WO2019021397A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2019021397A1
WO2019021397A1 PCT/JP2017/027086 JP2017027086W WO2019021397A1 WO 2019021397 A1 WO2019021397 A1 WO 2019021397A1 JP 2017027086 W JP2017027086 W JP 2017027086W WO 2019021397 A1 WO2019021397 A1 WO 2019021397A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
switching device
outdoor unit
connection terminal
indoor unit
Prior art date
Application number
PCT/JP2017/027086
Other languages
English (en)
French (fr)
Inventor
崇仁 大西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP17918831.3A priority Critical patent/EP3660406B1/en
Priority to US16/616,676 priority patent/US11486596B2/en
Priority to JP2019532272A priority patent/JP6732132B2/ja
Priority to PCT/JP2017/027086 priority patent/WO2019021397A1/ja
Priority to AU2017424871A priority patent/AU2017424871B2/en
Priority to CN201780093379.7A priority patent/CN110959092B/zh
Publication of WO2019021397A1 publication Critical patent/WO2019021397A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an air conditioner having a function of reducing power consumption during standby.
  • Patent Document 1 describes a conventional air conditioner that can reduce power consumption during standby.
  • the air conditioner described in Patent Document 1 includes an opening / closing device for shutting off the power supplied from the commercial power supply to the outdoor unit, and the electric power from the commercial power supply is not supplied to the outdoor unit during standby. I have to.
  • the indoor unit controls the opening / closing device provided in the outdoor unit so that power is supplied to the outdoor unit.
  • the indoor unit supplies a current to the coil in the switchgear provided in the outdoor unit to close the switchgear.
  • the indoor unit supplies power for activating the outdoor unit using a signal line for communication with the outdoor unit.
  • the connection state of the switchgear provided in the indoor unit it is switched whether to use the signal line for communication or for power supply.
  • the communication circuit provided in the outdoor unit is in a state in which a signal line for communication is always connected. Therefore, when the connection state of the switchgear provided in the indoor unit is changed, an excessive voltage may be applied to the communication circuit of the outdoor unit, and measures are required to prevent the circuit from malfunctioning. Met. Specifically, it was necessary to add a resistive element for limiting the current and to use a high breakdown voltage component.
  • This invention is made in view of the above, Comprising: It aims at obtaining the air conditioner which can reduce the parts for the failure countermeasure of a circuit.
  • the present invention is an air conditioner provided with an indoor unit and an outdoor unit.
  • the outdoor unit includes a first connection terminal, a second connection terminal, a third connection terminal and a fourth connection terminal to which the indoor unit is connected, a power conversion unit, a first connection terminal, and a power conversion unit. And an open / close unit provided between the two.
  • the indoor unit includes a first indoor unit side terminal connected to the first connection terminal, a second indoor unit side terminal connected to the second connection terminal, and a third connection terminal connected to the third connection terminal.
  • the switching unit is connected in parallel with the first switching device, which is in a closed state when power is supplied from the second connection terminal and the fourth connection terminal, and the first switching device. And 2 switching devices. Further, AC power is applied to the first connection terminal and the second connection terminal, and the outdoor unit and the indoor unit communicate via the connection line connecting the third connection terminal and the third indoor unit side terminal. I do.
  • the indoor unit closes the switchgear when the start signal is received in the low standby power state where the power converter stops operation, and opens the switchgear after the power converter starts operating.
  • the outdoor unit closes the second switchgear when the first switchgear is closed and the supply of AC power to the power conversion unit is started.
  • the air conditioner concerning this invention has an effect that the components for the failure countermeasure of a circuit can be reduced.
  • the figure which shows the structural example of the air conditioner concerning embodiment of this invention A diagram showing a configuration example of a detection circuit provided in an indoor unit
  • the figure which shows the other structural example of the detection circuit with which an indoor unit is provided A figure showing hardware which realizes an indoor unit control part provided in an indoor unit Flow chart showing an example of the operation of the outdoor unit returning from the low standby power state Flow chart showing an example of the operation of the outdoor unit transitioning from the operating state to the low standby power state
  • the figure which shows the other structural example of the air conditioner concerning embodiment of this invention A diagram showing a configuration example of a detection circuit provided in an indoor unit
  • the figure which shows the other structural example of the detection circuit with which an indoor unit is provided A figure showing hardware which realizes an indoor unit control part provided in an indoor unit Flow chart showing an example of the operation of the outdoor unit returning from the low standby power state Flow chart showing an example of the operation of the outdoor unit transitioning from the operating state to the low standby power state
  • FIG. 1 is a view showing a configuration example of an air conditioner according to an embodiment of the present invention.
  • An air conditioner 100 according to the embodiment includes indoor units 1 a and 1 b and an outdoor unit 2.
  • the air conditioner 100 is configured to include two indoor units, but it may be one or more.
  • all the indoor units may be the same structure. That is, the plurality of indoor units 1a and the single outdoor unit 2 may constitute the air conditioner 100, and the plurality of indoor units 1b and the single outdoor unit 2 may constitute the air conditioner 100. It is also good.
  • the outdoor unit 2 is also connected to an AC power supply 60 via a breaker 61.
  • the indoor unit 1 a includes an indoor unit control unit 11, a power supply circuit 12, a communication circuit 13, a detection circuit 14, an opening / closing device 15, a wiring connection unit 16, a remote control signal reception unit 17, a rectification circuit 18 and an inrush current prevention element 19.
  • the indoor unit control unit 11 controls each unit constituting the indoor unit 1a.
  • a target to be controlled by the indoor unit control unit 11 includes the open / close device 15.
  • the power supply circuit 12 generates a control power supply for operating the indoor unit control unit 11 and the communication circuit 13.
  • the communication circuit 13 is a circuit for the indoor unit 1 a to communicate with the outdoor unit 2.
  • the opening / closing device 15 is provided to start up the outdoor unit 2 and is closed when starting up the outdoor unit 2 and is opened in other cases. That is, in the air conditioner 100 according to the present embodiment, the power for startup is supplied from the indoor unit 1a to the outdoor unit 2 when the switching device 15 is closed.
  • the detection circuit 14 is a circuit for detecting that the switching device 15 has operated.
  • the detection circuit 14 can be a path having the configuration shown in FIG. 2 or the configuration shown in FIG.
  • the detector acquires a pulse waveform after half-wave rectification. That is, when the switching device 15 is in the closed state, the detector detects a pulse waveform.
  • the detection circuit 14 configured as shown in FIG. 3 the detector acquires the DC voltage after full-wave rectification. That is, when the switching device 15 is in the closed state, the detector detects a non-zero DC voltage.
  • the detection circuit 14 is not an essential component and can be omitted, when the detection circuit 14 is provided, the indoor unit whether or not the open / close device 15 operates normally according to the control of the indoor unit control unit 11 The control unit 11 can be recognized.
  • the wire connection portion 16 has terminals S1 to S4 for connecting a cable that electrically connects the indoor unit 1a and the outdoor unit 2.
  • the opening / closing device 15 described above is provided between the terminal S1 and the terminal S4 of the wiring connection portion 16, and the indoor unit control portion 11 is configured to short the terminal S1 and the terminal S4 when activating the outdoor unit 2.
  • Controlled by The communication circuit 13 described above is connected to the terminal S2 and the terminal S3 of the wiring connection unit 16.
  • the terminal S1 is a first indoor unit side terminal
  • the terminal S2 is a second indoor unit side terminal
  • the terminal S3 is a third indoor unit side terminal
  • the terminal S4 is a fourth indoor unit side terminal.
  • the remote control signal receiving unit 17 is a circuit for receiving a signal transmitted by the remote control (remote controller) 3.
  • the rectifier circuit 18 converts AC power supplied from the AC power supply 60 through the outdoor unit 2 into DC power.
  • the inrush current prevention element 19 is a resistor and is connected in series to the switching device 15. Specifically, one end of the rush current preventing element 19 is connected to the switching device 15, and the other end is connected to the terminal S1 of the wiring connection portion 16. The inrush current prevention element 19 is provided to suppress an inrush current flowing in the circuit when the switching device 15 is closed.
  • the indoor unit 1b is configured not to include the detection circuit 14 of the indoor unit 1a, and the components of the indoor unit 1b are the same as the components of the indoor unit 1a having the same reference numerals. Therefore, the description of the details of the indoor unit 1b is omitted.
  • the outdoor unit 2 includes a power supply connection unit 21, a filter circuit 22, switching devices 23 to 25, an inrush current prevention element 26, a rectifier circuit 28, a booster circuit 29, an inverter circuit 30, a compressor 32, a temperature detector 33, and a communication circuit 34.
  • a power supply generation unit 35, an outdoor unit waveform generation unit 36, an outdoor unit control unit 37, and a wiring connection unit 38 are provided.
  • the switching devices 23 to 25 and the inrush current prevention element 26 constitute a switching unit 27 that opens and closes a power supply path to the rectifier circuit 28.
  • the rectifier circuit 28, the booster circuit 29, and the inverter circuit 30 constitute a power conversion unit 31 that generates drive power for the compressor 32.
  • the switchgear 23 is a first switchgear
  • the switchgear 24 is a second switchgear
  • the switchgear 25 is a third switchgear.
  • the power supply connection portion 21 has two terminals L and N to which an AC power supply 60 is connected.
  • the terminal L is a first power supply terminal
  • the terminal N is a second power supply terminal.
  • the filter circuit 22 removes noise components propagating through a power supply line connecting the AC power supply 60 and the outdoor unit 2. If the noise component propagating through the power supply line is small, that is, if the noise component is at a level that does not adversely affect the operation of the air conditioner 100 and the other devices connected to the AC power supply 60, the filter circuit 22 It may be omitted.
  • the switching devices 23 to 25 are provided to reduce the power consumption of the outdoor unit 2 at the time of standby.
  • the switching devices 23 to 25 are connected in parallel, and one end of the switching devices 23 to 25 is connected to the terminal L of the power supply connection portion 21 via the filter circuit 22.
  • the other end of each of the switching devices 23 and 24 is connected to one end of an inrush current prevention element 26 formed of a resistor.
  • the other end of the inrush current protection element 26 and the other end of the switching device 25 are connected to one of two input terminals of the rectifier circuit 28.
  • the initial state of the switching devices 23 to 25 is open.
  • the switching device 25 is a mechanical switching device, and is configured to close the contact by the magnetic force generated by the coil when the current is supplied to the coil inside upon receiving the supply of AC power.
  • the switchgears 23 and 24 may be mechanical switchgears or other switchgears.
  • the switching unit 27 configured by the switching devices 23 to 25 and the rush current preventing element 26 is disposed on the power supply path on the terminal L side.
  • the opening / closing unit 27 may be disposed on the supply path.
  • the rectifier circuit 28 converts the AC power supplied from the AC power supply 60 into DC power and outputs the DC power.
  • a booster circuit 29 is connected to the output side of the rectifier circuit 28.
  • An inverter circuit 30 and a power supply generation unit 35 are connected to the output side of the booster circuit 29.
  • the booster circuit 29 boosts the DC power output from the rectifier circuit 28 and supplies the DC power to the inverter circuit 30 and the power supply generation unit 35.
  • the compressor 32 is connected to the output side of the inverter circuit 30.
  • the inverter circuit 30 converts the DC voltage input from the booster circuit 29 into an alternating current to generate driving power for the compressor 32.
  • the booster circuit 29 is not an essential component, and may be omitted.
  • the compressor 32 includes a motor (not shown), and drives the motor with the power supplied from the inverter circuit 30 to compress the refrigerant flowing in the refrigerant pipe (not shown).
  • the temperature detector 33 detects the temperature of the compressor 32.
  • Communication circuit 34 communicates with communication circuit 13 of indoor units 1a and 1b.
  • the power supply generation unit 35 converts a DC voltage input from the booster circuit 29 and generates a control power supply for operating the outdoor unit waveform generation unit 36 and the outdoor unit control unit 37.
  • the power supply generation unit 35 also generates a control power supply for operating the communication circuit 33.
  • the outdoor unit waveform generation unit 36 generates a PWM (Pulse Width Modulation) signal for controlling the switching elements that constitute the inverter circuit 30.
  • the outdoor unit controller 37 controls the open / close devices 24 and 25.
  • the wire connection portion 38 has terminals S1 to S4. Cables for electrically connecting the outdoor unit 2 and the indoor units 1a and 1b are connected to the terminals S1 to S4.
  • the terminal S1 of the wiring connection portion 38 is a first connection terminal, and is connected to the terminal S1 of the wiring connection portion 16 of the indoor units 1a and 1b via a cable.
  • the terminal S2 of the wiring connection portion 38 is a second connection terminal, and is connected to the terminal S2 of the wiring connection portion 16 of the indoor units 1a and 1b via a cable.
  • the terminal S3 of the wiring connection portion 38 is a third connection terminal, and is connected to the terminal S3 of the wiring connection portion 16 of the indoor units 1a and 1b via a cable.
  • the terminal S4 of the wiring connection portion 38 is a fourth connection terminal, and is connected to the terminal S4 of the wiring connection portion 16 of the indoor units 1a and 1b via a cable.
  • the terminal S1 of the wiring connection portion 38 is connected to the terminal L of the power supply connection portion 21, and the terminal S2 of the wiring connection portion 38 is connected to the terminal N of the power supply connection portion 21. Therefore, the alternating current power from the alternating current power supply 60 is applied to the terminal S1 and the terminal S2.
  • AC power supplied from the AC power supply 60 to the outdoor unit 2 is supplied to the indoor units 1a and 1b via the terminals S1 and S2 of the wiring connection portion 38.
  • a communication circuit 34 is connected to the terminals S2 and S3 of the wiring connection portion 38. Further, a coil inside the switching device 23 is connected between the terminal S2 and the terminal S4 of the wiring connection portion 38.
  • the indoor unit control unit 11 of the indoor units 1a and 1b can be realized by the control circuit 200 shown in FIG. 4, specifically, the processor 201 and the memory 202.
  • the processor 201 is a central processing unit (CPU) (also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a digital signal processor (DSP)).
  • the memory 202 is, for example, non-volatile, such as random access memory (RAM), read only memory (ROM), flash memory, erasable programmable read only memory (EPROM), and EEPROM (registered trademark) (electrically erasable programmable read only memory). Or volatile semiconductor memory, including magnetic disks.
  • the indoor unit control unit 11 is realized by the memory 202 holding a program in which the process executed by the indoor unit control unit 11 is described, and the processor 201 reading out and executing this program.
  • the indoor unit control unit 11 may be realized by a processing circuit as dedicated hardware.
  • the processing circuit may be a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or a combination thereof. .
  • the outdoor unit waveform generation unit 36 and the outdoor unit control unit 37 of the outdoor unit 2 shown in FIG. 1 can also be realized by the same hardware as the indoor unit control unit 11.
  • the air conditioner 100 can shift the outdoor unit 2 to the low standby power state by opening the switching devices 24 and 25 of the outdoor unit 2 when the operation is stopped. is there.
  • the low standby power state refers to a state in which the power conversion unit 31 stops the operation without power supply to the rectifier circuit 28 of the outdoor unit 2 and power consumption is suppressed low.
  • the outdoor unit 2 when the outdoor unit 2 is in the low standby power state, the outdoor unit 2 can recover from the low standby power state by closing the opening / closing device 15 with the indoor unit 1a. .
  • the operation of the air conditioner 100 specifically, the operation when the outdoor unit 2 starts up, that is, the operation when the outdoor unit 2 recovers from the low standby power state, and the outdoor unit 2 from the operating state is low
  • the operation in the case of transition to the standby power state will be described.
  • FIG. 5 is a flowchart showing an example of the operation of the outdoor unit 2 of the air conditioner 100 returning from the low standby power state.
  • the operation shown in FIG. 5 starts when the breaker 61 connected to the outdoor unit 2 is turned on and power is supplied from the AC power supply 60 to the outdoor unit 2.
  • the breaker 61 When the breaker 61 is turned on and turned on, supply of power from the AC power supply 60 to the indoor units 1a and 1b is started. Specifically, electric power is supplied from the AC power supply 60 to the indoor units 1a and 1b via the power supply connection portion 21 of the outdoor unit 2 and the terminals S1 and S2 of the wiring connection portion 38.
  • the rectifier circuit 18 converts alternating current to direct current
  • the power supply circuit 12 generates control power
  • power to the indoor unit control unit 11 and the communication circuit 13 Supply When the indoor unit control unit 11 and the communication circuit 13 receive power supply from the power supply circuit 12 and the indoor units 1a and 1b start operating (step S11), the air conditioner 100 enters a standby state.
  • the switching devices 23, 24 and 25 of the outdoor unit 2 are in the released state, and power is not supplied to the rectifying circuit 28 of the outdoor unit 2. That is, the outdoor unit 2 is in the low standby power state.
  • the indoor units 1a and 1b check whether a start signal has been received from the remote control 3 (step S12).
  • the start signal here is a signal instructing the air conditioner 100 to start.
  • the remote control 3 transmits an activation signal, for example, when an operation for starting driving is received from the user.
  • step S12 When the indoor units 1a and 1b do not receive the start signal (step S12: No), step S12 is repeated.
  • the remote control signal receiving unit 17 receives the signal transmitted from the remote control 3, and the indoor unit control unit 11 determines whether the signal received by the remote control signal receiving unit 17 is a start signal or not. Determine
  • step S12 When the indoor units 1a and 1b receive the start signal (step S12: Yes), the open / close device 15 is closed (step S13), and the open / close device 23 of the outdoor unit 2 is closed (step S14). That is, when the switching device 15 is closed, the terminals S1 and S4 of the wiring connection portion 16 are shorted. Along with this, current flows in the coil inside the switchgear 23 of the outdoor unit 2 to operate the contact of the switchgear 23 and the switchgear 23 is closed. The indoor unit controller 11 performs an operation of closing the opening / closing device 15.
  • the switching device 23 When the switching device 23 is closed, the power from the AC power supply 60 is supplied to the rectifier circuit 28 via the switching device 23 and the rush current prevention element 26. Then, the electric power converted into direct current by the rectifier circuit 28 is supplied to the inverter circuit 30 and the power supply generation unit 35 via the booster circuit 29. As a result, the power generation unit 35 starts generation of the control power, and the outdoor unit waveform generation unit 36, the outdoor unit control unit 37 and the communication circuit 34 receive the supply of the control power generated by the power generation unit 35 and operate. Start.
  • the outdoor unit controller 37 When starting operation, the outdoor unit controller 37 first closes the switching device 24 and then closes the switching device 25 (step S15).
  • the reason why the switching devices 24 and 25 are operated in this order is that the inrush current flowing into the rectifier circuit 28 at the start of the power supply is connected in series with the switching device 24 by closing the switching device 24 first. This is suppressed by the action of the inrush current preventing element 26. Thereafter, when the switching device 25 is closed, power is supplied to the rectifier circuit 28 without passing through the inrush current preventing element 26, and power is wasted in the inrush current preventing element 26. It can prevent.
  • the outdoor unit control unit 37 generates a signal indicating that the power conversion unit 31 has started operation and the outdoor unit 2 has been activated, and transmits the signal to the indoor units 1a and 1b via the communication circuit 34.
  • a signal indicating that the outdoor unit 2 has been activated is received by the communication circuit 13 of the indoor units 1a and 1b, and is delivered to the indoor unit control unit 11.
  • the indoor unit control unit 11 receives a signal indicating that the outdoor unit 2 has been activated
  • the indoor unit control unit 11 opens the open / close device 15.
  • the indoor unit control unit 11 in which the opening / closing device 15 is closed in response to the reception of the start signal from the remote control 3 opens the opening / closing device 15.
  • the other indoor unit control units 11 do nothing even if they receive a signal indicating that the outdoor unit 2 has been activated.
  • the switching device 15 When the switching device 15 is in the open state, the terminal S1 and the terminal S4 of the wiring connection portion 16 are in the open state. As a result, the current does not flow to the coil inside the opening / closing device 23 of the outdoor unit 2, so the opening / closing device 23 is in the open state.
  • the outdoor unit 2 is switched to the low standby power state for a predetermined time (for example, 30 Even when a minute has elapsed, the low standby power state may be restored.
  • FIG. 6 is a flowchart showing an example of an operation of the outdoor unit 2 of the air conditioner 100 shifting from the operating state to the low standby power state.
  • the operation shown in FIG. 6 starts when the indoor unit 1a or 1b receives an operation stop signal from the remote control 3 while the air conditioner 100 is operating.
  • the remote controller 3 transmits an operation stop signal, for example, when an operation for stopping the operation is received from the user.
  • the indoor units 1a and 1b stop the air conditioning operation and transmit a stop signal to the outdoor unit 2 (step S21).
  • the air conditioning operation is an operation directly related to air conditioning, such as a blowing operation and an adjustment operation of the wind direction, an operation in which the communication circuit 13 communicates with the outdoor unit 2, and the remote control signal receiving unit 17 receives a signal from the remote control 3 Motion etc. are not included.
  • the indoor unit control unit 11 stops the air conditioning operation, generates a stop signal, and transmits the stop signal to the outdoor unit 2 via the communication circuit 13. Send.
  • the outdoor unit 2 When the outdoor unit 2 receives the stop signal transmitted by the indoor unit 1a or 1b in step S21, the outdoor unit 2 confirms whether or not transition to the low standby power state is possible (step S22).
  • the outdoor unit controller 37 determines whether the outdoor unit 2 can shift to the low standby power state.
  • the outdoor unit control unit 37 determines that transition to the low standby power state is possible when a certain condition is satisfied.
  • the outdoor unit control unit 37 waits low based on, for example, the state of the indoor units 1a and 1b, the prediction of the outside air temperature change, and the compressor temperature that is the temperature detected by the temperature detector 33 of the outdoor unit 2. Determine if transition to power state is possible.
  • the outdoor unit control unit 37 stops the air conditioning operation of all the indoor units 1a and 1b, and the preheating operation of the compressor 32 is performed based on the prediction of the outside air temperature change and the compressor temperature. If it is determined that it is not necessary, transition to the low standby power state is enabled.
  • the preheating operation of the compressor 32 is an operation of adjusting the temperature of the compressor 32 by supplying current to the coil of the motor constituting the compressor 32 to generate heat.
  • step S22: No If the outdoor unit 2 can not shift to the low standby power state (step S22: No), the outdoor unit 2 repeats the confirmation process until the transition to the low standby power state becomes possible.
  • step S22: Yes the open / close devices 24 and 25 are opened in the reverse order to the case of recovery from the low standby power state. That is, the outdoor unit controller 37 first opens the switching device 25 and then opens the switching device 24 (step S23). As a result, the outdoor unit 2 shifts to the low standby power state (step S24).
  • the outdoor unit 2 and the indoor units 1a and 1b are connected by four connection lines, and the first connection line of the four connection lines and Power is supplied from the outdoor unit 2 to the indoor units 1a and 1b using the second connection line, and the indoor units 1a and 1b open and close for starting the outdoor unit 2 using the fourth connection line. Operate the device.
  • the outdoor unit 2 and the indoor units 1a and 1b communicate with each other via the third connection line.
  • FIG. 7 is a diagram showing another configuration example of the air conditioner according to the embodiment of the present invention.
  • the air conditioner 100a shown in FIG. 7 is the outdoor unit 2a of the air conditioner 100 shown in FIG.
  • the outdoor unit 2 a has a configuration in which the switching device 39 and the rush current preventing element 40 are added to the outdoor unit 2.
  • the switching device 39 and the rush current preventing element 40 are connected in series, and provided between the terminal S1 and the terminal S4 of the wiring connection portion 38. Specifically, one end of the switching device 39 is connected to the terminal S4, and the other end of the switching device 39 is connected to one end of the rush current prevention element 40. Further, the other end of the inrush current preventing element 40 is connected to the terminal S1.
  • the switchgear 39 is a fourth switchgear in the outdoor unit 2a.
  • the configuration other than the opening / closing device 39 of the outdoor unit 2a and the rush current preventing element 40 is the same as that of the outdoor unit 2, and therefore the description of the same configuration will be omitted.
  • the outdoor unit 2a can notify the indoor unit 1a of the transition to the low standby power state using the opening / closing device 39.
  • the outdoor unit controller 37 starts the operation and closes the switching devices 24 and 25 and then closes the switching device 39. Further, when shifting to the low standby power state, the outdoor unit control unit 37 also brings the open / close device 39 into an open state together with the open / close devices 24 and 25.
  • the indoor unit 1a may detect the state of the switching device 39 using the detection circuit 14 and detect that the outdoor unit 2a has shifted to the low standby power state.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

室外機(2)は、室内機が接続される第1、第2、第3および第4の接続端子、電力変換部(31)、第1の接続端子と電力変換部との間に設けられた開閉部(27)、を備え、室内機(1a,1b)は、第1の接続端子と接続される第1の室内機側端子、第2の接続端子と接続される第2の室内機側端子、第3の接続端子と接続される第3の室内機側端子、および第4の接続端子と接続される第4の室内機側端子、第1の室内機側端子と第4の室内機側端子の間に設けられた開閉機器(15)、を備え、開閉部は、第2および第4の接続端子から電力の供給を受けているときに閉状態となる第1の開閉機器(23)、第1の開閉機器と並列に接続された第2の開閉機器(24)、を備え、第1および第2の接続端子に交流電力が印加され、室内機は、起動信号を受け取ると開閉機器を閉状態とし、室外機は、電力変換部に交流電力の供給が開始されると第2の開閉機器を閉状態とする。

Description

空気調和機
 本発明は、待機時の消費電力を削減する機能を有する空気調和機に関する。
 待機時の消費電力を削減することが可能な従来の空気調和機が特許文献1に記載されている。特許文献1に記載の空気調和機は、商用電源から室外機に供給される電力を遮断するための開閉機器を室外機が備え、待機時は、商用電源からの電力が室外機に供給されないようにしている。また、室外機を起動させる際には、室外機が備えている開閉機器を室内機が制御し、室外機に電力が供給されるようにする。このとき、室内機は、内部の開閉機器の接続状態を変更することにより、室外機が備えている開閉機器内のコイルに電流を流してこの開閉機器を閉状態にさせる。
特開2014-152968号公報
 特許文献1に記載の空気調和機においては、室内機が、室外機との通信用の信号線を使用して、室外機を起動させるための電力の供給を行う。また、室内機が備えている開閉機器の接続状態を変更することにより、信号線を通信用とするのか電力供給用とするのかを切り替える。ここで、室外機が備えている通信用の回路は通信用の信号線が常時接続された状態である。そのため、室内機が備えている開閉機器の接続状態を変更した場合、過大な電圧が室外機の通信用の回路に印加される可能性があり、回路が故障しないようにするための対策が必要であった。具体的には、電流を制限するための抵抗素子を追加する、高耐圧な部品を使用するといった対策が必要であった。
 本発明は、上記に鑑みてなされたものであって、回路の故障対策のための部品を削減可能な空気調和機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、室内機および室外機を備える空気調和機である。室外機は、室内機が接続される第1の接続端子、第2の接続端子、第3の接続端子および第4の接続端子と、電力変換部と、第1の接続端子と電力変換部との間に設けられた開閉部と、を備える。室内機は、第1の接続端子と接続される第1の室内機側端子、第2の接続端子と接続される第2の室内機側端子、第3の接続端子と接続される第3の室内機側端子、および第4の接続端子と接続される第4の室内機側端子と、第1の室内機側端子と第4の室内機側端子との間に設けられた開閉機器と、を備える。また、開閉部は、第2の接続端子および第4の接続端子から電力の供給を受けているときに閉状態となる第1の開閉機器と、第1の開閉機器と並列に接続された第2の開閉機器と、を備える。また、第1の接続端子および第2の接続端子に交流電力が印加され、室外機および室内機は、第3の接続端子と第3の室内機側端子とを接続する接続線を介して通信を行う。室内機は、電力変換部が動作を停止している状態である低待機電力状態のときに起動信号を受け取ると開閉機器を閉状態とし、電力変換部が動作を開始した後に開閉機器を開状態とし、室外機は、第1の開閉機器が閉状態となり電力変換部に対して交流電力の供給が開始されると第2の開閉機器を閉状態とする。
 本発明にかかる空気調和機は、回路の故障対策のための部品を削減することができる、という効果を奏する。
本発明の実施の形態にかかる空気調和機の構成例を示す図 室内機が備える検出回路の構成例を示す図 室内機が備える検出回路の他の構成例を示す図 室内機が備える室内機制御部を実現するハードウェアを示す図 室外機が低待機電力状態から復帰する動作の一例を示すフローチャート 室外機が動作状態から低待機電力状態に移行する動作の一例を示すフローチャート 本発明の実施の形態にかかる空気調和機の他の構成例を示す図
 以下に、本発明の実施の形態にかかる空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、本発明の実施の形態にかかる空気調和機の構成例を示す図である。実施の形態にかかる空気調和機100は、室内機1aおよび1bと、室外機2とを備える。図1では、空気調和機100が室内機を2台備える構成としているが1台以上であればよい。また、室内機1aの構成と室内機1bの構成が異なる場合の例を説明しているが、複数の室内機が全て同じ構成であってもよい。すなわち、複数の室内機1aと単一の室外機2とが空気調和機100を構成してもよいし、複数の室内機1bと単一の室外機2とが空気調和機100を構成してもよい。また、室外機2は、ブレーカ61を介して交流電源60に接続される。
 室内機1aは、室内機制御部11、電源回路12、通信回路13、検出回路14、開閉機器15、配線接続部16、リモコン信号受信部17、整流回路18および突入電流防止素子19を備える。
 室内機制御部11は、室内機1aを構成している各部を制御する。室内機制御部11が制御を行う対象には開閉機器15が含まれる。電源回路12は、室内機制御部11および通信回路13を動作させるための制御電源を生成する。通信回路13は、室内機1aが室外機2と通信するための回路である。
 開閉機器15は、室外機2を起動させるために設けられており、室外機2を起動させる場合に閉状態となり、その他の場合には開状態となる。すなわち、本実施の形態にかかる空気調和機100は、開閉機器15が閉じているときに、起動用の電力が室内機1aから室外機2に供給される。
 検出回路14は、開閉機器15が動作したことを検出するための回路である。検出回路14は、図2に示した構成または図3に示した構成の経路とすることができる。図2に示した構成の検出回路14の場合、半波整流後のパルス波形を検出器が取得する。すなわち、開閉機器15が閉状態の場合は検出器がパルス波形を検出する。図3に示した構成の検出回路14の場合、全波整流後の直流電圧を検出器が取得する。すなわち、開閉機器15が閉状態の場合は検出器が非ゼロの直流電圧を検出する。検出回路14は必須の構成ではなく省略することが可能であるが、検出回路14を備えた構成とした場合、室内機制御部11の制御に従い開閉機器15が正常に動作したかどうかを室内機制御部11が認識できるようになる。
 配線接続部16は、室内機1aと室外機2とを電気的に繋ぐケーブルを接続するための端子S1~S4を有する。上述した開閉機器15は、配線接続部16の端子S1と端子S4との間に設けられており、室外機2を起動させる際に端子S1と端子S4とを短絡するよう、室内機制御部11により制御される。また、上述した通信回路13は、配線接続部16の端子S2および端子S3に接続されている。ここで、端子S1は第1の室内機側端子、端子S2は第2の室内機側端子、端子S3は第3の室内機側端子、端子S4は第4の室内機側端子である。リモコン信号受信部17は、リモコン(リモートコントローラ)3が送信した信号を受信するための回路である。整流回路18は、室外機2を介して交流電源60から供給される交流電力を直流電力に変換する。
 突入電流防止素子19は抵抗器であり、開閉機器15に直列に接続される。具体的には、突入電流防止素子19の一端が開閉機器15に接続され、他端が配線接続部16の端子S1に接続される。突入電流防止素子19は、開閉機器15を閉じたときに回路に流れる突入電流を抑制するために設けられている。
 室内機1bは、室内機1aの検出回路14を備えない構成としたものであり、室内機1bの各構成要素は室内機1aの同じ符号が付された各構成要素と同一である。そのため、室内機1bの詳細については説明を省略する。
 室外機2は、電源接続部21、フィルタ回路22、開閉機器23~25、突入電流防止素子26、整流回路28、昇圧回路29、インバータ回路30、圧縮機32、温度検出器33、通信回路34、電源生成部35、室外機波形生成部36、室外機制御部37および配線接続部38を備える。ここで、開閉機器23~25および突入電流防止素子26は、整流回路28への電力供給路を開閉する開閉部27を構成する。また、整流回路28、昇圧回路29およびインバータ回路30は、圧縮機32の駆動電力を生成する電力変換部31を構成する。また、開閉機器23は第1の開閉機器、開閉機器24は第2の開閉機器、開閉機器25は第3の開閉機器である。
 電源接続部21は、交流電源60が接続される2つの端子Lおよび端子Nを有する。端子Lは第1の電源端子、端子Nは第2の電源端子である。フィルタ回路22は、交流電源60と室外機2とを接続する電源線を伝搬するノイズ成分を除去する。なお、電源線を伝搬するノイズ成分が少ない場合、すなわち、ノイズ成分が空気調和機100の動作および交流電源60に接続される他の装置の動作に悪影響を与えないレベルの場合、フィルタ回路22を省略してもよい。
 開閉機器23~25は、待機時の室外機2における消費電力を削減するために設けられている。これらの開閉機器23~25は並列に接続され、開閉機器23~25の一端が、フィルタ回路22を介して、電源接続部21の端子Lに接続される。開閉機器23および24の他端には、抵抗器で構成される突入電流防止素子26の一端が接続される。突入電流防止素子26の他端および開閉機器25の他端は、整流回路28の2つの入力端子の一方に接続される。開閉機器23~25の初期状態は開放とする。ここで、開閉機器25は機械式の開閉機器であり、交流電力の供給を受けて内部のコイルに電流が流れるとコイルが発生させた磁力により接点を閉じる構成とする。開閉機器23および24は、機械式の開閉機器であってもよいし他の方式の開閉機器であってもよい。なお、図1に示した構成例では、開閉機器23~25および突入電流防止素子26で構成される開閉部27を端子L側の電力供給経路上に配置しているが、端子N側の電力供給経路上に開閉部27を配置してもよい。
 整流回路28は、交流電源60から供給される交流電力を直流電力に変換して出力する。整流回路28の出力側には昇圧回路29が接続される。昇圧回路29の出力側にはインバータ回路30および電源生成部35が接続される。
 昇圧回路29は、整流回路28から出力される直流電力を昇圧し、インバータ回路30および電源生成部35に供給する。インバータ回路30の出力側には圧縮機32が接続される。インバータ回路30は、昇圧回路29から入力される直流電圧を交流に変換して圧縮機32の駆動電力を生成する。なお、昇圧回路29は必須の構成ではなく、省略することも可能である。
 圧縮機32は、図示を省略した電動機を備え、インバータ回路30から供給される電力により電動機を駆動して、図示を省略した冷媒配管に流れる冷媒を圧縮する。温度検出器33は圧縮機32の温度を検出する。
 通信回路34は、室内機1aおよび1bの通信回路13と通信する。電源生成部35は、昇圧回路29から入力される直流電圧を変換し、室外機波形生成部36および室外機制御部37を動作させるための制御電源を生成する。電源生成部35は、通信回路33を動作させるための制御電源についても生成する。室外機波形生成部36は、インバータ回路30を構成するスイッチング素子を制御するためのPWM(Pulse Width Modulation)信号を生成する。室外機制御部37は、開閉機器24および25を制御する。
 配線接続部38は、端子S1~S4を有する。これらの端子S1~S4には、室外機2と室内機1a,1bとを電気的に繋ぐためのケーブルが接続される。配線接続部38の端子S1は第1の接続端子であり、ケーブルを介して室内機1aおよび1bの配線接続部16の端子S1と接続される。配線接続部38の端子S2は第2の接続端子であり、ケーブルを介して室内機1aおよび1bの配線接続部16の端子S2と接続される。配線接続部38の端子S3は第3の接続端子であり、ケーブルを介して室内機1aおよび1bの配線接続部16の端子S3と接続される。配線接続部38の端子S4は第4の接続端子であり、ケーブルを介して室内機1aおよび1bの配線接続部16の端子S4と接続される。また、配線接続部38の端子S1は電源接続部21の端子Lと接続され、配線接続部38の端子S2は電源接続部21の端子Nと接続される。よって、端子S1および端子S2には交流電源60からの交流電力が印加される。また、交流電源60から室外機2に供給される交流電力は、配線接続部38の端子S1およびS2を介して室内機1aおよび1bに供給される。配線接続部38の端子S2およびS3には通信回路34が接続される。また、配線接続部38の端子S2と端子S4の間には、開閉機器23の内部のコイルが接続される。
 ここで、図1に示した室内機1aおよび1bの室内機制御部11を実現するハードウェアについて説明する。室内機1aおよび1bの室内機制御部11は、図4に示した制御回路200、具体的にはプロセッサ201およびメモリ202により実現することができる。
 プロセッサ201は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)である。メモリ202は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスクを含む。
 室内機制御部11は、室内機制御部11が実行する処理が記述されたプログラムをメモリ202が保持し、このプログラムをプロセッサ201が読み出して実行することにより実現される。なお、室内機制御部11を専用のハードウェアとしての処理回路で実現してもよい。この場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。
 図1に示した室外機2の室外機波形生成部36および室外機制御部37についても、室内機制御部11と同様のハードウェアで実現することが可能である。
 図1に示した本実施の形態にかかる空気調和機100は、運転停止時に室外機2の開閉機器24および25を開放することで、室外機2が低待機電力状態へ移行することが可能である。ここで、低待機電力状態とは、室外機2の整流回路28への電力供給が行われずに電力変換部31が動作を停止しており、消費電力が低く抑えられた状態を指す。また、空気調和機100は、室外機2が低待機電力状態のときに室内機1aが開閉機器15を閉状態にすることで、室外機2が低待機電力状態から復帰することが可能である。
 次に、空気調和機100の動作、具体的には、室外機2が起動する場合の動作、すなわち室外機2が低待機電力状態から復帰する場合の動作と、室外機2が動作状態から低待機電力状態に移行する場合の動作とを説明する。
(室外機2が低待機電力状態から復帰する場合の動作)
 まず、室外機2が低待機電力状態から復帰する場合の動作について、図5を参照しながら説明する。図5は、空気調和機100の室外機2が低待機電力状態から復帰する動作の一例を示すフローチャートである。
 図5に示した動作は、室外機2に接続されたブレーカ61が投入され、交流電源60から室外機2へ電力が供給されるようになると開始となる。
 ブレーカ61が投入されてON状態になると、交流電源60から室内機1a,1bへの電力の供給が開始される。具体的には、室外機2の電源接続部21および配線接続部38の端子S1,S2を経由して、交流電源60から室内機1a,1bに電力が供給される。室内機1a,1bは、電力の供給が開始されると、整流回路18が交流を直流に変換し、電源回路12が制御電源を生成し、室内機制御部11および通信回路13への電源を供給する。室内機制御部11および通信回路13が電源回路12から電源の供給を受けて室内機1a,1bが動作を開始すると(ステップS11)、空気調和機100は待機状態となる。なお、ブレーカ61が投入されてON状態となった時点では室外機2の開閉機器23、24および25は解放状態であり、室外機2の整流回路28には電力が供給されない。すなわち、室外機2は低待機電力状態である。
 室内機1aおよび1bは、動作を開始後、リモコン3から起動信号を受信したか否かを確認する(ステップS12)。ここでの起動信号とは、空気調和機100に対して起動を指示する信号である。リモコン3は、例えば、運転を開始させるための操作をユーザから受け付けた場合、起動信号を送信する。
 室内機1aおよび1bは、起動信号を受信しない場合(ステップS12:No)、ステップS12を繰り返す。ここで、室内機1aおよび1bにおいては、リモコン信号受信部17がリモコン3から送信された信号を受信し、室内機制御部11が、リモコン信号受信部17が受信した信号が起動信号か否かを判定する。
 室内機1aおよび1bは、起動信号を受信した場合(ステップS12:Yes)、開閉機器15を閉状態にして(ステップS13)、室外機2の開閉機器23を閉状態にする(ステップS14)。すなわち、開閉機器15が閉状態になると配線接続部16の端子S1と端子S4が短絡する。これに伴い、室外機2の開閉機器23の内部のコイルに電流が流れて開閉機器23の接点が動作し、開閉機器23が閉状態となる。開閉機器15を閉状態にする操作は室内機制御部11が行う。
 開閉機器23が閉状態になると、交流電源60からの電力が開閉機器23および突入電流防止素子26を経由して整流回路28に供給されるようになる。そして、整流回路28で直流に変換された電力が昇圧回路29を経由してインバータ回路30および電源生成部35に供給されるようになる。この結果、電源生成部35が制御電源の生成を開始し、室外機波形生成部36、室外機制御部37および通信回路34は、電源生成部35が生成した制御電源の供給を受けて動作を開始する。
 室外機制御部37は、動作を開始すると、まず、開閉機器24を閉状態にし、次に、開閉機器25を閉状態にする(ステップS15)。このような順番で開閉機器24および25を操作する理由は、まず、開閉機器24を閉状態とすることで、電力供給の開始時に整流回路28へ流れ込む突入電流を、開閉機器24と直列に接続された突入電流防止素子26の作用により抑制する。その後、開閉機器25を閉状態とすると、突入電流防止素子26を経由せずに整流回路28に電力が供給されるようになり、突入電流防止素子26で電力が無駄に消費されてしまうのを防止できる。
 また、室外機制御部37は、電力変換部31が動作を開始して室外機2が起動したことを示す信号を生成して通信回路34経由で室内機1a,1bへ送信する。
 室外機2が起動したことを示す信号は、室内機1a,1bの通信回路13で受信され、室内機制御部11に受け渡される。室内機制御部11は、室外機2が起動したことを示す信号を受信すると、開閉機器15を開状態にする。なお、室内機1aおよび1bの室内機制御部11のうち、リモコン3からの起動信号の受信に伴い開閉機器15を閉状態にした室内機制御部11が、開閉機器15を開状態にする。その他の室内機制御部11は、室外機2が起動したことを示す信号を受信しても何も行わない。開閉機器15が開状態になると配線接続部16の端子S1と端子S4が開放状態となる。この結果、室外機2の開閉機器23の内部のコイルに電流が流れなくなるため、開閉機器23が開状態となる。
 室外機2が低待機電力状態のときに室内機1aまたは1bが起動信号を受信して復帰する場合について説明したが、室外機2は、低待機電力状態に移行してから一定時間(たとえば30分)が経過した場合にも低待機電力状態から復帰するようにしてもよい。
(室外機2が動作状態から低待機電力状態に移行する場合の動作)
 次に、室外機2が動作状態から低待機電力状態に移行する場合の動作について、図6を参照しながら説明する。図6は、空気調和機100の室外機2が動作状態から低待機電力状態に移行する動作の一例を示すフローチャートである。
 図6に示した動作は、空気調和機100が運転中に、室内機1aまたは1bが、リモコン3から運転停止信号を受信すると開始となる。なお、リモコン3は、例えば、運転を停止させるための操作をユーザから受け付けた場合、運転停止信号を送信する。
 室内機1a,1bは、運転停止信号を受信すると、空調動作を停止するとともに、室外機2に対して停止信号を送信する(ステップS21)。ここでの空調動作とは、送風動作、風向の調整動作といった、空気調和に直接関係する動作とし、通信回路13が室外機2と通信する動作、リモコン信号受信部17がリモコン3から信号を受信する動作などは含まないものとする。室内機1a,1bにおいて、室内機制御部11は、リモコン信号受信部17が運転停止信号を受信すると、空調動作を停止させ、さらに、停止信号を生成して通信回路13経由で室外機2へ送信する。
 室外機2は、ステップS21で室内機1aまたは1bが送信した停止信号を受信した場合、低待機電力状態へ移行可能かどうかを確認する(ステップS22)。室外機2が低待機電力状態へ移行可能かどうかは室外機制御部37が判断する。室外機制御部37は、一定の条件が満たされている場合、低待機電力状態へ移行可能と判断する。室外機制御部37は、たとえば、室内機1a,1bの状態と、外気温度変化の予測と、室外機2の温度検出器33で検出された温度である圧縮機温度とに基づいて、低待機電力状態へ移行可能かどうかを判断する。具体的には、室外機制御部37は、全ての室内機1a,1bが空調動作を停止しており、なおかつ、外気温度変化の予測および圧縮機温度に基づいて、圧縮機32の予熱動作が必要ではないと判断した場合、低待機電力状態へ移行可能とする。圧縮機32の予熱動作とは、圧縮機32を構成する電動機のコイルに電流を流して発熱させ、圧縮機32の温度を調整する動作である。
 室外機2は、低待機電力状態へ移行可能ではない場合(ステップS22:No)、低待機電力状態へ移行可能となるまで、確認処理を繰り返す。室外機2は、低待機電力状態へ移行可能な場合(ステップS22:Yes)、低待機電力状態から復帰する場合とは逆の順番で開閉機器24および25を開状態とする。すなわち、室外機制御部37は、まず、開閉機器25を開状態とし、次に、開閉機器24を開状態とする(ステップS23)。この結果、室外機2は、低待機電力状態へ移行する(ステップS24)。
 このように、本実施の形態にかかる空気調和機100は、室外機2と室内機1a,1bとを4本の接続線で接続し、4本の接続線のうちの第1の接続線および第2の接続線を使用して室外機2から室内機1a,1bへの電力供給を行い、第4の接続線を使用して、室内機1a,1bが、室外機2の起動用の開閉機器を操作する。また、室外機2および室内機1a,1bは、第3の接続線を介して通信を行う。このような構成としたことにより、通信用の接続線の接続先を開閉機器により切り替える操作が不要となり、通信用の回路に過大な電圧が印加されることがなくなる。よって、通信用の回路に過大な電圧が印加される場合の故障防止のための素子を追加する必要が無くなる。この結果、待機時の消費電力の削減機能を低コストで実現できる。また、開閉機器を操作した際のノイズが通信用の接続線に流れることがなくなるため、ノイズの影響で室外機2と室内機1a,1bとの通信品質が低下することがなく、通信用のケーブルを延長することが可能となる。
 なお、空気調和機の室外機を図7に示した構成としても同様の効果を得ることができる。図7は、本発明の実施の形態にかかる空気調和機の他の構成例を示す図である。
 図7に示した空気調和機100aは、図1に示した空気調和機100の室外機2を室外機2aとしたものである。室外機2aは、室外機2に対して開閉機器39および突入電流防止素子40を追加した構成である。開閉機器39および突入電流防止素子40は直列に接続され、配線接続部38の端子S1と端子S4との間に設けられている。具体的には、開閉機器39の一端が端子S4と接続され、開閉機器39の他端が突入電流防止素子40の一端と接続される。また、突入電流防止素子40の他端が端子S1と接続される。開閉機器39は、室外機2aにおける第4の開閉機器である。室外機2aの開閉機器39および突入電流防止素子40以外の構成は室外機2と同様であるため、同様の構成については説明を省略する。
 空気調和機100aにおいて、室外機2aは、低待機電力状態へ移行したことを、開閉機器39を利用して室内機1aに通知することが可能となる。例えば、室外機制御部37は、動作を開始して開閉機器24および25を閉状態とした後、さらに、開閉機器39を閉状態とする。また、室外機制御部37は、低待機電力状態へ移行する際には、開閉機器24および25とともに、開閉機器39についても開状態とする。室内機1aは、検出回路14を用いて開閉機器39の状態を把握し、室外機2aが低待機電力状態へ移行したことを検出すればよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1a,1b 室内機、2,2a 室外機、3 リモコン、11 室内機制御部、12 電源回路、13,34 通信回路、14 検出回路、15,23,24,25,39 開閉機器、16,38 配線接続部、17 リモコン信号受信部、27 開閉部、18,28 整流回路、19,26,40 突入電流防止素子、21 電源接続部、22 フィルタ回路、29 昇圧回路、30 インバータ回路、31 電力変換部、32 圧縮機、33 温度検出器、35 電源生成部、36 室外機波形生成部、37 室外機制御部、60 交流電源、61 ブレーカ、100,100a 空気調和機。

Claims (7)

  1.  室内機および室外機を備える空気調和機であって、
     前記室外機は、
     前記室内機が接続される第1の接続端子、第2の接続端子、第3の接続端子および第4の接続端子と、
     電力変換部と、
     前記第1の接続端子と前記電力変換部との間に設けられた開閉部と、
     を備え、
     前記室内機は、
     前記第1の接続端子と接続される第1の室内機側端子、前記第2の接続端子と接続される第2の室内機側端子、前記第3の接続端子と接続される第3の室内機側端子、および前記第4の接続端子と接続される第4の室内機側端子と、
     前記第1の室内機側端子と前記第4の室内機側端子との間に設けられた開閉機器と、
     を備え、
     前記開閉部は、
     前記第2の接続端子および前記第4の接続端子から電力の供給を受けているときに閉状態となる第1の開閉機器と、
     前記第1の開閉機器と並列に接続された第2の開閉機器と、
     を備え、
     前記第1の接続端子および前記第2の接続端子に交流電力が印加され、
     前記室外機および前記室内機は、前記第3の接続端子と前記第3の室内機側端子とを接続する接続線を介して通信を行い、
     前記室内機は、前記電力変換部が動作を停止している状態である低待機電力状態のときに起動信号を受け取ると前記開閉機器を閉状態とし、前記電力変換部が動作を開始した後に前記開閉機器を開状態とし、
     前記室外機は、前記第1の開閉機器が閉状態となり前記電力変換部に対して交流電力の供給が開始されると前記第2の開閉機器を閉状態とする、
     ことを特徴とする空気調和機。
  2.  前記室外機は、前記第2の開閉機器を開状態から閉状態にすると、前記電力変換部が動作を開始したことを示す信号を前記室内機へ送信し、
     前記室内機は、前記電力変換部が動作を開始したことを示す前記信号を受信すると前記開閉機器を開状態とする、
     ことを特徴とする請求項1に記載の空気調和機。
  3.  前記室外機は、一定の条件を満たした場合に前記第2の開閉機器を開状態にして前記室外機を前記低待機電力状態に移行させる、
     ことを特徴とする請求項1または2に記載の空気調和機。
  4.  前記開閉機器は、
     一端が前記第1の開閉機器および前記第2の開閉機器に接続され、他端が前記電力変換部に接続された突入電流防止素子と、
     前記第1の開閉機器、前記第2の開閉機器および前記突入電流防止素子と並列に接続された第3の開閉機器と、
     を備え、
     前記室外機は、
     前記第2の開閉機器を閉状態にした後、前記第3の開閉機器を閉状態にする、
     ことを特徴とする請求項1から3のいずれか一つに記載の空気調和機。
  5.  前記室外機は、
     前記第2の開閉機器を開状態にする場合、前記第3の開閉機器を先に開状態にしてから前記第2の開閉機器を開状態にする、
     ことを特徴とする請求項4に記載の空気調和機。
  6.  前記室外機は、
     前記第1の接続端子と前記第4の接続端子との間に設けられた第4の開閉機器、
     を備え、
     前記低待機電力状態の場合と前記低待機電力状態ではない場合とで前記第4の開閉機器の状態を変更することにより前記低待機電力状態となったことを前記室内機に通知する、
     ことを特徴とする請求項1から5のいずれか一つに記載の空気調和機。
  7.  前記室外機には前記室内機が複数接続されることを特徴とする請求項1から6のいずれか一つに記載の空気調和機。
PCT/JP2017/027086 2017-07-26 2017-07-26 空気調和機 WO2019021397A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17918831.3A EP3660406B1 (en) 2017-07-26 2017-07-26 Air conditioner
US16/616,676 US11486596B2 (en) 2017-07-26 2017-07-26 Air conditioner
JP2019532272A JP6732132B2 (ja) 2017-07-26 2017-07-26 空気調和機
PCT/JP2017/027086 WO2019021397A1 (ja) 2017-07-26 2017-07-26 空気調和機
AU2017424871A AU2017424871B2 (en) 2017-07-26 2017-07-26 Air conditioner
CN201780093379.7A CN110959092B (zh) 2017-07-26 2017-07-26 空调机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027086 WO2019021397A1 (ja) 2017-07-26 2017-07-26 空気調和機

Publications (1)

Publication Number Publication Date
WO2019021397A1 true WO2019021397A1 (ja) 2019-01-31

Family

ID=65040066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027086 WO2019021397A1 (ja) 2017-07-26 2017-07-26 空気調和機

Country Status (6)

Country Link
US (1) US11486596B2 (ja)
EP (1) EP3660406B1 (ja)
JP (1) JP6732132B2 (ja)
CN (1) CN110959092B (ja)
AU (1) AU2017424871B2 (ja)
WO (1) WO2019021397A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020228134A1 (zh) * 2019-05-10 2020-11-19 广东美的制冷设备有限公司 空调器的通信控制方法、装置及空调器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168048B (zh) * 2017-11-16 2020-04-24 青岛海尔空调器有限总公司 识别空调电路的方法、装置及空调
CN112032981B (zh) * 2020-07-24 2021-10-22 广东积微科技有限公司 空调室内外机通讯电路及空调
CN114811861B (zh) * 2022-03-30 2023-11-24 青岛海尔空调电子有限公司 一种中央空调控制方法及中央空调

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101895A (ja) * 2006-10-18 2008-05-01 Samsung Electronics Co Ltd 空気調和機及びその制御方法
JP2010121810A (ja) * 2008-11-18 2010-06-03 Panasonic Corp 空気調和機の通信制御装置
JP2014013143A (ja) * 2013-10-24 2014-01-23 Daikin Ind Ltd 空気調和機
JP2014152968A (ja) 2013-02-06 2014-08-25 Mitsubishi Electric Corp 空気調和機
JP2016090183A (ja) * 2014-11-07 2016-05-23 三菱電機株式会社 空気調和機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3730808B2 (ja) * 1999-06-03 2006-01-05 株式会社日立製作所 空気調和機
JP2004190889A (ja) * 2002-12-09 2004-07-08 Sharp Corp 空気調和機
JP3806882B2 (ja) * 2004-11-29 2006-08-09 ダイキン工業株式会社 空気調和機
JP5241585B2 (ja) * 2009-04-06 2013-07-17 三菱電機株式会社 空気調和機
KR101706102B1 (ko) * 2010-02-12 2017-02-27 삼성전자주식회사 공기 조화기
KR101858938B1 (ko) * 2011-09-19 2018-06-29 삼성전자주식회사 공기 조화기
EP2803918B1 (en) * 2011-12-28 2017-05-10 Daikin Industries, Ltd. Air conditioning device
JP5772588B2 (ja) * 2011-12-28 2015-09-02 ダイキン工業株式会社 空気調和装置
JP5648700B2 (ja) * 2013-02-08 2015-01-07 ダイキン工業株式会社 消費電力削減装置
JP5984732B2 (ja) * 2013-04-09 2016-09-06 三菱電機株式会社 空気調和機
JP6157374B2 (ja) * 2014-02-05 2017-07-05 三菱電機株式会社 空気調和装置
CN106440220B (zh) * 2016-10-12 2019-07-02 青岛海尔空调器有限总公司 空调待机电路和空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101895A (ja) * 2006-10-18 2008-05-01 Samsung Electronics Co Ltd 空気調和機及びその制御方法
JP2010121810A (ja) * 2008-11-18 2010-06-03 Panasonic Corp 空気調和機の通信制御装置
JP2014152968A (ja) 2013-02-06 2014-08-25 Mitsubishi Electric Corp 空気調和機
JP2014013143A (ja) * 2013-10-24 2014-01-23 Daikin Ind Ltd 空気調和機
JP2016090183A (ja) * 2014-11-07 2016-05-23 三菱電機株式会社 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660406A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020228134A1 (zh) * 2019-05-10 2020-11-19 广东美的制冷设备有限公司 空调器的通信控制方法、装置及空调器

Also Published As

Publication number Publication date
EP3660406A4 (en) 2020-08-12
JPWO2019021397A1 (ja) 2019-11-07
US20200200419A1 (en) 2020-06-25
EP3660406A1 (en) 2020-06-03
EP3660406B1 (en) 2023-05-24
AU2017424871B2 (en) 2021-01-14
CN110959092A (zh) 2020-04-03
AU2017424871A1 (en) 2020-01-02
CN110959092B (zh) 2021-03-12
US11486596B2 (en) 2022-11-01
JP6732132B2 (ja) 2020-07-29

Similar Documents

Publication Publication Date Title
JP3773512B2 (ja) モーター電源供給装置
JP6732132B2 (ja) 空気調和機
JP6184391B2 (ja) 空気調和機
JP5382105B2 (ja) 空気調和装置
JP6797311B2 (ja) 空気調和機
JP2012107817A (ja) 空気調和機
JP2010178594A (ja) 電源装置
JP6037884B2 (ja) 空気調和機
EP3367559B1 (en) Air conditioner
JP5804009B2 (ja) 空気調和装置
JP6336209B2 (ja) 空気調和装置
KR102060068B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
JP2000002188A (ja) 空気調和機の制御装置
JP6957756B2 (ja) 空気調和機
KR101657228B1 (ko) 에어컨디셔너의 대기전력 제어장치
WO2016139795A1 (ja) 空気調和装置
JP2015055450A (ja) 空気調和装置
JP4623221B2 (ja) 電源回路
JP2006034000A (ja) 空気調和機の突入電流防止回路
JP6173488B2 (ja) インバータ装置及びインバータ装置を用いた空気調和機
JP2014532389A (ja) 少なくとも二つのコイルを有する電気モータを含む家庭用電気器具、家庭用電気器具を制御するための方法及びシステム、家庭用電気器具に給電するための電気モータの利用方法
JPH0360396A (ja) 冷凍装置
JP5151963B2 (ja) 発熱体収納装置用冷却装置およびそれを用いた発熱体収納装置
CN116829882A (zh) 空调装置
JP2009055720A (ja) 三相電動機の位相切換え装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019532272

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017424871

Country of ref document: AU

Date of ref document: 20170726

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017918831

Country of ref document: EP

Effective date: 20200226