WO2020073481A1 - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
WO2020073481A1
WO2020073481A1 PCT/CN2018/121138 CN2018121138W WO2020073481A1 WO 2020073481 A1 WO2020073481 A1 WO 2020073481A1 CN 2018121138 W CN2018121138 W CN 2018121138W WO 2020073481 A1 WO2020073481 A1 WO 2020073481A1
Authority
WO
WIPO (PCT)
Prior art keywords
communicates
heat exchange
pressure
low
air
Prior art date
Application number
PCT/CN2018/121138
Other languages
English (en)
French (fr)
Inventor
张仕强
武连发
李立民
焦华超
冯涛
周冰
曹朋
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP18936725.3A priority Critical patent/EP3865779A4/en
Priority to US17/283,479 priority patent/US12038195B2/en
Publication of WO2020073481A1 publication Critical patent/WO2020073481A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/31Air conditioning systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves

Definitions

  • the present disclosure relates to the technical field of air treatment equipment, in particular to an air conditioning system.
  • heat recovery multi-line In the global multi-line market, heat recovery multi-line is very popular with consumers in North America and the EU market. At present, the common heat recovery multi-line system on the market can only achieve both cooling and heating functions. However, while cooling or heating, customers will also have requirements for chilled water, hot water, and household heating. Therefore, the existing heat recovery multi-online system has the problem that it cannot simultaneously meet various demands of customers.
  • An air conditioning system includes an outdoor unit and an indoor heat exchange mechanism.
  • the indoor heat exchange mechanism communicates with the outdoor unit through a liquid pipe, a high-pressure air pipe, and a low-pressure air pipe, and the indoor heat exchange mechanism includes an air-conditioning indoor unit and a first heat exchange mechanism.
  • the heat exchange mechanism is used for at least one of chilled water, hot water production, and heating.
  • An air conditioning system includes an outdoor unit and various indoor heat exchange mechanisms.
  • the indoor heat exchange mechanism includes an air conditioner indoor unit and at least one first heat exchange mechanism for cooling water, making hot water, or heating.
  • the indoor heat exchange mechanism is connected to the outdoor unit through a liquid pipe, a high-pressure air pipe, and a low-pressure air pipe, and the air conditioning system has a cooling mode in which only the indoor heat exchange mechanism for cooling is turned on, and the indoor heat exchange mechanism for heating only is turned on.
  • the thermal mode and the mixed mode in which the indoor heat exchange mechanism for cooling and the indoor heat exchange mechanism for heating are both turned on.
  • the outdoor unit includes a compressor, two outdoor heat exchange units, and a valve assembly.
  • the high-pressure gas pipe communicates with the compressor exhaust port, and the low-pressure gas pipe communicates with the compressor suction port.
  • the outdoor heat exchange unit has a third state in which one end is in communication with the high-pressure gas pipe and the other end is in communication with the liquid pipe, and a fourth state in which one end is in communication with the low-pressure gas pipe and the other end is in communication with the liquid pipe.
  • the other outdoor heat exchange unit has a fifth state where one end is in communication with the liquid pipe and the other end is in communication with the high-pressure gas pipe through the valve assembly, and one end is in communication with the liquid pipe and the other end is through the valve assembly A sixth state communicating with the low-pressure gas pipe, and the valve assembly controls the outdoor heat exchange unit to switch between the fifth state and the sixth state.
  • the valve assembly includes a high-pressure solenoid valve and a low-pressure solenoid valve.
  • One end of the high-pressure solenoid valve forms a high-pressure inlet of the valve assembly, and the other end forms a high-pressure outlet of the valve assembly.
  • the high-pressure outlet communicates, the other end forms a low-pressure outlet of the valve assembly, and the high-pressure inlet directly or indirectly communicates with the compressor exhaust, and the high-pressure outlet communicates with the corresponding outdoor heat exchange unit.
  • the low-pressure outlet communicates with the low-pressure gas pipe.
  • the outdoor unit further includes a refrigeration four-way valve, the D end of the refrigeration four-way valve communicates with the exhaust port of the compressor, the S end of the refrigeration four-way valve communicates with the low-pressure gas pipe, and the C end respectively It communicates with one of the outdoor heat exchange units and the high-pressure inlet, and the high-pressure outlet communicates with the other outdoor heat exchange unit.
  • the E end of the refrigeration four-way valve communicates with the suction port of the compressor through a throttle device or the E end of the refrigeration four-way valve is closed.
  • the air conditioning system When the D end of the refrigeration four-way valve communicates with the C end, the air conditioning system enters the cooling mode; when the D end of the refrigeration four-way valve communicates with the E end, the air conditioning system enters the heating mode or the hybrid mode.
  • the first heat exchange mechanism includes a generator having a fifth state in which the first refrigerant port communicates with the high-pressure gas pipe through the first solenoid valve and the other end communicates with the liquid pipe and the first refrigerant port passes through the first The sixth state in which two solenoid valves communicate with the low-pressure gas pipe and the other end communicates with the liquid pipe.
  • the first heat exchange mechanism further includes a water tank, and the water tank and the generator are arranged in series to form a water tank heat exchange circulation pipeline.
  • the first heat exchange mechanism further includes a floor heating pipe, and the floor heating pipe and the generator are arranged in series to form a floor heating heat exchange circulation pipe.
  • the generator and the floor heating pipeline perform floor heating and heating.
  • the air-conditioning indoor unit communicates with the high-pressure air pipe through a third solenoid valve, and communicates with the low-pressure air pipe through a fourth solenoid valve, and each of the air-conditioning indoor units has one end communicating with the liquid pipe and the other end A first state in communication with the high-pressure gas pipe and a second state in which one end is in communication with the liquid pipe and the other end is in communication with the low-pressure gas pipe.
  • the valve assembly further includes a low-pressure bypass solenoid valve, one end of the low-pressure bypass solenoid valve communicates with the high-pressure outlet, and the other end communicates with the low-pressure outlet.
  • the air-conditioning system connects the indoor heat exchange mechanism for cooling and heating to an outdoor unit, uses the refrigerants in different states provided by the outdoor unit to achieve the purpose of simultaneous cooling and heating, and generates water by setting
  • the heat exchange mechanism of the heat exchanger and the indoor unit of the air conditioner integrate a variety of functions such as air conditioning refrigeration, air conditioning heating, domestic cold water production, domestic hot water production, and domestic heating, saving space, and easy to install, and directly use high temperature refrigerant to Heating water and underfloor heating, replacing coal heating and boiler heating, is more energy-saving and environmentally friendly, and improves the living environment.
  • FIG. 1 is a schematic structural diagram of an embodiment of an air-conditioning system provided by the present disclosure
  • the air conditioning system shown in FIG. 1 includes an outdoor unit 1 and an indoor heat exchange mechanism 2.
  • the indoor heat exchange mechanism 2 includes an air conditioner indoor unit 21 and a first unit for at least one of cooling water, hot water generation, and heating.
  • a heat exchange mechanism 3, the indoor heat exchange mechanism 2 communicates with the outdoor unit 1 through a liquid pipe 4, a high-pressure gas pipe 5 and a low-pressure gas pipe 6.
  • the air conditioning system has a cooling mode in which only the indoor heat exchange mechanism 2 for cooling is turned on, a heating mode in which only the indoor heat exchange mechanism 2 for heating is turned on, and an indoor heat exchange mechanism 2 for cooling and indoor heating The mixed mode in which the heat exchange mechanism 2 is turned on.
  • the amount of refrigerant distributed into the liquid pipe 4, the high-pressure gas pipe 5 and the low-pressure gas pipe 6 in the outdoor unit 1 can be switched to meet the needs of the indoor heat exchange mechanism 2, wherein the air-conditioning indoor unit 21 can perform Refrigeration can also be used for heating.
  • the first heat exchange mechanism 3 uses a refrigerant to exchange heat with water to achieve the purpose of producing hot water, cold water, or floor heating.
  • the outdoor unit 1 includes a compressor 11, two outdoor heat exchange units 12 and a valve assembly 13, the high-pressure gas pipe 5 communicates with the exhaust port of the compressor 11, and the low-pressure gas pipe 6 communicates with the compressor 11
  • One of the outdoor heat exchange units 12 has a third state in which one end communicates with the high-pressure gas pipe 5 and the other end communicates with the liquid pipe 4, and one end communicates with the low-pressure gas pipe 6 and the other end
  • the fourth state in which the liquid tubes 4 are in communication, so that the outdoor heat exchange unit 12 performs condensation in the third state and the outdoor heat exchange unit 12 performs evaporation in the fourth state.
  • the other outdoor heat exchange unit 12 has a fifth state where one end communicates with the liquid pipe 4 and the other end communicates with the high-pressure gas pipe 5 through the valve assembly 13 and one end communicates with the liquid pipe 4 and the other end
  • the two outdoor heat exchange units 12 can adjust the working state of the two outdoor heat exchange units 12 according to the requirements of all the indoor heat exchange mechanisms 2 respectively, thereby ensuring the purpose of matching the condensation and evaporation heat exchange area with the needs, and increasing the system
  • the valve assembly 13 can adjust the working state of the corresponding outdoor heat exchange unit 12, that is, adjust the outdoor heat exchange unit 12 to communicate with the high-pressure gas pipe 5 for condensation, or to communicate with the low-pressure gas pipe 6 for evaporation, or There are three states that are not in communication with the high-pressure gas pipe 5 and the low-pressure gas pipe 6 and do not work, which
  • the valve assembly 13 includes a high-pressure solenoid valve 131 and a low-pressure solenoid valve 132, one end of the high-pressure solenoid valve 131 forms a high-pressure inlet of the valve assembly 13, and the other end forms a high-pressure outlet of the valve assembly 13, the low-pressure solenoid One end of the valve 132 communicates with the high-pressure outlet, and the other end forms a low-pressure outlet of the valve assembly 13, and the high-pressure inlet directly or indirectly communicates with the exhaust port of the compressor 11, and the high-pressure outlet communicates with the corresponding
  • the outdoor heat exchange unit 12 communicates, the low pressure outlet communicates with the low pressure gas pipe 6, and the high pressure solenoid valve 131 and the low pressure solenoid valve 132 are used to quickly adjust the pressure value of the corresponding outdoor heat exchange unit 12 to reduce the main valve body
  • the outdoor unit 1 further includes a refrigeration four-way valve 14, the D end of the refrigeration four-way valve 14 communicates with the exhaust port of the compressor 11, the S end of the refrigeration four-way valve 14 and the low-pressure gas pipe 6 is connected, the C end is respectively connected to one of the outdoor heat exchange units 12 and the high-pressure inlet, and the high-pressure outlet is connected to the other outdoor heat exchange unit 12, using the refrigeration four-way valve 14 to power on and off Electricity, switching the communication mode of the refrigeration four-way valve 14, so as to achieve the purpose of switching the working state of the two outdoor heat exchangers of the air conditioning system, and thereby conveniently adjust the amount of refrigerant in the liquid pipe 4, the high-pressure gas pipe 5 and the low-pressure gas pipe 6, So as to meet the requirements of all indoor heat exchange mechanisms 2.
  • the E end of the refrigeration four-way valve 14 communicates with the suction port of the compressor 11 through a throttle device or the E end of the refrigeration four-way valve 14 is closed, that is, at the S end of the refrigeration four-way valve 14 When communicating with the C end, the refrigerant flows into the suction port of the compressor 11 without passing through the E end due to the effect of the throttle device or the sealing device.
  • the air conditioning system When the D end and the C end of the refrigeration four-way valve 14 are in communication, the air conditioning system enters the cooling mode, so that most of the refrigerant of the compressor 11 enters the outdoor heat exchanger for heat exchange, thereby increasing the The amount of refrigerant, which in turn guarantees the requirement of the indoor heat exchange mechanism 2 for cooling; when the D end and the E end of the refrigeration four-way valve 14 are in communication, the air conditioning system enters the heating mode or the mixed mode, even if most of the refrigerant It enters the high-pressure gas pipe 5 to increase the amount of refrigerant and the temperature of the refrigerant in the high-pressure gas pipe 5, thereby ensuring the heating requirements of the indoor heat exchange mechanism 2, and the refrigerant in the high-pressure gas pipe 5 passes through the indoor heat exchange mechanism 2 for heating After heating, a liquid refrigerant is formed and enters the liquid tube 4, so that the liquid refrigerant in the liquid tube 4 can enter the indoor heat exchange mechanism 2 for cooling, thereby completing the cooling requirements
  • the first heat exchange mechanism 3 includes a generator 31 having a fifth state and a first refrigerant port communicating with the high-pressure gas pipe 5 through the first solenoid valve and the other end communicating with the liquid pipe 4
  • a refrigerant port communicates with the low-pressure gas pipe 6 through the second solenoid valve and the other end communicates with the liquid pipe 4 in a sixth state, that is, according to the switching of the first solenoid valve and the second solenoid valve, it enters the generator 31
  • the refrigerant state when the first solenoid valve is opened, the high-temperature and high-pressure refrigerant is passed into the generator 31 for making hot water or heating; when the second solenoid valve is opened, the liquid refrigerant is passed into the generator 31 for making Take cold water or refrigeration, in particular, the first solenoid valve and the second solenoid valve work in opposite states.
  • the first heat exchange mechanism 3 further includes a water tank 32, and the water tank 32 and the generator 31 are arranged in series to form a heat exchange circulation pipeline of the water tank 32.
  • the first heat exchange mechanism 3 further includes a floor heating pipeline 33, and the floor heating pipeline 33 is arranged in series with the generator 31 to form a floor heating heat exchange circulation pipeline.
  • the generator 31 and the floor heating pipeline 33 perform floor heating and heating.
  • the air-conditioning indoor unit 21 communicates with the high-pressure air pipe 5 through a third solenoid valve, and communicates with the low-pressure air pipe 6 through a fourth solenoid valve, and each of the air-conditioning indoor units 21 has one end and the liquid pipe 4 and the second state where the other end communicates with the high-pressure gas pipe 5 and the second state where one end communicates with the liquid pipe 4 and the other end communicates with the low-pressure gas pipe 6, when the third solenoid valve is opened, the fourth solenoid When the valve is closed, the air conditioner indoor unit 21 performs heating, and when the third solenoid valve is closed and the fourth solenoid valve is opened, the air conditioner indoor unit 21 performs cooling.
  • the valve assembly 13 further includes a low-pressure bypass solenoid valve 133.
  • One end of the low-pressure bypass solenoid valve 133 communicates with the high-pressure outlet, and the other end communicates with the low-pressure outlet.
  • the indoor heat exchange mechanism 2 includes two air conditioner indoor units 21, a chilled water mechanism, a hot water generating mechanism, and a floor heating pipeline 33;
  • the cooling four-way valve 14 is powered off (the D end of the cooling four-way valve 14 communicates with the C end), outside
  • the heat exchanger acts as a condenser, and cools the high-temperature and high-pressure gas into a low-temperature and high-pressure liquid.
  • the external unit EEV After being throttled by the external unit EEV, it turns into a low-temperature and low-pressure liquid through the liquid pipe 4 and enters the mode converter.
  • the first solenoid valve (or the third solenoid valve) corresponding to the branch is in a power-off state for the internal unit branch with air conditioning and cooling and the branch with cooling water demand, and the second solenoid valve ( Or the fourth solenoid valve) is in the power-on state.
  • the refrigerant passes through the internal unit EEV and enters the inner heat exchanger for evaporation, and returns to the external unit through the low-pressure air pipe 6.
  • the refrigerant passes through The device 31 returns to the external machine after exchanging heat with water.
  • the water that absorbs the energy of the refrigerant in the generator 31 drops to the temperature we need and enters the water tank 32 for storage, which is convenient for life and practical use.
  • the refrigeration four-way valve 14 is powered on (the D end of the refrigeration four-way valve 14 is E End connected).
  • the high-temperature and high-pressure gas directly enters the mode converter through the high-pressure gas pipe 5.
  • the first solenoid valve of the corresponding branch is in the power-on state, and the second solenoid valve is in the power-off state.
  • the high-temperature refrigerant enters the air-conditioning indoor unit 21 through the air pipe to condense, then returns to the external unit heat exchanger to evaporate through the liquid pipe 4, and then returns to the compressor 11; After heating, the heat is also returned to the external machine heat exchanger through the liquid pipe 4; after the water heated by the generator 31 is heated to the target temperature, it will be stored in the water tank 32 for heat preservation for daily use by people;
  • the branch road directly uses high-temperature refrigerant to heat the water for daily heating.
  • the operating state of the external machine is: the refrigeration four-way valve 14 is powered on (the D end of the refrigeration four-way valve 14 is E terminal is connected).
  • the high-temperature and high-pressure gas directly enters the mode converter through the high-pressure gas pipe 5.
  • Branches 1 to 5 are sequentially arranged in the direction away from the outdoor unit 1 in FIG. 1:
  • Branch 1 air conditioning indoor unit 21 refrigeration: air conditioning refrigeration: the third solenoid valve is closed, the fourth solenoid valve is energized, the refrigerant enters the internal machine through the liquid pipe 4, and after heat exchange, returns to the external machine through the low pressure gas pipe 6;
  • Branch 2 air-conditioning indoor unit 21 heating: air-conditioning heating: the third solenoid valve is powered on, the fourth solenoid valve is powered off, the refrigerant enters the internal unit through the high-pressure gas pipe 5, and enters the refrigeration through a part of the liquid pipe 4 after heat exchange In the machine, part of it is returned to the external machine system.
  • Branch 3 domestic hot water: the first solenoid valve is powered on, the second solenoid valve is powered off, the refrigerant enters the generator 31 through the high-pressure gas pipe 5, and after heat exchange enters the refrigeration internal machine through a part of the liquid pipe 4 In the middle, part of it goes back to the external machine system. After the water heated by the generator 31 is heated to the target temperature, it will be stored in the water tank 32 for heat preservation for daily use by people
  • Branch 4 (refrigerated water mechanism): living cold water: the first solenoid valve is closed, the second solenoid valve is energized, the refrigerant enters the generator 31 through the liquid pipe 4, and after heat exchange, returns to the external machine through the low-pressure gas pipe 6, the generator 31
  • the water that absorbs the energy of the refrigerant drops to the temperature we need and enters the water tank 32 for storage, which is convenient for life and practical use.
  • Branch 5 underfloor heating pipeline 33: underfloor heating: the first solenoid valve is powered on, the second solenoid valve is powered off, the refrigerant enters the generator 31 through the high-pressure gas pipe 5, and after heat exchange enters the refrigeration unit through part of the liquid pipe Part of it returns to the external machine system, and the water after heat exchange in the generator 31 enters the floor heating pipe for daily heating use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种空调系统,包括室外机(1)和室内换热机构(2),室内换热机构(2)包括空调室内机(21)和用于制冷水、制热水和采暖中的至少一种的第一换热机构(3)。该空调系统通过将处于室内的用于制冷、制热的室内机、制冷水机构、制热水机构及地暖的设备均连通在一个室外机上,集空调制冷、空调制热、制生活冷水、制生活热水、家庭供暖等多种功能于一体,节省了空间,便于安装,而且直接利用高温冷媒来对水进行加热,进行地暖采暖,替代了煤炭取暖及锅炉取暖,更加节能环保,提升生活环境。

Description

空调系统
相关申请的交叉引用
本公开是以申请号为201811168921.3,申请日为2018年10月8日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及空气处理设备技术领域,特别是一种空调系统。
背景技术
在全球多联机市场中,热回收多联机在北美、欧盟市场很受消费者欢迎。目前市场上常见的热回收多联机系统,只能实现同时制冷、制热两种功能,然而客户在制冷或制热的同时,还会存在制冷水、制热水、家庭采暖等方面的需求,因此现有的热回收多联机系统存在无法同时满足客户的多种需求的问题。
发明内容
为了解决无法满足客户多种需求的技术问题,而提供一种能够满足多种需求的空调系统。
一种空调系统,包括室外机和室内换热机构,室内换热机构通过液管、高压气管和低压气管与室外机连通,且室内换热机构包括空调室内机和第一换热机构,第一换热机构用于制冷水、制热水和采暖中的至少一种。
一种空调系统,包括室外机和多种室内换热机构,所述室内换热机构包括空调室内机和至少一种用于制冷水、制热水或采暖的第一换热机构,所有所述室内换热机构均通过液管、高压气管和低压气管与室外机连通,且所述空调系统具有仅进行制冷的室内换热机构开启的制冷模式、仅进行制热的室内换热机构开启的制热模式以及进行制冷的室内换热机构和进行制热的室内换热机构均开启的混合模式。
所述室外机包括压缩机、两个室外换热单元和阀组件,所述高压气管与所述压缩机的排气口连通,所述低压气管与所述压缩机的吸气口连通,一个所述室外换热单元具有一端与所述高压气管连通且另一端与所述液管连通的第三状态和一端与所述低压气管连通且另一端与所述液管连通的第四状态。
另一所述室外换热单元具有一端与所述液管连通且另一端通过所述阀组件与所述高压气管连通的第五状态和一端与所述液管连通且另一端通过所述阀组件与所述低压气管连通的第六状态,且所述阀组件控制所述室外换热单元在所述第五状态和所述第六状态之间切换。
所述阀组件包括高压电磁阀和低压电磁阀,所述高压电磁阀的一端形成所述阀组件的高压入口,另一端形成所述阀组件的高压出口,所述低压电磁阀的一端与所述高压出口连通,另一端形成所述阀组件的低压出口,且所述高压入口直接或间接与所述压缩机的排气口连通,所述高压出口与对应的所述室外换热单元连通,所述低压出口与所述低压气管连通。
所述室外机还包括制冷四通阀,所述制冷四通阀的D端与所述压缩机的排气口连通,所述制冷四通阀的S端与所述低压气管连通,C端分别与一个所述室外换热单元和所述高压入口连通,且所述高压出口与另一所述室外换热单元连通。
所述制冷四通阀的E端通过节流装置与所述压缩机的吸气口连通或所述制冷四通阀的E端封闭设置。
在所述制冷四通阀的D端与C端连通时,所述空调系统进入制冷模式;在所述制冷四通阀的D端与E端连通时,所述空调系统进入制热模式或混合模式。
第一换热机构包括发生器,所述发生器具有第一冷媒端口通过第一电磁阀与所述高压气管连通且另一端与所述液管连通的第五状态和的第一冷媒端口通过第二电磁阀与所述低压气管连通且另一端与所述液管连通的第六状态。
所述第一换热机构还包括水箱,所述水箱与所述发生器串联设置形成水箱换热循环管路。
当所述第一电磁阀开启、所述第二电磁阀关闭时,所述发生器和所述水箱制取生活热水,且当所述第二电磁阀开启、所述第一电磁阀关闭时,所述发生器和所述水箱制取生活冷水。
所述第一换热机构还包括地暖管路,所述地暖管路与所述发生器串联设置形成地暖换热循环管路。
当所述第一电磁阀开启、所述第二电磁阀关闭时,所述发生器和所述地暖管路进行地暖制热。
所述空调室内机通过第三电磁阀与所述高压气管连通,且通过第四电磁阀与所述低压气管连通,且每一所述空调室内机均具有一端与所述液管连通且另一端与所述高 压气管连通的第一状态和一端与所述液管连通且另一端与所述低压气管连通的第二状态。
所述阀组件还包括低压旁通电磁阀,所述低压旁通电磁阀的一端与所述高压出口连通,另一端与所述低压出口连通。
本公开提供的空调系统,通过将进行制冷和进行制热的室内换热机构均连通在一个室外机上,利用一个室外机提供的不同状态的冷媒达到同时制冷制热的目的,并且通过设置水发生器换热机构和空调室内机,将空调制冷、空调制热、制生活冷水、制生活热水、家庭供暖等多种功能集于一体,节省了空间,且便于安装,而且直接利用高温冷媒来对水进行加热,进行地暖采暖,替代了煤炭取暖及锅炉取暖,更加节能环保,提升生活环境。
附图说明
图1为本公开提供的空调系统的实施例的结构示意图;
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本公开,并不用于限定本公开。
如图1所示的空调系统,包括室外机1和室内换热机构2,所述室内换热机构2包括空调室内机21和用于制冷水、制热水和采暖中的至少一种的第一换热机构3,所述室内换热机构2通过液管4、高压气管5和低压气管6与室外机1连通。且所述空调系统具有仅进行制冷的室内换热机构2开启的制冷模式、仅进行制热的室内换热机构2开启的制热模式以及进行制冷的室内换热机构2和进行制热的室内换热机构2均开启的混合模式。根据空调系统的工作模式,能够通过切换室外机1中分配到液管4、高压气管5和低压气管6内的冷媒的量,从而满足室内换热机构2的需求,其中空调室内机21能够进行制冷也可以进行制热,第一换热机构3是利用冷媒与水进行换热,从而达到制取热水、制取冷水或利用地暖制热的目的。
所述室外机1包括压缩机11、两个室外换热单元12和阀组件13,所述高压气管5与所述压缩机11的排气口连通,所述低压气管6与所述压缩机11的吸气口连通,一个所述室外换热单元12具有一端与所述高压气管5连通且另一端与所述液管4连 通的第三状态和一端与所述低压气管6连通且另一端与所述液管4连通的第四状态,从而满足在第三状态下该室外换热单元12进行冷凝,在第四状态下该室外换热单元12进行蒸发的目的。
另一所述室外换热单元12具有一端与所述液管4连通且另一端通过所述阀组件13与所述高压气管5连通的第五状态和一端与所述液管4连通且另一端通过所述阀组件13与所述低压气管6连通的第六状态,且所述阀组件13控制所述室外换热单元12在所述第五状态和所述第六状态之间切换,通过采用两个室外换热单元12,能够根据所有所述室内换热机构2的需求分别调节两个室外换热单元12的工作状态,进而保证冷凝和蒸发的换热面积与需求匹配的目的,增加系统的舒适性,而且通过阀组件13,能够调节对应的室外换热单元12的工作状态,也即调节室外换热单元12或与高压气管5连通进行冷凝、或与低压气管6连通进行蒸发、或与高压气管5和低压气管6均不连通而不进行工作的三种状态,进而满足压缩机11在不降频的条件下切换空调系统的工作状态的目的,能够有效的降低主阀体在切换过程中产生的噪音。
所述阀组件13包括高压电磁阀131和低压电磁阀132,所述高压电磁阀131的一端形成所述阀组件13的高压入口,另一端形成所述阀组件13的高压出口,所述低压电磁阀132的一端与所述高压出口连通,另一端形成所述阀组件13的低压出口,且所述高压入口直接或间接与所述压缩机11的排气口连通,所述高压出口与对应的所述室外换热单元12连通,所述低压出口与所述低压气管6连通,利用高压电磁阀131和低压电磁阀132对对应的室外换热单元12的压力值进行快速调节,降低主阀体在切换时需要克服的压力值,进而不需要压缩机11进行降频操作,并且保证主阀体在切换状态时,不会产生过大噪音。
所述室外机1还包括制冷四通阀14,所述制冷四通阀14的D端与所述压缩机11的排气口连通,所述制冷四通阀14的S端与所述低压气管6连通,C端分别与一个所述室外换热单元12和所述高压入口连通,且所述高压出口与另一所述室外换热单元12连通,利用制冷四通阀14的上电和掉电,切换制冷四通阀14的连通方式,从而达到切换空调系统的两个室外换热器的工作状态的目的,进而方便调节液管4、高压气管5和低压气管6中的冷媒的量,从而满足所有室内换热机构2的要求。
所述制冷四通阀14的E端通过节流装置与所述压缩机11的吸气口连通或所述制冷四通阀14的E端封闭设置,也即在制冷四通阀14的S端与C端连通时,因节流装置或封闭设置的作用使冷媒不经过E端流入压缩机11的吸气口。
在所述制冷四通阀14的D端与C端连通时,所述空调系统进入制冷模式,使压缩机11的大部分冷媒进入室外换热器内进行换热,从而增加液管4内的冷媒量,进而保证室内换热机构2进行制冷的要求;在所述制冷四通阀14的D端与E端连通时,所述空调系统进入制热模式或混合模式,也即使大部分的冷媒进入高压气管5,从而增加高压气管5内的冷媒量和冷媒温度,进而保证室内换热机构2进行制热的要求,而且在高压气管5内的冷媒经过进行制热的室内换热机构2换热后形成液态冷媒进入液管4,从而使液管4内的液态冷媒能够进入进行制冷的室内换热机构2中,从而完成制冷要求,达到同时制冷制热的要求,而且根据设置的室内换热机构2(如同时包含制热水机构、制冷水机构、地暖等)的不同,能够同时满足多种需求。
第一换热机构3包括发生器31,所述发生器31具有第一冷媒端口通过第一电磁阀与所述高压气管5连通且另一端与所述液管4连通的第五状态和的第一冷媒端口通过第二电磁阀与所述低压气管6连通且另一端与所述液管4连通的第六状态,也即根据第一电磁阀和第二电磁阀的切换选择进入发生器31的冷媒状态,当第一电磁阀打开时,发生器31内通入高温高压冷媒,用于制取热水或取暖,当第二电磁阀打开时,发生器31内通入液态冷媒,用于制取冷水或制冷,特别的,第一电磁阀和第二电磁阀的工作状态相反。
所述第一换热机构3还包括水箱32,所述水箱32与所述发生器31串联设置形成水箱32换热循环管路。
当所述第一电磁阀开启、所述第二电磁阀关闭时,所述发生器31和所述水箱32制取生活热水,且当所述第二电磁阀开启、所述第一电磁阀关闭时,所述发生器31和所述水箱32制取生活冷水。
所述第一换热机构3还包括地暖管路33,所述地暖管路33与所述发生器31串联设置形成地暖换热循环管路。
当所述第一电磁阀开启、所述第二电磁阀关闭时,所述发生器31和所述地暖管路33进行地暖制热。
所述空调室内机21通过第三电磁阀与所述高压气管5连通,且通过第四电磁阀与所述低压气管6连通,且每一所述空调室内机21均具有一端与所述液管4连通且另一端与所述高压气管5连通的第一状态和一端与所述液管4连通且另一端与所述低压气管6连通的第二状态,当第三电磁阀开启、第四电磁阀关闭时,空调室内机21进行制热,当第三电磁阀关闭、第四电磁阀开启时,空调室内机21进行制冷。
所述阀组件13还包括低压旁通电磁阀133,所述低压旁通电磁阀133的一端与所述高压出口连通,另一端与所述低压出口连通,通过设置低压旁通电磁阀133,能够进行逐步泄压,增加泄压效率,并且增加切换过程中四通阀的切换成功率,同时保证空调系统的连通管、连接口等位置的可靠性。
如以图1中的室内换热机构2为例:其中室内换热机构2包括两个空调室内机21、一个制冷水机构、一个制热水机构和一个地暖管路33;
1、在空调系统有室内制冷需求、制冷水需求或两种需求同时存在时,外机运行状态一致:制冷四通阀14掉电(制冷四通阀14的D端与C端连通),外侧换热器作为冷凝器,将高温高压气体冷却为低温高压液体,经过外机EEV节流后,变为低温低压液体经过液管4进入模式转换器。
冷媒进入模式转换器后,对于有空调制冷的内机支路和有制冷水需求的支路,对应支路的第一电磁阀(或第三电磁阀)处于掉电状态,第二电磁阀(或第四电磁阀)处于上电状态,对于空调室内机21来讲,冷媒经过内机EEV后进入内侧换热器进行蒸发,通过低压气管6回到外机;对于制冷水机构,冷媒经过发生器31与水换热后回到外机。而发生器31中吸收冷媒能量的水降至我们所需要的温度进入水箱32储存,便于生活实用。
2、在空调系统有室内制热需求、制热水、地暖采暖需求或几种需求同时存在时,外机运行状态一致:制冷四通阀14上电(制冷四通阀14的D端与E端连通)。系统启动时,高温高压气体直接经过高压气管5进入模式转换器。
高温冷媒进入模式转换器后,对于进行制热的空调室内机21和制热水机构,对应支路的第一电磁阀处于上电状态,第二电磁阀处于掉电状态,对于控制制热支路来讲,高温冷媒通过气管进入空调室内机21冷凝后经液管4回到外机换热器蒸发,之后回到压缩机11;对于制热水机构,高温冷媒经过发生器31对水进行加热,换热后也是经液管4回到外机换热器;经过发生器31加热的水加热到目标温度后,就会储存在水箱32进行保温,供人们日常使用;对于需要地暖采暖需求的支路,就直接利用高温冷媒对水进行加热,供日常取暖使用。
3、在空调系统需要实现同时空调制冷、空调制热、生活冷水、生活热水、地暖采暖功能时,外机运行状态为:制冷四通阀14上电(制冷四通阀14的D端与E端连通)。系统启动时,高温高压气体直接经过高压气管5进入模式转换器。
其中分支1至分支5沿图1中远离室外机1的方向依次设置:
分支1(空调室内机21制冷):空调制冷:第三电磁阀关闭,第四电磁阀上电,冷媒经过液管4进入内机,换热后,经低压气管6回到外机;
分支2(空调室内机21制热):空调制热:第三电磁阀上电,第四电磁阀掉电,冷媒经过高压气管5进入内机,换热后经过液管4一部分进入到制冷内机中,一部分回到外机系统中。
分支3(制热水机构):生活热水:第一电磁阀上电,第二电磁阀掉电,冷媒经过高压气管5进入发生器31,换热后经过液管4一部分进入到制冷内机中,一部分回到外机系统中。经过发生器31加热的水加热到目标温度后,就会储存在水箱32进行保温,供人们日常使用
分支4(制冷水机构):生活冷水:第一电磁阀关闭,第二电磁阀上电,冷媒经过液管4进入发生器31,换热后,经低压气管6回到外机,发生器31中吸收冷媒能量的水降至我们所需要的温度进入水箱32储存,便于生活实用。
分支5(地暖管路33):地暖采暖:第一电磁阀上电,第二电磁阀掉电,冷媒经过高压气管5进入发生器31,换热后经过液管4一部分进入到制冷内机中,一部分回到外机系统中,而在发生器31中换热后的水进入地暖管道,供日常取暖使用。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本公开专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种空调系统,包括:
    室外机(1);和
    室内换热机构(2),通过液管(4)、高压气管(5)和低压气管(6)与所述室外机(1)连通,且所述室内换热机构(2)包括空调室内机(21)和第一换热机构(3),所述第一换热机构(3)用于制冷水、制热水和采暖中的至少一种。
  2. 根据权利要求1所述的空调系统,其中:所述室外机(1)包括压缩机(11)和两个室外换热单元(12),所述高压气管(5)与所述压缩机(11)的排气口连通,所述低压气管(6)与所述压缩机(11)的吸气口连通,一个所述室外换热单元(12)具有一端与所述高压气管(5)连通且另一端与所述液管(4)连通的第三状态和一端与所述低压气管(6)连通且另一端与所述液管(4)连通的第四状态。
  3. 根据权利要求2所述的空调系统,还包括阀组件(13),另一所述室外换热单元(12)具有一端与所述液管(4)连通且另一端通过所述阀组件(13)与所述高压气管(5)连通的第五状态和一端与所述液管(4)连通且另一端通过所述阀组件(13)与所述低压气管(6)连通的第六状态,且所述阀组件(13)控制所述室外换热单元(12)在所述第五状态和所述第六状态之间切换。
  4. 根据权利要求3所述的空调系统,其中:所述阀组件(13)包括高压电磁阀(131)和低压电磁阀(132),所述高压电磁阀(131)的一端形成所述阀组件(13)的高压入口,另一端形成所述阀组件(13)的高压出口,所述低压电磁阀(132)的一端与所述高压出口连通,另一端形成所述阀组件(13)的低压出口,且所述高压入口直接或间接与所述压缩机(11)的排气口连通,所述高压出口与对应的所述室外换热单元(12)连通,所述低压出口与所述低压气管(6)连通。
  5. 根据权利要求4所述的空调系统,其中:所述室外机(1)还包括制冷四通阀(14),所述制冷四通阀(14)的D端与所述压缩机(11)的排气口连通,所述制冷四通阀(14)的S端与所述低压气管(6)连通,C端分别与一个所述室外换热单元(12)和所述高压入口连通,且所述高压出口与另一所述室外换热单元(12)连通。
  6. 根据权利要求5所述的空调系统,其中:所述制冷四通阀(14)的E端通过节流装置与所述压缩机(11)的吸气口连通或所述制冷四通阀(14)的E端封闭设置。
  7. 根据权利要求1所述的空调系统,其中:所述第一换热机构(3)包括发生器 (31),所述发生器(31)具有第一冷媒端口通过第一电磁阀与所述高压气管(5)连通且另一端与所述液管(4)连通的第五状态和第一冷媒端口通过第二电磁阀与所述低压气管(6)连通且另一端与所述液管(4)连通的第六状态。
  8. 根据权利要求7所述的空调系统,其中:所述第一换热机构(3)还包括水箱(32),所述水箱(32)与所述发生器(31)串联设置形成水箱换热循环管路。
  9. 根据权利要求7所述的空调系统,其中:所述第一换热机构(3)还包括地暖管路(33),所述地暖管路(33)与所述发生器(31)串联设置形成地暖换热循环管路。
  10. 根据权利要求1所述的空调系统,其中:所述空调室内机(21)通过第三电磁阀与所述高压气管(5)连通,且通过第四电磁阀与所述低压气管(6)连通,且所述空调室内机(21)具有一端与所述液管(4)连通且另一端与所述高压气管(5)连通的第一状态和一端与所述液管(4)连通且另一端与所述低压气管(6)连通的第二状态。
  11. 根据权利要求4所述的空调系统,其中:所述阀组件(13)还包括低压旁通电磁阀(133),所述低压旁通电磁阀(133)的一端与所述高压出口连通,另一端与所述低压出口连通。
PCT/CN2018/121138 2018-10-08 2018-12-14 空调系统 WO2020073481A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18936725.3A EP3865779A4 (en) 2018-10-08 2018-12-14 AIR CONDITIONING SYSTEM
US17/283,479 US12038195B2 (en) 2018-10-08 2018-12-14 Air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811168921.3A CN109405102B (zh) 2018-10-08 2018-10-08 空调系统
CN201811168921.3 2018-10-08

Publications (1)

Publication Number Publication Date
WO2020073481A1 true WO2020073481A1 (zh) 2020-04-16

Family

ID=65466154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121138 WO2020073481A1 (zh) 2018-10-08 2018-12-14 空调系统

Country Status (4)

Country Link
US (1) US12038195B2 (zh)
EP (1) EP3865779A4 (zh)
CN (1) CN109405102B (zh)
WO (1) WO2020073481A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110906482B (zh) * 2019-12-10 2021-06-11 海普电器有限公司 模块式地暖空调一体机
CN112524836B (zh) * 2020-12-17 2022-07-08 广东积微科技有限公司 一种三管制多联机系统及其控制方法
CN112594871B (zh) * 2020-12-31 2022-02-08 广东积微科技有限公司 一种具有双四通阀多功能多联机系统的化霜控制方法
CN112594824B (zh) * 2021-01-25 2022-06-21 广东积微科技有限公司 一种不停机除霜多联机热水系统及其控制方法
CN113007867A (zh) * 2021-02-09 2021-06-22 珠海格力电器股份有限公司 一种多联机空调系统的控制方法
CN113108433A (zh) * 2021-03-23 2021-07-13 珠海格力电器股份有限公司 一种多联机空调系统的控制方法
CN113007830A (zh) * 2021-04-16 2021-06-22 广东积微科技有限公司 一种三管制多联机系统及其控制方法
CN114811855B (zh) * 2022-04-26 2023-09-08 浙江中广电器集团股份有限公司 一种空调及其控制方法
CN115751432B (zh) * 2022-11-07 2023-05-16 沧州青尚环保科技有限公司 一种室内暖通处理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155643A (zh) * 1995-10-02 1997-07-30 三洋电机株式会社 空调机
US6293119B1 (en) * 2000-09-18 2001-09-25 American Standard International Inc. Enhanced economizer function in air conditioner employing multiple water-cooled condensers
CN101592420A (zh) * 2009-06-26 2009-12-02 合肥天鹅制冷科技有限公司 水源采暖/空调/热水三用机
CN101644508A (zh) * 2009-06-30 2010-02-10 广东美的电器股份有限公司 一种多联式空调冷热水多功能系统
KR20100069402A (ko) * 2008-12-16 2010-06-24 엘지전자 주식회사 멀티형 공기조화기 및 그 운전 방법
CN102770725A (zh) * 2010-03-01 2012-11-07 株式会社日立制作所 空气调节热水供给系统
CN203940562U (zh) * 2014-06-20 2014-11-12 佛山市科霖新能源科技有限公司 一种家用空调冷气地暖热水空气净化四联机

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698175B2 (ja) * 1989-07-07 1998-01-19 三洋電機株式会社 空気調和装置
KR20010011429A (ko) 1999-07-28 2001-02-15 윤종용 공기조화기의 온도센서 고정장치
KR100437805B1 (ko) 2002-06-12 2004-06-30 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
JP2004226015A (ja) * 2003-01-24 2004-08-12 Sanyo Electric Co Ltd 冷温水供給システム
JP2006170541A (ja) * 2004-12-16 2006-06-29 Samsung Electronics Co Ltd 空気調和装置
KR100677266B1 (ko) 2005-02-17 2007-02-02 엘지전자 주식회사 냉난방 동시형 멀티 에어컨
JP4726600B2 (ja) * 2005-10-06 2011-07-20 三菱電機株式会社 冷凍空調装置
KR101282565B1 (ko) 2006-07-29 2013-07-04 엘지전자 주식회사 냉난방 동시형 멀티 공기 조화기
CN101131246A (zh) * 2006-08-22 2008-02-27 珠海格力电器股份有限公司 空调器用室外机
CN101566403B (zh) 2009-05-27 2011-01-19 广东美的电器股份有限公司 多联热泵空调热水机
CN201748704U (zh) * 2010-05-31 2011-02-16 珠海格力电器股份有限公司 多功能空调系统
KR101203579B1 (ko) * 2010-11-05 2012-11-21 엘지전자 주식회사 공조 겸용 급탕 장치 및 그 운전방법
CN102425882A (zh) * 2011-10-17 2012-04-25 广东美的电器股份有限公司 热回收多联热泵空调热水机加地板采暖系统
WO2014103013A1 (ja) * 2012-12-28 2014-07-03 三菱電機株式会社 ヒートポンプシステム
CN107178833B (zh) * 2017-05-31 2023-12-05 珠海格力电器股份有限公司 热回收外机系统和空调系统
CN108019808A (zh) * 2017-12-04 2018-05-11 珠海格力电器股份有限公司 热泵系统及其控制方法
CN108489134A (zh) * 2018-04-09 2018-09-04 珠海格力电器股份有限公司 空调系统
CN209084936U (zh) * 2018-10-08 2019-07-09 珠海格力电器股份有限公司 空调系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155643A (zh) * 1995-10-02 1997-07-30 三洋电机株式会社 空调机
US6293119B1 (en) * 2000-09-18 2001-09-25 American Standard International Inc. Enhanced economizer function in air conditioner employing multiple water-cooled condensers
KR20100069402A (ko) * 2008-12-16 2010-06-24 엘지전자 주식회사 멀티형 공기조화기 및 그 운전 방법
CN101592420A (zh) * 2009-06-26 2009-12-02 合肥天鹅制冷科技有限公司 水源采暖/空调/热水三用机
CN101644508A (zh) * 2009-06-30 2010-02-10 广东美的电器股份有限公司 一种多联式空调冷热水多功能系统
CN102770725A (zh) * 2010-03-01 2012-11-07 株式会社日立制作所 空气调节热水供给系统
CN203940562U (zh) * 2014-06-20 2014-11-12 佛山市科霖新能源科技有限公司 一种家用空调冷气地暖热水空气净化四联机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3865779A4 *

Also Published As

Publication number Publication date
US12038195B2 (en) 2024-07-16
US20220011014A1 (en) 2022-01-13
CN109405102A (zh) 2019-03-01
CN109405102B (zh) 2024-01-16
EP3865779A4 (en) 2022-07-06
EP3865779A1 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
WO2020073481A1 (zh) 空调系统
CN100443826C (zh) 多功能地源热泵辐射空调及热水系统
WO2017219650A1 (zh) 空调系统、复合冷凝器、空调系统的运行控制方法及装置
CN111811166B (zh) 一种带热回收的三联供热泵机组
WO2024198359A1 (zh) 一种超低温单双级混合式空气源热泵机组
CN202757346U (zh) 中央空调和热水一体机
CN103759352A (zh) 一种综合利用热泵和太阳能的相变储能系统
CN111271893A (zh) 一种空调热泵热水系统及其操控方法
CN114046612A (zh) 具有双蒸发温度的空调\地暖\地冷多联系统
CN108759157B (zh) 一次节流双级压缩热泵系统
CN101382354A (zh) 双功效全天候高温水-水热泵热水机组
CN108731295B (zh) 一种热回收燃气空调系统
CN101532743B (zh) 一种空气、水源双冷凝器热泵机组
CN215638112U (zh) 一种制冷系统
CN115264556A (zh) 一种双路输出的制冷采暖热水三联供空气源热泵系统
KR20100005736U (ko) 히트펌프 시스템
CN201583048U (zh) 一种热泵热水器
CN211782077U (zh) 一种空调热泵热水系统
CN110806037B (zh) 一种多联式空调热水联供系统及其控制方法
CN209726564U (zh) 一种相变储能除霜多功能冷暖系统
CN113432172A (zh) 热泵机组室内单元和热泵机组
CN201964611U (zh) 商用超低温热泵热水机组
CN112628850A (zh) 一种分体式双源热泵空调机组及其运行方法
CN101608845B (zh) 并联式模块化热泵机组
CN216924596U (zh) 一种三联供空调热水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018936725

Country of ref document: EP

Effective date: 20210510