B2 (ja) * 1989-08-17 1999-11-10 株式会社日立製作所 マルチ空気調和機
US5253483A (en) * 1990-09-14 1993-10-19 Nartron Corporation Environmental control system
KR0129641Y1 (ko) * 1995-03-30 1999-01-15 김광호 공기조화기의 실내기
JP2001227799A (ja) * 2000-02-18 2001-08-24 Fujitsu General Ltd 多室形空気調和機
JP3584862B2 (ja) * 2000-07-13 2004-11-04 ダイキン工業株式会社 空気調和機の冷媒回路
JP2002031431A (ja) * 2000-07-19 2002-01-31 Fujitsu General Ltd 多室形空気調和機
JP3918421B2 (ja) * 2000-09-21 2007-05-23 三菱電機株式会社 空気調和機、空気調和機の運転方法
US7493775B2 (en) * 2002-10-30 2009-02-24 Mitsubishi Denki Kabushiki Kaisha Air conditioner
KR100504498B1 (ko) * 2003-01-13 2005-08-03 엘지전자 주식회사 공기조화기용 과냉확보장치
KR100717444B1 (ko) * 2003-10-20 2007-05-14 엘지전자 주식회사 멀티 에어컨 및 에어컨 제어방법
JP2006170541A (ja) * 2004-12-16 2006-06-29 Samsung Electronics Co Ltd 空気調和装置
KR100851906B1 (ko) * 2007-03-23 2008-08-13 삼성전자주식회사 냉난방 동시형 멀티 공기조화기 및 그 제어방법
JP5076745B2 (ja) * 2007-08-31 2012-11-21 パナソニック株式会社 換気空調装置
US8418494B2 (en) * 2007-09-26 2013-04-16 Mitsubishi Electric Corporation Air conditioning apparatus
EP2184563A4 (en) * 2008-02-04 2016-02-17 Mitsubishi Electric Corp AIR CONDITIONING AND WATER HEATING COMPLEX SYSTEM
JP5084903B2 (ja) * 2008-03-31 2012-11-28 三菱電機株式会社 空調給湯複合システム
JP5263522B2 (ja) * 2008-12-11 2013-08-14 株式会社富士通ゼネラル 冷凍装置
CN102272534B (zh) * 2009-01-15 2014-12-10 三菱电机株式会社 空气调节装置
JP4751940B2 (ja) * 2009-03-31 2011-08-17 日立アプライアンス株式会社 空気調和機
JP5042262B2 (ja) * 2009-03-31 2012-10-03 三菱電機株式会社 空調給湯複合システム
JP5283587B2 (ja) * 2009-08-28 2013-09-04 三洋電機株式会社 空気調和装置
EP3273184A1 (en) * 2009-08-28 2018-01-24 Sanyo Electric Co., Ltd. Air conditioner
ES2803240T3 (es) * 2009-09-18 2021-01-25 Mitsubishi Electric Corp Dispositivo de aire acondicionado
CN101691960B (zh) * 2009-09-30 2012-10-10 广东美的电器股份有限公司 三管制热回收空调系统
CN102667366B (zh) * 2009-10-28 2015-10-07 三菱电机株式会社 空调装置
KR101153513B1 (ko) * 2010-01-15 2012-06-11 엘지전자 주식회사 냉매시스템 및 그 제어방법
KR101146460B1 (ko) * 2010-02-08 2012-05-21 엘지전자 주식회사 냉매시스템
CN101865555B (zh) * 2010-06-29 2012-10-03 广东志高空调有限公司 一种同时制冷和制热的一拖多空调
WO2012011688A2 (en) * 2010-07-21 2012-01-26 Chungju National University Industrial Cooperation Foundation Alternating type heat pump
KR101233209B1 (ko) * 2010-11-18 2013-02-15 엘지전자 주식회사 히트 펌프
US9541319B2 (en) * 2011-01-20 2017-01-10 Mitsubishi Electric Corporation Air-conditioning apparatus
US9523520B2 (en) * 2011-01-31 2016-12-20 Mitsubishi Electric Corporation Air-conditioning apparatus
US20130305758A1 (en) * 2011-03-01 2013-11-21 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
WO2012172599A1 (ja) * 2011-06-14 2012-12-20 三菱電機株式会社 空気調和装置
JP2013011364A (ja) * 2011-06-28 2013-01-17 Daikin Industries Ltd 空気調和装置
JP5257491B2 (ja) * 2011-06-30 2013-08-07 ダイキン工業株式会社 冷凍装置の室外機
JP5747709B2 (ja) * 2011-07-22 2015-07-15 株式会社富士通ゼネラル 空気調和装置
US9046284B2 (en) * 2011-09-30 2015-06-02 Fujitsu General Limited Air conditioning apparatus
WO2013069043A1 (ja) * 2011-11-07 2013-05-16 三菱電機株式会社 空気調和装置
EP2781854B1 (en) * 2011-11-18 2019-07-17 Mitsubishi Electric Corporation Air conditioner
US9644906B2 (en) * 2011-11-30 2017-05-09 Mitsubishi Electric Corporation Method for selecting heat medium of use side heat exchanger in installing air-conditioning system
JP5403047B2 (ja) * 2011-12-28 2014-01-29 ダイキン工業株式会社 冷凍装置
JP5871959B2 (ja) * 2012-01-23 2016-03-01 三菱電機株式会社 空気調和装置
JP2013155964A (ja) * 2012-01-31 2013-08-15 Fujitsu General Ltd 空気調和装置
JP2013181695A (ja) * 2012-03-01 2013-09-12 Fujitsu General Ltd 空気調和装置
JP5791785B2 (ja) * 2012-03-27 2015-10-07 三菱電機株式会社 空気調和装置
JP5500240B2 (ja) * 2012-05-23 2014-05-21 ダイキン工業株式会社 冷凍装置
JP6033297B2 (ja) * 2012-05-30 2016-11-30 三菱電機株式会社 空気調和装置
KR20130134349A (ko) * 2012-05-30 2013-12-10 삼성전자주식회사 멀티형 공기조화기 및 그 냉난방제어방법
JP6052488B2 (ja) * 2012-07-09 2016-12-27 株式会社富士通ゼネラル 空気調和装置
US9459033B2 (en) * 2012-08-02 2016-10-04 Mitsubishi Electric Corporation Multi air-conditioning apparatus
JP5791807B2 (ja) * 2012-08-03 2015-10-07 三菱電機株式会社 空気調和装置
US9890976B2 (en) * 2012-08-08 2018-02-13 Mitsubishi Electric Corporation Air-conditioning apparatus
BR112015003481B1 (pt) * 2012-08-27 2021-08-24 Daikin Industries, Ltd Dispositivo de refrigeração
US9683751B2 (en) * 2012-09-21 2017-06-20 Toshiba Carrier Corporation Outdoor unit for multi-type air conditioner
US20150219373A1 (en) * 2012-10-01 2015-08-06 Mitsubishi Electric Corporation Air-conditioning apparatus
US10161647B2 (en) * 2012-10-02 2018-12-25 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5911590B2 (ja) * 2012-10-10 2016-04-27 三菱電機株式会社 空気調和装置
US9631826B2 (en) * 2012-12-11 2017-04-25 Mistubishi Electric Corporation Combined air-conditioning and hot-water supply system
EP2933582A4 (en) * 2012-12-12 2016-10-05 Mitsubishi Electric Corp AIR CONDITIONER DEVICE
WO2014097438A1 (ja) * 2012-12-20 2014-06-26 三菱電機株式会社 空気調和装置
JP5983401B2 (ja) * 2012-12-28 2016-08-31 ダイキン工業株式会社 空気調和装置
WO2014106900A1 (ja) * 2013-01-07 2014-07-10 三菱電機株式会社 空気調和装置
CN105247302B (zh) * 2013-05-31 2017-10-13 三菱电机株式会社 空调装置
CN103353147B (zh) * 2013-06-28 2016-05-25 青岛海信日立空调系统有限公司 三管制全热处理多联机空调系统及温湿度独立控制方法
WO2015029160A1 (ja) * 2013-08-28 2015-03-05 三菱電機株式会社 空気調和装置
WO2015111141A1 (ja) * 2014-01-21 2015-07-30 三菱電機株式会社 空気調和装置
US20160341453A1 (en) * 2014-03-17 2016-11-24 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN105987535A (zh) * 2015-02-03 2016-10-05 宁波奈兰环境系统有限公司 一种超远距离输送制冷剂的大容量多联式空调热泵机组
KR102379823B1 (ko) * 2015-10-23 2022-03-30 삼성전자주식회사 공기조화시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114406A (zh) * 1994-02-18 1996-01-03 三洋电机株式会社 多室空调器及其运行方法
JP2001227841A (ja) * 2000-02-18 2001-08-24 Sanyo Electric Co Ltd マルチ型空気調和装置
CN1483974A (zh) * 2002-06-12 2004-03-24 Lg������ʽ���� 多单元空调器及其控制方法
JP2010216755A (ja) * 2009-03-18 2010-09-30 Sanden Corp 冷却加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3101369A4 *

Also Published As

Publication number Publication date
CN103759455B (zh) 2015-08-19
US20170010027A1 (en) 2017-01-12
US20190032968A1 (en) 2019-01-31
US10132530B2 (en) 2018-11-20
EP3101369B1 (en) 2018-10-24
CN103759455A (zh) 2014-04-30
ES2693245T3 (es) 2018-12-10
ES2929389T3 (es) 2022-11-28
EP3441697B1 (en) 2022-08-10
US11035597B2 (en) 2021-06-15
EP3101369A1 (en) 2016-12-07
EP3101369A4 (en) 2017-08-09
EP3441697A1 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
WO2015109653A1 (zh) 热回收变频多联式热泵系统及其控制方法
CN102927715B (zh) 多联机热泵空调系统及控制多联机热泵空调系统的方法
CN103353147B (zh) 三管制全热处理多联机空调系统及温湿度独立控制方法
WO2017219650A1 (zh) 空调系统、复合冷凝器、空调系统的运行控制方法及装置
JP2004020187A (ja) マルチ空気調和機及びその運転方法
KR101706865B1 (ko) 공기조화기
CN108895567A (zh) 室外机、多联机系统及控制方法、装置、计算机存储介质
JPH01134172A (ja) 空気調和装置
KR20180019042A (ko) 히트 펌프형 냉동 시스템
CN106705298B (zh) 一种带排风热泵热回收的多联式新风空调机组及换热方法
CN104633771A (zh) 多联式空调机组及其控制方法
CN104764241A (zh) 一种空调
KR101288745B1 (ko) 공기조화기
CN104879950A (zh) 空调一体机系统及其控制方法
JP2018071864A (ja) 空気調和機
CN204214044U (zh) 一种空调室内机及空调设备
JPH01167561A (ja) 多室型冷暖房装置
KR102581680B1 (ko) 공기조화기의 실외기
JPH0293261A (ja) 空気調和装置
JPH0282066A (ja) 空気調和装置
KR102550357B1 (ko) 공기조화기
JPH0339869A (ja) 空気調和装置
Liu et al. A novel heat recovery VRF system: Principle and cooling performance analysis
TWM449242U (zh) 電腦機房專用機櫃空調系統
CN117781504A (zh) 空调系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15114269

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014879349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014879349

Country of ref document: EP