WO2017219650A1 - 空调系统、复合冷凝器、空调系统的运行控制方法及装置 - Google Patents

空调系统、复合冷凝器、空调系统的运行控制方法及装置 Download PDF

Info

Publication number
WO2017219650A1
WO2017219650A1 PCT/CN2016/113914 CN2016113914W WO2017219650A1 WO 2017219650 A1 WO2017219650 A1 WO 2017219650A1 CN 2016113914 W CN2016113914 W CN 2016113914W WO 2017219650 A1 WO2017219650 A1 WO 2017219650A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
temperature
compressor
air conditioning
conditioning system
Prior art date
Application number
PCT/CN2016/113914
Other languages
English (en)
French (fr)
Inventor
李秀玲
林华和
苏国琰
Original Assignee
维谛技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维谛技术有限公司 filed Critical 维谛技术有限公司
Publication of WO2017219650A1 publication Critical patent/WO2017219650A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers

Definitions

  • the invention relates to the technical field of refrigeration equipment, in particular to an air conditioning system, a composite condenser, an operation control method and device of an air conditioning system.
  • the current hot-drainage data room is often used in the cooling system.
  • the chilled water obtained by the chiller is directly connected to the cooling coil disposed in the data cabinet, and the heat is cooled by the cooling coil to the air.
  • the biggest hidden danger of this solution is that once the cooling coil leaks, it will cause immeasurable loss.
  • the large multi-connected air conditioning system generally uses a long connecting pipeline, which affects the oil return of the compressor system, thus affecting the compression.
  • the reliability of the machine system which in turn affects the reliability of the entire air conditioning system.
  • the object of the embodiments of the present invention is to provide an air conditioning system, a composite condenser, an air conditioning system operation control method and device, to improve the annual energy efficiency ratio of the air conditioner, reduce air conditioning energy consumption, and solve the problem of water leakage and oil return of a large air conditioning system. To improve reliability.
  • An air conditioning system includes a compressor, a condensing coil, a throttling element, and a liquid Pump, indoor unit, natural cold coil, intermediate heat exchanger and three-way valve, wherein: the intermediate heat exchanger has an evaporation side and a condensation side; the compressor, the condensing coil, the throttling element and the evaporation side are sequentially connected to form a first The closed loop structure, the liquid pump, the indoor unit and the condensation side are sequentially connected to form a second closed loop structure; the three-way valve is disposed on the pipeline between the indoor unit and the condensation side, including the first valve port, the second valve port and the third valve port The first valve port is connected to the outlet of the indoor unit, the second valve port is connected to the inlet of the condensation side, the third valve port is connected to the inlet of the natural cold coil tube, and the outlet of the natural cold coil tube is connected to the inlet of the condensation side.
  • the number of condensing coils is at least two and arranged in parallel; and/or the number of natural cold coils is at least two and arranged in parallel.
  • the condensing coil is independent of the natural cold coil; or the condensing coil and the natural cold coil are integrated into one structure.
  • the number of compressors is at least two and arranged in parallel; and/or the number of indoor units is at least two and arranged in parallel.
  • the first closed-loop structure is at least two, the number of the intermediate heat exchangers is the same as the number of the first closed-loop structures, and the one-to-one correspondence is set, and the condensation sides of the respective intermediate heat exchangers are arranged in parallel.
  • the outlet line of the condensation side of each intermediate heat exchanger is provided with a two-way regulating valve; or, when the number of intermediate heat exchanges is two, the outlet lines of the two intermediate heat exchangers pass through the three-way
  • the regulating valve is connected to the same line.
  • the connecting line in the air conditioning system is a refrigerant line
  • the optional types of the refrigerant in the refrigerant line include R22, R410A, R407C, R744, R134a, R1234yf, R290 and R600a.
  • the three-way valve is an electric three-way valve.
  • the air conditioning system further comprises temperature detecting means for detecting indoor and outdoor temperature information, and controllers respectively connected to the temperature detecting means, the electric three-way valve, the compressor, the throttling element and the liquid pump signal;
  • the controller is configured to control the compressor, the liquid pump, the throttling element, and the electric three-way valve when the outdoor temperature is higher than the set first temperature threshold or the indoor and outdoor temperature difference is less than the set first temperature difference threshold a valve port and a second valve port are opened, and a third valve port for controlling the electric three-way valve is closed;
  • the first valve port and the third valve port of the control liquid pump and the electric three-way valve are opened, and the compressor is controlled. , The throttle element and the second valve port of the electric three-way valve are closed;
  • the first valve port and the third valve port of the compressor, the throttle element, the liquid pump, the electric three-way valve are controlled to be opened, and the second valve port of the electric three-way valve is controlled to be closed.
  • the scheme can make full use of the natural cold source, thereby reducing the output and power consumption of the compressor, thereby improving the annual energy efficiency ratio of the air conditioner and reducing the energy consumption of the air conditioner.
  • the air conditioning system can be operated in the compressor mode, and the compressor, the liquid pump, the throttling element, the first valve port and the second valve port of the three-way valve are opened, The three valve ports are closed, the compressor drives the refrigerant to flow in the first closed loop structure, the refrigerant condenses heat exchange in the condensing coil, and evaporates heat in the evaporation side of the intermediate heat exchanger; the liquid pump drives the refrigerant in the second closed loop structure In the middle flow, the refrigerant condenses and exchanges heat on the condensation side of the intermediate heat exchanger, and evaporates heat exchange in the indoor unit to meet the required cooling capacity in the room; when the outdoor temperature is low or the indoor and outdoor temperature difference is large, the air conditioning system can be operated in the compressor mode, and the compressor, the liquid pump, the
  • the first valve port and the third valve port of the liquid pump and the three-way valve are opened, and the second valve port of the compressor, the throttle element and the three-way valve are closed, at this time, the liquid pump, the indoor unit, and the natural
  • the condensation side of the cold coil and the intermediate heat exchanger forms a third closed loop structure, and the condensation side acts only as a passage at this time, the liquid pump drives the refrigerant to flow in the third closed loop structure, and the refrigerant flows in the natural cold coil with the external low temperature air flow.
  • Heat exchange Condensation heat transfer evaporating heat transfer in the indoor unit to meet the required cooling capacity in the room; when the outdoor environment is in the transitional season, the air conditioning system can be operated in the mixed mode, compressor, throttling element, liquid pump, three-way valve
  • the first valve port and the third valve port are opened, and the second valve port is closed. At this time, the first closed loop structure and the third closed loop structure are in an operating state.
  • the refrigerant heat exchange is used in the indoor unit, and the waterless cooling of the machine room can be realized; since the first closed loop structure has fewer components and the path is short, The flow path of the lubricating oil discharged by the compressor is relatively short, thereby facilitating the return of the lubricating oil.
  • the air conditioning system of the solution can better solve the problem of water leakage and oil return of the large air conditioning system, thereby improving the reliability of the air conditioning system. .
  • the embodiment of the invention further provides an air conditioning system, comprising a compressor, a condensing coil, a throttling element, a liquid pump, an indoor unit, a natural cold coil, an intermediate heat exchanger and a two-way valve, wherein: the intermediate heat exchanger has The evaporation side and the condensation side; the compressor, the condensing coil, the throttling element and the evaporation side are sequentially connected to form a first closed loop structure, and the liquid pump, the indoor unit and the condensation side are sequentially connected to form a second closed loop structure; the two-way valve is disposed indoors The line between the machine and the condensation side; the inlet of the natural cold coil is connected to the outlet of the indoor unit, and the outlet of the natural cold coil is connected to the inlet of the condensation side.
  • the intermediate heat exchanger has The evaporation side and the condensation side
  • the compressor, the condensing coil, the throttling element and the evaporation side are sequentially connected to form a first closed loop
  • the air conditioning system can fully utilize the natural cold source, thereby reducing the output and power consumption of the compressor, thereby improving the annual energy efficiency ratio of the air conditioner and reducing the energy consumption of the air conditioner.
  • the embodiment of the invention further provides a composite condenser comprising a condensing coil and a natural cold coil, the condensing coil being located in a steam compressor circulation loop, wherein the natural cold coil is located in a natural cold circulation loop;
  • the steam compressor circuit includes a sequentially connected compressor, a condensing coil, a throttling element, and an evaporating element; the natural cold circuit comprising a sequentially connected liquid pump, an indoor unit, and a natural cold coil.
  • the composite condenser is applied to the above air conditioning system, which is beneficial to improving the annual energy efficiency ratio of the air conditioner, reducing the energy consumption of the air conditioner, and the structure of the composite condenser itself is relatively compact.
  • An embodiment of the present invention further provides an operation control method applied to the foregoing air conditioning system, wherein an operation mode of the air conditioning system includes a compressor mode, a natural cooling mode, and a hybrid mode, and in the compressor mode, the first closed loop structure and the second mode
  • the closed-loop structure cooperates; in the natural cold mode, the third closed-loop structure formed by the condensation side of the liquid pump, the indoor unit, the natural cold coil and the intermediate heat exchanger; in the mixed mode, the first closed loop structure and the third closed loop
  • the structures work together, and the operation control method includes:
  • the refrigeration output of the compressor is adjusted according to the first refrigeration demand.
  • the adjusting the cooling output of the compressor according to the first cooling demand includes:
  • the first threshold of the cooling demand is greater than the second threshold of the cooling demand.
  • the operation control method further includes:
  • the operating mode of the air conditioning system is adjusted based on the outdoor temperature and the saturation temperature of the first valve port of the three-way valve.
  • the adjusting the working mode of the air conditioning system according to the outdoor temperature and the saturation temperature of the first valve port of the three-way valve includes:
  • the air conditioning system is controlled to operate in the compressor mode
  • the air conditioning system is controlled to operate in the natural cooling mode
  • the air conditioning system is controlled to operate in the hybrid mode
  • the first temperature difference threshold is greater than the second temperature difference threshold.
  • the operation control method further includes:
  • the first differential pressure threshold is greater than the second differential pressure threshold.
  • the operation control method further includes:
  • the air conditioning system is controlled to be in a standby state
  • the first temperature threshold is greater than the second temperature threshold.
  • the operation control method further includes:
  • the third threshold of the cooling demand is greater than the fourth threshold of the cooling demand.
  • the operation control method further includes:
  • first pressure threshold is greater than the second pressure threshold.
  • the air conditioning system adopts the operation control method of the above embodiment, and can automatically adjust the working mode and the matching output according to actual conditions, has higher intelligence degree, higher control precision, better reliability, and is particularly suitable for application.
  • the annual energy efficiency ratio of the air conditioner can be significantly improved, and the energy consumption of the air conditioner can be reduced.
  • An embodiment of the present invention further provides an operation control apparatus applied to the foregoing air conditioning system, wherein an operation mode of the air conditioning system includes a compressor mode, a natural cold mode, and a hybrid mode, and in the compressor mode, the first closed loop structure and the second mode
  • the closed-loop structure cooperates; in the natural cold mode, the third closed-loop structure formed by the condensation side of the liquid pump, the indoor unit, the natural cold coil and the intermediate heat exchanger; in the mixed mode, the first closed loop structure and the third closed loop
  • the operation control device includes:
  • a first obtaining unit configured to acquire a saturation pressure/saturation temperature of the first valve port of the three-way valve in the compressor mode or the hybrid mode
  • a first determining unit configured to determine a first cooling demand according to a saturation pressure/saturation temperature of the first valve port of the three-way valve in the compressor mode or the hybrid mode;
  • the first control unit is configured to adjust a cooling output of the compressor according to the first cooling demand.
  • the first control unit is configured to increase a cooling output of the compressor when the first cooling demand is greater than a first threshold of a set cooling demand; and when the first cooling demand is less than a set cooling Reducing a cooling output of the compressor when the second threshold is required; maintaining the compressor when the first cooling demand is not less than a second threshold of the set cooling demand and not greater than a first threshold of the set cooling demand The original cooling output; wherein the first threshold of the cooling demand is greater than the second threshold of the cooling demand.
  • the operation control device further includes:
  • a second obtaining unit configured to acquire an outdoor temperature and a pressure/temperature of the first valve port of the three-way valve
  • a second determining unit configured to determine a saturation temperature of the first valve port of the three-way valve according to a pressure/temperature of the first valve port of the three-way valve
  • the second control unit is configured to adjust an operating mode of the air conditioning system according to a saturation temperature of the first valve port of the three-way valve.
  • the second control unit is configured to control the air conditioning system to operate in the compressor mode when the difference between the outdoor temperature and the saturation temperature of the first valve port of the three-way valve is greater than a set first temperature difference threshold;
  • the air conditioning system is controlled to operate in the natural cooling mode; when the outdoor temperature and the first valve port of the three-way valve are saturated
  • the difference between the temperatures is not less than the set second temperature difference threshold, and is not greater than the set first temperature difference threshold.
  • the tuning system operates in a hybrid mode; wherein the first temperature difference threshold is greater than the second temperature difference threshold.
  • the operation control device further includes:
  • a third obtaining unit configured to acquire an indoor temperature
  • a fourth acquiring unit configured to acquire a pressure difference between the inlet and the outlet of the liquid pump when the indoor temperature is greater than the set first temperature threshold
  • a third control unit configured to reduce the output of the liquid pump when the inlet and outlet pressure difference of the liquid pump is greater than a set first differential pressure threshold; when the inlet and outlet pressure difference of the liquid pump is less than a set
  • the second differential pressure threshold is increased, the output of the liquid pump is increased; when the differential pressure of the inlet and outlet of the liquid pump is not less than the set second differential pressure threshold, and is not greater than the set first differential pressure threshold, the maintenance liquid The original output of the pump; wherein the first differential pressure threshold is greater than the second differential pressure threshold.
  • the operation control device further includes:
  • a fourth control unit configured to control the air conditioning system to be in a standby state when the indoor temperature is less than the set second temperature threshold; when the indoor temperature is not less than the set second temperature threshold, and not greater than the set first temperature threshold Maintaining the original output state of the air conditioning system; wherein the first temperature threshold is greater than the second temperature threshold.
  • the operation control device further includes:
  • a fifth obtaining unit configured to obtain a saturation pressure/saturation temperature of the first valve port of the three-way valve in the natural cold mode
  • a third determining unit configured to determine a second cooling demand according to a saturation pressure/saturation temperature of the first valve port of the three-way valve in the natural cooling mode
  • a fifth control unit configured to increase an output of a fan disposed at the natural cold coil when the second cooling demand is greater than a third threshold of the set cooling demand; and when the second cooling demand is less than a set cooling demand
  • the fourth threshold is used to reduce the output of the fan provided at the natural cold coil; when the second cooling demand is not less than the fourth threshold of the set cooling demand and not greater than the third threshold of the set cooling demand, the maintenance is maintained.
  • the original output of the fan is set in the natural cold coil; wherein the third threshold of the cooling demand is greater than the fourth threshold of the cooling demand.
  • the operation control device further includes:
  • a sixth obtaining unit configured to acquire an outlet pressure of the compressor in the compressor mode
  • a sixth control unit configured to increase an output of a fan disposed at a condensing coil when an outlet pressure of the compressor is greater than a set first pressure threshold; and when an outlet pressure of the compressor is less than a second set At the pressure threshold, reducing the output of the fan provided at the condensing coil; maintaining the condensing coil when the outlet pressure of the compressor is not less than the set second pressure threshold and not greater than the set first pressure threshold
  • the location sets the original output of the fan; wherein the first pressure threshold is greater than the second pressure threshold.
  • the air conditioning system adopts the operation control method of the above embodiment, and can automatically adjust the working mode and the matching output according to the actual situation, the degree of intelligence is high, the control precision is high, and the reliability is good, and is particularly suitable for a large multi-connected air conditioning system. It can significantly improve the annual energy efficiency ratio of air conditioners and reduce the energy consumption of air conditioners.
  • FIG. 1 is a schematic structural view of an air conditioning system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an air conditioning system according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an air conditioning system according to another embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of an operation control method of an air conditioning system according to a first embodiment of the present invention
  • FIG. 5 is a schematic flow chart of an operation control method of an air conditioning system according to a second embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of an operation control method of an air conditioning system according to a third embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of an operation control method of an air conditioning system according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of an operation control method of an air conditioning system according to a fifth embodiment of the present invention.
  • the embodiment of the invention provides an air conditioning system, a composite condenser, and an air conditioning system. Operation control method and device. In order to make the objects, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below.
  • an air conditioning system includes a compressor 1, a condensing coil 21, a throttling element 3, a liquid pump 6, an indoor unit 7, a natural cold coil 22, and an intermediate heat exchanger 4. And a three-way valve 5, wherein: the intermediate heat exchanger 4 has an evaporation side 41 and a condensation side 42; the compressor 1, the condensing coil 21, the throttling element 3 and the evaporation side 41 are sequentially connected to form a first closed loop structure, and the liquid pump 6 The indoor unit 7 and the condensation side 42 are sequentially connected to form a second closed loop structure; the three-way valve 5 is disposed on the pipeline between the indoor unit 7 and the condensation side 42 and includes a first valve port 51, a second valve port 52 and a third The valve port 53, the first valve port 51 is connected to the outlet of the indoor unit 7, the second valve port 52 is connected to the inlet of the condensation side 42, and the third valve port 53 is connected to the inlet of the natural cold coil
  • the scheme can make full use of the natural cold source, thereby reducing the output and power consumption of the compressor, thereby improving the annual energy efficiency ratio of the air conditioner and reducing the energy consumption of the air conditioner.
  • the air conditioning system can operate in the compressor mode, the compressor 1, the liquid pump 6, the throttle element 3, the first valve port 51 and the second valve port 52 of the three-way valve 5
  • the compressor 1 drives the refrigerant to flow in the first closed loop structure, the refrigerant condenses heat exchange in the condensing coil 21, and evaporates heat exchange on the evaporation side 41 of the intermediate heat exchanger 4
  • the pump 6 drives the refrigerant to flow in the second closed loop structure, the refrigerant condenses heat exchange on the condensation side 42 of the intermediate heat exchanger 4, and evaporates heat exchange in the indoor unit 7 to meet the required cooling capacity in the room;
  • the air conditioning system can be operated in the natural cold mode, and the first valve port 51 and the third valve port 53 of the liquid pump 6, the three-way valve 5 are opened, and the compressor 1 is throttled.
  • the second valve port 52 of the element 3 and the three-way valve 5 is closed.
  • the condensation side 42 of the liquid pump 6, the indoor unit 7, the natural cold coil 22 and the intermediate heat exchanger 4 forms a third closed loop structure, and the condensation side 42
  • the liquid pump 6 drives the refrigerant to flow in the third closed-loop structure, and the refrigerant exchanges heat with the external low-temperature airflow in the natural cold coil 22 to realize condensation heat exchange and evaporate heat exchange in the indoor unit 7. Thereby meeting the required cooling capacity in the room;
  • the air conditioning system can be operated in the mixing mode, and the compressor 1, the throttle element 3, the liquid pump 6, the first valve port 51 and the third valve port 53 of the three-way valve 5 are opened, and the second valve The port 52 is closed, at which time the first closed loop structure and the third closed loop structure are in operation.
  • the evaporation side 41 and the condensation side 42 of the intermediate heat exchanger 4 are independent of each other, refrigerant heat exchange is used in the indoor unit 7, and waterless cooling of the machine room can be realized; since the number of components in the first closed loop structure is small, the path Shorter, therefore, the flow path of the lubricant discharged by the compressor is relatively short, which is advantageous
  • the lubricating oil is returned to the oil; the air conditioning system of the scheme can better solve the problem of water leakage and oil return of the large air conditioning system, thereby improving the reliability.
  • the specific type of the intermediate heat exchanger 4 is not limited and may be a plate heat exchanger, a shell and tube heat exchanger or the like. As shown in FIG. 1 , it can be known to those skilled in the art that the air conditioning system may further include the following components in addition to the above-mentioned key components: the one-way valve 12, the first liquid storage tank 13, the second liquid storage tank 14, and the flow regulating valve. 15, and so on. Generally, the indoor unit 7 and the flow regulating valve 15 are placed indoors and may be referred to as an end module. Other components of the system may be referred to as a host module and may be placed outdoors.
  • the specific type of the throttle element 3 is not limited, and may be, for example, an electronic expansion valve, a thermal expansion valve or a capillary tube or the like.
  • the indoor unit 7 is placed in a machine room that needs to be cooled, and generally includes components such as a heat exchange coil, a fan, a heating humidifying device, and the like.
  • the low-temperature refrigerant liquid enters the coil of the indoor unit 7 under the driving of the liquid pump 6, and evaporates heat in the coil to exchange heat with the indoor hot air, and the fan sends the cooled air into the machine room, thereby reducing the temperature of the machine room.
  • a flow regulating valve 15 provided on the outlet line of the indoor unit is used to regulate the flow rate of the refrigerant.
  • the specific number of the condensing coil 21 and the natural cold coil 22 is not limited and can be determined according to the amount of cooling required for the air conditioning system.
  • the number of the condensing coils 21 is at least two and arranged in parallel
  • the number of the natural cold coils 22 is at least two and arranged in parallel, so that the design of the large multi-connected air conditioner can be matched. Meet the cooling capacity of the machine room in different seasons.
  • a condensing coil 21 and a natural cold coil 22 are integrally combined to form a composite condenser 2, and the composite structure can be used to reduce the piping. Reduce the floor space and make the structure of the air conditioning system more compact.
  • the condensing coil and the natural cold coil may also be disposed independently of each other, and are not specifically limited herein.
  • the number of the compressors 1 is not limited, for example, one, two or more, as shown in FIG. 2, when the number of the compressors 1 is at least two, at least two compressors 1 Parallel settings.
  • the number of indoor units 7 located indoors is not limited. When the number of indoor units 7 is at least two, at least two indoor units 7 are arranged in parallel.
  • the number of compressors 1 and the number of indoor units 7 can be designed according to actual needs.
  • the connecting line in the air conditioning system is a refrigerant line, thereby enabling Waterless cooling in the equipment room.
  • refrigerant in the refrigerant line include R22, R410A, R407C, R744, R134a, R1234yf, R290, and R600a.
  • the refrigerant in the connecting line of the first closed loop structure and the connecting line of the second closed loop structure may be the same or different, but flow through the connecting line between the refrigerant of the natural cold coil 22 and the second closed loop structure.
  • the refrigerant should be the same.
  • the number of first closed loop structures is not limited to one.
  • the first closed loop structure is at least two, the number of intermediate heat exchangers is the same as the number of the first closed loop structures and is arranged one-to-one, and the condensation sides of the respective intermediate heat exchangers are arranged in parallel.
  • the first closed loop structure is two (the drawing is omitted, only one of the first closed loop structures is shown), the intermediate heat exchanger 4 is two, and the two intermediate exchanges are The heat exchanger 4 is arranged correspondingly to the two first closed-loop structures, the condensation sides 42 of the two intermediate heat exchangers 4 are arranged in parallel, and the two-way control valve 8 is arranged on the outlet line of the condensation side 42 respectively.
  • the outlet pipes of the two intermediate heat exchangers can also be connected to the second liquid storage pump through the three-way regulating valve connected to the same pipeline.
  • the specific type of the three-way valve 5 is not limited, and a manual valve can be selected, which is operated by an operator according to environmental conditions. However, preferably, the three-way valve 5 adopts an electric three-way valve, so that the electronic control can be used to automatically switch between different working modes of the air conditioning system.
  • the air conditioning system further includes a temperature detecting device (not shown) for detecting indoor and outdoor temperature information, and a temperature detecting device, an electric three-way valve (ie, the three-way valve 5 shown in the figure), and the compressor 1 respectively.
  • a controller configured to control the first valve port of the compressor 1, the throttle element 3, and the electric three-way valve when the outdoor temperature is higher than the set first temperature threshold or the indoor and outdoor temperature difference is less than the set first temperature difference threshold 51 and the second valve port 52 are opened, and the third valve port 53 of the electric three-way valve is controlled to be closed;
  • the air conditioning system can automatically perform logical judgment according to indoor and outdoor temperature conditions, thereby switching to an appropriate working mode, and the degree of intelligence is relatively high, and is particularly suitable for a large multi-connected air conditioning system to further improve the annual air conditioning. Energy efficiency ratio, reducing energy consumption of air conditioners.
  • the air conditioning system When the outdoor temperature is high or the indoor and outdoor temperature difference is small, the air conditioning system operates in the compressor mode. At this time, the first valve port 51 and the second valve port 52 of the compressor 1, the throttle element 3, and the three-way valve 5 are opened. The third valve port 53 is closed and the liquid pump 6 is turned on. The refrigerant is compressed into high-temperature and high-pressure gas by the compressor 1, and then enters the condensing coil 21 of the composite condenser 2 through the check valve 12, and the refrigerant condenses and radiates into the low-temperature and high-pressure liquid in the condensing coil 21, and then passes through the first storage.
  • the liquid tank 13 After the liquid tank 13 enters the throttling element 3, it is throttled into a low-temperature low-pressure liquid, and then enters the evaporation side 41 of the intermediate heat exchanger 4 to perform evaporative heat exchange, and the evaporated refrigerant gas returns to the compressor 1 to complete one cycle.
  • the higher temperature refrigerant vapor flowing out of the indoor unit 7 passes through the first valve port 51 and the second valve port 52 of the three-way valve 5 to enter the condensation side 42 of the intermediate heat exchanger 4 for condensation heat exchange to become a low temperature.
  • the refrigerant liquid enters the liquid pump 6 through the second liquid storage tank 14, and enters the indoor unit 7 by the liquid pump 6 to exchange heat with the indoor air to complete one cycle.
  • the air conditioning system When the outdoor temperature is low or the indoor and outdoor temperature difference is large, the air conditioning system operates in the natural cooling mode, and the first valve port 51 and the third valve port 53 of the liquid pump 6, the three-way valve 5 are opened, and the compressor 1 and the throttle element are opened. The second valve port 52 of the 3 and three-way valve 5 is closed.
  • the higher temperature refrigerant vapor flowing out of the indoor unit 7 enters the natural cold coil 22 of the composite condenser 2 through the first valve port 51 and the third valve port 53 of the three-way valve 5, and exchanges heat with the external low-temperature air stream.
  • the refrigerant passes through the condensation side 42 of the intermediate heat exchanger 4, at this time, since there is no refrigerant flow on the evaporation side 41 of the intermediate heat exchanger 4, the refrigerant does not exchange heat with the evaporation side 41 on the condensation side 42, which condensation
  • the side 42 serves only as a passage, and the refrigerant flows through the passage and enters the liquid pump 6 through the second liquid storage tank 14, and is driven by the liquid pump 6 to enter the indoor unit 7 to exchange heat with the indoor air to complete one cycle.
  • the air conditioning system When the outdoor environment is in the transitional season, the air conditioning system is operated in the mixing mode, and the first valve port 51 and the third valve port 53 of the compressor 1, the throttle element 3, the liquid pump 6, the three-way valve 5 are opened, and the second valve port is opened. 52 closed.
  • the refrigerant is compressed into high temperature and high pressure gas by the compressor 1, and then enters the condensing coil 21 of the composite condenser 2 through the check valve 12, and the refrigerant condenses and releases heat into a low temperature and high pressure liquid, and then passes through the first liquid storage tank 13 After entering the throttling element 3, it is throttled into a low-temperature low-pressure liquid, and then enters the evaporation side 41 of the intermediate heat exchanger 4, exchanges heat with the refrigerant of the condensation side 42 of the intermediate heat exchanger 4, and the evaporated refrigerant gas returns. In the compressor 1, one cycle is completed.
  • the higher temperature refrigerant vapor flowing out of the indoor unit 7 enters the natural cold coil 22 of the composite condenser 2 through the first valve port 51 and the third valve port 53 of the three-way valve 5, and is heated by the external low-temperature airflow.
  • the initial cooling is completed, and the cooled refrigerant enters the condensation side 42 of the intermediate heat exchanger 4 and further undergoes secondary heat exchange and cooling with the refrigerant on the evaporation side 41 of the intermediate heat exchanger 4, after which the refrigerant passes through the second storage.
  • the liquid tank 14 enters the liquid pump 6, and is driven by the liquid pump 6 to enter the indoor unit 7 to exchange heat with indoor air to complete one cycle.
  • an embodiment of the present invention further provides an air conditioning system including a compressor 1, a condensing coil 21, a throttling element 3, a liquid pump 6, an indoor unit 7, a natural cold coil 22, and an intermediate heat exchanger. 4 and two-way valve 05, wherein: the intermediate heat exchanger 4 has an evaporation side 41 and a condensation side 42; the compressor 1, the condensing coil 21, the throttling element 3 and the evaporation side 41 are sequentially connected to form a first closed-loop structure, a liquid pump 6.
  • the indoor unit 7 and the condensation side 42 are sequentially connected to form a second closed loop structure; the two-way valve 05 is disposed on the pipeline between the indoor unit 7 and the condensation side 42; the inlet of the natural cold coil 22 is connected to the outlet of the indoor unit 7 The outlet of the natural cold coil 22 is connected to the inlet of the condensation side 42.
  • the air conditioning system can be operated in the compressor mode, and the compressor 1, the liquid pump 6, the throttling element 3, the two-way valve 05 are opened, and the compressor 1 drives the refrigerant in the first closed loop.
  • the refrigerant condenses heat exchange in the condensing coil 21, evaporating heat exchange on the evaporation side 41 of the intermediate heat exchanger 4; the liquid pump 6 drives the refrigerant to flow in the second closed loop structure, and the refrigerant exchanges heat in the middle
  • the condensation side 42 of the device 4 condenses heat exchange, and evaporates heat exchange in the indoor unit 7 to meet the required cooling capacity in the room; in this mode, although the outlet of the indoor unit 7 is connected to the natural cold coil 22, The higher the temperature, the refrigerant will automatically select the lower pressure side of the line, that is, through the two-way valve 05 to the condensation side 42 of the intermediate heat exchanger 4.
  • the air conditioning system can be operated in the natural cooling mode, the liquid pump 6 is turned on, the compressor 1, the throttle element 3 and the two-way valve 05 are closed, at this time, the liquid pump 6, the indoor
  • the condensing side 42 of the machine 7, the natural chiller 22 and the intermediate heat exchanger 4 form a third closed loop structure, the condensing side 42 acts only as a passage, and the liquid pump 6 drives the refrigerant to flow in the third closed loop structure, the refrigerant in nature
  • the cold coil 22 exchanges heat with the external low-temperature airflow to realize condensation heat exchange, and evaporates heat exchange in the indoor unit 7, thereby satisfying the required cooling capacity in the room;
  • the air conditioning system can be operated in the hybrid mode, the compressor 1, the throttle element 3, the liquid pump 6 are opened, and the two-way valve 05 is closed. At this time, the first closed loop structure and the third closed loop structure are in operation. status.
  • the refrigerant flowing out of the indoor unit 7 first flows into the natural condenser 22, then enters the condensation side 42 of the intermediate heat exchanger 4, and exchanges heat with the evaporation side 41 of the intermediate heat exchanger 4.
  • the air conditioning system can fully utilize the natural cold source, thereby reducing the output and power consumption of the compressor, thereby improving the annual energy efficiency ratio of the air conditioner and reducing the energy consumption of the air conditioner.
  • an embodiment of the present invention further provides a composite condenser 2 including a condensing coil 21 and a natural cold coil 22.
  • the condensing coil 21 is located in a steam compressor circulation loop, and the natural cold coil 22 is located.
  • the steam compressor circuit comprises at least a sequentially connected compressor 1, a condensing coil 21, a throttling element 3 and an evaporating element (the evaporation side 41 of the intermediate heat exchanger 4 in Fig. 1 as an evaporating element); a natural cold cycle
  • the circuit includes at least a liquid pump 6, a indoor unit 7 and a natural cold coil 22 which are sequentially connected (the condensation side 42 of the intermediate heat exchanger 4 in Fig.
  • the composite condenser 2 is applied to the above air conditioning system, which is beneficial to improving the annual energy efficiency ratio of the air conditioner, reducing the energy consumption of the air conditioner, and the structure of the composite condenser itself is also relatively compact.
  • an embodiment of the present invention further provides an operation control method applied to the foregoing air conditioning system.
  • the working mode of the air conditioning system includes a compressor mode, a natural cooling mode, and a hybrid mode.
  • the compressor mode the first closed loop The structure and the second closed loop structure work together; in the natural cold mode, the third closed loop structure formed by the condensation side of the liquid pump, the indoor unit, the natural cold coil and the intermediate heat exchanger; in the mixed mode, the first closed loop structure
  • the operational control method includes the following steps:
  • Step 101 Obtain a saturation pressure/saturation temperature of the first valve port of the three-way valve in the compressor mode or the hybrid mode;
  • Step 102 Determine a first cooling demand according to a saturation pressure/saturation temperature of the first valve port of the three-way valve in the compressor mode or the hybrid mode;
  • Step 103 Adjust the refrigeration output of the compressor according to the first cooling demand.
  • step 103 includes:
  • Step 1031 When the first cooling demand is greater than the first threshold of the set cooling demand, increase the cooling output of the compressor;
  • Step 1032 When the first cooling demand is less than the second threshold of the set cooling demand, reduce the cooling output of the compressor;
  • Step 1033 When the first cooling demand is not less than the second threshold of the set cooling demand, and is not greater than the first threshold of the set cooling demand, maintaining the original cooling output of the compressor;
  • the first threshold of the cooling demand is greater than the second threshold of the cooling demand.
  • the first threshold for cooling demand and the second threshold for cooling demand can be empirically determined and pre-stored in the controller.
  • the adjustment of the refrigeration output of the compressor can be realized by adjusting the number of compressors, the speed of the compressor, the frequency of the compressor, or the ratio of the volume of the compressor, which is not specifically limited herein.
  • the air conditioning system adopts the operation control method of the above embodiment.
  • the refrigeration output of the compressor can be automatically adjusted according to the saturation pressure/saturation temperature of the first valve port of the three-way valve, and the degree of intelligence is improved.
  • Higher, higher control precision and better reliability can significantly improve the annual energy efficiency ratio of air conditioners and reduce the energy consumption of air conditioners.
  • the operation control method further includes the following steps:
  • Step 201 Obtain an outdoor temperature and a pressure/temperature of the first valve port of the three-way valve
  • Step 202 determining a saturation temperature of the first valve port of the three-way valve according to the pressure/temperature of the first valve port of the three-way valve;
  • Step 203 Adjust an operating mode of the air conditioning system according to the outdoor temperature and the saturation temperature of the first valve port of the three-way valve.
  • step 203 includes:
  • Step 2031 When the difference between the outdoor temperature and the saturation temperature of the first valve port of the three-way valve is greater than the set first temperature difference threshold, the air conditioning system is controlled to operate in the compressor mode;
  • Step 2032 When the difference between the outdoor temperature and the saturation temperature of the first valve port of the three-way valve is less than the set second temperature difference threshold, the air conditioning system is controlled to operate in the natural cooling mode;
  • Step 2033 When the difference between the outdoor temperature and the saturation temperature of the first valve port of the three-way valve is not less than the set second temperature difference threshold, and is not greater than the set first temperature difference threshold, the air conditioning system is controlled to operate in the hybrid mode. ;
  • the first temperature difference threshold is greater than the second temperature difference threshold.
  • the first temperature difference threshold and the second temperature difference threshold may be empirically determined and pre-stored in the controller.
  • the air conditioning system adopts the operation control method of the above embodiment, and can automatically adjust the working mode according to the outdoor temperature and the pressure/temperature of the first valve port of the three-way valve, with higher intelligence degree, higher control precision and better reliability. It can significantly improve the annual energy efficiency ratio of air conditioners and reduce the energy consumption of air conditioners, especially suitable for large multi-connected air conditioning systems.
  • the operation control method further includes the following steps:
  • Step 301 Acquire indoor temperature
  • Step 302a when the indoor temperature is greater than the set first temperature threshold, obtaining the inlet and outlet pressure difference of the liquid pump;
  • Step 303 Adjust the output of the liquid pump according to the pressure difference between the inlet and the outlet of the liquid pump.
  • step 303 includes:
  • Step 3031 When the inlet and outlet pressure difference of the liquid pump is greater than the set first differential pressure threshold, reduce the output of the liquid pump;
  • Step 3032 When the pressure difference between the inlet and outlet of the liquid pump is less than the set second pressure difference threshold, increase the output of the liquid pump;
  • Step 3033 When the pressure difference between the inlet and outlet of the liquid pump is not less than the set second differential pressure threshold, and is not greater than the set first differential pressure threshold, maintaining the original output of the liquid pump;
  • the first differential pressure threshold is greater than the second differential pressure threshold.
  • the first temperature threshold, the first differential pressure threshold, and the second differential pressure threshold may be empirically determined and pre-stored in the controller.
  • the air conditioning system adopts the operation control method of the above embodiment.
  • the output of the liquid pump can be automatically adjusted according to the pressure difference between the inlet and the outlet of the liquid pump, and the degree of intelligence is high, and Energy saving and reliable.
  • the adjustment range of the liquid pump output is 10% to 100%, which can be realized by adjusting the rotation speed or frequency of the liquid pump, etc., and is not specifically limited herein.
  • the operation control method further includes the following steps:
  • Step 302b when the indoor temperature is less than the set second temperature threshold, controlling the air conditioning system to be in a standby state;
  • Step 302c Maintaining an original output state of the air conditioning system when the indoor temperature is not less than the set second temperature threshold and not greater than the set first temperature threshold;
  • the first temperature threshold is greater than the second temperature threshold.
  • the first temperature threshold and the second temperature threshold may be empirically determined and pre-stored in the controller.
  • the air conditioning system can automatically adjust the working state according to the indoor temperature condition, thereby further improving the intelligence degree and energy saving of the air conditioning system.
  • the operation control method further includes the following steps:
  • Step 401 Obtain a saturation pressure/saturation temperature of the first valve port of the three-way valve in the natural cold mode
  • Step 402 Determine a second cooling demand according to a saturation pressure/saturation temperature of the first valve port of the three-way valve in the natural cold mode
  • Step 403 Adjust the output of the fan disposed at the natural cold coil according to the second cooling demand.
  • step 403 includes:
  • Step 4031 When the second cooling demand is greater than the third threshold of the set cooling demand, increase the output of the fan disposed at the natural cold coil;
  • Step 4032 When the second cooling demand is less than the fourth threshold of the set cooling demand, reduce the output of the fan disposed at the natural cold coil;
  • Step 4033 When the second cooling demand is not less than the fourth threshold of the set cooling demand, and is not greater than the third threshold of the set cooling demand, maintaining the original output of the fan disposed at the natural cold coil;
  • the third threshold of the cooling demand is greater than the fourth threshold of the cooling demand.
  • the third threshold for refrigeration demand and the fourth threshold for refrigeration demand can be empirically determined and pre-stored in the controller.
  • the air conditioning system can automatically adjust the output of the fan according to the saturation pressure/saturation temperature of the first valve port of the three-way valve in the natural cooling mode, thereby further improving the intelligence of the air conditioning system. Degree and energy efficiency. Adjusting the output of the fan can be realized by adjusting the speed, frequency, number of running stages or the number of operations of the fan, and is not specifically limited herein.
  • the operation control method further includes the following steps:
  • Step 501 Obtain an outlet pressure of a compressor in a compressor mode
  • Step 502 Adjust the output of the fan disposed at the condensing coil according to the outlet pressure of the compressor in the compressor mode.
  • step 502 includes:
  • Step 5021 When the outlet pressure of the compressor is greater than the set first pressure threshold, increase the output of the fan disposed at the condensing coil;
  • Step 5022 When the outlet pressure of the compressor is less than the set second pressure threshold, reduce the output of the fan disposed at the condensing coil;
  • Step 5023 when the outlet pressure of the compressor is not less than the set second pressure threshold, and is not greater than the set first pressure threshold, maintaining the original output of the fan disposed at the condensing coil;
  • first pressure threshold is greater than the second pressure threshold.
  • the first pressure threshold and the second pressure threshold may be empirically determined and pre-stored in the controller.
  • the air conditioner system can automatically adjust the output of the fan according to the outlet pressure of the compressor in the compressor mode, thereby further improving the intelligence degree and energy saving of the air conditioning system. Adjusting the output of the fan can be realized by adjusting the speed, frequency, number of running stages or the number of operations of the fan, and is not specifically limited herein.
  • the condensing coil 21 and the natural cold coil 22 when the condensing coil 21 and the natural cold coil 22 are in a single composite structure, the condensing coil 21 and the natural cold coil 22 can share a group of fan devices.
  • the air conditioning system adopts the operation control method of the above embodiment, and can automatically adjust the working mode and the matching output according to actual conditions, has higher intelligence degree, higher control precision and better reliability, and is particularly suitable for large multi-connected air conditioning systems. It can significantly improve the annual energy efficiency ratio of air conditioners and reduce the energy consumption of air conditioners.
  • An embodiment of the present invention further provides an operation control device applied to the foregoing air conditioning system, wherein an operation mode of the air conditioning system includes a compressor mode, a natural cooling mode, and a hybrid mode, and in the compressor mode, the first closed loop structure and the second closed loop structure Working together; in the natural cold mode, the third closed-loop structure formed by the condensation side of the liquid pump, the indoor unit, the natural cold coil and the intermediate heat exchanger; in the mixed mode, the first closed The ring structure and the third closed loop structure work together, and the operation control device comprises:
  • a first obtaining unit configured to acquire a saturation pressure/saturation temperature of the first valve port of the three-way valve in the compressor mode or the hybrid mode
  • a first determining unit configured to determine a first cooling demand according to a saturation pressure/saturation temperature of the first valve port of the three-way valve in the compressor mode or the hybrid mode;
  • the first control unit is configured to adjust the cooling output of the compressor according to the first cooling demand.
  • the first control unit is configured to increase a cooling output of the compressor when the first cooling demand is greater than a first threshold of the set cooling demand; and when the first cooling demand is less than a second threshold of the set cooling demand, Reducing the refrigeration output of the compressor; maintaining the original refrigeration output of the compressor when the first refrigeration demand is not less than the second threshold of the set cooling demand and not greater than the first threshold of the set cooling demand; The first threshold of the cooling demand is greater than the second threshold of the cooling demand.
  • the operation control device further includes:
  • a second obtaining unit configured to acquire an outdoor temperature and a pressure/temperature of the first valve port of the three-way valve
  • a second determining unit configured to determine a saturation temperature of the first valve port of the three-way valve according to a pressure/temperature of the first valve port of the three-way valve
  • the second control unit is configured to adjust an operating mode of the air conditioning system according to a saturation temperature of the first valve port of the three-way valve.
  • the second control unit is configured to control the air conditioning system to operate in the compressor mode when the difference between the outdoor temperature and the saturation temperature of the first valve port of the three-way valve is greater than a set first temperature difference threshold;
  • the air conditioning system is controlled to operate in the natural cooling mode;
  • the outdoor temperature is equal to the saturation temperature of the first valve port of the three-way valve
  • the air conditioning system is controlled to operate in the hybrid mode; wherein the first temperature difference threshold is greater than the second temperature difference threshold.
  • the operation control device further comprises:
  • a third obtaining unit configured to acquire an indoor temperature
  • a fourth acquiring unit configured to acquire a pressure difference between the inlet and the outlet of the liquid pump when the indoor temperature is greater than the set first temperature threshold
  • the third control unit is configured to reduce the output of the liquid pump when the pressure difference between the inlet and outlet of the liquid pump is greater than the set first pressure difference threshold; when the inlet and outlet pressure difference of the liquid pump is less than the set second pressure difference When the threshold value is increased, the output of the liquid pump is increased; when the pressure difference between the inlet and outlet of the liquid pump is not less than the set second differential pressure threshold, and is not greater than the set first differential pressure threshold, the original output of the liquid pump is maintained. Wherein the first differential pressure threshold is greater than the second differential pressure threshold.
  • the operation control device further comprises:
  • a fourth control unit configured to control the air conditioning system to be in a standby state when the indoor temperature is less than the set second temperature threshold; when the indoor temperature is not less than the set second temperature threshold, and not greater than the set first temperature threshold Maintaining the original output state of the air conditioning system; wherein the first temperature threshold is greater than the second temperature threshold.
  • the operation control device further comprises:
  • a fifth obtaining unit configured to obtain a saturation pressure/saturation temperature of the first valve port of the three-way valve in the natural cold mode
  • a third determining unit configured to determine a second cooling demand according to a saturation pressure/saturation temperature of the first valve port of the three-way valve in the natural cold mode
  • a fifth control unit configured to increase an output of a fan disposed at the natural cold coil when the second cooling demand is greater than a third threshold of the set cooling demand; and when the second cooling demand is less than a fourth threshold of the set cooling demand , reducing the output of the fan installed at the natural cold coil; when the second cooling demand is not less than the fourth threshold of the set cooling demand, and not greater than the third threshold of the set cooling demand, maintaining the natural cold coil location The original output of the fan; wherein the third threshold of the cooling demand is greater than the fourth threshold of the cooling demand.
  • the operation control device further comprises:
  • a sixth obtaining unit configured to acquire an outlet pressure of the compressor in the compressor mode
  • a sixth control unit configured to increase an output of the fan disposed at the condensing coil when the outlet pressure of the compressor is greater than the set first pressure threshold; when the outlet pressure of the compressor is less than the set second pressure threshold, Decrease the output of the fan installed at the condensing coil; when the outlet pressure of the compressor is not less than the set second pressure threshold and is not greater than the set first pressure threshold, maintain the condensing coil setting The original output of the fan; wherein the first pressure threshold is greater than the second pressure threshold.
  • the air conditioning system adopts the operation control method of the above embodiment, and can automatically adjust the working mode and the matching output according to the actual situation, the degree of intelligence is high, the control precision is high, and the reliability is good, and is particularly suitable for a large multi-connected air conditioning system. It can significantly improve the annual energy efficiency ratio of air conditioners and reduce the energy consumption of air conditioners.

Abstract

一种空调系统,包括压缩机(1)、冷凝盘管(21)、节流元件(3)、液泵(6)、室内机(7)、自然冷盘管(22)、中间换热器(4)和三通阀(5),其中:中间换热器(4)具有蒸发侧(41)和冷凝侧(42);压缩机(1)、冷凝盘管(21)、节流元件(3)和蒸发侧(41)顺序连接形成第一闭环结构,液泵(6)、室内机(7)和冷凝侧(42)顺序连接形成第二闭环结构;三通阀(5)设置于室内机(7)和冷凝侧(42)之间的管路上,包括第一阀口(51)、第二阀口(52)和第三阀口(53),第一阀口(51)与室内机(7)的出口连接,第二阀口(52)与冷凝侧(42)的入口连接,第三阀口(53)与自然冷盘管(22)的入口连接;自然冷盘管(22)的出口与冷凝侧(42)的入口连接。同时提供了一种复合冷凝器、空调系统的运行控制方法及装置。该系统能提高空调的全年能效比,降低空调能耗,解决大型空调系统的漏水和回油问题,提升可靠性。

Description

空调系统、复合冷凝器、空调系统的运行控制方法及装置
本申请要求在2016年6月21日提交中国专利局、申请号为201610455564.3、发明名称为“空调系统、复合冷凝器、空调系统的运行控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及制冷设备技术领域,特别是涉及一种空调系统、复合冷凝器、空调系统的运行控制方法及装置。
背景技术
信息产业和数字化建设的快速发展,推动了数据机房、通讯基站的数量和建设规模的快速增长。根据统计,机房、基站中空调能耗约占其总能耗的40%~50%,机房、基站的显热负荷比较大,一年四季需要连续制冷运行。因此,如何提高空调的全年能效比,降低空调能耗是目前亟待解决的技术问题。
此外,目前高热密度数据机房散热比较常采用的方案为:将冷水机组制取的冷冻水直接通入设置在数据机柜中的冷却盘管内,通过冷却盘管与空气换热为机房降温。这种方案最大的隐患是冷却盘管一旦漏水,将导致不可估量的损失;而且,大型多联空调系统一般使用较长的连接管路,这影响到压缩机系统的回油,从而影响到压缩机系统的可靠性,进而影响到整个空调系统的可靠性。
发明内容
本发明实施例的目的是提供一种空调系统、复合冷凝器、空调系统的运行控制方法及装置,以提高空调的全年能效比,降低空调能耗,解决大型空调系统的漏水和回油问题,提升可靠性。
本发明实施例所提供的空调系统,包括压缩机、冷凝盘管、节流元件、液 泵、室内机、自然冷盘管、中间换热器和三通阀,其中:中间换热器具有蒸发侧和冷凝侧;压缩机、冷凝盘管、节流元件和蒸发侧顺序连接形成第一闭环结构,液泵、室内机和冷凝侧顺序连接形成第二闭环结构;三通阀设置于室内机和冷凝侧之间的管路上,包括第一阀口、第二阀口和第三阀口,第一阀口与室内机的出口连接,第二阀口与冷凝侧的入口连接,第三阀口与自然冷盘管的入口连接;自然冷盘管的出口与冷凝侧的入口连接。
较佳的,冷凝盘管的数量至少为两个且并联设置;和/或,自然冷盘管的数量至少为两个且并联设置。
可选的,冷凝盘管与自然冷盘管相互独立;或者,冷凝盘管与自然冷盘管为一体复合结构。
可选的,压缩机的数量至少为两个且并联设置;和/或,室内机的数量至少为两个且并联设置。
可选的,第一闭环结构至少为两个,中间换热器的数量与第一闭环结构的数量相同且一一对应设置,各个中间换热器的冷凝侧并联设置。
较佳的,每个中间换热器的冷凝侧的出口管路设置有二通调节阀;或者,当中间换热的数量为两个时,两个中间换热器的出口管路通过三通调节阀连接同一管路。
优选的,空调系统中的连接管路为制冷剂管路,制冷剂管路中制冷剂的可选类型包括R22、R410A、R407C、R744、R134a、R1234yf、R290和R600a。
优选的,三通阀为电动三通阀。
优选的,空调系统还包括检测室内外温度信息的温度检测装置,以及分别与温度检测装置、电动三通阀、压缩机、节流元件和液泵信号连接的控制器;
所述控制器,用于当室外温度高于设定的第一温度阈值或室内外温差小于设定的第一温差阈值时,控制压缩机、液泵、节流元件、电动三通阀的第一阀口和第二阀口开启,及控制电动三通阀的第三阀口关闭;及
当室外温度低于设定的第二温度阈值或室内外温差大于设定的第二温差阈值时,控制液泵、电动三通阀的第一阀口和第三阀口开启,及控制压缩机、 节流元件和电动三通阀的第二阀口关闭;及
当室外温度不低于设定的第二温度阈值且不高于设定的第一温度阈值,或室内外温差不小于设定的第一温差阈值且不大于设定的第二温差阈值时,控制压缩机、节流元件、液泵、电动三通阀的第一阀口和第三阀口开启,及控制电动三通阀的第二阀口关闭。
本方案可充分利用自然冷源,从而减小压缩机的输出和功耗,进而提高空调的全年能效比,降低空调的能耗。具体的,当室外温度较高或室内外温差较小时,空调系统可运行于压缩机模式,压缩机、液泵、节流元件、三通阀的第一阀口和第二阀口开启,第三阀口关闭,压缩机驱动制冷剂在第一闭环结构中流动,制冷剂在冷凝盘管内冷凝换热,在中间换热器的蒸发侧蒸发换热;液泵驱动制冷剂在第二闭环结构中流动,制冷剂在中间换热器的冷凝侧冷凝换热,在室内机内蒸发换热,从而满足室内所需冷量;当室外温度较低或室内外温差较大时,空调系统可运行于自然冷模式,液泵、三通阀的第一阀口和第三阀口开启,压缩机、节流元件和三通阀的第二阀口关闭,此时,液泵、室内机、自然冷盘管和中间换热器的冷凝侧形成第三闭环结构,冷凝侧此时仅作为一通路,液泵驱动制冷剂在第三闭环结构中流动,制冷剂在自然冷盘管内与外界低温气流进行热交换,实现冷凝换热,在室内机内蒸发换热,从而满足室内所需冷量;当室外环境处于过渡季节时,空调系可运行于混合模式,压缩机、节流元件、液泵、三通阀的第一阀口和第三阀口开启,第二阀口关闭,此时,第一闭环结构和第三闭环结构处于工作状态。
此外,由于中间换热器的蒸发侧和冷凝侧相互独立,在室内机中使用制冷剂换热,可以实现机房的无水制冷;由于第一闭环结构中的部件较少,路径较短,因此,压缩机所排放的润滑油的流动路径相对较短,从而有利于润滑油回油;该方案空调系统可以较好的解决大型空调系统的漏水和回油问题,从而提升了空调系统的可靠性。
本发明实施例还提供一种空调系统,包括压缩机、冷凝盘管、节流元件、液泵、室内机、自然冷盘管、中间换热器和二通阀,其中:中间换热器具有蒸发侧和冷凝侧;压缩机、冷凝盘管、节流元件和蒸发侧顺序连接形成第一闭环结构,液泵、室内机和冷凝侧顺序连接形成第二闭环结构;二通阀设置于室内 机和冷凝侧之间的管路上;自然冷盘管的入口与室内机的出口连接,自然冷盘管的出口与冷凝侧的入口连接。
与前述实施例同理,该空调系统可充分利用自然冷源,从而减小压缩机的输出和功耗,进而提高空调的全年能效比,降低空调的能耗。
本发明实施例还提供一种复合冷凝器,包括冷凝盘管和自然冷盘管,所述冷凝盘管位于蒸汽压缩机循环回路中,所述自然冷盘管位于自然冷循环回路中;其中:所述蒸汽压缩机循环回路包括顺序连接的压缩机、冷凝盘管、节流元件和蒸发元件;所述自然冷循环回路包括顺序连接的液泵、室内机和自然冷盘管。该复合冷凝器应用于上述空调系统中,有利于提高空调的全年能效比,降低空调的能耗,并且复合冷凝器本身的结构也较为紧凑。
本发明实施例还提供一种应用于前述空调系统的运行控制方法,所述空调系统的工作模式包括压缩机模式、自然冷模式和混合模式,在压缩机模式下,第一闭环结构和第二闭环结构协同工作;在自然冷模式下,液泵、室内机、自然冷盘管和中间换热器的冷凝侧形成的第三闭环结构工作;在混合模式下,第一闭环结构和第三闭环结构协同工作,所述运行控制方法包括:
获取压缩机模式或混合模式下三通阀的第一阀口的饱和压力/饱和温度;
根据所述压缩机模式或混合模式下三通阀的第一阀口的饱和压力/饱和温度,确定第一制冷需求;
根据所述第一制冷需求,调整压缩机的制冷输出量。
具体的,所述根据所述第一制冷需求,调整压缩机的制冷输出量,包括:
当所述第一制冷需求大于设定的制冷需求第一阈值时,增加压缩机的制冷输出量;
当所述第一制冷需求小于设定的制冷需求第二阈值时,减小压缩机的制冷输出量;
当所述第一制冷需求不小于设定的制冷需求第二阈值,且不大于设定的制冷需求第一阈值时,维持压缩机的原有制冷输出量;
其中,制冷需求第一阈值大于制冷需求第二阈值。
较佳的,所述运行控制方法还包括:
获取室外温度及三通阀的第一阀口的压力/温度;
根据三通阀的第一阀口的压力/温度,确定三通阀的第一阀口的饱和温度;
根据所述室外温度和所述三通阀的第一阀口的饱和温度,调整空调系统的工作模式。
具体的,所述根据所述室外温度和所述三通阀的第一阀口的饱和温度,调整空调系统的工作模式,包括:
当室外温度与三通阀的第一阀口的饱和温度的差值大于设定的第一温差阈值时,控制空调系统工作于压缩机模式;
当室外温度与三通阀的第一阀口的饱和温度的差值小于设定的第二温差阈值时,控制空调系统工作于自然冷模式;
当室外温度与三通阀的第一阀口的饱和温度的差值不小于设定的第二温差阈值,且不大于设定的第一温差阈值时,控制空调系统工作于混合模式;
其中,第一温差阈值大于第二温差阈值。
较佳的,所述运行控制方法还包括:
获取室内温度;
当室内温度大于设定的第一温度阈值时,获取液泵的进出口压差;
当所述液泵的进出口压差大于设定的第一压差阈值时,减小液泵的输出量;
当所述液泵的进出口压差小于设定的第二压差阈值时,增加液泵的输出量;
当所述液泵的进出口压差不小于设定的第二压差阈值,且不大于设定的第一压差阈值时,维持液泵的原有输出量;
其中,第一压差阈值大于第二压差阈值。
较佳的,所述运行控制方法还包括:
当室内温度小于设定的第二温度阈值时,控制空调系统处于待机状态;
当室内温度不小于设定的第二温度阈值,且不大于设定的第一温度阈值时,维持空调系统的原有输出状态;
其中,第一温度阈值大于第二温度阈值。
较佳的,所述运行控制方法还包括:
获取自然冷模式下三通阀的第一阀口的饱和压力/饱和温度;
根据所述自然冷模式下三通阀的第一阀口的饱和压力/饱和温度,确定第二制冷需求;
当所述第二制冷需求大于设定的制冷需求第三阈值时,增加自然冷盘管处所设置风机的输出量;
当所述第二制冷需求小于设定的制冷需求第四阈值时,减小自然冷盘管处所设置风机的输出量;
当所述第二制冷需求不小于设定的制冷需求第四阈值,且不大于设定的制冷需求第三阈值时,维持自然冷盘管处所设置风机的原有输出量;
其中,制冷需求第三阈值大于制冷需求第四阈值。
较佳的,所述运行控制方法还包括:
获取压缩机模式下压缩机的出口压力;
当所述压缩机的出口压力大于设定的第一压力阈值时,增加冷凝盘管处所设置风机的输出量;
当所述压缩机的出口压力小于设定的第二压力阈值时,减小冷凝盘管处所设置风机的输出量;
当所述压缩机的出口压力不小于设定的第二压力阈值,且不大于设定的第一压力阈值时,维持冷凝盘管处所设置风机的原有输出量;
其中,第一压力阈值大于第二压力阈值。
空调系统采用上述实施例的运行控制方法,可以根据实际情况自动调整工作模式及匹配输出,智能化程度较高,控制精度较高,可靠性较好,特别适用 于大型多联空调系统,能够明显提高空调的全年能效比,降低空调的能耗。
本发明实施例还提供一种应用于前述空调系统的运行控制装置,所述空调系统的工作模式包括压缩机模式、自然冷模式和混合模式,在压缩机模式下,第一闭环结构和第二闭环结构协同工作;在自然冷模式下,液泵、室内机、自然冷盘管和中间换热器的冷凝侧形成的第三闭环结构工作;在混合模式下,第一闭环结构和第三闭环结构协同工作,所述运行控制装置包括:
第一获取单元,用于获取压缩机模式或混合模式下三通阀的第一阀口的饱和压力/饱和温度;
第一确定单元,用于根据所述压缩机模式或混合模式下三通阀的第一阀口的饱和压力/饱和温度,确定第一制冷需求;
第一控制单元,用于根据所述第一制冷需求,调整压缩机的制冷输出量。
具体的,所述第一控制单元,用于当所述第一制冷需求大于设定的制冷需求第一阈值时,增加压缩机的制冷输出量;当所述第一制冷需求小于设定的制冷需求第二阈值时,减小压缩机的制冷输出量;当所述第一制冷需求不小于设定的制冷需求第二阈值,且不大于设定的制冷需求第一阈值时,维持压缩机的原有制冷输出量;其中,制冷需求第一阈值大于制冷需求第二阈值。
较佳的,所述运行控制装置还包括:
第二获取单元,用于获取室外温度及三通阀的第一阀口的压力/温度;
第二确定单元,用于根据三通阀的第一阀口的压力/温度,确定三通阀的第一阀口的饱和温度;
第二控制单元,用于根据所述三通阀的第一阀口的饱和温度,调整空调系统的工作模式。
具体的,所述第二控制单元,用于当室外温度与三通阀的第一阀口的饱和温度的差值大于设定的第一温差阈值时,控制空调系统工作于压缩机模式;当室外温度与三通阀的第一阀口的饱和温度的差值小于设定的第二温差阈值时,控制空调系统工作于自然冷模式;当室外温度与三通阀的第一阀口的饱和温度的差值不小于设定的第二温差阈值,且不大于设定的第一温差阈值时,控制空 调系统工作于混合模式;其中,第一温差阈值大于第二温差阈值。
较佳的,所述运行控制装置,还包括:
第三获取单元,用于获取室内温度;
第四获取单元,用于当室内温度大于设定的第一温度阈值时,获取液泵的进出口压差;
第三控制单元,用于当所述液泵的进出口压差大于设定的第一压差阈值时,减小液泵的输出量;当所述液泵的进出口压差小于设定的第二压差阈值时,增加液泵的输出量;当所述液泵的进出口压差不小于设定的第二压差阈值,且不大于设定的第一压差阈值时,维持液泵的原有输出量;其中,第一压差阈值大于第二压差阈值。
较佳的,所述运行控制装置,还包括:
第四控制单元,用于当室内温度小于设定的第二温度阈值时,控制空调系统处于待机状态;当室内温度不小于设定的第二温度阈值,且不大于设定的第一温度阈值时,维持空调系统的原有输出状态;其中,第一温度阈值大于第二温度阈值。
较佳的,所述运行控制装置,还包括:
第五获取单元,用于获取自然冷模式下三通阀的第一阀口的饱和压力/饱和温度;
第三确定单元,用于根据所述自然冷模式下三通阀的第一阀口的饱和压力/饱和温度,确定第二制冷需求;
第五控制单元,用于当所述第二制冷需求大于设定的制冷需求第三阈值时,增加自然冷盘管处所设置风机的输出量;当所述第二制冷需求小于设定的制冷需求第四阈值时,减小自然冷盘管处所设置风机的输出量;当所述第二制冷需求不小于设定的制冷需求第四阈值,且不大于设定的制冷需求第三阈值时,维持自然冷盘管处所设置风机的原有输出量;其中,制冷需求第三阈值大于制冷需求第四阈值。
较佳的,所述运行控制装置,还包括:
第六获取单元,用于获取压缩机模式下压缩机的出口压力;
第六控制单元,用于当所述压缩机的出口压力大于设定的第一压力阈值时,增加冷凝盘管处所设置风机的输出量;当所述压缩机的出口压力小于设定的第二压力阈值时,减小冷凝盘管处所设置风机的输出量;当所述压缩机的出口压力不小于设定的第二压力阈值,且不大于设定的第一压力阈值时,维持冷凝盘管处所设置风机的原有输出量;其中,第一压力阈值大于第二压力阈值。
同理,空调系统采用上述实施例的运行控制方法,可以根据实际情况自动调整工作模式及匹配输出,智能化程度较高,控制精度较高,可靠性较好,特别适用于大型多联空调系统,能够明显提高空调的全年能效比,降低空调的能耗。
附图说明
图1为本发明一实施例空调系统结构示意图;
图2为本发明另一实施例空调系统结构示意图;
图3为本发明另一实施例空调系统结构示意图;
图4为本发明第一实施例空调系统的运行控制方法流程示意图;
图5为本发明第二实施例空调系统的运行控制方法流程示意图;
图6为本发明第三实施例空调系统的运行控制方法流程示意图;
图7为本发明第四实施例空调系统的运行控制方法流程示意图;
图8为本发明第五实施例空调系统的运行控制方法流程示意图。
具体实施方式
为提高空调的全年能效比,降低空调能耗,解决大型空调系统的漏水和回油问题,提升空调系统的可靠性,本发明实施例提供了一种空调系统、复合冷凝器、空调系统的运行控制方法及装置。为使本发明的目的、技术方案和优点更加清楚,以下举实施例对本发明作进一步详细说明。
如图1所示,本发明一实施例提供的空调系统,包括压缩机1、冷凝盘管21、节流元件3、液泵6、室内机7、自然冷盘管22、中间换热器4和三通阀5,其中:中间换热器4具有蒸发侧41和冷凝侧42;压缩机1、冷凝盘管21、节流元件3和蒸发侧41顺序连接形成第一闭环结构,液泵6、室内机7和冷凝侧42顺序连接形成第二闭环结构;三通阀5设置于室内机7和冷凝侧42之间的管路上,包括第一阀口51、第二阀口52和第三阀口53,第一阀口51与室内机7的出口连接,第二阀口52与冷凝侧42的入口连接,第三阀口53与自然冷盘管22的入口连接;自然冷盘管22的出口与冷凝侧42的入口连接。
本方案可充分利用自然冷源,从而减小压缩机的输出和功耗,进而提高空调的全年能效比,降低空调的能耗。具体的:
当室外温度较高或室内外温差较小时,空调系统可运行于压缩机模式,压缩机1、液泵6、节流元件3、三通阀5的第一阀口51和第二阀口52开启,第三阀口53关闭,压缩机1驱动制冷剂在第一闭环结构中流动,制冷剂在冷凝盘管21内冷凝换热,在中间换热器4的蒸发侧41蒸发换热;液泵6驱动制冷剂在第二闭环结构中流动,制冷剂在中间换热器4的冷凝侧42冷凝换热,在室内机7内蒸发换热,从而满足室内所需冷量;
当室外温度较低或室内外温差较大时,空调系统可运行于自然冷模式,液泵6、三通阀5的第一阀口51和第三阀口53开启,压缩机1、节流元件3和三通阀5的第二阀口52关闭,此时,液泵6、室内机7、自然冷盘管22和中间换热器4的冷凝侧42形成第三闭环结构,冷凝侧42仅作为一通路,液泵6驱动制冷剂在第三闭环结构中流动,制冷剂在自然冷盘管22内与外界低温气流进行热交换,实现冷凝换热,在室内机7内蒸发换热,从而满足室内所需冷量;
当室外环境处于过渡季节时,空调系可运行于混合模式,压缩机1、节流元件3、液泵6、三通阀5的第一阀口51和第三阀口53开启,第二阀口52关闭,此时,第一闭环结构和第三闭环结构处于工作状态。
此外,由于中间换热器4的蒸发侧41和冷凝侧42相互独立,在室内机7中使用制冷剂换热,可以实现机房的无水制冷;由于第一闭环结构中的部件较少,路径较短,因此,压缩机所排放的润滑油的流动路径相对较短,从而有利 于润滑油回油;该方案空调系统可以较好的解决大型空调系统的漏水和回油问题,从而提升其可靠性。
中间换热器4的具体类型不限,可以是板式换热器、壳管式换热器等类型。如图1所示,对于本领域技术人员可知,空调系统除上述关键部件外,也可以进一步包括以下部件:单向阀12、第一储液罐13、第二储液罐14、流量调节阀15,等等。一般的,室内机7和流量调节阀15置于室内,可称为末端模块,系统的其它部件可称为主机模块,可置于室外。节流元件3的具体类型不限,例如可以是电子膨胀阀、热力膨胀阀或毛细管等等。
室内机7置于需要降温的机房内,一般包括换热盘管、风机、加热加湿装置等部件。低温制冷剂液体在液泵6的驱动下进入室内机7的盘管,在盘管内蒸发吸热,与室内热空气进行热换热,风机将冷却后的空气送入机房内,从而降低机房温度。室内机的出口管路上设置的流量调节阀15用来调解制冷剂的流量。
冷凝盘管21和自然冷盘管22的具体数量不限,可根据空调系统所需提供的冷量来确定。在本发明的较佳实施例中,冷凝盘管21的数量至少为两个且并联设置,自然冷盘管22的数量至少为两个且并联设置,这样可以匹配大型多联空调的设计,充分满足机房在不同季节的冷量需求。
如图1所示,在本发明的优选实施例中,一个冷凝盘管21与一个自然冷盘管22为一体复合结构,即构成复合冷凝器2,采用这种复合式结构,可以减少布管,减小占地空间,使空调系统的结构更为紧凑。
值得一提的是,在本发明的其它实施例中,冷凝盘管与自然冷盘管也可以相互独立设置,这里不做具体限定。
第一闭环结构中,压缩机1的数量不限,例如可以为一个、两个或者更多个,如图2所示,当压缩机1的数量至少为两个时,至少两个压缩机1并联设置。类似的,位于室内的室内机7的数量也不限,当室内机7的数量至少为两个时,至少两个室内机7并联设置。压缩机1的数量和室内机7的数量可以根据实际需要进行设计。
作为优选的实施例,空调系统中的连接管路为制冷剂管路,从而可以实现 机房的无水制冷。制冷剂管路中制冷剂的可选类型包括R22、R410A、R407C、R744、R134a、R1234yf、R290和R600a。第一闭环结构的连接管路和第二闭环结构的连接管路内的制冷剂可以相同,也可以不同,但流过自然冷盘管22的制冷剂与第二闭环结构的连接管路内的制冷剂应相同。
第一闭环结构的数量不限制为一个。在发明的另一优选实施例中,第一闭环结构至少为两个,中间换热器的数量与第一闭环结构的数量相同且一一对应设置,各个中间换热器的冷凝侧并联设置。
如图2所示,该实施例中,第一闭环结构为两个(图中采用省略画法,仅示出其中一个第一闭环结构),中间换热器4为两个,两个中间换热器4与两个第一闭环结构对应设置,两个中间换热器4的冷凝侧42并联设置,并且冷凝侧42的出口管路上分别设置有二通调节阀8。此外,当中间换热器的数量为两个时,两个中间换热器的出口管路也可以通过三通调节阀连接同一管路后连接到第二储液泵。
三通阀5的具体类型不限,可以选用手动阀,由操作人员根据环境情况进行操作。但优选的,三通阀5采用电动三通阀,这样可以利用其电控性实现空调系统不同工作模式的自动切换。
具体的,空调系统还包括检测室内外温度信息的温度检测装置(图中未示出),以及分别与温度检测装置、电动三通阀(即图中所示三通阀5)、压缩机1、节流元件3和液泵6信号连接的控制器(图中未示出);
控制器,用于当室外温度高于设定的第一温度阈值或室内外温差小于设定的第一温差阈值时,控制压缩机1、节流元件3、电动三通阀的第一阀口51和第二阀口52开启,及控制电动三通阀的第三阀口53关闭;及
当室外温度低于设定的第二温度阈值或室内外温差大于设定的第二温差阈值时,控制液泵6、电动三通阀的第一阀口51和第三阀口53开启,及控制压缩机1、节流元件3和电动三通阀的第二阀口52关闭;及
当室外温度不低于设定的第二温度阈值且不高于设定的第一温度阈值,或室内外温差不小于设定的第一温差阈值且不大于设定的第二温差阈值时,控制压缩机1、节流元件3、液泵6、电动三通阀的第一阀口51和第三阀口53开 启,及控制电动三通阀的第二阀口52关闭。
采用该优选实施例方案,空调系统可以根据室内外温度情况自动进行逻辑判断,从而切换到合适的工作模式,智能化程度较高,特别适用于大型多联空调系统,以进一步提高空调的全年能效比,降低空调的能耗。
以图1所示实施例为例,空调系统在不同工作模式下制冷剂的循环过程如下:
当室外温度较高或室内外温差较小时,空调系统运行于压缩机模式,此时,压缩机1、节流元件3、三通阀5的第一阀口51和第二阀口52开启,第三阀口53关闭,液泵6开启。制冷剂通过压缩机1被压缩成高温高压气体后经过单向阀12进入复合冷凝器2的冷凝盘管21,制冷剂在冷凝盘管21中冷凝放热成低温高压液体,再经过第一储液罐13后进入节流元件3节流成低温低压液体,之后进入中间换热器4的蒸发侧41进行蒸发换热,蒸发后的制冷剂气体回到压缩机1中完成一次循环。同时,从室内机7流出的较高温度的制冷剂蒸汽经过三通阀5的第一阀口51和第二阀口52进入中间换热器4的冷凝侧42进行冷凝换热,变成低温制冷剂液体,经过第二储液罐14进入液泵6,在液泵6的驱动下进入室内机7与室内空气进行热交换,完成一次循环。
当室外温度较低或室内外温差较大时,空调系统运行于自然冷模式,液泵6、三通阀5的第一阀口51和第三阀口53开启,压缩机1、节流元件3和三通阀5的第二阀口52关闭。从室内机7流出的较高温度的制冷剂蒸汽经过三通阀5的第一阀口51和第三阀口53进入复合冷凝器2的自然冷盘管22,与外界低温气流进行热交换后经过中间换热器4的冷凝侧42,此时,由于中间换热器4的蒸发侧41并没有制冷剂流动,因此,制冷剂在冷凝侧42不会与蒸发侧41进行热交换,该冷凝侧42仅作为一通路,制冷剂流过此通路后经第二储液罐14进入液泵6,在液泵6的驱动下进入室内机7与室内空气进行热交换,完成一次循环。
当室外环境处于过渡季节时,空调系运行于混合模式,压缩机1、节流元件3、液泵6、三通阀5的第一阀口51和第三阀口53开启,第二阀口52关闭。制冷剂通过压缩机1被压缩成高温高压气体后经过单向阀12进入复合冷凝器2的冷凝盘管21,制冷剂冷凝放热成为低温高压液体,再经过第一储液罐13 后进入节流元件3节流成低温低压液体,之后进入中间换热器4的蒸发侧41,与中间换热器4的冷凝侧42的制冷剂进行热交换,蒸发后的制冷剂气体回到压缩机1中,完成一次循环。同时,从室内机7流出的较高温度的制冷剂蒸汽经过三通阀5的第一阀口51和第三阀口53进入复合冷凝器2的自然冷盘管22,与外界低温气流进行热交换后完成初步降温,降温后的制冷剂进入中间换热器4的冷凝侧42进一步与中间换热器4的蒸发侧41的制冷剂进行二次热交换降温,之后,制冷剂经过第二储液罐14进入液泵6,在液泵6的驱动下进入室内机7与室内空气进行热交换,完成一次循环。
如图3所示,本发明实施例还提供一种空调系统,包括压缩机1、冷凝盘管21、节流元件3、液泵6、室内机7、自然冷盘管22、中间换热器4和二通阀05,其中:中间换热器4具有蒸发侧41和冷凝侧42;压缩机1、冷凝盘管21、节流元件3和蒸发侧41顺序连接形成第一闭环结构,液泵6、室内机7和冷凝侧42顺序连接形成第二闭环结构;二通阀05设置于室内机7和冷凝侧42之间的管路上;自然冷盘管22的入口与室内机7的出口连接,自然冷盘管22的出口与冷凝侧42的入口连接。
当室外温度较高或室内外温差较小时,空调系统可运行于压缩机模式,压缩机1、液泵6、节流元件3、二通阀05开启,压缩机1驱动制冷剂在第一闭环结构中流动,制冷剂在冷凝盘管21内冷凝换热,在中间换热器4的蒸发侧41蒸发换热;液泵6驱动制冷剂在第二闭环结构中流动,制冷剂在中间换热器4的冷凝侧42冷凝换热,在室内机7内蒸发换热,从而满足室内所需冷量;在该模式下,虽然室内机7的出口至自然冷盘管22也连通,但由于室外温度较高,制冷剂会自动选择压力较低的一侧管路,即经过二通阀05流向中间换热器4的冷凝侧42。
当室外温度较低或室内外温差较大时,空调系统可运行于自然冷模式,液泵6开启,压缩机1、节流元件3和二通阀05关闭,此时,液泵6、室内机7、自然冷盘管22和中间换热器4的冷凝侧42形成第三闭环结构,冷凝侧42仅作为一通路,液泵6驱动制冷剂在第三闭环结构中流动,制冷剂在自然冷盘管22内与外界低温气流进行热交换,实现冷凝换热,在室内机7内蒸发换热,从而满足室内所需冷量;
当室外环境处于过渡季节时,空调系统可运行于混合模式,压缩机1、节流元件3、液泵6开启,二通阀05关闭,此时,第一闭环结构和第三闭环结构处于工作状态。室内机7流出的制冷剂先流入自然冷凝器22,然后进入中间换热器4的冷凝侧42,与中间换热器4的蒸发侧41进行热交换。
与前述实施例同理,该空调系统可充分利用自然冷源,从而减小压缩机的输出和功耗,进而提高空调的全年能效比,降低空调的能耗。
可参考图1所示,本发明实施例还提供一种复合冷凝器2,包括冷凝盘管21和自然冷盘管22,冷凝盘管21位于蒸汽压缩机循环回路中,自然冷盘管22位于自然冷循环回路中。一般的,蒸汽压缩机循环回路至少包括顺序连接的压缩机1、冷凝盘管21、节流元件3和蒸发元件(图1中中间换热器4的蒸发侧41作为蒸发元件);自然冷循环回路至少包括顺序连接的液泵6、室内机7和自然冷盘管22(图1中中间换热器4的冷凝侧42仅作为一通路)。该复合冷凝器2应用于上述空调系统中,有利于提高空调的全年能效比,降低空调的能耗,并且复合冷凝器本身的结构也较为紧凑。
如图4所示,本发明实施例还提供一种应用于前述空调系统的运行控制方法,空调系统的工作模式包括压缩机模式、自然冷模式和混合模式,在压缩机模式下,第一闭环结构和第二闭环结构协同工作;在自然冷模式下,液泵、室内机、自然冷盘管和中间换热器的冷凝侧形成的第三闭环结构工作;在混合模式下,第一闭环结构和第三闭环结构协同工作,运行控制方法包括以下步骤:
步骤101、获取压缩机模式或混合模式下三通阀的第一阀口的饱和压力/饱和温度;
步骤102、根据所述压缩机模式或混合模式下三通阀的第一阀口的饱和压力/饱和温度,确定第一制冷需求;
步骤103、根据第一制冷需求,调整压缩机的制冷输出量。
具体的,步骤103包括:
步骤1031、当第一制冷需求大于设定的制冷需求第一阈值时,增加压缩机的制冷输出量;
步骤1032、当第一制冷需求小于设定的制冷需求第二阈值时,减小压缩机的制冷输出量;
步骤1033、当第一制冷需求不小于设定的制冷需求第二阈值,且不大于设定的制冷需求第一阈值时,维持压缩机的原有制冷输出量;
其中,制冷需求第一阈值大于制冷需求第二阈值。
制冷需求第一阈值和制冷需求第二阈值可以根据经验确定并预存在控制器中。调整压缩机的制冷输出量具体可以通过调整压缩机数量、压缩机转速、压缩机频率或压缩机容调比例等方式实现,这里不作具体限定。
空调系统采用上述实施例的运行控制方法,在压缩机模式或混合模式下,可以根据三通阀的第一阀口的饱和压力/饱和温度情况,自动调整压缩机的制冷输出量,智能化程度较高,控制精度较高,可靠性较好,能够明显提高空调的全年能效比,降低空调的能耗。
如图5所示,较佳的,运行控制方法还包括以下步骤:
步骤201、获取室外温度及三通阀的第一阀口的压力/温度;
步骤202、根据三通阀的第一阀口的压力/温度,确定三通阀的第一阀口的饱和温度;
步骤203、根据室外温度和三通阀的第一阀口的饱和温度,调整空调系统的工作模式。
具体的,步骤203包括:
步骤2031、当室外温度与三通阀的第一阀口的饱和温度的差值大于设定的第一温差阈值时,控制空调系统工作于压缩机模式;
步骤2032、当室外温度与三通阀的第一阀口的饱和温度的差值小于设定的第二温差阈值时,控制空调系统工作于自然冷模式;
步骤2033、当室外温度与三通阀的第一阀口的饱和温度的差值不小于设定的第二温差阈值,且不大于设定的第一温差阈值时,控制空调系统工作于混合模式;
其中,第一温差阈值大于第二温差阈值。
第一温差阈值和第二温差阈值可以根据经验确定并预存在控制器中。空调系统采用上述实施例的运行控制方法,还可以根据室外温度及三通阀的第一阀口的压力/温度,自动调整工作模式,智能化程度较高,控制精度较高,可靠性较好,能够明显提高空调的全年能效比,降低空调的能耗,特别适用于大型多联空调系统。
如图6所示,较佳的,运行控制方法还包括以下步骤:
步骤301、获取室内温度;
步骤302a、当室内温度大于设定的第一温度阈值时,获取液泵的进出口压差;
步骤303、根据液泵的进出口压差,调整液泵的输出量。
其中,步骤303包括:
步骤3031、当液泵的进出口压差大于设定的第一压差阈值时,减小液泵的输出量;
步骤3032、当液泵的进出口压差小于设定的第二压差阈值时,增加液泵的输出量;
步骤3033、当液泵的进出口压差不小于设定的第二压差阈值,且不大于设定的第一压差阈值时,维持液泵的原有输出量;
其中,第一压差阈值大于第二压差阈值。
第一温度阈值、第一压差阈值和第二压差阈值可以根据经验确定并预存在控制器中。空调系统采用上述实施例的运行控制方法,当室内温度大于设定的第一温度阈值时,还可以根据液泵的进出口压差,自动调整液泵的输出量,智能化程度较高,且节能可靠。液泵输出量的调整范围为10%~100%,具体可以通过调整液泵的转速或者频率等方式实现,这里不作具体限定。
请继续参照图6所示,较佳的,运行控制方法还包括以下步骤:
步骤302b、当室内温度小于设定的第二温度阈值时,控制空调系统处于待机状态;
步骤302c、当室内温度不小于设定的第二温度阈值,且不大于设定的第一温度阈值时,维持空调系统的原有输出状态;
其中,第一温度阈值大于第二温度阈值。
第一温度阈值与第二温度阈值可根据经验确定并预存在控制器中。采用该实施例的运行控制方法,空调系统可根据室内温度情况自动调整工作状态,从而进一步提升了空调系统的智能化程度和节能性。
请参照图7所示,较佳的,运行控制方法还包括以下步骤:
步骤401、获取自然冷模式下三通阀的第一阀口的饱和压力/饱和温度;
步骤402、根据自然冷模式下三通阀的第一阀口的饱和压力/饱和温度,确定第二制冷需求;
步骤403、根据第二制冷需求,调整自然冷盘管处所设置风机的输出量。
其中,步骤403包括:
步骤4031、当第二制冷需求大于设定的制冷需求第三阈值时,增加自然冷盘管处所设置风机的输出量;
步骤4032、当第二制冷需求小于设定的制冷需求第四阈值时,减小自然冷盘管处所设置风机的输出量;
步骤4033、当第二制冷需求不小于设定的制冷需求第四阈值,且不大于设定的制冷需求第三阈值时,维持自然冷盘管处所设置风机的原有输出量;
其中,制冷需求第三阈值大于制冷需求第四阈值。
制冷需求第三阈值和制冷需求第四阈值可根据经验确定并预存在控制器中。采用该实施例的运行控制方法,空调系统在自然冷模式下,可根据三通阀的第一阀口的饱和压力/饱和温度情况自动调整风机的输出量,从而进一步提升了空调系统的智能化程度和节能性。调整风机的输出量具体可以通过调整风机的转速、频率、运行级数或运作数量等方式实现,这里不作具体限定。
请参照图8所示,较佳的,运行控制方法还包括以下步骤:
步骤501、获取压缩机模式下压缩机的出口压力;
步骤502、根据压缩机模式下压缩机的出口压力,调整冷凝盘管处所设置风机的输出量。
其中,步骤502包括:
步骤5021、当压缩机的出口压力大于设定的第一压力阈值时,增加冷凝盘管处所设置风机的输出量;
步骤5022、当压缩机的出口压力小于设定的第二压力阈值时,减小冷凝盘管处所设置风机的输出量;
步骤5023、当压缩机的出口压力不小于设定的第二压力阈值,且不大于设定的第一压力阈值时,维持冷凝盘管处所设置风机的原有输出量;
其中,第一压力阈值大于第二压力阈值。
第一压力阈值和第二压力阈值可根据经验确定并预存在控制器中。采用该实施例的运行控制方法,空调系统在压缩机模式下,可根据压缩机的出口压力情况自动调整风机的输出量,从而进一步提升了空调系统的智能化程度和节能性。调整风机的输出量具体可以通过调整风机的转速、频率、运行级数或运作数量等方式实现,这里不作具体限定。
如图1所示,当冷凝盘管21与自然冷盘管22为一体复合结构时,冷凝盘管21与自然冷盘管22可以公共一组风机设备。
综上,空调系统采用上述实施例的运行控制方法,可以根据实际情况自动调整工作模式及匹配输出,智能化程度较高,控制精度较高,可靠性较好,特别适用于大型多联空调系统,能够明显提高空调的全年能效比,降低空调的能耗。
本发明实施例还提供一种应用于前述空调系统的运行控制装置,空调系统的工作模式包括压缩机模式、自然冷模式和混合模式,在压缩机模式下,第一闭环结构和第二闭环结构协同工作;在自然冷模式下,液泵、室内机、自然冷盘管和中间换热器的冷凝侧形成的第三闭环结构工作;在混合模式下,第一闭 环结构和第三闭环结构协同工作,运行控制装置包括:
第一获取单元,用于获取压缩机模式或混合模式下三通阀的第一阀口的饱和压力/饱和温度;
第一确定单元,用于根据压缩机模式或混合模式下三通阀的第一阀口的饱和压力/饱和温度,确定第一制冷需求;
第一控制单元,用于根据第一制冷需求,调整压缩机的制冷输出量。
具体的,第一控制单元,用于当第一制冷需求大于设定的制冷需求第一阈值时,增加压缩机的制冷输出量;当第一制冷需求小于设定的制冷需求第二阈值时,减小压缩机的制冷输出量;当第一制冷需求不小于设定的制冷需求第二阈值,且不大于设定的制冷需求第一阈值时,维持压缩机的原有制冷输出量;其中,制冷需求第一阈值大于制冷需求第二阈值。
较佳的,运行控制装置还包括:
第二获取单元,用于获取室外温度及三通阀的第一阀口的压力/温度;
第二确定单元,用于根据三通阀的第一阀口的压力/温度,确定三通阀的第一阀口的饱和温度;
第二控制单元,用于根据三通阀的第一阀口的饱和温度,调整空调系统的工作模式。
具体的,第二控制单元,用于当室外温度与三通阀的第一阀口的饱和温度的差值大于设定的第一温差阈值时,控制空调系统工作于压缩机模式;当室外温度与三通阀的第一阀口的饱和温度的差值小于设定的第二温差阈值时,控制空调系统工作于自然冷模式;当室外温度与三通阀的第一阀口的饱和温度的差值不小于设定的第二温差阈值,且不大于设定的第一温差阈值时,控制空调系统工作于混合模式;其中,第一温差阈值大于第二温差阈值。
较佳的,运行控制装置,还包括:
第三获取单元,用于获取室内温度;
第四获取单元,用于当室内温度大于设定的第一温度阈值时,获取液泵的进出口压差;
第三控制单元,用于当液泵的进出口压差大于设定的第一压差阈值时,减小液泵的输出量;当液泵的进出口压差小于设定的第二压差阈值时,增加液泵的输出量;当液泵的进出口压差不小于设定的第二压差阈值,且不大于设定的第一压差阈值时,维持液泵的原有输出量;其中,第一压差阈值大于第二压差阈值。
较佳的,运行控制装置,还包括:
第四控制单元,用于当室内温度小于设定的第二温度阈值时,控制空调系统处于待机状态;当室内温度不小于设定的第二温度阈值,且不大于设定的第一温度阈值时,维持空调系统的原有输出状态;其中,第一温度阈值大于第二温度阈值。
较佳的,运行控制装置,还包括:
第五获取单元,用于获取自然冷模式下三通阀的第一阀口的饱和压力/饱和温度;
第三确定单元,用于根据自然冷模式下三通阀的第一阀口的饱和压力/饱和温度,确定第二制冷需求;
第五控制单元,用于当第二制冷需求大于设定的制冷需求第三阈值时,增加自然冷盘管处所设置风机的输出量;当第二制冷需求小于设定的制冷需求第四阈值时,减小自然冷盘管处所设置风机的输出量;当第二制冷需求不小于设定的制冷需求第四阈值,且不大于设定的制冷需求第三阈值时,维持自然冷盘管处所设置风机的原有输出量;其中,制冷需求第三阈值大于制冷需求第四阈值。
较佳的,运行控制装置,还包括:
第六获取单元,用于获取压缩机模式下压缩机的出口压力;
第六控制单元,用于当压缩机的出口压力大于设定的第一压力阈值时,增加冷凝盘管处所设置风机的输出量;当压缩机的出口压力小于设定的第二压力阈值时,减小冷凝盘管处所设置风机的输出量;当压缩机的出口压力不小于设定的第二压力阈值,且不大于设定的第一压力阈值时,维持冷凝盘管处所设置 风机的原有输出量;其中,第一压力阈值大于第二压力阈值。
同理,空调系统采用上述实施例的运行控制方法,可以根据实际情况自动调整工作模式及匹配输出,智能化程度较高,控制精度较高,可靠性较好,特别适用于大型多联空调系统,能够明显提高空调的全年能效比,降低空调的能耗。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及
其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (26)

  1. 一种空调系统,其特征在于,包括压缩机、冷凝盘管、节流元件、液泵、室内机、自然冷盘管、中间换热器和三通阀,其中:中间换热器具有蒸发侧和冷凝侧;压缩机、冷凝盘管、节流元件和蒸发侧顺序连接形成第一闭环结构,液泵、室内机和冷凝侧顺序连接形成第二闭环结构;三通阀设置于室内机和冷凝侧之间的管路上,包括第一阀口、第二阀口和第三阀口,第一阀口与室内机的出口连接,第二阀口与冷凝侧的入口连接,第三阀口与自然冷盘管的入口连接;自然冷盘管的出口与冷凝侧的入口连接。
  2. 如权利要求1所述的空调系统,其特征在于,冷凝盘管的数量至少为两个且并联设置;和/或,自然冷盘管的数量至少为两个且并联设置。
  3. 如权利要求1所述的空调系统,其特征在于,冷凝盘管与自然冷盘管相互独立;或者,冷凝盘管与自然冷盘管为一体复合结构。
  4. 如权利要求1所述的空调系统,其特征在于,压缩机的数量至少为两个且并联设置;和/或,室内机的数量至少为两个且并联设置。
  5. 如权利要求1所述的空调系统,其特征在于,第一闭环结构至少为两个,中间换热器的数量与第一闭环结构的数量相同且一一对应设置,各个中间换热器的冷凝侧并联设置。
  6. 如权利要求5所述的空调系统,其特征在于,每个中间换热器的冷凝侧的出口管路设置有二通调节阀;或者,当中间换热的数量为两个时,两个中间换热器的出口管路通过三通调节阀连接同一管路。
  7. 如权利要求1所述的空调系统,其特征在于,空调系统中的连接管路为制冷剂管路,制冷剂管路中制冷剂的可选类型包括R22、R410A、R407C、R744、R134a、R1234yf、R290和R600a。
  8. 如权利要求1~7任一项所述的空调系统,其特征在于,三通阀为电动三通阀;空调系统还包括检测室内外温度信息的温度检测装置,以及分别与温度检测装置、电动三通阀、压缩机、节流元件和液泵信号连接的控制器;
    所述控制器,用于当室外温度高于设定的第一温度阈值或室内外温差小于设定的第一温差阈值时,控制压缩机、液泵、节流元件、电动三通阀的第一阀口和第二阀口开启,及控制电动三通阀的第三阀口关闭;及
    当室外温度低于设定的第二温度阈值或室内外温差大于设定的第二温差阈值时,控制液泵、电动三通阀的第一阀口和第三阀口开启,及控制压缩机、节流元件和电动三通阀的第二阀口关闭;及
    当室外温度不低于设定的第二温度阈值且不高于设定的第一温度阈值,或室内外温差不小于设定的第一温差阈值且不大于设定的第二温差阈值时,控制压缩机、节流元件、液泵、电动三通阀的第一阀口和第三阀口开启,及控制电动三通阀的第二阀口关闭。
  9. 一种空调系统,其特征在于,包括压缩机、冷凝盘管、节流元件、液泵、室内机、自然冷盘管、中间换热器和二通阀,其中:中间换热器具有蒸发侧和冷凝侧;压缩机、冷凝盘管、节流元件和蒸发侧顺序连接形成第一闭环结构,液泵、室内机和冷凝侧顺序连接形成第二闭环结构;二通阀设置于室内机和冷凝侧之间的管路上;自然冷盘管的入口与室内机的出口连接,自然冷盘管的出口与冷凝侧的入口连接。
  10. 一种复合冷凝器,其特征在于,包括冷凝盘管和自然冷盘管,所述冷凝盘管位于蒸汽压缩机循环回路中,所述自然冷盘管位于自然冷循环回路中;其中:所述蒸汽压缩机循环回路包括顺序连接的压缩机、冷凝盘管、节流元件和蒸发元件;所述自然冷循环回路包括顺序连接的液泵、室内机和自然冷盘管。
  11. 一种应用于权利要求1所述空调系统的运行控制方法,所述空调系统的工作模式包括压缩机模式、自然冷模式和混合模式,在压缩机模式下,第一闭环结构和第二闭环结构协同工作;在自然冷模式下,液泵、室内机、自然冷盘管和中间换热器的冷凝侧形成的第三闭环结构工作;在混合模式下,第一闭环结构和第三闭环结构协同工作,其特征在于,所述运行控制方法包括:
    获取压缩机模式或混合模式下三通阀的第一阀口的饱和压力或饱和温度;
    根据所述压缩机模式或混合模式下三通阀的第一阀口的饱和压力或饱和温度,确定第一制冷需求;
    根据所述第一制冷需求,调整压缩机的制冷输出量。
  12. 如权利要求11所述的运行控制方法,其特征在于,所述根据所述第一制冷需求,调整压缩机的制冷输出量,包括:
    当所述第一制冷需求大于设定的制冷需求第一阈值时,增加压缩机的制冷输出量;
    当所述第一制冷需求小于设定的制冷需求第二阈值时,减小压缩机的制冷输出量;
    当所述第一制冷需求不小于设定的制冷需求第二阈值,且不大于设定的制冷需求第一阈值时,维持压缩机的原有制冷输出量;
    其中,制冷需求第一阈值大于制冷需求第二阈值。
  13. 如权利要求11所述的运行控制方法,其特征在于,所述运行控制方法还包括:
    获取室外温度及三通阀的第一阀口的压力或温度;
    根据三通阀的第一阀口的压力或温度,确定三通阀的第一阀口的饱和温度;
    根据所述室外温度和所述三通阀的第一阀口的饱和温度,调整空调系统的工作模式。
  14. 如权利要求13所述的运行控制方法,其特征在于,所述根据所述室外温度和所述三通阀的第一阀口的饱和温度,调整空调系统的工作模式,包括:
    当室外温度与三通阀的第一阀口的饱和温度的差值大于设定的第一温差阈值时,控制空调系统工作于压缩机模式;
    当室外温度与三通阀的第一阀口的饱和温度的差值小于设定的第二温差阈值时,控制空调系统工作于自然冷模式;
    当室外温度与三通阀的第一阀口的饱和温度的差值不小于设定的第二温差阈值,且不大于设定的第一温差阈值时,控制空调系统工作于混合模式;
    其中,第一温差阈值大于第二温差阈值。
  15. 如权利要求11所述的运行控制方法,其特征在于,所述运行控制方法还包括:
    获取室内温度;
    当室内温度大于设定的第一温度阈值时,获取液泵的进出口压差;
    当所述液泵的进出口压差大于设定的第一压差阈值时,减小液泵的输出量;
    当所述液泵的进出口压差小于设定的第二压差阈值时,增加液泵的输出量;
    当所述液泵的进出口压差不小于设定的第二压差阈值,且不大于设定的第一压差阈值时,维持液泵的原有输出量;
    其中,第一压差阈值大于第二压差阈值。
  16. 如权利要求15所述的运行控制方法,其特征在于,所述运行控制方法还包括:
    当室内温度小于设定的第二温度阈值时,控制空调系统处于待机状态;
    当室内温度不小于设定的第二温度阈值,且不大于设定的第一温度阈值时,维持空调系统的原有输出状态;
    其中,第一温度阈值大于第二温度阈值。
  17. 如权利要求11所述的运行控制方法,其特征在于,所述运行控制方法还包括:
    获取自然冷模式下三通阀的第一阀口的饱和压力或饱和温度;
    根据所述自然冷模式下三通阀的第一阀口的饱和压力或饱和温度,确定第二制冷需求;
    当所述第二制冷需求大于设定的制冷需求第三阈值时,增加自然冷盘管处所设置风机的输出量;
    当所述第二制冷需求小于设定的制冷需求第四阈值时,减小自然冷盘管处所设置风机的输出量;
    当所述第二制冷需求不小于设定的制冷需求第四阈值,且不大于设定的制冷需求第三阈值时,维持自然冷盘管处所设置风机的原有输出量;
    其中,制冷需求第三阈值大于制冷需求第四阈值。
  18. 如权利要求11所述的运行控制方法,其特征在于,所述运行控制方法还包括:
    获取压缩机模式下压缩机的出口压力;
    当所述压缩机的出口压力大于设定的第一压力阈值时,增加冷凝盘管处所设置风机的输出量;
    当所述压缩机的出口压力小于设定的第二压力阈值时,减小冷凝盘管处所设置风机的输出量;
    当所述压缩机的出口压力不小于设定的第二压力阈值,且不大于设定的第一压力阈值时,维持冷凝盘管处所设置风机的原有输出量;
    其中,第一压力阈值大于第二压力阈值。
  19. 一种应用于权利要求1所述空调系统的运行控制装置,所述空调系统的工作模式包括压缩机模式、自然冷模式和混合模式,在压缩机模式下,第一闭环结构和第二闭环结构协同工作;在自然冷模式下,液泵、室内机、自然冷盘管和中间换热器的冷凝侧形成的第三闭环结构工作;在混合模式下,第一闭环结构和第三闭环结构协同工作,其特征在于,所述运行控制装置包括:
    第一获取单元,用于获取压缩机模式或混合模式下三通阀的第一阀口的饱和压力或饱和温度;
    第一确定单元,用于根据所述压缩机模式或混合模式下三通阀的第一阀口的饱和压力或饱和温度,确定第一制冷需求;
    第一控制单元,用于根据所述第一制冷需求,调整压缩机的制冷输出量。
  20. 如权利要求19所述的运行控制装置,其特征在于,所述第一控制单元,具体用于当所述第一制冷需求大于设定的制冷需求第一阈值时,增加压缩机的制冷输出量;当所述第一制冷需求小于设定的制冷需求第二阈值时,减小压缩机的制冷输出量;当所述第一制冷需求不小于设定的制冷需求第二阈值, 且不大于设定的制冷需求第一阈值时,维持压缩机的原有制冷输出量;其中,制冷需求第一阈值大于制冷需求第二阈值。
  21. 如权利要求19所述的运行控制装置,其特征在于,所述运行控制装置还包括:
    第二获取单元,用于获取室外温度及三通阀的第一阀口的压力或温度;
    第二确定单元,用于根据三通阀的第一阀口的压力或温度,确定三通阀的第一阀口的饱和温度;
    第二控制单元,用于根据所述室外温度和所述三通阀的第一阀口的饱和温度,调整空调系统的工作模式。
  22. 如权利要求21所述的运行控制装置,其特征在于,所述第二控制单元,具体用于当室外温度与三通阀的第一阀口的饱和温度的差值大于设定的第一温差阈值时,控制空调系统工作于压缩机模式;当室外温度与三通阀的第一阀口的饱和温度的差值小于设定的第二温差阈值时,控制空调系统工作于自然冷模式;当室外温度与三通阀的第一阀口的饱和温度的差值不小于设定的第二温差阈值,且不大于设定的第一温差阈值时,控制空调系统工作于混合模式;其中,第一温差阈值大于第二温差阈值。
  23. 如权利要求19所述的运行控制装置,其特征在于,所述运行控制装置,还包括:
    第三获取单元,用于获取室内温度;
    第四获取单元,用于当室内温度大于设定的第一温度阈值时,获取液泵的进出口压差;
    第三控制单元,用于当所述液泵的进出口压差大于设定的第一压差阈值时,减小液泵的输出量;当所述液泵的进出口压差小于设定的第二压差阈值时,增加液泵的输出量;当所述液泵的进出口压差不小于设定的第二压差阈值,且不大于设定的第一压差阈值时,维持液泵的原有输出量;其中,第一压差阈值大于第二压差阈值。
  24. 如权利要求23所述的运行控制装置,其特征在于,所述运行控制装 置,还包括:
    第四控制单元,用于当室内温度小于设定的第二温度阈值时,控制空调系统处于待机状态;当室内温度不小于设定的第二温度阈值,且不大于设定的第一温度阈值时,维持空调系统的原有输出状态;其中,第一温度阈值大于第二温度阈值。
  25. 如权利要求19所述的运行控制装置,其特征在于,所述运行控制装置,还包括:
    第五获取单元,用于获取自然冷模式下三通阀的第一阀口的饱和压力或饱和温度;
    第三确定单元,用于根据所述自然冷模式下三通阀的第一阀口的饱和压力或饱和温度,确定第二制冷需求;
    第五控制单元,用于当所述第二制冷需求大于设定的制冷需求第三阈值时,增加自然冷盘管处所设置风机的输出量;当所述第二制冷需求小于设定的制冷需求第四阈值时,减小自然冷盘管处所设置风机的输出量;当所述第二制冷需求不小于设定的制冷需求第四阈值,且不大于设定的制冷需求第三阈值时,维持自然冷盘管处所设置风机的原有输出量;其中,制冷需求第三阈值大于制冷需求第四阈值。
  26. 如权利要求19所述的运行控制装置,其特征在于,所述运行控制装置,还包括:
    第六获取单元,用于获取压缩机模式下压缩机的出口压力;
    第六控制单元,用于当所述压缩机的出口压力大于设定的第一压力阈值时,增加冷凝盘管处所设置风机的输出量;当所述压缩机的出口压力小于设定的第二压力阈值时,减小冷凝盘管处所设置风机的输出量;当所述压缩机的出口压力不小于设定的第二压力阈值,且不大于设定的第一压力阈值时,维持冷凝盘管处所设置风机的原有输出量;其中,第一压力阈值大于第二压力阈值。
PCT/CN2016/113914 2015-11-02 2016-12-30 空调系统、复合冷凝器、空调系统的运行控制方法及装置 WO2017219650A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510735776 2015-11-02
CN201610078446 2016-02-04
CN201610455564.3A CN106642416B (zh) 2015-11-02 2016-06-21 空调系统、复合冷凝器、空调系统的运行控制方法及装置
CN201610455564.3 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017219650A1 true WO2017219650A1 (zh) 2017-12-28

Family

ID=58851887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113914 WO2017219650A1 (zh) 2015-11-02 2016-12-30 空调系统、复合冷凝器、空调系统的运行控制方法及装置

Country Status (2)

Country Link
CN (1) CN106642416B (zh)
WO (1) WO2017219650A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181124A (zh) * 2018-01-31 2018-06-19 深圳市艾特网能技术有限公司 一种空调机组联调工装系统及其控制方法
CN108489131A (zh) * 2018-03-28 2018-09-04 深圳市艾特网能技术有限公司 被动式热管自然冷多联型制冷系统及其控制方法
CN112672607A (zh) * 2020-12-25 2021-04-16 北京世纪互联宽带数据中心有限公司 数据中心的制冷系统、制冷方法和机房改建方法
CN113543605A (zh) * 2021-08-04 2021-10-22 河北安瑞通信技术有限公司 一种双循环热管列间散热系统
CN114877457A (zh) * 2022-05-10 2022-08-09 中国船舶科学研究中心 一种负压隔离平台及环境控制方法
CN115451552A (zh) * 2022-09-29 2022-12-09 中国联合网络通信集团有限公司 空调控制方法、装置及其存储介质
CN115628523A (zh) * 2022-11-08 2023-01-20 中国联合网络通信集团有限公司 空调控制方法、装置、设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10883750B2 (en) * 2017-12-11 2021-01-05 Vertiv Corporation Air conditioning systems and methods with cooling capacity modulation via fixed pump operation and variable condenser fan operation
CN110220257B (zh) * 2018-03-01 2021-01-01 维谛技术有限公司 空调系统、空调系统的运行控制方法及装置
CN109681973B (zh) * 2019-01-08 2024-01-23 中国联合网络通信集团有限公司 一种空调系统
CN110748965B (zh) * 2019-11-14 2023-11-24 珠海格力电器股份有限公司 空调系统及空调系统控制方法
CN111895623A (zh) * 2020-08-12 2020-11-06 上海市建筑科学研究院有限公司 多联式空调机组控制方法及系统
CN111964189A (zh) * 2020-08-26 2020-11-20 广东美的暖通设备有限公司 冷水机的控制方法、装置、冷水机和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538100A (zh) * 2012-02-17 2012-07-04 合肥工业大学 机房用热管复合型空调机组及其控制方法
CN202485287U (zh) * 2011-10-17 2012-10-10 艾默生网络能源有限公司 机房空调系统
CN103047710A (zh) * 2011-10-17 2013-04-17 艾默生网络能源有限公司 机房空调系统及控制方法
CN104121625A (zh) * 2013-04-23 2014-10-29 艾默生网络能源有限公司 一种节能空调及其控制方法
CN205079492U (zh) * 2015-11-02 2016-03-09 艾默生网络能源有限公司 一种空调系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088180C (zh) * 1994-08-30 2002-07-24 株式会社东芝 制冷装置
CN100549895C (zh) * 2003-11-18 2009-10-14 乐普四方(北京)节能技术有限公司 智能化节电设备
EP1959204B1 (en) * 2007-02-13 2011-08-03 Mitsubishi Electric Corporation Air/water heat exchange apparatus
CN201724342U (zh) * 2010-08-03 2011-01-26 昆山台佳机电有限公司 中央空调智能精密节能控制系统
US9829224B2 (en) * 2011-12-16 2017-11-28 Mitsubishi Electric Corporation Air-conditioning apparatus
CN102705960B (zh) * 2012-07-04 2014-09-10 江苏劳特斯机电设备工程有限公司 智能水源热泵机组压缩机能量输出控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202485287U (zh) * 2011-10-17 2012-10-10 艾默生网络能源有限公司 机房空调系统
CN103047710A (zh) * 2011-10-17 2013-04-17 艾默生网络能源有限公司 机房空调系统及控制方法
CN102538100A (zh) * 2012-02-17 2012-07-04 合肥工业大学 机房用热管复合型空调机组及其控制方法
CN104121625A (zh) * 2013-04-23 2014-10-29 艾默生网络能源有限公司 一种节能空调及其控制方法
CN205079492U (zh) * 2015-11-02 2016-03-09 艾默生网络能源有限公司 一种空调系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181124A (zh) * 2018-01-31 2018-06-19 深圳市艾特网能技术有限公司 一种空调机组联调工装系统及其控制方法
CN108181124B (zh) * 2018-01-31 2023-05-05 深圳市艾特网能技术有限公司 一种空调机组联调工装系统及其控制方法
CN108489131A (zh) * 2018-03-28 2018-09-04 深圳市艾特网能技术有限公司 被动式热管自然冷多联型制冷系统及其控制方法
CN112672607A (zh) * 2020-12-25 2021-04-16 北京世纪互联宽带数据中心有限公司 数据中心的制冷系统、制冷方法和机房改建方法
CN113543605A (zh) * 2021-08-04 2021-10-22 河北安瑞通信技术有限公司 一种双循环热管列间散热系统
CN113543605B (zh) * 2021-08-04 2023-08-15 河北安瑞通信技术有限公司 一种双循环热管列间散热系统
CN114877457A (zh) * 2022-05-10 2022-08-09 中国船舶科学研究中心 一种负压隔离平台及环境控制方法
CN115451552A (zh) * 2022-09-29 2022-12-09 中国联合网络通信集团有限公司 空调控制方法、装置及其存储介质
CN115628523A (zh) * 2022-11-08 2023-01-20 中国联合网络通信集团有限公司 空调控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN106642416B (zh) 2020-09-29
CN106642416A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2017219650A1 (zh) 空调系统、复合冷凝器、空调系统的运行控制方法及装置
CN107178833B (zh) 热回收外机系统和空调系统
CN109237844B (zh) 空调系统、空调系统的制冷控制方法和装置
WO2020073481A1 (zh) 空调系统
CN101216225A (zh) 一种双温冷水/冷风机组
CN210832604U (zh) 空调器
CN112503791B (zh) 基于双蒸发温度的直膨式温湿分控空调系统及其控制方法
CN113446756A (zh) 一种带变速压缩机的四管制空气源热泵机组
US20130061622A1 (en) Refrigerating and air-conditioning apparatus
CN109357426B (zh) 用于机房和房间的组合式空调系统及其控制方法
CN110319721A (zh) 一种机房热管空调系统
CN206514574U (zh) 一种数据中心制冷系统
CN109357427B (zh) 用于机房和热水系统的组合式空调系统及其控制方法
CN101382354A (zh) 双功效全天候高温水-水热泵热水机组
CN215892840U (zh) 一种节能除湿的制冷换热装置
CN108759157B (zh) 一次节流双级压缩热泵系统
CN114440496A (zh) 一种空调地暖两联供空气源热泵系统
WO2021047158A1 (zh) 空调器及其控制方法
CN113432172A (zh) 热泵机组室内单元和热泵机组
CN108759156B (zh) 二次节流中间不完全冷却双级压缩热泵系统
CN112628850A (zh) 一种分体式双源热泵空调机组及其运行方法
CN112303761A (zh) 一种调节集中供暖温度的氟泵空调系统及控制方法
WO2020056943A1 (zh) 蒸发冷凝机组及其控制方法
TWM598922U (zh) 換熱系統
CN213931199U (zh) 室外加热组件和多联机空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906187

Country of ref document: EP

Kind code of ref document: A1