WO2015107639A1 - インバータ装置及びインバータ装置を用いた空気調和機 - Google Patents

インバータ装置及びインバータ装置を用いた空気調和機 Download PDF

Info

Publication number
WO2015107639A1
WO2015107639A1 PCT/JP2014/050602 JP2014050602W WO2015107639A1 WO 2015107639 A1 WO2015107639 A1 WO 2015107639A1 JP 2014050602 W JP2014050602 W JP 2014050602W WO 2015107639 A1 WO2015107639 A1 WO 2015107639A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
relay
voltage
board
semiconductor switch
Prior art date
Application number
PCT/JP2014/050602
Other languages
English (en)
French (fr)
Inventor
基志 那須
晃弘 津村
健太 湯淺
真作 楠部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015557624A priority Critical patent/JP6173488B2/ja
Priority to PCT/JP2014/050602 priority patent/WO2015107639A1/ja
Priority to GB1610810.2A priority patent/GB2536589A/en
Publication of WO2015107639A1 publication Critical patent/WO2015107639A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1216Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off

Definitions

  • the present invention relates to an inverter device and an air conditioner using the inverter device.
  • a conventional air conditioner includes an inverter device, and the compressor and the like are controlled at a variable speed by the operation of the inverter device (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and can prevent the switching element from being damaged by the magnetic energy accumulated in the DC reactor, which is generated when the inverter device is suddenly stopped.
  • An object of the present invention is to provide an inverter device and an air conditioner using the inverter device.
  • the inverter device is connected between a rectifier and a DC reactor connected to the anode side of the rectifier and smoothing a DC current of the rectifier, an output side of the DC reactor, and a cathode side of the rectifier
  • a smoothing capacitor for smoothing the DC voltage of the rectifier, the DC reactor, and the smoothing capacitor, and an inrush current preventing circuit for preventing an inrush current to the smoothing capacitor; and the smoothing capacitor for smoothing.
  • an inverter board for controlling the inrush current prevention circuit and the inverter.
  • the inrush current prevention circuit includes the direct current reactor, the smoothing capacitor, And one or more relays and an inrush current preventing resistor connected in parallel with the one or more relays Each of the plurality of relays among the one or more relays is connected in parallel, and when the inverter is abnormal, the inverter board until the inverter is stopped until the inverter is stopped. At least one of the relays is closed.
  • the present invention suppresses surge voltage generated by magnetic energy and prevents damage to the switching element by forming a path for flowing the magnetic energy accumulated in the DC reactor into the smoothing capacitor that is generated when the inverter is suddenly stopped. It has the effect of being able to.
  • step of describing the program for performing the operation of the embodiment of the present invention is a process performed in time series in the order described, but it is not always necessary to process in time series.
  • the processing executed may be included.
  • each block diagram described in this embodiment may be considered as a hardware block diagram or a software functional block diagram.
  • each block diagram may be realized by hardware such as a circuit device, or may be realized by software executed on an arithmetic device such as a processor (not shown).
  • each block in the block diagram described in the present embodiment only needs to perform its function, and the configuration may not be separated by each block.
  • items that are not particularly described are the same as those in the first to sixth embodiments, and the same functions and configurations are described using the same reference numerals.
  • each of Embodiments 1 to 6 may be implemented independently or in combination. In either case, the advantageous effects described below can be obtained.
  • various specific setting examples described in this embodiment are merely examples, and are not particularly limited thereto.
  • Embodiment 1 FIG.
  • FIG. 1 is a diagram showing an example of an electrical configuration of an inverter device 1 according to Embodiment 1 of the present invention.
  • the inverter device 1 is provided between a switch 5 that controls supply of electric power from a commercial power source 3 and interruption of power, and a motor 7. 7 is converted into electric power corresponding to 7 and supplied.
  • the inverter device 1 prevents breakdown of the switching element 87 composed of a semiconductor element or the like that is a main component of the inverter 19.
  • the inverter device 1 is mainly composed of three parts, the first being a rectifier circuit part, the second being a smoothing circuit part, and the third being an inverter circuit part, of which the operation of the second smoothing circuit part Alternatively, the breakdown of the switching element 87 of the inverter circuit unit is prevented by the operation of the third inverter circuit unit.
  • the inverter device 1 includes, as main circuit elements, a rectifier 11, a DC reactor 13, an inrush current prevention circuit 15, a smoothing capacitor 17, and an inverter 19.
  • a DC reactor 13, an inrush current prevention circuit 15, and a smoothing capacitor 17 are configured, and an inverter circuit unit is configured by an inverter 19.
  • the inverter device 1 includes, for example, first voltage detection means 31 and second voltage detection means 33 as detection means.
  • the inverter device 1 includes, for example, a control board 43 and an inverter board 45 as a control subject.
  • the first voltage detection means 31 has a connection configuration that detects the voltage applied to the inrush current prevention circuit 15 and supplies the detection result to the inverter board 45.
  • the second voltage detection means 33 has a connection configuration that detects the voltage applied to the inverter 19 and supplies the detection result to the inverter board 45.
  • the inverter 19 includes, for example, a switching element 87 as described later, but each switching element 87 may be provided with a feedback diode (not shown).
  • a feedback diode may be provided in parallel with the switching element 87.
  • a feedback diode may be provided in series with the switching element 87.
  • the rectifier circuit unit converts alternating current into direct current.
  • the rectifier 11 that is a constituent element of the rectifier circuit unit is configured by, for example, a three-phase full-bridge rectifier circuit, and generates a three-phase full-wave rectified waveform from a three-phase AC power source that is supplied from the commercial power source 3 via the switch 5.
  • the rectifier 11 that forms the three-phase full-wave rectified waveform is described as an example of the rectifier circuit unit.
  • the rectifier 11 is not particularly limited thereto.
  • the rectifier 11 may have a circuit configuration that forms a single-phase full-wave rectified waveform. That is, the rectifier circuit unit is not particularly limited as long as it has a circuit configuration that converts alternating current into direct current.
  • the smoothing circuit unit smoothes, for example, a three-phase full-wave rectified waveform output from the rectifying circuit unit.
  • the DC reactor 13 is connected to the anode side of the rectifier 11 and smoothes the DC current output from the rectifying circuit unit.
  • the inrush current prevention circuit 15 and the smoothing capacitor 17 are connected between the output side of the DC reactor 13 and the cathode side of the rectifier 11.
  • the smoothing capacitor 17 has polarity, the anode side of the smoothing capacitor 17 is connected to the inrush current prevention circuit 15, the cathode side of the smoothing capacitor 17 is connected to the cathode side of the rectifier 11, and direct current Smooth the voltage.
  • the inrush current prevention circuit 15 is provided between the DC reactor 13 and the smoothing capacitor 17.
  • the inrush current prevention circuit 15 includes a first relay 27, a second relay 23, and an inrush current prevention resistor 25, and is disposed on a path through which the charging / discharging current of the smoothing capacitor 17 flows.
  • the inrush current prevention circuit 15 suppresses the inrush current flowing to the smoothing capacitor 17 when the power is turned on and the like, and overvoltage to the inverter circuit section when an abnormal state occurs during the operation of the inverter 19. Is prevented from being applied.
  • the inrush current prevention circuit 15 is configured by, for example, a first relay 27, a second relay 23, and an inrush current prevention resistor 25 connected in parallel. Although the details of the inrush current prevention circuit 15 will be described later, either one of the first relay 27 and the second relay 23 connected in parallel with the inrush current prevention resistor 25 is closed during the operation of the inverter 19. Since a closed circuit having a low impedance is formed, an overvoltage is not applied to the inverter 19.
  • the inverter board 45 controls the inverter 19 to be decelerated, so that it is supplied from the DC reactor 13 to the inverter 19. As a result, the breakdown voltage of the switching element 87 included in the inverter 19 is prevented.
  • the inverter device 1 is configured to control DC of at least one of the control of the open / close state of the first relay 27 included in the inrush current prevention circuit 15 and the control of the open / close state of the second relay 23 included in the inrush current prevention circuit 15. A path for allowing the magnetic energy accumulated in the reactor 13 to flow into the smoothing capacitor 17 is formed. Further, the inverter device 1 forms a load that consumes the magnetic energy accumulated in the DC reactor 13 by the deceleration control of the inverter 19.
  • the inverter circuit unit is supplied with the smoothed DC power output from the smoothing circuit unit, converts the supplied DC power into AC power, and drives the motor 7.
  • the motor 7 is a load of the inverter 19 and serves as a driving source for the compressor 131, the indoor fan 143, the outdoor fan 141, and the like of the air conditioner 110 described later. That is, the inverter circuit unit has a circuit configuration for converting a DC power source into an AC power source, and arbitrarily changes the AC power source and its frequency to control the motor 7 at a variable speed.
  • the control board 43 is provided, for example, in the electrical component box 9 of the outdoor unit 111 described later, and controls the air conditioner 110 described later.
  • An inverter board 45 is also provided in the electrical component box 9 of the outdoor unit 111 described later. Inter-board mutual communication information is transmitted and received between the control board 43 and the inverter board 45.
  • the control board 43 controls the inverter board 45, for example, when controlling the air conditioner 110 mentioned later.
  • the inverter board 45 controls the inverter 19. That is, the control board 43 controls the inverter 19 via the inverter board 45.
  • control board 43 controls the open / close state of the first relay 27 with a first control signal.
  • the inverter board 45 controls the open / close state of the second relay 23 by the second control signal.
  • the inverter board 45 controls the drive of the inverter 19 with an inverter drive signal, for example.
  • the inverter board 45 is configured to receive two pieces of voltage information. Specifically, voltage information related to the both-ends voltage of the inrush current preventing resistor 25, the first relay 27, and the second relay 23 and voltage information related to the voltage of the DC power source input to the inverter 19 are input. Among these, the voltage across the first inrush current prevention resistor 25, the first relay 27, and the second relay 23 is a detection result of the first voltage detection means 31. The detection result of the first voltage detection means 31 is input to the inverter board 45 as first voltage information. The voltage of the DC power source input to the second inverter 19 is a detection result of the second voltage detection means 33. The detection result of the second voltage detection means 33 is input to the inverter board 45 as second voltage information. The inverter board 45 performs control of the open / close state of the second relay 23 and deceleration control of the inverter 19 based on such two pieces of voltage information.
  • FIG. 2 is a diagram showing an example of a functional configuration of the inverter board 45 in the first embodiment of the present invention.
  • the inverter board 45 includes, for example, an abnormality determination unit 51, a deceleration control unit 53, a relay control unit 55, an inverter control unit 57, and the like.
  • the abnormality determination unit 51 determines an abnormal state of the inverter device 1 based on the first voltage information and the second voltage information.
  • the abnormality determination unit 51 includes, for example, a relay failure determination unit 71 and a DC voltage abnormality determination unit 73.
  • the relay failure determination voltage level is a threshold that is assumed to have caused the failure of the first relay 27 or the second relay 23, and the DC voltage abnormality level is that the power supply voltage decreases due to a power failure or the like.
  • the threshold value is assumed to cause the inverter 19 to stop suddenly.
  • the inverter device 1 causes the smoothing capacitor 17 to consume magnetic energy by closing the second relay 23, or causes the inverter 19 and the motor 7 to consume magnetic energy by performing deceleration control of the inverter 19. Or That is, the magnetic energy generated in the DC reactor 13 is converted into electric energy and heat energy by the smoothing capacitor 17, converted into electric energy and heat energy by the inverter 19, and converted into kinetic energy by the motor 7.
  • the relay failure determination unit 71 determines that the inverter device 1 is in an abnormal state, and determines the determination result as the relay control unit 55, the inverter control unit 57, and the deceleration control.
  • the DC voltage abnormality determination unit 73 determines that the inverter device 1 is in an abnormal state, and determines the determination results as the relay control unit 55, the inverter control unit 57, and the deceleration control. To the unit 53.
  • the deceleration control unit 53 supplies the inverter 19 with various information for controlling the inverter 19 to decelerate, for example.
  • the deceleration control unit 53 includes, for example, an operating rotation speed acquisition unit 75, a deceleration rotation speed acquisition unit 77, and a deceleration time calculation unit 79.
  • the operating speed acquisition unit 75 acquires the operating speed of the motor 7 that is driven and controlled by the inverter 19.
  • the rotation speed when the motor 7 is operating is the actual rotation speed of the load of the inverter 19 and is calculated according to, for example, the number of pulses detected by a rotary encoder (not shown).
  • the rotational speed acquisition unit 77 during deceleration acquires the rotational speed of the motor 7 during deceleration control of the inverter 19 such that the inverter 19 decelerates the motor 7.
  • the rotation speed of the motor 7 at the time of the deceleration control is the rotation speed for deceleration of the load of the inverter 19 and may be set in advance or obtained every time.
  • movement of the motor 7 may be calculated
  • the deceleration time calculation unit 79 obtains a deceleration time required for deceleration based on the rotational speed during operation and the rotational speed during deceleration.
  • the deceleration control unit 53 supplies the deceleration time to the inverter 19. For example, if the rotational speed during operation is 100 rps (rotations per second) and the rotational speed during deceleration is 10 rps, 10 (s) is the deceleration time.
  • the relay control unit 55 controls the second relay 23 included in the inrush current prevention circuit 15 based on the determination result.
  • the inverter control unit 57 supplies an inverter drive signal based on the determination result to the inverter 19.
  • the Hi level inverter drive signal is set to the output state where the inverter 19 is driven, and the Lo level inverter drive signal is set to the cutoff state where the inverter 19 stops.
  • the inverter control unit 57 supplies a Lo level inverter drive signal to the inverter 19.
  • the inverter 19 includes an inverter drive signal determination unit 83, a gate control unit 85, a switching element 87, and the like.
  • the inverter drive signal determination unit 83 controls the operation of the switching element 87 by controlling the gate control unit 85 according to the inverter drive signal. If the Lo level inverter drive signal is assumed to be an abnormal state of the inverter device 1, if the Lo level inverter drive signal is supplied to the inverter drive signal determiner 83, the inverter drive signal determiner 83 decelerates the inverter 19. The control is selected, and the gate control unit 85 is caused to generate a signal for decelerating the motor 7. As a result, the switching element 87 performs an operation according to the signal generated by the gate control unit 85.
  • the gate control unit 85 controls the ON state and the OFF state of the switching element 87 by controlling a gate drive circuit (not shown) of the switching element 87. Specifically, the gate control unit 85 generates a PWM signal by controlling a duty ratio that is a ratio between the ON state interval of the switching element 87 and the OFF state interval of the switching element 87. That is, the inverter 19 causes the gate control unit 85 to output a PWM signal from the switching element 87 and performs PWM control of the motor 7 with the PWM signal.
  • the motor 7 generates a rotating magnetic field with a PWM signal, rotates a shaft (not shown) provided in the motor 7, and becomes a drive source for various devices.
  • the motor 7 is, for example, a brushless DC motor.
  • the gate control unit 85 has a ratio between the ON state interval of the switching element 87 and the OFF state interval of the switching element 87 so as to decelerate the motor 7 by the number of revolutions during deceleration before the deceleration time.
  • the inverter 19 is controlled to decelerate, the load of the motor 7 and the like is decelerated, and the motor 7 and the like Stop the load by the deceleration time.
  • the switching element 87 is composed of, for example, an IGBT, but is not particularly limited thereto.
  • the switching element 87 may be composed of a wide band gap semiconductor. Since the wide band gap semiconductor has high voltage resistance and high allowable current density, the switching element 87 can be downsized. Further, since the wide band gap semiconductor has high heat resistance, the heat dissipating fins (not shown) of the heat sink can be reduced in size, and the air cooling of the water cooling part (not shown) can be realized.
  • the inverter 19 including it can be further miniaturized. Furthermore, since the wide band gap semiconductor has low power loss, the switching element 87 can be realized with high efficiency, and the inverter 19 can be realized with high efficiency.
  • the deceleration control unit 53 calculates the deceleration time and supplies the calculation result to the inverter 19 is described.
  • the present invention is not particularly limited to this.
  • the inverter control unit 57 may supply the inverter 19 with an inverter drive signal including an operation for controlling the deceleration of the inverter 19.
  • substrate 45 should just be the structure which can carry out deceleration control of the inverter 19, when the inverter apparatus 1 is in an abnormal state.
  • FIG. 3 is a flowchart illustrating a control example of inverter device 1 according to the first embodiment of the present invention.
  • a control example of the inverter device 1 a control example of the first voltage detection unit 31 will be described in steps S ⁇ b> 11 and S ⁇ b> 12, a control example of the second voltage detection unit 33 will be described in steps S ⁇ b> 21 and S ⁇ b> 22
  • a control example of the inverter board 45 will be described in steps S31 to S39, and a control example of the inverter 19 will be described in steps S51 to S53.
  • the flag is an identifier that branches to processing based on the second voltage information when the flag is 1, and is not particularly limited to the following example. Further, as a premise of the processing, if the inverter 19 is in operation and the first relay 27 and the second relay 23 are not broken, the first relay 27 and the second relay 23 are maintained in a short-circuit state. Suppose.
  • Step S11 The first voltage detector 31 detects the first voltage.
  • Step S12 The first voltage detection means 31 outputs the detection result as first voltage information.
  • Step S21 The second voltage detection means 33 detects the second voltage.
  • Step S22 The second voltage detector 33 outputs the detection result as second voltage information.
  • Step S31 The inverter board 45 identifies the type of voltage information.
  • the type of voltage information is the first voltage information
  • the inverter board 45 proceeds to step S32.
  • substrate 45 progresses to step S33, when the kind of voltage information is 2nd voltage information.
  • Step S32 When the first voltage information reaches the relay failure determination voltage level, the inverter board 45 proceeds to step S35. On the other hand, when the first voltage information does not reach the relay failure determination voltage level, the inverter board 45 returns to step S31.
  • the first voltage information reaches the relay failure determination voltage level
  • the first relay 27 and the second relay 23 are in an open state due to failure. Even if the second voltage information reaches the DC voltage abnormal level, if the first voltage information does not reach the relay failure determination voltage level, at least one of the first relay 27 and the second relay 23 is short-circuited. Assume that state is maintained.
  • Step S33 When the second voltage information reaches the DC voltage abnormality level, the inverter board 45 proceeds to step S34. On the other hand, when the second voltage information has not reached the DC voltage abnormality level, the inverter board 45 returns to step S31.
  • Step S34 The inverter board 45 sets the flag to 1, and proceeds to step S35.
  • Step S35 The inverter board 45 transmits an inverter drive signal for stopping the inverter 19 to the inverter 19.
  • Step S36 The inverter board 45 transmits deceleration time information for decelerating the inverter 19 to the inverter 19. As described above, if the inverter drive signal includes a command for decelerating the inverter 19 within the deceleration time, the process of step S36 is unnecessary.
  • Step S37 When the preset time has elapsed after the deceleration time has elapsed, the inverter board 45 proceeds to step S38. On the other hand, when the preset time has not elapsed after the deceleration time has elapsed, the inverter board 45 returns to step S37.
  • the state after the elapse of the deceleration time and the preset time has elapsed is a state where the inverter 19 is stopped and the operation of the motor 7 accompanying the moment of inertia is also stopped.
  • Step S38 If the flag is 1, the inverter board 45 proceeds to step S39. On the other hand, if the flag is not 1, the inverter board 45 ends the process.
  • Step S39 The inverter board 45 controls the second relay 23 to the open state and ends the process.
  • Step S51 The inverter 19 starts decelerating the motor 7 at a constant speed so as to stop at the deceleration time.
  • Step S52 The inverter 19 determines whether the deceleration time has elapsed. When the deceleration time has elapsed, the inverter 19 proceeds to step S53. On the other hand, when the deceleration time has not elapsed, the inverter 19 returns to step S52.
  • Step S53 The inverter 19 stops the motor 7 and ends the process.
  • FIG. 4 is a diagram showing an example of the electrical configuration of the inverter device 1 in the conventional example. As shown in FIG. 4, the conventional inverter device 1 is not provided with the first voltage detection means 31 and the second relay 23.
  • the control board 43 is powered on.
  • the control board 43 transmits / receives mutual communication information between the inverter board 45 and the board, supplies various control signals, closes the switch 5, and supplies the inverter apparatus 1 with the power supplied from the commercial power source 3.
  • the inverter board 45 controls the inverter 19 based on various control signals included in the inter-board mutual communication information from the control board 43, but does not depend on the various control signals from the control board 43 depending on the situation.
  • the inverter 19 may be controlled.
  • the first relay 27 or the second relay 23 may be open due to the influence of disturbance such as mechanical life or noise.
  • the charging / discharging current of the smoothing capacitor 17 flows via the inrush current preventing resistor 25. Therefore, the charging / discharging current is suppressed by the inrush current preventing resistor 25, the smoothing function of the smoothing capacitor 17 is lowered, and the DC voltage input to the inverter circuit unit varies.
  • the magnetic energy generated by the current flowing through the DC reactor 13 increases the DC voltage. Therefore, an overvoltage is applied to the semiconductor element that constitutes the switching element 87 of the inverter circuit unit, which exceeds the allowable voltage of the semiconductor element, and the semiconductor element may be destroyed.
  • the second relay 23 is connected to the inrush current prevention circuit 15 as described above with reference to FIG. If the voltage between the contacts of the first relay 27 and the second relay 23 and the DC voltage input to the inverter 19 are monitored and the monitored information is fed back to the inverter board 45, the voltage is generated in the DC reactor 13. Can be consumed.
  • the second relay 23 is controlled in conjunction with the inverter 19, thereby obtaining an effect of preventing the semiconductor element constituting the switching element 87 from being destroyed.
  • the magnetic energy generated in the DC reactor 13 is consumed by decelerating and stopping the inverter 19 in stages. Therefore, the magnetic energy generated in the DC reactor 13 can be suppressed, and a rapid increase in the DC voltage applied to the inverter 19 can be prevented.
  • the circuit configuration includes the second relay 23 separately from the first relay 27, that is, if the circuit configuration includes a plurality of relays, at least one of the relays until the inverter 19 stops.
  • the magnetic energy generated in the DC reactor 13 is absorbed and consumed by the smoothing capacitor 17, so that the magnetic energy generated in the DC reactor 13 is suppressed and applied to the inverter 19. A sudden rise in the DC voltage can be prevented.
  • the inverter device 1 forms a path through which the magnetic energy stored in the DC reactor 13 flows into the smoothing capacitor 17, thereby generating magnetic energy stored in the DC reactor 13 that is generated when the inverter device 1 is suddenly stopped. It is possible to suppress the generated surge voltage and prevent the switching element 87 from being damaged.
  • FIG. 5 is a timing chart for explaining the normal operation of the inverter device 1 in the conventional example.
  • the timing chart shows, in order from the top, the first voltage that is the detection result of the first voltage detection unit 31, the second voltage that is the detection result of the second voltage detection unit 33, and the first relay 27.
  • Each of the first control signal, the second control signal of the second relay 23, the contact portion of the first relay 27, the contact portion of the second relay 23, the inverter drive signal, and the actual rotational speed of the load of the inverter 19 over time. Indicates the transition of various states.
  • the first voltage detection means 31 is not provided in the conventional inverter device 1, here, the state transition of the voltage applied to the first relay 27 which is a portion corresponding to the first voltage is shown over time. .
  • a voltage is generated by the contact resistance of the first relay 27 and the conduction current of the first relay 27.
  • the second control signal of the second relay 23 is not generated, and the state transition of the contact portion of the second relay 23 does not occur.
  • the switch 5 is closed, and power is supplied from the commercial power source 3 to the inverter device 1.
  • the smoothing capacitor 17 is charged from t0 to t1, charging is completed at t1, and the DC voltage as the second voltage is stabilized. Further, since the charging current of the smoothing capacitor 17 flows through the inrush current preventing resistor 25 from t0 to t1, the voltage of the first voltage decreases as the charging of the smoothing capacitor 17 proceeds.
  • the first control signal is supplied from the control board 43 to the first relay 27 in the Hi level state, and the first relay 27 transitions from the open state to the short circuit state.
  • the contact portion of the first relay 27 transitions from the open state to the short circuit state.
  • the inverter drive signal is output from the inverter board 45 to the inverter 19 in a high level state, and the motor 7 that is the load of the inverter 19 is started to be driven.
  • the actual rotational speed of the load of the inverter 19 starts increasing at t3, and trapezoidal control is executed.
  • a voltage of, for example, several volts is detected from the contact resistance of the first relay 27 and the conduction current of the first relay 27.
  • the inverter drive signal is output from the inverter board 45 to the inverter 19 in a Lo level state, and the motor 7 that is the load of the inverter 19 is stopped.
  • the actual rotation speed of the load of the inverter 19 starts decelerating from t5, and trapezoidal control is executed.
  • FIG. 6 is a timing chart for explaining the operation when the inverter device 1 in the conventional example is abnormal.
  • the timing chart shows, in order from the top, the first voltage that is the detection result of the first voltage detection unit 31, the second voltage that is the detection result of the second voltage detection unit 33, and the first relay 27.
  • Each of the first control signal, the second control signal of the second relay 23, the contact portion of the first relay 27, the contact portion of the second relay 23, the inverter drive signal, and the actual rotational speed of the load of the inverter 19 over time. Indicates the transition of various states.
  • the first voltage detection means 31 is not provided in the conventional inverter device 1, here, the state transition of the voltage applied to the first relay 27 which is a portion corresponding to the first voltage is shown over time. .
  • a voltage is generated by the contact resistance of the first relay 27 and the conduction current of the first relay 27.
  • the second control signal of the second relay 23 is not generated, and the state transition of the contact portion of the second relay 23 does not occur.
  • the switch 5 is closed, and power is supplied from the commercial power source 3 to the inverter device 1.
  • the smoothing capacitor 17 is charged from t0 to t1, charging is completed at t1, and the DC voltage as the second voltage is stabilized. Further, since the charging current of the smoothing capacitor 17 flows through the inrush current preventing resistor 25 from t0 to t1, the voltage of the first voltage decreases as the charging of the smoothing capacitor 17 proceeds.
  • the first control signal is supplied from the control board 43 to the first relay 27 in the Hi level state, and the first relay 27 transitions from the open state to the short circuit state.
  • the contact portion of the first relay 27 transitions from the open state to the short circuit state.
  • the inverter drive signal is output from the inverter board 45 to the inverter 19 in a high level state, and the motor 7 that is the load of the inverter 19 is started to be driven.
  • the actual rotational speed of the load of the inverter 19 starts increasing at t3, and trapezoidal control is executed.
  • a voltage of, for example, several volts is detected from the contact resistance of the first relay 27 and the conduction current of the first relay 27.
  • the charging / discharging current of the smoothing capacitor 17 passes through the inrush current prevention resistor 25, so the first voltage increases rapidly.
  • the first voltage thus rapidly increased reaches the relay failure determination voltage level.
  • the DC voltage fluctuates and the voltage decreases, so the second voltage reaches the DC voltage abnormal level. Since the second voltage has reached the DC voltage abnormal level at the timing t4, the inverter 19 is immediately stopped by outputting the inverter drive signal at the Lo level at the timing t5.
  • the conventional inverter device 1 is in a state in which no path for flowing the magnetic energy accumulated in the DC reactor 13 into the smoothing capacitor 17 is formed even if the inverter device 1 reaches an abnormal state.
  • FIG. 7 is a timing chart for explaining the operation when both the first relay 27 and the second relay 23 included in the inverter device 1 according to the first embodiment of the present invention fail.
  • the timing chart shows, in order from the top, the first voltage that is the detection result of the first voltage detection unit 31, the second voltage that is the detection result of the second voltage detection unit 33, and the first relay 27.
  • the switch 5 is closed, and power is supplied from the commercial power source 3 to the inverter device 1.
  • the smoothing capacitor 17 is charged from t0 to t1, charging is completed at t1, and the DC voltage as the second voltage is stabilized. Further, since the charging current of the smoothing capacitor 17 flows through the inrush current preventing resistor 25 from t0 to t1, the voltage of the first voltage decreases as the charging of the smoothing capacitor 17 proceeds.
  • the first control signal is supplied from the control board 43 to the first relay 27 in the Hi level state, and the first relay 27 transitions from the open state to the short circuit state.
  • the second control signal is supplied from the inverter board 45 to the second relay 23 in a Hi level state, and the second relay 23 transitions from the open state to the short circuit state.
  • the first control signal supplied to the first relay 27 and the second control signal supplied to the second relay 23 have the same timing, but are not particularly limited thereto. Instead, the timing may be shifted.
  • the contact portion of the first relay 27 transitions from the open state to the short circuit state.
  • the contact portion of the second relay 23 transitions from the open state to the short circuit state.
  • the inverter drive signal is output from the inverter board 45 to the inverter 19 in a Hi level state, and the motor 7 that is the load of the inverter 19 is started to be driven.
  • the actual rotational speed of the load of the inverter 19 starts increasing at t3, and trapezoidal control is executed.
  • a voltage of, for example, several volts is detected from the contact resistance of the first relay 27 and the conduction current of the first relay 27.
  • both the first relay 27 and the second relay 23 have an open failure.
  • each of the contact part of the 1st relay 27 and the contact part of the 2nd relay 23 changes from a short circuit state to an open state. Therefore, since the charging / discharging current of the smoothing capacitor 17 passes through the inrush current prevention resistor 25, the first voltage increases rapidly, and the first voltage increased rapidly reaches the relay failure determination voltage level.
  • the inverter drive signal is output from the inverter board 45 to the inverter 19 in a Lo level state, and the actual rotational speed of the load of the inverter 19 starts decelerating from t5, and trapezoidal control is executed. .
  • the second control signal for controlling the second relay 23 to the open state is supplied from the inverter board 45 to the second relay 23 in the Lo level state. In this state, there is an open failure, and the state is not controlled by the second control signal.
  • the first control signal for controlling the first relay 27 to the open state is supplied from the control board 43 to the first relay 27 in the Lo level state, the first relay 27 has an open failure. This is a state and is not controlled by the first control signal.
  • FIG. 8 is a timing chart for explaining the operation when the power supply voltage is lowered in the inverter device 1 according to the first embodiment of the present invention.
  • the timing chart shows, in order from the top, the first voltage that is the detection result of the first voltage detection means 31, the second voltage that is the detection result of the second voltage detection means 33, and the first relay 27.
  • the switch 5 is closed, and power is supplied from the commercial power source 3 to the inverter device 1.
  • the smoothing capacitor 17 is charged from t0 to t1, charging is completed at t1, and the DC voltage as the second voltage is stabilized. Further, since the charging current of the smoothing capacitor 17 flows through the inrush current preventing resistor 25 from t0 to t1, the voltage of the first voltage decreases as the charging of the smoothing capacitor 17 proceeds.
  • the first control signal is supplied from the control board 43 to the first relay 27 in the Hi level state, and the first relay 27 transitions from the open state to the short circuit state.
  • the second control signal is supplied from the inverter board 45 to the second relay 23 in a Hi level state, and the second relay 23 transitions from the open state to the short circuit state.
  • the first control signal supplied to the first relay 27 and the second control signal supplied to the second relay 23 have the same timing, but are not particularly limited thereto. Instead, the timing may be shifted.
  • the contact portion of the first relay 27 transitions from the open state to the short circuit state.
  • the contact portion of the second relay 23 transitions from the open state to the short circuit state.
  • the inverter drive signal is output from the inverter board 45 to the inverter 19 in a Hi level state, and the motor 7 that is the load of the inverter 19 is started to be driven.
  • the actual rotational speed of the load of the inverter 19 starts increasing at t3, and trapezoidal control is executed.
  • a voltage of, for example, several volts is detected from the contact resistance of the first relay 27 and the conduction current of the first relay 27.
  • the commercial power supply 3 is affected by a power failure or the like at the timing of t4 and the power supply to the inverter device 1 is stopped.
  • the second voltage starts to decrease.
  • the second voltage information is output from the second voltage detection means 33 to the inverter board 45, and the inverter board 45 Detects that the DC voltage has become abnormal.
  • the inverter board 45 outputs an inverter drive signal to the inverter 19 in a Lo level state.
  • the inverter drive signal is output from the inverter board 45 to the inverter 19 in a state of Lo level, and the actual rotational speed of the load of the inverter 19 starts decelerating from t5, and trapezoidal control is executed.
  • the second control signal for controlling the second relay 23 to the open state is supplied from the inverter board 45 to the second relay 23 in the Lo level state, and the contact portion of the second relay 23 Is in an open state.
  • the first control signal for controlling the first relay 27 to the open state is supplied from the control board 43 to the first relay 27 in the Lo level state, and the contact portion of the first relay 27 is opened. .
  • the inverter 19 is immediately decelerated, so that the magnetic energy of the DC reactor 13 is gradually reduced, and the second relay is used while the inverter 19 is being controlled. Since the short circuit state 23 is maintained, the DC voltage is prevented from rapidly increasing, and thus the switching element 87 can be prevented from being destroyed.
  • the switching element 87 is generated by the magnetic energy of the DC reactor 13 during the operation of the inverter device 1 in order to form a load that consumes the magnetic energy of the DC reactor 13. Can be prevented from being damaged.
  • the inverter device 1 can prevent the switching element 87 from being damaged by the magnetic energy resulting from the abnormal state.
  • the inverter device 1 maintains the short-circuited state of the second relay 23 until the inverter 19 stops, so that the current flowing through the DC reactor 13 flows into the smoothing capacitor 17. Therefore, the smoothing capacitor 17 can consume magnetic energy and prevent the DC voltage from rising. Therefore, the inverter device 1 can prevent the switching element 87 from being damaged by the magnetic energy resulting from the abnormal state. That is, when the inverter 19 is abnormal, the inverter board 45 closes at least one of the one or more relays until the inverter 19 is stopped. As a result, the inverter board 45 can reduce the magnetic energy accumulated in the DC reactor 13 that is generated when the inverter device 1 is suddenly stopped, so that the switching element 87 can be prevented from being damaged.
  • the inverter device 1 can avoid breakdown of the switching element 87 of the inverter 19.
  • the interval between t0 and t1 described above is, for example, 3 (s)
  • the interval between t1 and t2 is, for example, 3 (s)
  • the interval between t2 and t3 is, for example, 1 (s).
  • T3 to t4 is, for example, 30 (s)
  • t4 to t5 is, for example, 10 (ms)
  • t5 to t6 is, for example, 10 (s). It is not limited.
  • the inverter board 45 can control the opening and closing of the second relay 23, and the second relay 23 until the inverter 19 stops. It is to maintain the short circuit state. Further, the inverter board 45 may immediately shift to the deceleration control of the inverter 19 when an abnormality is detected during the operation of the inverter 19. For example, if an abnormality is detected during the operation of the inverter 19, the inverter board 45 may perform the deceleration control of the inverter 19 even if the opening / closing control of the second relay 23 cannot be performed.
  • the inverter board 45 may make the second relay 23 in a short-circuited state, that is, a closed state, and may perform the deceleration control of the inverter 19.
  • the inverter device 1 can prevent the switching element 87 from being damaged by the magnetic energy resulting from the abnormal state.
  • the rectifier 11 is connected to the anode side of the rectifier 11, the DC reactor 13 that smoothes the DC current of the rectifier 11, the output side of the DC reactor 13, and the cathode side of the rectifier 11.
  • An inrush current prevention circuit 15 connected between the smoothing capacitor 17 for smoothing the DC voltage of the rectifier 11, the DC reactor 13, and the smoothing capacitor 17 and preventing an inrush current to the smoothing capacitor 17;
  • An inverter 19 that converts the DC voltage smoothed by the smoothing capacitor 17 into an AC voltage, an inrush current prevention circuit 15, and an inverter board 45 that controls the inverter 19 are provided.
  • the inrush current prevention circuit 15 includes a DC reactor.
  • the inverter device 1 is configured to close at least one of the one or a plurality of relays.
  • the inverter 19 includes a switching element 87 and a gate control unit 85 that controls the switching element 87, and the inverter substrate 45 controls the gate control unit 85, and The operation time is decreased stepwise and the inverter 19 is stopped.
  • the inverter board 45 obtains the deceleration time of the motor 7 based on the current rotational speed of the motor 7 driven by the inverter 19.
  • the control board 43 that controls the inrush current prevention circuit 15 and the inverter board 45, the first relay 27 that is controlled by the control board 43 as one or more relays, One or a plurality of relays, and the second relay 23 controlled by the inverter board 45, and the inverter board 45 relates to the first relay 27 and the second relay 23 as means for judging the stop of the inverter 19.
  • the magnetic energy accumulated in the direct current reactor 13 is generated by the magnetic energy accumulated in the direct current reactor 13 that is generated when the inverter device 1 is suddenly stopped by forming a path through which the magnetic energy accumulated in the direct current reactor 13 flows into the smoothing capacitor 17. Surge voltage to be suppressed can be suppressed and damage to the switching element 87 can be prevented.
  • FIG. (Difference) A difference from the other embodiments is that a first control signal and a second control signal are supplied to a third relay 29 described later.
  • FIG. 9 is a diagram illustrating an example of an electrical configuration of the inverter device 1 according to the second embodiment of the present invention.
  • the inrush current prevention circuit 15 includes an inrush current prevention resistor 25 and a third relay 29, and the inrush current prevention resistor 25 and the third relay 29 are connected in parallel. That is, the inrush current prevention circuit 15 shown in FIG. 9 has one relay configuration.
  • the inverter device 1 includes a signal calculation device 47.
  • the signal calculation device 47 supplies the third control signal to the third relay 29 based on the first control signal supplied from the control board 43 and the second control signal supplied from the inverter board 45.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the signal calculation device 47 included in the inverter device 1 according to the second embodiment of the present invention.
  • the signal calculation device 47 includes an OR calculation unit 91.
  • the OR operation unit 91 outputs the result of the OR operation between the first control signal and the second control signal as a third control signal and supplies it to the inrush current prevention circuit 15.
  • the OR operation unit 91 outputs a logical sum of the input signals. For example, if one of the first control signal and the second control signal is in the Hi level, the OR operation unit 91 sets the third control signal in the Hi level.
  • FIG. 11 is a flowchart for explaining a control example of the signal calculation device 47 included in the inverter device 1 according to the second embodiment of the present invention.
  • Step S71 The signal arithmetic unit 47 determines whether the first control signal or the second control signal has arrived. When the first control signal or the second control signal arrives, the signal calculation device 47 proceeds to step S72. On the other hand, when the first control signal or the second control signal does not arrive, the signal calculation device 47 returns to step S71.
  • Step S72 The signal operation device 47 performs an OR operation between the first control signal and the second control signal.
  • Step S73 The signal arithmetic unit 47 supplies the execution result of the OR operation to the inrush current prevention circuit 15 and ends the process.
  • the third relay 29 is controlled by one of the first control signal and the second control signal. And since the inrush current prevention circuit 15 only needs one relay structure, it can suppress cost and can be comprised by space saving.
  • the signal arithmetic device 47 includes a first control signal supplied from the control board 43 and a second control supplied from the inverter board 45. Based on at least one of the signals, the third relay 29 is closed.
  • the inverter device 1 can be reduced in cost and can be configured in a space-saving manner.
  • Embodiment 3 FIG. (Difference) In the third embodiment, a detailed example of the signal calculation device 47 will be described.
  • FIG. 12 is a diagram illustrating a configuration example of the electrical component box 9 according to the third embodiment of the present invention.
  • the electrical component box 9 includes, for example, a power supply board 41, a control board 43, an inverter board 45, a rectifier 11, a DC reactor 13, a smoothing capacitor 17, an inverter 19, a first voltage detecting means 31, and a first voltage detector 31. 2 voltage detection means 33 etc. are provided.
  • heat sinks (not shown) are provided on the back surfaces of the power supply board 41, the control board 43, and the inverter board 45, respectively.
  • the electrical component box 9 is provided in an outdoor unit 111 described later.
  • FIG. 13 is a diagram illustrating an example of an electrical configuration of the signal arithmetic device 47 according to Embodiment 3 of the present invention.
  • the reference potential of the control board 43 and the reference potential of the inverter board 45 are the same potential. That is, since the control board 43 and the inverter board 45 are at the same potential, there is no possibility that a short circuit state occurs between the control board 43 and the inverter board 45.
  • the signal calculation device 47 includes a first semiconductor switch 93 and a second semiconductor switch 95. Specifically, the signal calculation device 47 includes a first semiconductor switch 93 that gate-inputs a first control signal, a second semiconductor switch 95 that gate-inputs a second control signal, and an OR operation unit 91. .
  • the first power supply 101 and the second power supply 102 are power supplies that drive the third relay 29.
  • a first semiconductor switch 93 is provided between the first power supply 101 and the OR operation unit 91, and a second semiconductor switch 95 is provided between the second power supply 102 and the OR operation unit 91.
  • the signal arithmetic unit 47 can be reduced in size and cost can be reduced.
  • the second semiconductor switch 95 supplies the voltage supplied from the second power supply 102 to the OR operation unit 91. Since the OR operation unit 91 outputs a logical sum of inputs, the voltage supplied from the second power supply 102 is applied to the third relay 29, and the third relay 29 transitions from the open state to the short circuit state.
  • the first semiconductor switch 93 uses the voltage supplied from the first power supply 101 as an OR operation unit.
  • the second semiconductor switch 95 supplies the voltage supplied from the second power supply 102 to the OR operation unit 91.
  • the OR operation unit 91 applies a voltage supplied from the first power supply 101 or a voltage supplied from the second power supply 102 to the third relay 29, and the third relay 29 is in an open state. Transition from short circuit to short circuit.
  • the first semiconductor switch 93 uses the voltage supplied from the first power supply 101 as an OR operation unit.
  • the second semiconductor switch 95 does not supply the voltage supplied from the second power supply 102 to the OR operation unit 91. Since the OR operation unit 91 outputs the logical sum of the inputs, nothing is output to the third relay 29, and the third relay 29 maintains the open state.
  • the inverter device 1 can reduce the size of the signal arithmetic device 47 and achieve low cost by using two semiconductor switches.
  • OR operation unit 91 only needs to perform a logical sum operation, and its configuration is not particularly limited.
  • the OR operation unit 91 may be configured by an OR circuit, for example, or may be configured by providing a NOT circuit at each input of the NAND circuit. Further, the OR operation unit 91 may be configured by an analog circuit instead of a digital circuit.
  • the signal calculation device 47 has the same reference potential of the inverter substrate 45 and the reference potential of the control substrate 43, and opens and closes based on the second control signal. 95, and a first semiconductor switch 93 that is non-insulated from the second semiconductor switch 95 and opens and closes based on one control signal, and the output of the first semiconductor switch 93 and the output of the second semiconductor switch 95 Based on the result of the logical sum operation, the third relay 29 is closed.
  • the inverter device 1 can reduce the size of the signal arithmetic device 47 and realize low cost.
  • Embodiment 4 FIG. (Difference) In the fourth embodiment, a detailed example of the signal calculation device 47 will be described.
  • FIG. 14 is a diagram illustrating an example of an electrical configuration of the signal arithmetic device 47 according to Embodiment 4 of the present invention.
  • the reference potential of the control board 43 is different from the reference potential of the inverter board 45. That is, since the control board 43 and the inverter board 45 are not at the same potential, a short circuit may occur between the control board 43 and the inverter board 45.
  • the signal arithmetic unit 47 includes a second semiconductor switch 95 and a third semiconductor switch 97.
  • the signal calculation device 47 includes a third semiconductor switch 97 that gate-inputs the first control signal, a second semiconductor switch 95 that gate-inputs the second control signal, and an OR operation unit 91.
  • the first power supply 101 and the second power supply 102 are power supplies that drive the third relay 29.
  • a third semiconductor switch 97 is provided between the first power supply 101 and the OR operation unit 91, and a second semiconductor switch 95 is provided between the second power supply 102 and the OR operation unit 91.
  • the third semiconductor switch 97 is composed of an insulating specification semiconductor switch such as a photocoupler, for example. With this configuration, the potential on the control board 43 side is insulated from the potential on the inverter board 45 side.
  • the second semiconductor switch 95 supplies the voltage supplied from the second power supply 102 to the OR operation unit 91. Since the OR operation unit 91 outputs a logical sum of inputs, the voltage supplied from the second power supply 102 is applied to the third relay 29, and the third relay 29 transitions from the open state to the short circuit state.
  • the third semiconductor switch 97 converts the voltage supplied from the first power supply 101 into an OR operation unit.
  • the second semiconductor switch 95 supplies the voltage supplied from the second power supply 102 to the OR operation unit 91.
  • the OR operation unit 91 applies a voltage supplied from the first power supply 101 or a voltage supplied from the second power supply 102 to the third relay 29, and the third relay 29 is in an open state. Transition from short circuit to short circuit.
  • the third semiconductor switch 97 uses the voltage supplied from the first power supply 101 as an OR operation unit.
  • the second semiconductor switch 95 does not supply the voltage supplied from the second power supply 102 to the OR operation unit 91. Since the OR operation unit 91 outputs the logical sum of the inputs, nothing is output to the third relay 29, and the third relay 29 maintains the open state.
  • the inverter device 1 can reduce the size of the signal arithmetic device 47 and achieve low cost by using two semiconductor switches.
  • OR operation unit 91 only needs to perform a logical sum operation, and its configuration is not particularly limited.
  • the OR operation unit 91 may be configured by an OR circuit, for example, or may be configured by providing a NOT circuit at each input of the NAND circuit. Further, the OR operation unit 91 may be configured by an analog circuit instead of a digital circuit.
  • the third semiconductor switch 97 may be configured to be electrically insulated, and is not particularly limited to the photocoupler described above.
  • a combination of the light emitting element and the light receiving element may correspond to the third semiconductor switch 97.
  • the light emitting element emits light by the input of the first control signal
  • the light receiving element receives light emitted from the light emitting element, so that the light receiving element conducts the first power supply 101 and the OR operation unit 91. I just need it.
  • the inverter device 1 can increase the current and suppress the temperature of the substrate.
  • the signal arithmetic unit 47 is different from the reference potential of the inverter board 45 and the reference potential of the control board 43, and is opened and closed based on the second control signal.
  • a switch 95 and a third semiconductor switch 97 that is insulated from the second semiconductor switch 95 and opens and closes based on the first control signal.
  • the output of the second semiconductor switch 95 and the output of the third semiconductor switch 97 And the third relay 29 is closed based on the result of the logical sum operation.
  • the inverter device 1 can reduce the size of the signal arithmetic device 47 and realize low cost. Moreover, since the inverter apparatus 1 can enlarge a board
  • Embodiment 5 FIG. (Difference) The difference from the other embodiments is that a chopper circuit 12 or a switching converter 14 is configured as the rectifier 11.
  • the rectifier 11 that performs three-phase full-wave rectification is described on the assumption that the commercial power supply 3 is a three-phase AC power supply.
  • the chopper The circuit 12 or the switching converter 14 may be configured.
  • FIG. 15 is a diagram showing an example of an electrical configuration of inverter device 1 according to the fifth embodiment of the present invention.
  • the DC current output from the chopper circuit 12 is supplied to the DC reactor 13, and the DC voltage output from the chopper circuit 12 is supplied to the smoothing capacitor 17. That is, since the chopper circuit 12 converts the power supplied from the outside into a DC power and supplies it, the same effects as those described in the first to fourth embodiments can be obtained.
  • FIG. 16 is a diagram showing another example of the electrical configuration of the inverter device 1 according to the fifth embodiment of the present invention.
  • the DC current output from the switching converter 14 is supplied to the DC reactor 13, and the DC voltage output from the switching converter 14 is supplied to the smoothing capacitor 17. That is, since the switching converter 14 converts the power supplied from the outside into a DC power and supplies it, the same effects as those described in the first to fourth embodiments can be obtained.
  • the circuit configuration for rectification is not particularly limited as long as it is converted into a DC power source.
  • the commercial power supply 3 may be a single-phase AC power supply.
  • the rectifier 11 is configured by either one of the chopper circuit 12 and the switching converter 14.
  • the inverter device 1 can obtain the same effects as those described in the first to fourth embodiments as long as the circuit configuration to be rectified converts to a DC power source.
  • Embodiment 6 FIG. (Difference)
  • an air conditioner 110 including a compressor 131 having a motor 7 driven by the inverter device 1 will be described.
  • FIG. 17 is a diagram illustrating an example of the air conditioner 110 using the inverter device 1 according to Embodiment 6 of the present invention.
  • the air conditioner 110 includes an outdoor unit 111 and indoor units 112_1 to 112_N. Note that the indoor units 112_1 to 112_N are referred to as indoor units 112 unless otherwise distinguished.
  • the outdoor unit 111 and the indoor unit 112 are connected by a gas side refrigerant pipe 121 and a liquid side refrigerant pipe 122. Further, in the gas side refrigerant pipe 121, an outdoor unit 111 and an indoor unit 112 are connected by a gas side valve 123. In the liquid side refrigerant pipe 122, the outdoor unit 111 and the indoor unit 112 are connected by a liquid side valve 124. That is, the outdoor unit 111 and the indoor unit 112 are connected by the gas-side refrigerant pipe 121 and the liquid-side refrigerant pipe 122 to constitute a refrigerant circuit as described later. Note that the gas-side refrigerant pipe 121 and the liquid-side refrigerant pipe 122 are referred to as the refrigerant pipe 120 unless particularly distinguished from each other.
  • the outdoor unit 111 includes a compressor 131, a four-way valve 132, an outdoor heat exchanger 133, an accumulator 134, a second expansion device 137, an outdoor fan 141, and the like.
  • the indoor unit 112_1 includes an indoor heat exchanger 135_1, a first expansion device 136_1, an indoor fan 143_1, and the like.
  • the outdoor unit 111 includes the electrical component box 9 described above, but since FIG. 17 is a refrigerant system diagram, illustration is omitted here.
  • the indoor units 112_2 to 112_N have the same configuration as the indoor unit 112_1, and thus description thereof is omitted.
  • the indoor heat exchanger 135_1 to the indoor heat exchanger 135_N are referred to as indoor heat exchangers 135 unless particularly distinguished from each other.
  • each of the first diaphragm device 136_1 to the first diaphragm device 136_N it is referred to as a first diaphragm device 136.
  • the indoor fans 143_1 to 143_N are referred to as indoor fans 143 unless particularly distinguished from each other.
  • the compressor 131, the four-way valve 132, the outdoor heat exchanger 133, the accumulator 134, the indoor heat exchanger 135, the first expansion device 136, and the second expansion device 137 are sequentially connected by the refrigerant pipe 120, and a refrigerant circuit is configured. Yes.
  • the refrigerant circuit circulates the refrigerant while compressing and expanding the refrigerant.
  • the compressor 131 includes the motor 7 and compresses and discharges the refrigerant according to the driving of the motor 7.
  • the four-way valve 132 switches the refrigerant path according to cooling or heating.
  • the outdoor heat exchanger 133 condenses or evaporates the refrigerant by exchanging heat between the refrigerant and the outside air.
  • the accumulator 134 stores surplus refrigerant.
  • the indoor heat exchanger 135 evaporates or condenses the refrigerant by exchanging heat between the refrigerant and indoor air.
  • the outdoor unit 111, the outdoor unit 111, the indoor unit 112 connected to the gas side refrigerant pipe 121 and the liquid side refrigerant pipe 122, and constituting the refrigerant circuit are provided.
  • the compressor 131 includes a motor 7, and the motor 7 is controlled by the inverter device 1.
  • the switching element 87 can be prevented from being damaged, so that the air conditioner 110 can be operated stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

直流リアクトル13と、平滑コンデンサ17と、突入電流防止回路15と、インバータ19と、インバータ基板45と、を備え、突入電流防止回路15は、直流リアクトル13と、平滑コンデンサ17との間を開閉するリレー23、27、29と、リレーと並列に接続された突入電流防止抵抗25と、を備え、インバータ基板45は、インバータ19が異常の場合、リレー23、27、29を閉じる動作及びインバータ19で駆動するモータ7を減速させる動作を行う。

Description

インバータ装置及びインバータ装置を用いた空気調和機
 本発明は、インバータ装置及びインバータ装置を用いた空気調和機に関する。
 従来の空気調和機は、インバータ装置を備え、インバータ装置の運転で圧縮機等を可変速制御している(例えば、特許文献1参照)。
特開2013-162719号公報(段落[0003])
 しかし、インバータ装置が運転中に急停止すると、直流リアクトルに蓄積された磁気エネルギーによりサージ電圧が発生し、スイッチング素子が破損するという問題点があった。
 本発明は、上記のような問題点を解決するためになされたもので、インバータ装置の急停止にて発生する、直流リアクトルに蓄積された磁気エネルギーによりスイッチング素子が破損するのを防ぐことができるインバータ装置及びインバータ装置を用いた空気調和機を提供することを目的とするものである。
 本発明に係るインバータ装置は、整流器と、前記整流器の陽極側と接続され、前記整流器の直流電流を平滑する直流リアクトルと、前記直流リアクトルの出力側と、前記整流器の陰極側との間に接続され、前記整流器の直流電圧を平滑する平滑コンデンサと、前記直流リアクトルと、前記平滑コンデンサとの間に設けられ、前記平滑コンデンサへの突入電流を防止する突入電流防止回路と、前記平滑コンデンサで平滑された直流電圧を交流電圧に変換するインバータと、前記突入電流防止回路と、前記インバータと、を制御するインバータ基板と、を備え、前記突入電流防止回路は、前記直流リアクトルと、前記平滑コンデンサとの間に接続され、1つ又は複数のリレーと、前記1つ又は複数のリレーと並列に接続された突入電流防止抵抗と、を備え、前記1つ又は複数のリレーのうち、複数のリレーのそれぞれは並列に接続され、前記インバータ基板は、前記インバータが異常の場合、前記インバータを停止させるまで、前記1つ又は複数のリレーのうち、少なくとも何れか1つのリレーを閉状態とするものである。
 本発明は、インバータの急停止時に発生する、直流リアクトルに蓄積された磁気エネルギーを平滑コンデンサに流入させる経路を形成することで、磁気エネルギーにより発生するサージ電圧を抑制し、スイッチング素子の破損を防ぐことができるという効果を有する。
本発明の実施の形態1におけるインバータ装置1の電気的構成の一例を示す図である。 本発明の実施の形態1におけるインバータ基板45の機能的構成の一例を示す図である。 本発明の実施の形態1におけるインバータ装置1の制御例を説明するフローチャートである。 従来例におけるインバータ装置1の電気的構成の一例を示す図である。 従来例におけるインバータ装置1の正常時の動作を説明するタイミングチャートである。 従来例におけるインバータ装置1の異常時の動作を説明するタイミングチャートである。 本発明の実施の形態1におけるインバータ装置1に含まれる第1リレー27及び第2リレー23の両方が故障した場合の動作を説明するタイミングチャートである。 本発明の実施の形態1におけるインバータ装置1で電源電圧が低下した場合の動作を説明するタイミングチャートである。 本発明の実施の形態2におけるインバータ装置1の電気的構成の一例を示す図である。 本発明の実施の形態2におけるインバータ装置1に含まれる信号演算装置47の機能的構成の一例を示す図である。 本発明の実施の形態2におけるインバータ装置1に含まれる信号演算装置47の制御例を説明するフローチャートである。 本発明の実施の形態3における電気品箱9の構成例を示す図である。 本発明の実施の形態3における信号演算装置47の電気的構成の一例を示す図である。 本発明の実施の形態4における信号演算装置47の電気的構成の一例を示す図である。 本発明の実施の形態5におけるインバータ装置1の電気的構成の一例を示す図である。 本発明の実施の形態5におけるインバータ装置1の電気的構成の別の一例を示す図である。 本発明の実施の形態6におけるインバータ装置1を用いた空気調和機110の一例を示す図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、本発明の実施の形態の動作を行うプログラムを記述するステップは、記載された順序に沿って時系列に行われる処理であるが、必ずしも時系列に処理されなくても、並列的又は個別に実行される処理をも含んでもよい。
 また、本実施の形態で説明される各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。つまり、本実施の形態で説明される各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアの機能ブロック図と考えてもよい。例えば、各ブロック図は、回路デバイス等のハードウェアで実現されてもよく、図示しないプロセッサ等の演算装置上で実行されるソフトウェアで実現されてもよい。
 また、本実施の形態で説明されるブロック図の各ブロックは、その機能が実施されればよく、それらの各ブロックで構成が分離されなくてもよい。なお、本実施の形態1~6のそれぞれにおいて、特に記述しない項目については実施の形態1~6と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。また、本実施の形態1~6のそれぞれは、単独で実施されてもよく、組み合わされて実施されてもよい。いずれの場合においても、下記で説明する有利な効果を奏することとなる。また、本実施の形態で説明する各種具体的な設定例は一例を示すだけであり、特にこれらに限定されない。
実施の形態1.
(実施の形態1の構成)
 図1は、本発明の実施の形態1におけるインバータ装置1の電気的構成の一例を示す図である。図1に示すように、インバータ装置1は、商用電源3からの電力の供給と電力の遮断とを制御する開閉器5と、モータ7と、の間に設けられ、商用電源3の電力をモータ7に応じた電力に変換して供給するものである。インバータ装置1は、詳細については後述するが、インバータ19の主要部品である半導体素子等で構成されるスイッチング素子87の耐圧破壊を防止するものである。例えば、インバータ装置1は、大きく3つの部分に構成され、1つめが整流回路部、2つめが平滑回路部、3つめがインバータ回路部となっており、そのうち、2つめの平滑回路部の動作又は3つめのインバータ回路部の動作でインバータ回路部のスイッチング素子87の耐圧破壊を防止する。
 インバータ装置1は、例えば、主な回路要素として、整流器11、直流リアクトル13、突入電流防止回路15、平滑コンデンサ17、及びインバータ19を備え、整流回路部が整流器11で構成され、平滑回路部が直流リアクトル13、突入電流防止回路15、及び平滑コンデンサ17で構成され、インバータ回路部がインバータ19で構成されている。インバータ装置1は、例えば、検知手段として、第1電圧検知手段31及び第2電圧検知手段33を備えている。インバータ装置1は、例えば、制御主体として、制御基板43及びインバータ基板45を備えている。
 ここで、第1電圧検知手段31は、突入電流防止回路15にかかる電圧を検知し、検知結果をインバータ基板45に供給する接続構成となっている。また、第2電圧検知手段33は、インバータ19にかかる電圧を検知し、検知結果をインバータ基板45に供給する接続構成となっている。
 なお、インバータ19は、例えば、後述するようにスイッチング素子87を備えているが、それぞれのスイッチング素子87には、図示しない帰還ダイオードが設けられていてもよい。例えば、インバータ19が矩形波の電圧を出力する電圧型のものであれば、スイッチング素子87と並列に帰還ダイオードが設けられていてもよい。また、例えば、インバータ19が矩形波の電流を出力する電流型のものであれば、スイッチング素子87と直列に帰還ダイオードが設けられていてもよい。
 整流回路部は、交流を直流に変換する。整流回路部の構成要素である整流器11は、例えば、3相フルブリッジ整流回路で構成され、商用電源3から開閉器5を経由して供給される3相交流電源から3相全波整流波形を形成する。なお、上記の説明では、整流回路部の一例として3相全波整流波形を形成する整流器11について説明したが、特にこれに限定されない。例えば、整流器11に供給される電源が単相交流電源であれば、整流器11は、単相全波整流波形を形成する回路構成であってもよい。つまり、整流回路部は、交流を直流に変換する回路構成であれば、特に限定されない。
 平滑回路部は、例えば、整流回路部から出力された3相全波整流波形を平滑化する。平滑回路部のうち、直流リアクトル13は、整流器11の陽極側に接続され、整流回路部から出力される直流電流を平滑化する。平滑回路部のうち、突入電流防止回路15及び平滑コンデンサ17は、直流リアクトル13の出力側と、整流器11の陰極側との間に接続されている。平滑回路部のうち、平滑コンデンサ17は、有極性であって、平滑コンデンサ17の陽極側が、突入電流防止回路15に接続され、平滑コンデンサ17の陰極側が、整流器11の陰極側に接続され、直流電圧を平滑化する。
 平滑回路部のうち、突入電流防止回路15は、直流リアクトル13と、平滑コンデンサ17との間に設けられている。突入電流防止回路15は、第1リレー27、第2リレー23、及び突入電流防止抵抗25で構成され、平滑コンデンサ17の充放電電流が流れる経路上に配置されている。このような構成で、突入電流防止回路15は、電源投入時等に平滑コンデンサ17へと流れる突入電流を抑制すると共に、インバータ19の運転中に異常状態が生じた場合にインバータ回路部への過電圧の印加を防止する。
 具体的には、突入電流防止回路15は、例えば、第1リレー27と、第2リレー23と、突入電流防止抵抗25とが並列に接続されて構成されている。突入電流防止回路15は、詳細については後述するが、インバータ19の運転中、突入電流防止抵抗25と並列に接続されている第1リレー27及び第2リレー23の何れか一方が閉じられることで、低インピーダンスの閉回路が形成されるため、インバータ19に過電圧が印加されることがない。
 なお、第1リレー27及び第2リレー23の両方が制御不能な状態であったとしても、詳細について後述するインバータ基板45がインバータ19を減速制御することで、直流リアクトル13からインバータ19へ供給される磁気エネルギーを消費させるため、インバータ19に含まれるスイッチング素子87の耐圧破壊が防止される。
 つまり、インバータ装置1は、突入電流防止回路15に含まれる第1リレー27の開閉状態の制御、及び突入電流防止回路15に含まれる第2リレー23の開閉状態の制御、の少なくとも一方で、直流リアクトル13に蓄積された磁気エネルギーを平滑コンデンサ17に流入させる経路を形成する。また、インバータ装置1は、インバータ19の減速制御で、直流リアクトル13に蓄積された磁気エネルギーを消費させる負荷を形成する。
 インバータ回路部は、平滑回路部から出力される平滑化された直流電源が供給され、供給された直流電源を交流電源に変換し、モータ7を駆動させる。モータ7は、インバータ19の負荷であって、例えば、後述する空気調和機110の圧縮機131、室内ファン143、又は室外ファン141等の駆動源となる。つまり、インバータ回路部は、直流電源を交流電源に変換する回路構成であり、交流電源及びその周波数を任意に変更させ、モータ7を可変速制御する。
 制御基板43は、例えば、後述する室外機111の電気品箱9に設けられ、後述する空気調和機110を制御する。後述する室外機111の電気品箱9には、インバータ基板45も設けられている。制御基板43と、インバータ基板45との間で、基板間相互通信情報が送受信される。制御基板43は、後述する空気調和機110を制御する際、例えば、インバータ基板45を制御する。インバータ基板45は、インバータ19を制御する。つまり、制御基板43は、インバータ基板45を介して、インバータ19を制御する。
 具体的には、制御基板43は、例えば、第1制御信号で第1リレー27の開閉状態を制御する。インバータ基板45は、例えば、第2制御信号で第2リレー23の開閉状態を制御する。インバータ基板45は、例えば、インバータ駆動信号でインバータ19の駆動を制御する。
 ここで、インバータ基板45は、2つの電圧情報が入力される構成となっている。具体的には、突入電流防止抵抗25、第1リレー27、及び第2リレー23の両端電圧に関する電圧情報と、インバータ19に入力される直流電源の電圧に関する電圧情報と、が入力される。このうち、1つめの突入電流防止抵抗25、第1リレー27、及び第2リレー23の両端電圧は、第1電圧検知手段31の検知結果である。第1電圧検知手段31の検知結果は、第1電圧情報としてインバータ基板45に入力される。また、2つめのインバータ19に入力される直流電源の電圧は、第2電圧検知手段33の検知結果である。第2電圧検知手段33の検知結果は、第2電圧情報としてインバータ基板45に入力される。インバータ基板45は、このような2つの電圧情報に基づいて、第2リレー23の開閉状態の制御と、インバータ19の減速制御とを行う。
 図2は、本発明の実施の形態1におけるインバータ基板45の機能的構成の一例を示す図である。インバータ基板45は、例えば、異常判定部51、減速制御部53、リレー制御部55、及びインバータ制御部57等を備えている。異常判定部51は、第1電圧情報と、第2電圧情報と、に基づいて、インバータ装置1の異常状態を判定する。異常判定部51は、例えば、リレー故障判定部71と、直流電圧異常判定部73と、を備えている。ここで、リレー故障判定電圧レベルとは、第1リレー27又は第2リレー23が故障したと想定される閾値であり、直流電圧異常レベルとは、停電等に起因して電源電圧が低下することでインバータ19が急停止すると想定される閾値である。
 具体的には、インバータ19が急停止した結果、直流リアクトル13で磁気エネルギーが発生して直流電圧が急上昇すると想定されるため、磁気エネルギーを消費させる負荷を形成する必要がある。詳細については後述するが、インバータ装置1は、第2リレー23を閉じることで磁気エネルギーを平滑コンデンサ17で消費させたり、インバータ19を減速制御することで磁気エネルギーをインバータ19及びモータ7で消費させたりする。つまり、直流リアクトル13で発生した磁気エネルギーは、平滑コンデンサ17で電気エネルギー及び熱エネルギーに変換され、インバータ19で電気エネルギー及び熱エネルギーに変換され、モータ7で運動エネルギーに変換される。
 リレー故障判定部71は、第1電圧情報がリレー故障判定電圧レベルに達する場合、インバータ装置1が異常状態であると判定し、判定結果を、リレー制御部55、インバータ制御部57、及び減速制御部53に供給する。直流電圧異常判定部73は、第2電圧情報が直流電圧異常レベルに達する場合、インバータ装置1が異常状態であると判定し、判定結果を、リレー制御部55、インバータ制御部57、及び減速制御部53に供給する。
 減速制御部53は、インバータ装置1が異常状態である場合、例えば、インバータ19を減速制御させるための各種情報をインバータ19に供給する。減速制御部53は、例えば、稼働時回転数取得部75と、減速時回転数取得部77と、減速時間演算部79と、を備えている。
 稼働時回転数取得部75は、インバータ19で駆動制御されているモータ7の稼働時の回転数を取得する。ここで、モータ7の稼働時の回転数は、インバータ19の負荷の実回転数であって、例えば、図示しないロータリーエンコーダで検知されたパルス数に応じて算出されるものである。減速時回転数取得部77は、インバータ19でモータ7を減速させるようなインバータ19の減速制御時のモータ7の回転数を取得する。ここで、減速制御時のモータ7の回転数は、インバータ19の負荷の減速用回転数であって、予め設定されていてもよく、その都度求められるものであってもよい。なお、モータ7の稼働時の回転数は、図示しないホール素子で求められてもよい。
 減速時間演算部79は、稼働時の回転数と、減速時の回転数とに基づいて、減速に要する減速時間を求める。減速制御部53は、減速時間をインバータ19に供給する。例えば、稼働時の回転数が100rps(rotations per second)であって、減速時の回転数が10rpsであれば、10(s)が減速時間となる。
 リレー制御部55は、判定結果に基づいて、突入電流防止回路15に含まれる第2リレー23を制御する。インバータ制御部57は、判定結果に基づいたインバータ駆動信号をインバータ19に供給する。ここで、例えば、Hiレベルのインバータ駆動信号がインバータ19が駆動する出力状態と設定され、Loレベルのインバータ駆動信号がインバータ19が停止する遮断状態と設定されていると想定する。このような想定の場合、インバータ装置1が異常状態であれば、インバータ制御部57は、Loレベルのインバータ駆動信号をインバータ19に供給する。
 インバータ19は、インバータ駆動信号判定部83、ゲート制御部85、スイッチング素子87等を備えている。インバータ駆動信号判定部83は、インバータ駆動信号に応じてゲート制御部85を制御することで、スイッチング素子87の動作を制御する。Loレベルのインバータ駆動信号がインバータ装置1の異常状態と想定された場合、インバータ駆動信号判定部83にLoレベルのインバータ駆動信号が供給されれば、インバータ駆動信号判定部83は、インバータ19の減速制御を選択し、ゲート制御部85にモータ7を減速させる信号を生成させる。この結果、スイッチング素子87は、ゲート制御部85で生成された信号に応じた動作を行う。
 例えば、ゲート制御部85は、スイッチング素子87のゲートドライブ回路(図示せず)を制御することで、スイッチング素子87のON状態及びOFF状態を制御する。具体的には、ゲート制御部85は、スイッチング素子87のON状態の間隔と、スイッチング素子87のOFF状態の間隔と、の比であるデューティ比を制御してPWM信号を生成する。つまり、インバータ19は、ゲート制御部85でスイッチング素子87からPWM信号を出力させ、PWM信号でモータ7をPWM制御する。モータ7は、PWM信号で回転磁界を発生し、モータ7に設けられた図示しないシャフトを回転させ、各種機器の駆動源となる。モータ7は、例えば、ブラシレス直流モータである。
 ここで、ゲート制御部85は、減速時の回転数で減速時間までにモータ7を減速させるように、スイッチング素子87のON状態の間隔と、スイッチング素子87のOFF状態の間隔と、の比であるデューティ比を制御し、時間の経過と共にスイッチング素子87のOFF状態の間隔を増やしていくPWM信号を生成することでインバータ19の減速制御を行い、モータ7等の負荷を減速させ、モータ7等の負荷を減速時間までに停止させる。
 スイッチング素子87は、例えば、IGBTで構成されるが特にこれに限定されない。例えば、スイッチング素子87は、ワイドバンドギャップ半導体で構成されてもよい。ワイドバンドギャップ半導体は、耐電圧性が高く、許容電流密度も高いため、スイッチング素子87を小型化させることができる。また、ワイドバンドギャップ半導体は、耐熱性も高いため、ヒートシンクの放熱フィン(図示せず)を小型化させることができ、水冷部(図示せず)の空冷化が実現できるので、スイッチング素子87を含むインバータ19を一層小型化させることができる。さらに、ワイドバンドギャップ半導体は、電力損失が低いことから、スイッチング素子87を高効率で実現させることができ、インバータ19を高効率で実現させることができる。
 なお、上記の説明では、減速制御部53が減速時間を演算し、演算結果をインバータ19に供給する一例について説明したが、特にこれに限定されない。例えば、インバータ制御部57は、インバータ19を減速制御させる動作を含むインバータ駆動信号をインバータ19に供給してもよい。要するに、インバータ基板45は、インバータ装置1が異常状態である場合、インバータ19を減速制御できる構成であればよい。
(実施の形態1の動作)
 図3は、本発明の実施の形態1におけるインバータ装置1の制御例を説明するフローチャートである。図3では、インバータ装置1の制御例として、第1電圧検知手段31の制御例をステップS11及びステップS12で説明し、第2電圧検知手段33の制御例をステップS21及びステップS22で説明し、インバータ基板45の制御例をステップS31~ステップS39で説明し、インバータ19の制御例をステップS51~ステップS53で説明する。
 なお、処理の前提として、後述するフラグのデフォルト値は0が設定されていると想定する。ここで、フラグとは、フラグが1の場合に第2電圧情報に基づいた処理に分岐させる識別子であって、特に下記の例に限定されない。また、処理の前提として、インバータ19が運転中であって、第1リレー27及び第2リレー23が故障していなければ、第1リレー27及び第2リレー23は短絡状態が保持されていると想定する。
(第1電圧検知手段制御処理)
(ステップS11)
 第1電圧検知手段31は、第1電圧を検知する。
(ステップS12)
 第1電圧検知手段31は、検知結果を第1電圧情報として出力する。
(第2電圧検知手段制御処理)
(ステップS21)
 第2電圧検知手段33は、第2電圧を検知する。
(ステップS22)
 第2電圧検知手段33は、検知結果を第2電圧情報として出力する。
(インバータ基板制御処理)
(ステップS31)
 インバータ基板45は、電圧情報の種類を識別する。インバータ基板45は、電圧情報の種類が第1電圧情報である場合、ステップS32に進む。一方、インバータ基板45は、電圧情報の種類が第2電圧情報である場合、ステップS33に進む。
(ステップS32)
 インバータ基板45は、第1電圧情報がリレー故障判定電圧レベルに達した場合、ステップS35に進む。一方、インバータ基板45は、第1電圧情報がリレー故障判定電圧レベルに達しない場合、ステップS31に戻る。
 ここで、第1電圧情報がリレー故障判定電圧レベルに達するとは、第1リレー27及び第2リレー23が故障して開放状態となっている場合が想定される。また、第2電圧情報が直流電圧異常レベルに達した場合であっても、第1電圧情報がリレー故障判定電圧レベルに達していなければ、第1リレー27及び第2リレー23の少なくとも一方が短絡状態を保持していると想定する。
(ステップS33)
 インバータ基板45は、第2電圧情報が直流電圧異常レベルに達した場合、ステップS34に進む。一方、インバータ基板45は、第2電圧情報が直流電圧異常レベルに達していない場合、ステップS31に戻る。
(ステップS34)
 インバータ基板45は、フラグを1に設定し、ステップS35に進む。
(ステップS35)
 インバータ基板45は、インバータ19を停止させるインバータ駆動信号をインバータ19に送信する。
(ステップS36)
 インバータ基板45は、インバータ19を減速させる減速時間情報をインバータ19に送信する。なお、上記で説明したように、インバータ駆動信号にインバータ19を減速時間内に減速させる指令が含まれていれば、ステップS36の処理は不要である。
(ステップS37)
 インバータ基板45は、減速時間の経過後予め設定された時間が経過した場合、ステップS38に進む。一方、インバータ基板45は、減速時間の経過後予め設定された時間が経過していない場合、ステップS37に戻る。ここで、減速時間の経過後であって、予め設定された時間が経過した状態とは、インバータ19が停止し、慣性モーメントに伴うモータ7の動作も停止した状態であると想定する。
(ステップS38)
 インバータ基板45は、フラグが1である場合、ステップS39に進む。一方、インバータ基板45は、フラグが1でない場合、処理を終了する。
(ステップS39)
 インバータ基板45は、第2リレー23を開放状態に制御し、処理を終了する。
(インバータ制御処理)
(ステップS51)
 インバータ19は、減速時間に停止するように一定速度でモータ7の減速を開始する。
(ステップS52)
 インバータ19は、減速時間が経過したか否かを判定する。インバータ19は、減速時間が経過した場合、ステップS53に進む。一方、インバータ19は、減速時間が経過していない場合、ステップS52に戻る。
(ステップS53)
 インバータ19は、モータ7を停止させ、処理を終了する。
(実施の形態1の効果)
 次に、従来のインバータ装置1の構成及び動作と、本実施の形態1のインバータ装置1の構成及び動作と、を比較することで、本実施の形態1のインバータ装置1の効果について説明する。
 図4は、従来例におけるインバータ装置1の電気的構成の一例を示す図である。図4に示すように、従来のインバータ装置1は、第1電圧検知手段31及び第2リレー23が設けられていない。
 ここで、制御基板43に電源が投入された場合を想定する。この場合、制御基板43は、インバータ基板45と基板間相互通信情報を送受信して各種制御信号を供給しつつ、開閉器5を閉じ、商用電源3から供給される電力をインバータ装置1に供給させる。次いで、インバータ基板45は、制御基板43からの基板間相互通信情報に含まれる各種制御信号に基づいてインバータ19を制御するが、状況に応じて、制御基板43からの各種制御信号に依存せず、インバータ19を制御する場合がある。
 例えば、インバータ装置1は、インバータ19の運転中に機械的寿命又はノイズ等の外乱の影響で、第1リレー27又は第2リレー23が開放状態となる場合がある。この場合、平滑コンデンサ17の充放電電流が突入電流防止抵抗25を経由して流れる。よって、突入電流防止抵抗25で充放電電流が抑制され、平滑コンデンサ17の平滑機能が低下し、インバータ回路部に入力される直流電圧が変動する。次いで、インバータ装置1が運転を停止すれば、直流リアクトル13に流れる電流で発生した磁気エネルギーが直流電圧を上昇させる。よって、インバータ回路部のスイッチング素子87を構成する半導体素子に過電圧が印加され、半導体素子の許容電圧を超え、半導体素子が破壊に至る恐れがある。
 そこで、インバータ装置1が運転中に、突入電流防止回路15の第1リレー27が開放状態になった場合でも、上記の図1で説明したように、突入電流防止回路15に第2リレー23を設け、第1リレー27及び第2リレー23の接点間電圧と、インバータ19に入力される直流電圧とを監視し、その監視した情報をインバータ基板45にフィードバックしていれば、直流リアクトル13に発生する磁気エネルギーを消費させることができる。
 換言すれば、第2リレー23が、インバータ19と連動して制御されることで、スイッチング素子87を構成する半導体素子の破壊を防止する効果が得られる。例えば、第1リレー27及び第2リレー23が開放状態となった場合であっても、インバータ19を段階的に減速させて停止させることで、直流リアクトル13に発生する磁気エネルギーを消費させていくため、直流リアクトル13に発生する磁気エネルギーを抑制させ、インバータ19に印加される直流電圧の急激な上昇を防止することができる。
 また、第1リレー27とは別に第2リレー23が設けられた回路構成であれば、つまり、複数個のリレーが設けられた回路構成であれば、少なくともその1つをインバータ19が停止するまで短絡状態を維持させておくことで、直流リアクトル13に発生する磁気エネルギーを平滑コンデンサ17で吸収し、消費させていくため、直流リアクトル13に発生する磁気エネルギーを抑制させ、インバータ19に印加される直流電圧の急激な上昇を防止することができる。
 つまり、インバータ装置1は、直流リアクトル13に蓄積された磁気エネルギーを平滑コンデンサ17に流入させる経路を形成することで、インバータ装置1の急停止時に発生する、直流リアクトル13に蓄積された磁気エネルギーにより発生するサージ電圧を抑制し、スイッチング素子87の破損を防ぐことができる。
 次に、従来のインバータ装置1と、本実施の形態1のインバータ装置1との動作の相違点から生じる効果をタイミングチャートを用いて具体的に説明する。
 図5は、従来例におけるインバータ装置1の正常時の動作を説明するタイミングチャートである。図5に示すように、タイミングチャートは、上から順に、第1電圧検知手段31の検知結果である第1電圧、第2電圧検知手段33の検知結果である第2電圧、第1リレー27の第1制御信号、第2リレー23の第2制御信号、第1リレー27の接点部、第2リレー23の接点部、インバータ駆動信号、及びインバータ19の負荷の実回転数のそれぞれの経時的な各種状態の遷移を示す。
 まず、第1電圧検知手段31は、従来のインバータ装置1には設けられていないが、ここでは、第1電圧に対応する箇所である第1リレー27にかかる電圧の経時的な状態遷移を示す。例えば、第1リレー27の接触抵抗及び第1リレー27の導通電流で電圧が発生している。また、従来のインバータ装置1では、第2リレー23が設けられていないため、第2リレー23の第2制御信号は発生せず、第2リレー23の接点部の状態遷移も生じない。
 次に、各種状態の遷移を時間軸に沿って説明する。t0のタイミングで開閉器5が閉状態となり、商用電源3からインバータ装置1に電源が供給される。次に、t0からt1にかけて、平滑コンデンサ17が充電され、t1で充電が完了し、第2電圧である直流電圧が安定する。また、t0からt1にかけて、突入電流防止抵抗25に平滑コンデンサ17の充電電流が流れるため、第1電圧は、平滑コンデンサ17の充電が進行するにつれ、電圧が減少する。t2のタイミングでは、制御基板43から第1制御信号がHiレベルの状態で第1リレー27に供給され、第1リレー27は、開放状態から短絡状態に遷移する。
 第1制御信号の状態がLoレベルからHiレベルに遷移したことに伴い、第1リレー27の接点部は、開放状態から短絡状態に遷移する。t3のタイミングでは、インバータ基板45からインバータ19にインバータ駆動信号がHiレベルの状態で出力され、インバータ19の負荷であるモータ7は、駆動が開始される。インバータ19の負荷の実回転数は、t3から増速を開始し、台形制御が実行される。また、t3のタイミングでは、第1リレー27が短絡状態であるため、第1リレー27の接触抵抗及び第1リレー27の導通電流から例えば数ボルトの電圧が検知される。
 t5のタイミングでは、インバータ基板45からインバータ19にインバータ駆動信号がLoレベルの状態で出力され、インバータ19の負荷であるモータ7は、駆動が停止される。インバータ19の負荷の実回転数は、t5から減速を開始し、台形制御が実行される。
 図6は、従来例におけるインバータ装置1の異常時の動作を説明するタイミングチャートである。図6に示すように、タイミングチャートは、上から順に、第1電圧検知手段31の検知結果である第1電圧、第2電圧検知手段33の検知結果である第2電圧、第1リレー27の第1制御信号、第2リレー23の第2制御信号、第1リレー27の接点部、第2リレー23の接点部、インバータ駆動信号、及びインバータ19の負荷の実回転数のそれぞれの経時的な各種状態の遷移を示す。
 まず、第1電圧検知手段31は、従来のインバータ装置1には設けられていないが、ここでは、第1電圧に対応する箇所である第1リレー27にかかる電圧の経時的な状態遷移を示す。例えば、第1リレー27の接触抵抗及び第1リレー27の導通電流で電圧が発生している。また、従来のインバータ装置1では、第2リレー23が設けられていないため、第2リレー23の第2制御信号は発生せず、第2リレー23の接点部の状態遷移も生じない。
 次に、各種状態の遷移を時間軸に沿って説明する。t0のタイミングで開閉器5が閉状態となり、商用電源3からインバータ装置1に電源が供給される。次に、t0からt1にかけて、平滑コンデンサ17が充電され、t1で充電が完了し、第2電圧である直流電圧が安定する。また、t0からt1にかけて、突入電流防止抵抗25に平滑コンデンサ17の充電電流が流れるため、第1電圧は、平滑コンデンサ17の充電が進行するにつれ、電圧が減少する。t2のタイミングでは、制御基板43から第1制御信号がHiレベルの状態で第1リレー27に供給され、第1リレー27は、開放状態から短絡状態に遷移する。
 第1制御信号の状態がLoレベルからHiレベルに遷移したことに伴い、第1リレー27の接点部は、開放状態から短絡状態に遷移する。t3のタイミングでは、インバータ基板45からインバータ19にインバータ駆動信号がHiレベルの状態で出力され、インバータ19の負荷であるモータ7は、駆動が開始される。インバータ19の負荷の実回転数は、t3から増速を開始し、台形制御が実行される。また、t3のタイミングでは、第1リレー27が短絡状態であるため、第1リレー27の接触抵抗及び第1リレー27の導通電流から例えば数ボルトの電圧が検知される。
 t4のタイミングで、第1リレー27が開放故障したと想定すると、平滑コンデンサ17の充放電電流が突入電流防止抵抗25を経由するため、第1電圧が急激に増加する。このように急激に増加した第1電圧は、リレー故障判定電圧レベルに達する。また、t4のタイミングで、直流電圧が変動し、電圧が低下するため、第2電圧が直流電圧異常レベルに達する。t4のタイミングで第2電圧が直流電圧異常レベルに達したので、t5のタイミングでは、インバータ駆動信号がLoレベルの状態で出力されることで、インバータ19が即時停止される。
 t5のタイミングでインバータ19を急停止させた結果、直流リアクトル13で磁気エネルギーが発生したことで直流電圧が急上昇するため、第2電圧が急上昇する。つまり、従来のインバータ装置1は、インバータ装置1が異常状態に至っても、直流リアクトル13に蓄積された磁気エネルギーを平滑コンデンサ17に流入させる経路が形成されていない状態である。
 図7は、本発明の実施の形態1におけるインバータ装置1に含まれる第1リレー27及び第2リレー23の両方が故障した場合の動作を説明するタイミングチャートである。図7に示すように、タイミングチャートは、上から順に、第1電圧検知手段31の検知結果である第1電圧、第2電圧検知手段33の検知結果である第2電圧、第1リレー27の第1制御信号、第2リレー23の第2制御信号、第1リレー27の接点部、第2リレー23の接点部、インバータ駆動信号、及びインバータ19の負荷の実回転数のそれぞれの経時的な各種状態の遷移を示す。
 次に、各種状態の遷移を時間軸に沿って説明する。t0のタイミングで開閉器5が閉状態となり、商用電源3からインバータ装置1に電源が供給される。次に、t0からt1にかけて、平滑コンデンサ17が充電され、t1で充電が完了し、第2電圧である直流電圧が安定する。また、t0からt1にかけて、突入電流防止抵抗25に平滑コンデンサ17の充電電流が流れるため、第1電圧は、平滑コンデンサ17の充電が進行するにつれ、電圧が減少する。t2のタイミングでは、制御基板43から第1制御信号がHiレベルの状態で第1リレー27に供給され、第1リレー27は、開放状態から短絡状態に遷移する。
 また、t2のタイミングでは、インバータ基板45から第2制御信号がHiレベルの状態で第2リレー23に供給され、第2リレー23は、開放状態から短絡状態に遷移する。なお、図7に示す例においては、第1リレー27に供給される第1制御信号と、第2リレー23に供給される第2制御信号とが、同じタイミングであるが、特にこれに限定されず、タイミングにずれが生じてもよい。
 第1制御信号の状態がLoレベルからHiレベルに遷移したことに伴い、第1リレー27の接点部は、開放状態から短絡状態に遷移する。同様に、第2制御信号の状態がLoレベルからHiレベルに遷移したことに伴い、第2リレー23の接点部は、開放状態から短絡状態に遷移する。次いで、t3のタイミングでは、インバータ基板45からインバータ19にインバータ駆動信号がHiレベルの状態で出力され、インバータ19の負荷であるモータ7は、駆動が開始される。インバータ19の負荷の実回転数は、t3から増速を開始し、台形制御が実行される。また、t3のタイミングでは、第1リレー27が短絡状態であるため、第1リレー27の接触抵抗及び第1リレー27の導通電流から例えば数ボルトの電圧が検知される。
 t4のタイミングでは、第1リレー27及び第2リレー23の両方が開放故障したと想定する。この場合、第1リレー27の接点部及び第2リレー23の接点部のそれぞれが短絡状態から開放状態に遷移する。よって、平滑コンデンサ17の充放電電流が突入電流防止抵抗25を経由するため、第1電圧が急激に増加し、急激に増加した第1電圧がリレー故障判定電圧レベルに達する。次に、t5のタイミングでは、インバータ基板45からインバータ19にインバータ駆動信号がLoレベルの状態で出力され、インバータ19の負荷の実回転数は、t5から減速を開始し、台形制御が実行される。
 次に、インバータ19に供給される電力が減少するため、突入電流防止抵抗25を経由する平滑コンデンサ17の充放電電流が減少する。よって、第1電圧のレベルも低下する。t6のタイミングでは、インバータ19の停止後、第2リレー23を開放状態に制御する第2制御信号がLoレベルの状態でインバータ基板45から第2リレー23に供給されるものの、第2リレー23は、開放故障している状態であり、第2制御信号で制御されない状態となっている。
 t7のタイミングでは、第1リレー27を開放状態に制御する第1制御信号がLoレベルの状態で制御基板43から第1リレー27に供給されるものの、第1リレー27は、開放故障している状態であり、第1制御信号で制御されない状態となっている。
 要するに、第1リレー27及び第2リレー23の両方が故障した場合、即座にインバータ19を減速制御させるため、直流リアクトル13の磁気エネルギーを少しずつ消費させることができるので、直流電圧の急激な上昇を防止し、スイッチング素子87の破壊を回避することができる。
 図8は、本発明の実施の形態1におけるインバータ装置1で電源電圧が低下した場合の動作を説明するタイミングチャートである。図8に示すように、タイミングチャートは、上から順に、第1電圧検知手段31の検知結果である第1電圧、第2電圧検知手段33の検知結果である第2電圧、第1リレー27の第1制御信号、第2リレー23の第2制御信号、第1リレー27の接点部、第2リレー23の接点部、インバータ駆動信号、及びインバータ19の負荷の実回転数のそれぞれの経時的な各種状態の遷移を示す。
 次に、各種状態の遷移を時間軸に沿って説明する。t0のタイミングで開閉器5が閉状態となり、商用電源3からインバータ装置1に電源が供給される。次に、t0からt1にかけて、平滑コンデンサ17が充電され、t1で充電が完了し、第2電圧である直流電圧が安定する。また、t0からt1にかけて、突入電流防止抵抗25に平滑コンデンサ17の充電電流が流れるため、第1電圧は、平滑コンデンサ17の充電が進行するにつれ、電圧が減少する。t2のタイミングでは、制御基板43から第1制御信号がHiレベルの状態で第1リレー27に供給され、第1リレー27は、開放状態から短絡状態に遷移する。
 また、t2のタイミングでは、インバータ基板45から第2制御信号がHiレベルの状態で第2リレー23に供給され、第2リレー23は、開放状態から短絡状態に遷移する。なお、図7に示す例においては、第1リレー27に供給される第1制御信号と、第2リレー23に供給される第2制御信号とが、同じタイミングであるが、特にこれに限定されず、タイミングにずれが生じてもよい。
 第1制御信号の状態がLoレベルからHiレベルに遷移したことに伴い、第1リレー27の接点部は、開放状態から短絡状態に遷移する。同様に、第2制御信号の状態がLoレベルからHiレベルに遷移したことに伴い、第2リレー23の接点部は、開放状態から短絡状態に遷移する。次いで、t3のタイミングでは、インバータ基板45からインバータ19にインバータ駆動信号がHiレベルの状態で出力され、インバータ19の負荷であるモータ7は、駆動が開始される。インバータ19の負荷の実回転数は、t3から増速を開始し、台形制御が実行される。また、t3のタイミングでは、第1リレー27が短絡状態であるため、第1リレー27の接触抵抗及び第1リレー27の導通電流から例えば数ボルトの電圧が検知される。
 t4のタイミングで商用電源3が停電等の影響を受け、インバータ装置1への電源供給が停止すると想定する。このとき、第2電圧は低下し始める。次に、t5のタイミングで、直流電圧が低下し、第2電圧が直流電圧異常レベルに達すると、第2電圧検知手段33からインバータ基板45へ第2電圧情報が出力され、インバータ基板45は、直流電圧が異常となったことを検知する。次に、インバータ基板45は、インバータ駆動信号をLoレベルの状態でインバータ19に出力する。また、t5のタイミングでは、インバータ基板45からインバータ19にインバータ駆動信号がLoレベルの状態で出力され、インバータ19の負荷の実回転数は、t5から減速を開始し、台形制御が実行される。
 t6のタイミングでは、インバータ19の停止後、第2リレー23を開放状態に制御する第2制御信号がLoレベルの状態でインバータ基板45から第2リレー23に供給され、第2リレー23の接点部は、開放状態となる。
 t7のタイミングでは、第1リレー27を開放状態に制御する第1制御信号がLoレベルの状態で制御基板43から第1リレー27に供給され、第1リレー27の接点部は、開放状態となる。
 要するに、インバータ装置1で電源電圧が低下した場合、即座にインバータ19を減速制御させるため、直流リアクトル13の磁気エネルギーを少しずつ減少させると共に、インバータ19の制御が行われている間は第2リレー23の短絡状態を保持させるため、直流電圧の急激な上昇を防止させるため、スイッチング素子87の破壊を回避することができる。
 以上の説明から、インバータ装置1は、異常状態となったとしても、直流リアクトル13の磁気エネルギーを消費させる負荷を形成させるため、インバータ装置1の運転中に直流リアクトル13の磁気エネルギーでスイッチング素子87が破損するのを防ぐことができる。
 具体的には、インバータ装置1は、インバータ19の運転中に電圧変動等の異常を検知したとしても、インバータ19を段階的に減速させることで、インバータ19と、インバータ19の負荷、例えば、モータ7と、に電力を消費させ、直流電圧の上昇を防止することができる。よって、インバータ装置1は、異常状態に起因する磁気エネルギーでスイッチング素子87が破損するのを防ぐことができる。
 また、インバータ装置1は、第2リレー23が開放故障していなければ、インバータ19が停止するまでは第2リレー23の短絡状態を維持させるため、直流リアクトル13に流れる電流を平滑コンデンサ17に流入させる経路を形成することができるため、平滑コンデンサ17に磁気エネルギーを消費させ、直流電圧の上昇を防止することができる。よって、インバータ装置1は、異常状態に起因する磁気エネルギーでスイッチング素子87が破損するのを防ぐことができる。つまり、インバータ基板45は、インバータ19が異常の場合、インバータ19を停止させるまで、1つ又は複数のリレーのうち、少なくとも何れか1つのリレーを閉状態とする。この結果、インバータ基板45は、インバータ装置1の急停止にて発生する、直流リアクトル13に蓄積された磁気エネルギーを減少させることができるので、スイッチング素子87が破損するのを防ぐことができる。
 換言すれば、インバータ装置1は、インバータ19のスイッチング素子87の耐圧破壊を回避することができる。なお、上記で説明したt0~t1間は、例えば、3(s)であり、t1~t2間は、例えば、3(s)であり、t2~t3間は、例えば、1(s)であり、t3~t4間は、例えば、30(s)であり、t4~t5間は、例えば、10(ms)であり、t5~t6間は、例えば、10(s)であるが、特にこれらに限定されない。
 重要なことは、まず、インバータ基板45は、インバータ19の運転中に異常が検知された場合、第2リレー23の開閉制御をすることができるならば、インバータ19が停止するまで第2リレー23の短絡状態を維持させることである。また、インバータ基板45は、インバータ19の運転中に異常が検知された場合、即座にインバータ19の減速制御に移行させてもよい。例えば、インバータ基板45は、インバータ19の運転中に異常が検知された場合、第2リレー23の開閉制御ができなかったとしても、インバータ19の減速制御を行えばよい。また、インバータ基板45は、インバータ19の運転中に異常が検知された場合、第2リレー23を短絡状態、つまり、閉状態にすると共に、インバータ19を減速制御してもよい。上記で説明したような動作の結果、インバータ装置1は、異常状態に起因する磁気エネルギーでスイッチング素子87が破損するのを防ぐことができる。
 以上、本実施の形態1において、整流器11と、整流器11の陽極側と接続され、整流器11の直流電流を平滑する直流リアクトル13と、直流リアクトル13の出力側と、整流器11の陰極側との間に接続され、整流器11の直流電圧を平滑する平滑コンデンサ17と、直流リアクトル13と、平滑コンデンサ17との間に設けられ、平滑コンデンサ17への突入電流を防止する突入電流防止回路15と、平滑コンデンサ17で平滑された直流電圧を交流電圧に変換するインバータ19と、突入電流防止回路15と、インバータ19と、を制御するインバータ基板45と、を備え、突入電流防止回路15は、直流リアクトル13と、平滑コンデンサ17との間に接続され、1つ又は複数のリレーと、1つ又は複数のリレーと並列に接続された突入電流防止抵抗25と、を備え、1つ又は複数のリレーのうち、複数のリレーのそれぞれは並列に接続され、インバータ基板45は、インバータ19が異常の場合、インバータ19を停止させるまで、1つ又は複数のリレーのうち、少なくとも何れか1つのリレーを閉状態とするインバータ装置1が構成される。
 したがって、直流リアクトル13に蓄積された磁気エネルギーを平滑コンデンサ17に流入させる経路を形成することで、インバータ装置1の急停止時に発生する、直流リアクトル13に蓄積された磁気エネルギーにより発生するサージ電圧を抑制し、スイッチング素子87の破損を防ぐことができる。
 また、本実施の形態1において、インバータ19は、スイッチング素子87と、スイッチング素子87を制御するゲート制御部85と、を備え、インバータ基板45は、ゲート制御部85を制御し、スイッチング素子87の作動時間を段階的に減少させ、インバータ19を停止させる。
 また、本実施の形態1において、インバータ基板45は、インバータ19で駆動するモータ7の現在の回転数に基づいて、モータ7の減速時間を求める。
 また、本実施の形態1において、突入電流防止回路15と、インバータ基板45と、を制御する制御基板43と、1つ又は複数のリレーとして、制御基板43で制御される第1リレー27と、1つ又は複数のリレーとして、インバータ基板45で制御される第2リレー23と、を備え、インバータ基板45は、インバータ19の停止を判断する手段として、第1リレー27及び第2リレー23に係る第1電圧を検知する第1電圧検知手段31と、インバータ19に供給される第2電圧を検知する第2電圧検知手段33と、を備え、第1電圧が異常レベルに達する場合、及び第2電圧がリレー故障判定電圧レベルに達する場合、の少なくとも一方に基づいて、インバータ19の停止動作指令を出力する。
 したがって、特に顕著に、直流リアクトル13に蓄積された磁気エネルギーを平滑コンデンサ17に流入させる経路を形成することで、インバータ装置1の急停止時に発生する、直流リアクトル13に蓄積された磁気エネルギーにより発生するサージ電圧を抑制し、スイッチング素子87の破損を防ぐことができる。
実施の形態2.
(相違点)
 他の実施の形態との相違点は、後述する第3リレー29に第1制御信号及び第2制御信号が供給される点にある。
(実施の形態2の構成)
 図9は、本発明の実施の形態2におけるインバータ装置1の電気的構成の一例を示す図である。図9に示すように、突入電流防止回路15は、突入電流防止抵抗25と、第3リレー29とを備え、突入電流防止抵抗25と、第3リレー29とが並列に接続されている。つまり、図9に示す突入電流防止回路15は、リレー構成が1個となっている。
 インバータ装置1は、信号演算装置47を備えている。信号演算装置47は、制御基板43から供給される第1制御信号と、インバータ基板45から供給される第2制御信号とに基づいて、第3制御信号を第3リレー29に供給する。
 図10は、本発明の実施の形態2におけるインバータ装置1に含まれる信号演算装置47の機能的構成の一例を示す図である。図10に示すように、信号演算装置47は、OR演算部91を備えている。OR演算部91は、第1制御信号と、第2制御信号とのOR演算の結果を第3制御信号として出力し、突入電流防止回路15に供給する。
 具体的には、OR演算部91は、入力信号の論理和を出力する。例えば、OR演算部91は、第1制御信号及び第2制御信号の何れか一方がHiレベルの状態であれば、第3制御信号をHiレベルの状態とする。
(実施の形態2の動作)
 図11は、本発明の実施の形態2におけるインバータ装置1に含まれる信号演算装置47の制御例を説明するフローチャートである。
(ステップS71)
 信号演算装置47は、第1制御信号又は第2制御信号が到来したか否かを判定する。信号演算装置47は、第1制御信号又は第2制御信号が到来した場合、ステップS72に進む。一方、信号演算装置47は、第1制御信号又は第2制御信号が到来しない場合、ステップS71に戻る。
(ステップS72)
 信号演算装置47は、第1制御信号と第2制御信号とのOR演算を実行する。
(ステップS73)
 信号演算装置47は、OR演算の実行結果を突入電流防止回路15に供給し、処理を終了する。
(実施の形態2の効果)
 以上の説明から、第1制御信号及び第2制御信号の何れか一方で、第3リレー29が制御される。そして、突入電流防止回路15は、リレー構成が1個で済むため、コストを抑制することができると共に、省スペースで構成することができる。
 以上、本実施の形態2においては、突入電流防止回路15と、インバータ基板45と、を制御する制御基板43と、1つ又は複数のリレーとして、制御基板43又はインバータ基板45で制御される第3リレー29と、第3リレー29を制御する信号演算装置47と、を備え、信号演算装置47は、制御基板43から供給される第1制御信号、及びインバータ基板45から供給される第2制御信号、の少なくとも一方に基づいて、第3リレー29を閉状態とする。
 したがって、インバータ装置1は、コストを抑制することができると共に、省スペースで構成することができる。
実施の形態3.
(相違点)
 本実施の形態3では、信号演算装置47の詳細例について説明する。
(実施の形態3の構成)
 図12は、本発明の実施の形態3における電気品箱9の構成例を示す図である。図12に示すように、電気品箱9は、例えば、電源基板41、制御基板43、インバータ基板45、整流器11、直流リアクトル13、平滑コンデンサ17、インバータ19、第1電圧検知手段31、及び第2電圧検知手段33等を備えている。
 ここで、電源基板41、制御基板43、及びインバータ基板45のそれぞれの背面側には図示しないヒートシンクが設けられている。また、電気品箱9は、後述する室外機111に設けられている。
 図13は、本発明の実施の形態3における信号演算装置47の電気的構成の一例を示す図である。ここでは、制御基板43の基準電位と、インバータ基板45の基準電位とが同じ電位であると想定する。つまり、制御基板43と、インバータ基板45とが同電位であるため、制御基板43と、インバータ基板45との間で短絡状態が生じる恐れがない。
 図13に示すように、信号演算装置47は、第1半導体スイッチ93と、第2半導体スイッチ95とを含んでいる。具体的には、信号演算装置47は、第1制御信号をゲート入力する第1半導体スイッチ93と、第2制御信号をゲート入力する第2半導体スイッチ95と、OR演算部91とを備えている。第1電源101及び第2電源102は、第3リレー29を駆動させる電源である。
 第1電源101と、OR演算部91との間に、第1半導体スイッチ93が設けられ、第2電源102と、OR演算部91との間に、第2半導体スイッチ95が設けられ、このように半導体スイッチを2個用いることで、信号演算装置47を小型化されると共に、低コスト化される。
(実施の形態3の動作)
 第1制御信号が第1半導体スイッチ93に入力された場合、第1半導体スイッチ93は、第1電源101から供給される電圧をOR演算部91に供給する。OR演算部91は、入力の論理和を出力するため、第1電源101から供給される電圧が第3リレー29に印加され、第3リレー29は開放状態から短絡状態に遷移する。
 第2制御信号が第2半導体スイッチ95に入力された場合、第2半導体スイッチ95は、第2電源102から供給される電圧をOR演算部91に供給する。OR演算部91は、入力の論理和を出力するため、第2電源102から供給される電圧が第3リレー29に印加され、第3リレー29は開放状態から短絡状態に遷移する。
 第1制御信号が第1半導体スイッチ93に入力され、第2制御信号が第2半導体スイッチ95に入力された場合、第1半導体スイッチ93は、第1電源101から供給される電圧をOR演算部91に供給し、第2半導体スイッチ95は、第2電源102から供給される電圧をOR演算部91に供給する。OR演算部91は、入力の論理和を出力するため、第1電源101から供給される電圧又は第2電源102から供給される電圧が第3リレー29に印加され、第3リレー29は開放状態から短絡状態に遷移する。
 第1制御信号が第1半導体スイッチ93に入力されず、第2制御信号が第2半導体スイッチ95に入力されない場合、第1半導体スイッチ93は、第1電源101から供給される電圧をOR演算部91に供給せず、第2半導体スイッチ95は、第2電源102から供給される電圧をOR演算部91に供給しない。OR演算部91は、入力の論理和を出力するため、第3リレー29に何も出力せず、第3リレー29は開放状態を維持する。
(実施の形態3の効果)
 以上の説明から、インバータ装置1は、半導体スイッチを2個用いることで、信号演算装置47を小型化することができると共に、低コストを実現することができる。
 なお、OR演算部91は、論理和演算をすればよく、その構成は特に限定されない。OR演算部91は、例えば、OR回路で構成されてもよく、NAND回路のそれぞれの入力にNOT回路を設けることで構成されてもよい。また、OR演算部91は、デジタル回路ではなくアナログ回路で構成されてもよい。
 以上、本実施の形態3においては、信号演算装置47は、インバータ基板45の基準電位と、制御基板43の基準電位とが同じであって、第2制御信号に基づいて開閉する第2半導体スイッチ95と、第2半導体スイッチ95と非絶縁状態であり、1制御信号に基づいて開閉する第1半導体スイッチ93と、を備え、第1半導体スイッチ93の出力と、第2半導体スイッチ95の出力と、の論理和演算の結果に基づいて、第3リレー29を閉状態とする。
 したがって、インバータ装置1は、信号演算装置47を小型化することができると共に、低コストを実現することができる。
実施の形態4.
(相違点)
 本実施の形態4では、信号演算装置47の詳細例について説明する。
(実施の形態4の構成)
 図14は、本発明の実施の形態4における信号演算装置47の電気的構成の一例を示す図である。ここでは、制御基板43の基準電位と、インバータ基板45の基準電位とが異なる電位であると想定する。つまり、制御基板43と、インバータ基板45とが同電位でないため、制御基板43と、インバータ基板45との間で短絡状態が生じる恐れがある。
 図14に示すように、信号演算装置47は、第2半導体スイッチ95と、第3半導体スイッチ97とを含んでいる。具体的には、信号演算装置47は、第1制御信号をゲート入力する第3半導体スイッチ97と、第2制御信号をゲート入力する第2半導体スイッチ95と、OR演算部91とを備えている。第1電源101及び第2電源102は、第3リレー29を駆動させる電源である。
 第1電源101と、OR演算部91との間に、第3半導体スイッチ97が設けられ、第2電源102と、OR演算部91との間に、第2半導体スイッチ95が設けられ、このように半導体スイッチを2個用いることで、信号演算装置47が小型化されると共に、低コスト化される。
 また、第3半導体スイッチ97は、例えば、フォトカプラ等のような絶縁仕様の半導体スイッチで構成されている。この構成で、制御基板43側の電位が、インバータ基板45側の電位から絶縁分離されている。
(実施の形態4の動作)
 第1制御信号が第3半導体スイッチ97に入力された場合、第3半導体スイッチ97は、第1電源101から供給される電圧をOR演算部91に供給する。OR演算部91は、入力の論理和を出力するため、第1電源101から供給される電圧が第3リレー29に印加され、第3リレー29は開放状態から短絡状態に遷移する。
 第2制御信号が第2半導体スイッチ95に入力された場合、第2半導体スイッチ95は、第2電源102から供給される電圧をOR演算部91に供給する。OR演算部91は、入力の論理和を出力するため、第2電源102から供給される電圧が第3リレー29に印加され、第3リレー29は開放状態から短絡状態に遷移する。
 第1制御信号が第3半導体スイッチ97に入力され、第2制御信号が第2半導体スイッチ95に入力された場合、第3半導体スイッチ97は、第1電源101から供給される電圧をOR演算部91に供給し、第2半導体スイッチ95は、第2電源102から供給される電圧をOR演算部91に供給する。OR演算部91は、入力の論理和を出力するため、第1電源101から供給される電圧又は第2電源102から供給される電圧が第3リレー29に印加され、第3リレー29は開放状態から短絡状態に遷移する。
 第1制御信号が第3半導体スイッチ97に入力されず、第2制御信号が第2半導体スイッチ95に入力されない場合、第3半導体スイッチ97は、第1電源101から供給される電圧をOR演算部91に供給せず、第2半導体スイッチ95は、第2電源102から供給される電圧をOR演算部91に供給しない。OR演算部91は、入力の論理和を出力するため、第3リレー29に何も出力せず、第3リレー29は開放状態を維持する。
(実施の形態4の効果)
 以上の説明から、インバータ装置1は、半導体スイッチを2個用いることで、信号演算装置47を小型化することができると共に、低コストを実現することができる。
 なお、OR演算部91は、論理和演算をすればよく、その構成は特に限定されない。OR演算部91は、例えば、OR回路で構成されてもよく、NAND回路のそれぞれの入力にNOT回路を設けることで構成されてもよい。また、OR演算部91は、デジタル回路ではなくアナログ回路で構成されてもよい。
 また、第3半導体スイッチ97は、電気的に絶縁させることができる構成であればよく、特に、上記で説明したフォトカプラに限定されない。例えば、発光素子と、受光素子との組で第3半導体スイッチ97に対応するものが構成されてもよい。この場合、第1制御信号の入力で発光素子が発光し、発光素子の発光を受光素子が受光することで、受光素子が、第1電源101と、OR演算部91と、を導通させる構成であればよい。
 また、制御基板43側の電位が、インバータ基板45側の電位から絶縁分離されているため、第3リレー29の接点側と、インバータ基板45の基準電位とが、同電位で構成されれば、第3リレー29のコイル部と、第3リレー29の接点部との絶縁距離を短くすることができる。このような回路構成であれば、各素子の配線長を短くできるため、相対的にその分だけ基板パターンを大型化することができる。よって、インバータ装置1は、大電流化することができると共に、基板の温度を抑制することができる。
 以上、本実施の形態4においては、信号演算装置47は、インバータ基板45の基準電位と、制御基板43の基準電位とが異なるものであって、第2制御信号に基づいて開閉する第2半導体スイッチ95と、第2半導体スイッチ95と絶縁状態であり、第1制御信号に基づいて開閉する第3半導体スイッチ97と、を備え、第2半導体スイッチ95の出力と、第3半導体スイッチ97の出力と、の論理和演算の結果に基づいて、第3リレー29を閉状態とする。
 したがって、インバータ装置1は、信号演算装置47を小型化することができると共に、低コストを実現することができる。また、インバータ装置1は、基板パターンを大型化することができるので、大電流化することができると共に、基板の温度を抑制することができる。
実施の形態5.
(相違点)
 他の実施の形態との相違点は、整流器11として、チョッパー回路12又はスイッチングコンバータ14が構成されている点にある。
(実施の形態5の構成)
 実施の形態1~4においては、商用電源3が三相交流電源である場合を前提として、三相全波整流を行う整流器11の説明をしたが、上記の相違点で説明したように、チョッパー回路12又はスイッチングコンバータ14が構成されていてもよい。
図15は、本発明の実施の形態5におけるインバータ装置1の電気的構成の一例を示す図である。図15に示すように、チョッパー回路12から出力される直流電流が直流リアクトル13に供給され、チョッパー回路12から出力される直流電圧が平滑コンデンサ17に供給される。つまり、チョッパー回路12は、外部から供給される電源を直流電源に変換して供給するものであるので、上記の実施の形態1~4で説明した効果と同様の効果を得ることができる。
 図16は、本発明の実施の形態5におけるインバータ装置1の電気的構成の別の一例を示す図である。図16に示すように、スイッチングコンバータ14から出力される直流電流が直流リアクトル13に供給され、スイッチングコンバータ14から出力される直流電圧が平滑コンデンサ17に供給される。つまり、スイッチングコンバータ14は、外部から供給される電源を直流電源に変換して供給するものであるので、上記の実施の形態1~4で説明した効果と同様の効果を得ることができる。
 つまり、整流する回路構成は、直流電源に変換するものであれば、特に限定されない。なお、商用電源3が単相交流電源であってもよい。
(実施の形態5の効果)
 整流する回路構成は、直流電源に変換するものであれば、上記の実施の形態1~4で説明した効果と同様の効果を得ることができる。
 以上、本実施の形態5においては、整流器11として、チョッパー回路12及びスイッチングコンバータ14の何れか一方から構成されている。
 したがって、インバータ装置1は、整流する回路構成が、直流電源に変換するものであれば、上記の実施の形態1~4で説明した効果と同様の効果を得ることができる。
実施の形態6.
(相違点)
 本実施の形態6では、インバータ装置1で駆動するモータ7を有する圧縮機131を備えた空気調和機110について説明する。
(実施の形態6の構成)
 図17は、本発明の実施の形態6におけるインバータ装置1を用いた空気調和機110の一例を示す図である。図17に示すように、空気調和機110は、室外機111と、室内機112_1~室内機112_Nとを備えている。なお、室内機112_1~室内機112_Nを特に区別しない場合、室内機112と称する。
 室外機111と、室内機112とは、ガス側冷媒配管121と、液側冷媒配管122とで、接続されている。また、ガス側冷媒配管121は、室外機111と、室内機112とがガス側バルブ123で接続されている。液側冷媒配管122は、室外機111と、室内機112とが液側バルブ124で接続されている。つまり、室外機111と、室内機112とは、ガス側冷媒配管121及び液側冷媒配管122で接続されることで、後述するような冷媒回路を構成する。なお、ガス側冷媒配管121及び液側冷媒配管122のそれぞれを特に区別しない場合、冷媒配管120と称する。
 室外機111は、圧縮機131、四方弁132、室外熱交換器133、アキュムレータ134、第2絞り装置137、及び室外ファン141等を備えている。室内機112_1は、室内熱交換器135_1、第1絞り装置136_1、及び室内ファン143_1等を備えている。なお、室外機111は、上記で説明した電気品箱9を備えているが、図17は冷媒系統図であるため、ここでは図示を省略する。
 なお、室内機112_2~室内機112_Nは、室内機112_1と同様の構成であるため、それらの説明については省略する。また、室内熱交換器135_1~室内熱交換器135_Nのそれぞれを特に区別しない場合、室内熱交換器135と称する。第1絞り装置136_1~第1絞り装置136_Nのそれぞれを特に区別しない場合、第1絞り装置136と称する。室内ファン143_1~室内ファン143_Nのそれぞれを特に区別しない場合、室内ファン143と称する。
 圧縮機131、四方弁132、室外熱交換器133、アキュムレータ134、室内熱交換器135、第1絞り装置136、及び第2絞り装置137が順に冷媒配管120で接続され、冷媒回路が構成されている。冷媒回路は、冷媒の圧縮と膨張とを行わせながら冷媒を循環させる。例えば、圧縮機131は、モータ7を備え、モータ7の駆動に応じて、冷媒を圧縮して吐出する。四方弁132は、冷房又は暖房に応じて冷媒の経路を切り換える。室外熱交換器133は、冷媒を外気と熱交換させることで、冷媒を凝縮させたり蒸発させたりする。アキュムレータ134は、余剰冷媒を貯留する。室内熱交換器135は、冷媒を室内の空気と熱交換させることで、冷媒を蒸発させたり凝縮させたりする。
(実施の形態6の動作)
 空気調和機110は、インバータ装置1がモータ7を駆動させることで圧縮機131が駆動する。このとき、インバータ装置1は、インバータ19に異常が発生したとしても、上記で説明したように、インバータ19のスイッチング素子87が耐圧破壊されることがない。
(実施の形態6の効果)
 インバータ装置1は、異常状態となったとしても、スイッチング素子87が破損するのを防ぐことができるため、空気調和機110を安定して稼働させることがでできる。
 以上、本実施の形態6においては、室外機111と、室外機111とガス側冷媒配管121及び液側冷媒配管122で接続され、冷媒回路を構成する室内機112と、を備え、室外機111は、冷媒を圧縮して吐出する圧縮機131を備え、圧縮機131は、モータ7を備え、モータ7は、インバータ装置1に制御される。
 したがって、インバータ装置1は、異常状態となったとしても、スイッチング素子87が破損するのを防ぐことができるため、空気調和機110を安定して稼働させることがでできる。
 1 インバータ装置、3 商用電源、5 開閉器、7 モータ、9 電気品箱、11 整流器、12 チョッパー回路、13 直流リアクトル、14 スイッチングコンバータ、15 突入電流防止回路、17 平滑コンデンサ、19 インバータ、23 第2リレー、25 突入電流防止抵抗、27 第1リレー、29 第3リレー、31 第1電圧検知手段、33 第2電圧検知手段、41 電源基板、43 制御基板、45 インバータ基板、47 信号演算装置、51 異常判定部、53 減速制御部、55 リレー制御部、57 インバータ制御部、71 リレー故障判定部、73 直流電圧異常判定部、75 稼働時回転数取得部、77 減速時回転数取得部、79 減速時間演算部、83 インバータ駆動信号判定部、85 ゲート制御部、87 スイッチング素子、91 OR演算部、93 第1半導体スイッチ、95 第2半導体スイッチ、97 第3半導体スイッチ、101 第1電源、102 第2電源、110 空気調和機、111 室外機、112、112_1~112_N 室内機、120 冷媒配管、121 ガス側冷媒配管、122 液側冷媒配管、123 ガス側バルブ、124 液側バルブ、131 圧縮機、132 四方弁、133 室外熱交換器、134 アキュムレータ、135、135_1~135_N 室内熱交換器、136、136_1~136_N 第1絞り装置、137 第2絞り装置、141 室外ファン、143、143_1~143_N 室内ファン。

Claims (9)

  1.  整流器と、
     前記整流器の陽極側と接続され、前記整流器の直流電流を平滑する直流リアクトルと、
     前記直流リアクトルの出力側と、前記整流器の陰極側との間に接続され、前記整流器の直流電圧を平滑する平滑コンデンサと、
     前記直流リアクトルと、前記平滑コンデンサとの間に設けられ、前記平滑コンデンサへの突入電流を防止する突入電流防止回路と、
     前記平滑コンデンサで平滑された直流電圧を交流電圧に変換するインバータと、
     前記突入電流防止回路と、前記インバータと、を制御するインバータ基板と、
    を備え、
     前記突入電流防止回路は、
     前記直流リアクトルと、前記平滑コンデンサとの間に接続され、1つ又は複数のリレーと、
     前記1つ又は複数のリレーと並列に接続された突入電流防止抵抗と、
    を備え、
     前記1つ又は複数のリレーのうち、複数のリレーのそれぞれは並列に接続され、
     前記インバータ基板は、
     前記インバータが異常の場合、前記インバータを停止させるまで、前記1つ又は複数のリレーのうち、少なくとも何れか1つのリレーを閉状態とする
    ことを特徴とするインバータ装置。
  2.  前記突入電流防止回路と、前記インバータ基板と、を制御する制御基板と、
     前記1つ又は複数のリレーとして、前記制御基板で制御される第1リレーと、
     前記1つ又は複数のリレーとして、前記インバータ基板で制御される第2リレーと、
    を備え、
     前記インバータ基板は、
     前記インバータの停止を判断する手段として、
     前記第1リレー及び前記第2リレーに係る第1電圧を検知する第1電圧検知手段と、
     前記インバータに供給される第2電圧を検知する第2電圧検知手段と、
    を備え、
     前記第1電圧が異常レベルに達する場合、及び前記第2電圧がリレー故障判定電圧レベルに達する場合、の少なくとも一方に基づいて、前記インバータの停止動作指令を出力する
    ことを特徴とする請求項1に記載のインバータ装置。
  3.  前記突入電流防止回路と、前記インバータ基板と、を制御する制御基板と、
     前記1つ又は複数のリレーとして、前記制御基板又は前記インバータ基板で制御される第3リレーと、
     前記第3リレーを制御する信号演算装置と、
    を備え、
     前記信号演算装置は、
     前記制御基板から供給される第1制御信号、及び前記インバータ基板から供給される第2制御信号、の少なくとも一方に基づいて、前記第3リレーを閉状態とする
    ことを特徴とする請求項1又は2に記載のインバータ装置。
  4.  前記インバータは、
     スイッチング素子と、
     前記スイッチング素子を制御するゲート制御部と、
    を備え、
     前記インバータ基板は、
     前記ゲート制御部を制御し、前記スイッチング素子の作動時間を段階的に減少させ、前記インバータを停止させる
    ことを特徴とする請求項3に記載のインバータ装置。
  5.  前記インバータ基板は、
     前記インバータで駆動するモータの現在の回転数に基づいて、前記モータの減速時間を求める
    ことを特徴とする請求項4に記載のインバータ装置。
  6.  前記信号演算装置は、
     前記インバータ基板の基準電位と、前記制御基板の基準電位とが同じであって、
     前記第2制御信号に基づいて開閉する第2半導体スイッチと、
     前記第2半導体スイッチと非絶縁状態であり、前記第1制御信号に基づいて開閉する第1半導体スイッチと、
    を備え、
     前記第1半導体スイッチの出力と、前記第2半導体スイッチの出力と、の論理和演算の結果に基づいて、前記第3リレーを閉状態とする
    ことを特徴とする請求項5に記載のインバータ装置。
  7.  前記信号演算装置は、
     前記インバータ基板の基準電位と、前記制御基板の基準電位とが異なるものであって、
     前記第2制御信号に基づいて開閉する第2半導体スイッチと、
     前記第2半導体スイッチと絶縁状態であり、前記第1制御信号に基づいて開閉する第3半導体スイッチと、
    を備え、
     前記第2半導体スイッチの出力と、前記第3半導体スイッチの出力と、の論理和演算の結果に基づいて、前記第3リレーを閉状態とする
    ことを特徴とする請求項5に記載のインバータ装置。
  8.  前記整流器として、
     チョッパー回路及びスイッチングコンバータの何れか一方から構成された
    ことを特徴とする請求項1~7の何れか一項に記載のインバータ装置。
  9.  室外機と、
     前記室外機とガス側冷媒配管及び液側冷媒配管で接続され、冷媒回路を構成する室内機と、
    を備え、
     前記室外機は、
     冷媒を圧縮して吐出する圧縮機を備え、
     前記圧縮機は、
     モータを備え、
     前記モータは、
     請求項1~請求項8の何れか一項に記載のインバータ装置に制御される
    ことを特徴とする空気調和機。
PCT/JP2014/050602 2014-01-15 2014-01-15 インバータ装置及びインバータ装置を用いた空気調和機 WO2015107639A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015557624A JP6173488B2 (ja) 2014-01-15 2014-01-15 インバータ装置及びインバータ装置を用いた空気調和機
PCT/JP2014/050602 WO2015107639A1 (ja) 2014-01-15 2014-01-15 インバータ装置及びインバータ装置を用いた空気調和機
GB1610810.2A GB2536589A (en) 2014-01-15 2014-01-15 Inverter device and air conditioner using inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050602 WO2015107639A1 (ja) 2014-01-15 2014-01-15 インバータ装置及びインバータ装置を用いた空気調和機

Publications (1)

Publication Number Publication Date
WO2015107639A1 true WO2015107639A1 (ja) 2015-07-23

Family

ID=53542560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050602 WO2015107639A1 (ja) 2014-01-15 2014-01-15 インバータ装置及びインバータ装置を用いた空気調和機

Country Status (3)

Country Link
JP (1) JP6173488B2 (ja)
GB (1) GB2536589A (ja)
WO (1) WO2015107639A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034007A1 (ja) * 2016-08-19 2018-02-22 三菱電機株式会社 電力変換装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112265A (ja) * 1999-10-06 2001-04-20 Hitachi Ltd インバータ装置及び電動機駆動装置
JP2001292579A (ja) * 2000-04-07 2001-10-19 Yaskawa Electric Corp インバータ装置
JP2004080933A (ja) * 2002-08-20 2004-03-11 Yaskawa Electric Corp 停電時におけるモータの減速停止制御方法
JP2011015604A (ja) * 2009-06-04 2011-01-20 Daikin Industries Ltd 電力変換装置
JP2013162719A (ja) * 2012-02-08 2013-08-19 Daikin Ind Ltd 突入電流防止装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009055715A (ja) * 2007-08-27 2009-03-12 Yaskawa Electric Corp インバータ装置と停電時処理方法
JP5743944B2 (ja) * 2012-03-30 2015-07-01 株式会社日立産機システム 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112265A (ja) * 1999-10-06 2001-04-20 Hitachi Ltd インバータ装置及び電動機駆動装置
JP2001292579A (ja) * 2000-04-07 2001-10-19 Yaskawa Electric Corp インバータ装置
JP2004080933A (ja) * 2002-08-20 2004-03-11 Yaskawa Electric Corp 停電時におけるモータの減速停止制御方法
JP2011015604A (ja) * 2009-06-04 2011-01-20 Daikin Industries Ltd 電力変換装置
JP2013162719A (ja) * 2012-02-08 2013-08-19 Daikin Ind Ltd 突入電流防止装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034007A1 (ja) * 2016-08-19 2018-02-22 三菱電機株式会社 電力変換装置
JPWO2018034007A1 (ja) * 2016-08-19 2018-11-22 三菱電機株式会社 電力変換装置
CN109643958A (zh) * 2016-08-19 2019-04-16 三菱电机株式会社 电力转换装置
CN109643958B (zh) * 2016-08-19 2021-03-30 三菱电机株式会社 电力转换装置

Also Published As

Publication number Publication date
JP6173488B2 (ja) 2017-08-02
GB2536589A (en) 2016-09-21
GB201610810D0 (en) 2016-08-03
JPWO2015107639A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
US8498136B2 (en) AC-DC converter and compressor driving apparatus and air conditioning apparatus using the same
JP5748842B2 (ja) 電力変換装置、モータ駆動装置および冷凍空気調和装置
JP5264849B2 (ja) 電力変換装置及び冷凍空気調和装置
WO2015056340A1 (ja) 直流電源装置、電動機駆動装置、空気調和機および冷蔵庫
JP5505528B1 (ja) 消費電力削減装置
US11031896B2 (en) Motor driving apparatus and refrigeration cycle equipment
WO2015098937A1 (ja) 過電圧保護回路、及びそれを備えた電力変換装置
WO2019021397A1 (ja) 空気調和機
JP2012135157A (ja) モータ駆動システム
JP6173488B2 (ja) インバータ装置及びインバータ装置を用いた空気調和機
KR20170011611A (ko) 전력변환장치 및 이를 구비하는 공기조화기
JP4889694B2 (ja) 直流電源装置、それを備えたインバータ装置、及びそのインバータ装置を備えた空気調和機、洗濯機並びに洗濯乾燥機
JP5391677B2 (ja) ヒートポンプ式空気調和装置の室外機
WO2020066028A1 (ja) モータ駆動装置及び空気調和機
JP2007089308A (ja) コンバータ回路および冷凍・空調装置
EP3474437B1 (en) Universal input refrigerating machine
JP6762175B2 (ja) モータ制御装置および空気調和機
WO2022185374A1 (ja) 交流直流変換装置、電動機駆動装置及び冷凍サイクル機器
WO2015033427A1 (ja) 空気調和装置
JP5920709B2 (ja) 空気調和装置
JP5593761B2 (ja) 電力変換装置
JP7183472B2 (ja) 電動機駆動装置、空気調和機及び冷蔵庫
JP5721669B2 (ja) 電力変換装置および冷凍空調システム
JP2009047353A (ja) エンジン駆動式空気調和装置
JP2007259547A (ja) 電力変換器の制御方法及び制御装置並びに電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557624

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201610810

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140115

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878837

Country of ref document: EP

Kind code of ref document: A1

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: GB