WO2015106608A1 - 生长在Si衬底上的InGaAs薄膜及其制备方法 - Google Patents

生长在Si衬底上的InGaAs薄膜及其制备方法 Download PDF

Info

Publication number
WO2015106608A1
WO2015106608A1 PCT/CN2014/093143 CN2014093143W WO2015106608A1 WO 2015106608 A1 WO2015106608 A1 WO 2015106608A1 CN 2014093143 W CN2014093143 W CN 2014093143W WO 2015106608 A1 WO2015106608 A1 WO 2015106608A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
buffer layer
grown
temperature
growth
Prior art date
Application number
PCT/CN2014/093143
Other languages
English (en)
French (fr)
Inventor
李国强
高芳亮
管云芳
温雷
李景灵
张曙光
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US15/026,726 priority Critical patent/US9870918B2/en
Priority to SG11201605743UA priority patent/SG11201605743UA/en
Publication of WO2015106608A1 publication Critical patent/WO2015106608A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Definitions

  • the invention relates to an InGaAs film and a preparation method thereof, in particular to an InGaAs film grown on a Si substrate and a preparation method thereof.
  • the forbidden band width of the In x Ga 1-x As (0 ⁇ x ⁇ 1) material may vary from 0.35 eV (InAs) to 1.43 eV (GaAs) as the In composition changes. According to these characteristics, the In x Ga 1-x As material, particularly the In 0.53 Ga 0.47 As material having an In composition of 0.53, can be applied to a room temperature infrared detector, a high efficiency laminated solar cell.
  • Common substrates for epitaxially growing In 0.53 Ga 0.47 As material are InP, GaAs, and Si.
  • InP and GaAs are expensive, the wafer size is small, and they are brittle, which is not conducive to industrial production.
  • the Si substrate is inexpensive compared to the InP, GaAs substrate, and is easy to be large-sized.
  • most of the integrated chips on the market today are Si, so the In 0.53 Ga 0.47 As film is grown on Si to facilitate integration into existing chips.
  • Due to the large lattice mismatch ( ⁇ 9%) between Si and In 0.53 Ga 0.47 As materials this results in a large amount of film produced if In 0.53 Ga 0.47 As is grown directly on Si. Residual Stress.
  • the large residual stress has a great influence on the properties of the In 0.53 Ga 0.47 As film.
  • large residual stresses may cause cracking or even cracking of the In 0.53 Ga 0.47 As film during growth.
  • large residual stresses will cause a large number of defects in the In 0.53 Ga 0.47 As film, deteriorating device performance.
  • the best way is to epitaxially grow a buffer layer material on the Si substrate to release stress, and then epitaxially grow the In 0.53 Ga 0.47 As material.
  • Another object of the present invention is to provide a method for preparing an InGaAs thin film grown on a Si substrate, by which an In 0.53 Ga 0.47 As epitaxial wafer having a good crystal quality and almost completely relaxed is prepared on a Si substrate.
  • the film also greatly simplifies the growth process of the film material.
  • An InGaAs film grown on a Si substrate comprising a Si substrate arranged in sequence, a low temperature In 0.4 Ga 0.6 As buffer layer, a high temperature In 0.4 Ga 0.6 As buffer layer, and an In 0.53 Ga 0.47 As epitaxial film
  • the low temperature In 0.4 Ga 0.6 As buffer layer is an In 0.4 Ga 0.6 As buffer layer grown at 350-380 o C
  • the high temperature In 0.4 Ga 0.6 As buffer layer is an In 0.4 Ga 0.6 As buffer layer grown at 500-540 o C
  • the sum of the thickness of the low temperature In 0.4 Ga 0.6 As buffer layer and the high temperature In 0.4 Ga 0.6 As buffer layer is 10-20 nm; only the total thickness of the In 0.4 Ga 0.6 As buffer layer is controlled at 10-20 nm, and the growth temperature is controlled at 350, respectively.
  • ⁇ 380 o C and 500 ⁇ 540 o C can reduce the stress caused by lattice mismatch, so that the prepared In 0.53 Ga 0.47 As has high relaxation and low residual stress.
  • the method for preparing the InGaAs film grown on a Si substrate comprises the following steps:
  • Si substrate temperature is 350 ⁇ 380 o C, and pressure in the reaction chamber is 7.2 ⁇ 10 -5 ⁇ 1.8 ⁇ 10 -8 Pa, V/III An In 0.4 Ga 0.6 As buffer layer with a growth rate of 0.5 to 1 ML/s and a growth rate of 4 to 8 nm;
  • the Si substrate is a (111) crystal orientation n-type Si substrate.
  • the step of (1) cleaning the Si substrate specifically:
  • Step (2) pre-treating the Si substrate specifically:
  • the cleaned Si substrate is sent to the molecular beam epitaxy chamber for pre-degassing for 15 to 30 minutes; and then sent to the transfer chamber at 300-400 o C for degassing for 0.5 to 2 hours, and then degassed and sent to the growth chamber.
  • Step (3) performing a deoxidation film on the Si substrate, specifically;
  • the Si substrate temperature was increased to 950 ⁇ 1050 o C, a high temperature bake for 15 to 30 minutes to remove the surface oxide film layer of the substrate.
  • a low temperature In 0.4 Ga 0.6 As buffer layer is prepared by molecular beam epitaxy or metal organic vapor deposition.
  • a high-temperature In 0.4 Ga 0.6 As buffer layer is prepared by molecular beam epitaxy or metal organic vapor deposition.
  • an In 0.53 Ga 0.47 As epitaxial film is grown on the high temperature In 0.4 Ga 0.6 As buffer layer by a beam epitaxy or a metal organic vapor deposition method.
  • the present invention has the following advantages and benefits:
  • the present invention uses a low-temperature/high-temperature In 0.4 Ga 0.6 As buffer layer technology, which can effectively filter dislocations caused by lattice mismatch between the substrate and the epitaxial layer, and release stress well.
  • the present invention uses a low-temperature/high-temperature In 0.4 Ga 0.6 As buffer layer, which can effectively suppress the undulation of the interface, obtain a smooth and flat surface, and can improve the crystal quality of the epitaxial layer of the In 0.53 Ga 0.47 As epitaxial thin film.
  • the present invention uses a low-temperature/high-temperature In 0.4 Ga 0.6 As double-layer buffer layer, which greatly simplifies the buffer layer structure and the epitaxial growth process as compared with the multilayer buffer layer, and reaches a thickness that can strictly control the epitaxial layer. And the requirements of the components, so that the In 0.53 Ga 0.47 As epitaxial film with good surface morphology, high relaxation and high crystal quality can be obtained.
  • FIG. 1 is a schematic view of an InGaAs thin film grown on a Si substrate according to an embodiment of the present invention.
  • FIG. 2 is a reciprocal space scan of an InGaAs film grown on a Si substrate in accordance with an embodiment of the present invention.
  • FIG. 3 is a (111) plane X-ray rocking curve of an InGaAs film grown on a Si substrate in accordance with an embodiment of the present invention.
  • the cleaned Si substrate is sent to the molecular beam epitaxy chamber for pre-degassing for 15 minutes; then sent to the transfer chamber 300 o C for degassing for 0.5 hours, after degassing is completed.
  • Si substrate temperature is 350 o C
  • pressure in reaction chamber is 7.2 ⁇ 10 -5 Pa
  • V/III value is 60
  • Si substrate temperature is 500 o C
  • pressure in the reaction chamber is 3.0 ⁇ 10 -5 pa, V/ a 6 nm In 0.4 Ga 0.6 As buffer layer with a III value of 20 and a growth rate of 0.3 ML/s;
  • the InGaAs thin film grown on the Si substrate prepared in this embodiment is as shown in FIG. 1, and includes a Si substrate 11 arranged in sequence, a low temperature In 0.4 Ga 0.6 As buffer layer 12, and a high temperature In 0.4 Ga 0.6 As buffer layer 13 and In. 0.53 Ga 0.47 As epitaxial film 14.
  • the InGaAs film grown on the Si substrate prepared in this embodiment has a relaxation degree of 95.6%, is in a state of almost complete relaxation, and has a half-width of the (111) plane X-ray rocking curve. It is 0.6° (as shown in Fig. 3), indicating that the stress in the In 0.53 Ga 0.47 As epitaxial film is effectively released, and the crystal quality is better than that of the In 0.53 Ga 0.47 As film grown on Si by other methods. Level.
  • the cleaned Si substrate is sent to the molecular beam epitaxy chamber for pre-degassing for 30 minutes; then sent to the transfer chamber at 400 o C for 2 hours to complete the degassing.
  • Si substrate temperature is 380 o C
  • pressure in the reaction chamber is 1.8 ⁇ 10 -8 Pa
  • V/III value 80 growth rate 1 ML / s condition growth 8 nm In 0.4 Ga 0.6 As buffer layer
  • Si substrate temperature is 540 o C
  • pressure in reaction chamber 2.5 ⁇ 10 -8 pa V/ A 12 nm In 0.4 Ga 0.6 As buffer layer was grown at a value of 20 to 30 and a growth rate of 0.3 to 0.5 ML/s;
  • test results of the InGaAs thin film grown on the Si substrate prepared in this embodiment are similar to those in the first embodiment, and are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Ceramic Engineering (AREA)

Abstract

提供了生长在Si衬底上的InGaAs薄膜,包括依次排列的Si衬底、低温In 0.4Ga 0.6As缓冲层、高温In 0.4Ga 0.6As缓冲层以及In 0.53Ga 0.47As外延薄膜,低温In 0.4Ga 0.6As缓冲层为在350~380℃生长的In 0.4Ga 0.6As缓冲层;高温In 0.4Ga 0.6As缓冲层为在500~540℃生长的In 0.4Ga 0.6As缓冲层;低温In 0.4Ga 0.6As缓冲层和高温In 0.4Ga 0.6As缓冲层的厚度之和为10~20nm。还提供了InGaAs薄膜的制备方法。该生长在Si衬底上的InGaAs薄膜,晶体质量较好、几乎完全弛豫,且制备工艺简单。

Description

生长在Si衬底上的InGaAs薄膜及其制备方法
技术领域
本发明涉及InGaAs薄膜及其制备方法,特别涉及一种生长在Si衬底上的InGaAs薄膜及其制备方法。
背景技术
III-V族化合物由于具有稳定性好、有效质量小、电子迁移率和峰值速度高、以及光吸收系数较高等优点,被广泛地应用于光电器件中。在这当中,InxGa1-xAs(0≤x≤1)材料的禁带宽度随着In组分变化可以在0.35 eV(InAs)~1.43 eV(GaAs)范围内变化。根据这些特性,InxGa1-xAs材料特别是In组分为0.53的In0.53Ga0.47As材料可以被应用于室温红外探测器、高效叠层太阳能电池中。
外延生长In0.53Ga0.47As材料的常用衬底为InP、GaAs及Si。但InP与GaAs价格昂贵、晶片尺寸较小、并且较脆,不利于工业化生产。Si衬底与InP、GaAs衬底相比,价格低廉,并且易于大尺寸化。同时,现在市场上绝大部分的集成芯片都是Si,因此在Si上生长In0.53Ga0.47As薄膜便于将其整合到现有的芯片当中。但是由于Si与In0.53Ga0.47As材料间存在着较大的晶格失配(≈9%),这就造成如果直接在Si上生长In0.53Ga0.47As,所得到的薄膜中会产生大量的残余应力。大的残余应力对In0.53Ga0.47As薄膜性能有很大影响。一方面,大的残余应力可能使In0.53Ga0.47As薄膜在生长时产生裂纹甚至开裂。另一方面,大的残余应力将会造成In0.53Ga0.47As薄膜中产生大量的缺陷,恶化器件性能。为了在Si衬底上生长出高质量的In0.53Ga0.47As材料,最佳途径是在Si衬底上先外延生长缓冲层材料释放应力,然后再外延生长In0.53Ga0.47As材料。但目前在In0.53Ga0.47As生长中,大多数采用多层的组分渐变、组分跳变、组分逆变等缓冲层结构,这往往造成在生长In0.53Ga0.47As材料前需要外延生长多层较厚的缓冲层,生长步骤繁琐,而且很难精确控制每一层材料的成分、厚度、以及晶体质量,从而影响最终获得的In0.53Ga0.47As薄膜质量。因此,为了得到低残余应力、高质量的In0.53Ga0.47As薄膜,就需要对缓冲层生长工艺进行优化。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种生长在Si衬底上的InGaAs薄膜,该薄膜晶体质量较好、几乎完全弛豫。
本发明的另一目的在于提供上述长在Si衬底上的InGaAs薄膜的制备方法,采用该方法,在Si衬底上制备得到了晶体质量较好、几乎完全弛豫的In0.53Ga0.47As外延薄膜,同时大幅度简化了该薄膜材料的生长工艺。
本发明的目的通过以下技术方案实现:
生长在Si衬底上的InGaAs薄膜,包括依次排列的Si衬底、低温In0.4Ga0.6As缓冲层、高温In0.4Ga0.6As缓冲层以及In0.53Ga0.47As外延薄膜,所述低温In0.4Ga0.6As缓冲层为在350~380 oC生长的In0.4Ga0.6As缓冲层;所述高温In0.4Ga0.6As缓冲层为在500~540 oC生长的In0.4Ga0.6As缓冲层;所述低温In0.4Ga0.6As缓冲层和高温In0.4Ga0.6As缓冲层的厚度之和为10~20 nm;只有In0.4Ga0.6As缓冲层的总厚度控制在10~20nm,生长温度分别控制在350~380 oC及500~540 oC,才能降低由于晶格失配造成的应力,使得所制备的In0.53Ga0.47As弛豫度高、残余应力低。
所述生长在Si衬底上的InGaAs薄膜的制备方法,包括以下步骤:
(1)对Si衬底进行清洗;
(2)对Si衬底进行预处理;
(3)对Si衬底进行脱氧化膜;
(4)在Si衬底上生长低温In0.4Ga0.6As缓冲层:Si衬底温度为350~380 oC,在反应室压力为7.2×10-5~1.8×10-8 Pa、Ⅴ/Ⅲ值为60~80、生长速度为0.5~1 ML/s条件生长4~8 nm的In0.4Ga0.6As缓冲层;
(5)在低温In0.4Ga0.6As缓冲层生长高温In0.4Ga0.6As缓冲层:Si衬底温度为500~540 oC,在反应室压力为3.0×10-5~2.5×10-8 pa、Ⅴ/Ⅲ值为20~30、生长速度为0.3~0.5 ML/s条件下生长6~12 nm的In0.4Ga0.6As缓冲层;
(6)在高温In0.4Ga0.6As缓冲层上生长In0.53Ga0.47As外延薄膜:Si衬底温度为550~580 oC,在反应室压力为4.0×10-5~2.7×10-8 Pa、Ⅴ/Ⅲ值为40~60、生长速度为0.6~1 ML/s条件下,生长In0.53Ga0.47As外延薄膜。
所述Si衬底为(111)晶向的n型Si衬底。
步骤(1)所述对Si衬底进行清洗,具体为:
采用丙酮、去离子水洗涤,去除衬底表面有机物;将Si衬底依次置于HF:H2O=1:10溶液中超声1~3分钟、浓H2SO4:H2O2:H2O=4:1:5超声5~10分钟、HF:H2O=1:10溶液中超声1~3分钟,最后经去离子水清洗去除表面氧化物和有机物;清洗后的Si衬底用高纯氮气吹干。
步骤(2)所述对Si衬底进行预处理,具体为:
将清洗后的Si衬底送入分子束外延进样室预除气15~30分钟;再送入传递室300~400 oC除气0.5~2小时,完成除气后送入生长室。
步骤(3)所述对Si衬底进行脱氧化膜,具体为;
Si衬底进入生长室后,将Si衬底温度升至950~1050 oC,高温烘烤15~30分钟,除去衬底表面的氧化膜层。
步骤(4)中采用分子束外延或金属有机气相沉积方法制备低温In0.4Ga0.6As缓冲层。
步骤(5)中采用分子束外延或金属有机气相沉积方法制备高温In0.4Ga0.6As缓冲层。
步骤(6)中采用子束外延或金属有机气相沉积方法在高温In0.4Ga0.6As缓冲层上生长In0.53Ga0.47As外延薄膜。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明使用了低温/高温In0.4Ga0.6As缓冲层技术,可有效过滤衬底与外延层之间由于晶格失配引起的位错,很好地释放应力。
(2)本发明使用低温/高温In0.4Ga0.6As缓冲层,能够有效地抑制界面的起伏,获得光滑平整的表面,能够提高In0.53Ga0.47As外延薄膜外延层的结晶质量。
(3)本发明使用了低温/高温In0.4Ga0.6As双层缓冲层,与多层缓冲层相比,该方法大为简化了缓冲层结构以及外延生长工艺,到达可严格控制外延层的厚度、组分的要求,从而能获得表面形貌好、高弛豫度、晶体质量高的In0.53Ga0.47As外延薄膜。
附图说明
图1为本发明的实施例的生长在Si衬底上的InGaAs薄膜的示意图。
图2为本发明的实施例的生长在Si衬底上的InGaAs薄膜的倒易空间扫描图。
图3为本发明的实施例的生长在Si衬底上的InGaAs薄膜的(111)面X射线摇摆曲线。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
本实施例的生长在Si衬底上的InGaAs薄膜的制备方法,包括以下步骤:
(1)对Si衬底进行清洗:采用丙酮、去离子水洗涤,去除衬底表面有机物;将Si衬底依次置于HF:H2O=1:10溶液中超声1分钟、浓H2SO4:H2O2:H2O=4:1:5超声5分钟、HF:H2O=1:10溶液中超声1分钟,最后经去离子水清洗去除表面氧化物和有机物;清洗后的Si衬底用高纯氮气吹干;
(2)对Si衬底进行预处理:将清洗后的Si衬底送入分子束外延进样室预除气15分钟;再送入传递室300 oC除气0.5小时,完成除气后送入生长室;
(3)对Si衬底进行脱氧化膜;Si衬底进入生长室后,将Si衬底温度升至950 oC,高温烘烤30分钟,除去衬底表面的氧化膜层;
(4)采用分子束外延方法在Si衬底上生长低温In0.4Ga0.6As缓冲层:Si衬底温度为350 oC,在反应室压力为7.2×10-5 Pa、Ⅴ/Ⅲ值为60、生长速度为0.5 ML/s条件生长4 nm的In0.4Ga0.6As缓冲层;
(5)采用分子束外延方法在低温In0.4Ga0.6As缓冲层生长高温In0.4Ga0.6As缓冲层:Si衬底温度为500 oC,在反应室压力为3.0×10-5 pa、Ⅴ/Ⅲ值为20、生长速度为0.3 ML/s条件下生长6 nm的In0.4Ga0.6As缓冲层;
(6)采用分子束外延方法在高温In0.4Ga0.6As缓冲层上生长In0.53Ga0.47As外延薄膜:Si衬底温度为550 oC,在反应室压力为4.0×10-5 Pa、Ⅴ/Ⅲ值为40、生长速度为0.6 ML/s条件下,生长厚度为120 nm的In0.53Ga0.47As外延薄膜。
本实施例制备的生长在Si衬底上的InGaAs薄膜如图1所示,包括依次排列的Si衬底11、低温In0.4Ga0.6As缓冲层12和高温In0.4Ga0.6As缓冲层13以及In0.53Ga0.47As外延薄膜14。
如图2所示,本实施例制备得到的生长在Si衬底上的InGaAs薄膜,弛豫度达到了95.6%,处于几乎为完全弛豫的状态,(111)面X射线摇摆曲线半峰宽为0.6°(如图3所示),表明In0.53Ga0.47As外延薄膜中的应力得到有效的释放,并且晶体质量与通过其他方法在Si上生长的In0.53Ga0.47As薄膜相比处于较好水平。
实施例2
本实施例的生长在Si衬底上的InGaAs薄膜的制备方法,包括以下步骤:
(1)对Si衬底进行清洗:采用丙酮、去离子水洗涤,去除衬底表面有机物;将Si衬底依次置于HF:H2O=1:10溶液中超声3分钟、浓H2SO4:H2O2:H2O=4:1:5超声10分钟、HF:H2O=1:10溶液中超声3分钟,最后经去离子水清洗去除表面氧化物和有机物;清洗后的Si衬底用高纯氮气吹干;
(2)对Si衬底进行预处理:将清洗后的Si衬底送入分子束外延进样室预除气30分钟;再送入传递室400 oC除气2小时,完成除气后送入生长室;
(3)对Si衬底进行脱氧化膜;Si衬底进入生长室后,将Si衬底温度升至1050 oC,高温烘烤15分钟,除去衬底表面的氧化膜层;
(4)采用金属有机气相沉积方法在Si衬底上生长低温In0.4Ga0.6As缓冲层:Si衬底温度为380 oC,在反应室压力在1.8×10-8 Pa、Ⅴ/Ⅲ值为80、生长速度1 ML/s条件生长8 nm的In0.4Ga0.6As缓冲层;
(5)采用金属有机气相沉积方法在低温In0.4Ga0.6As缓冲层生长高温In0.4Ga0.6As缓冲层:Si衬底温度为540 oC,在反应室压力2.5×10-8 pa、Ⅴ/Ⅲ值20~30、生长速度0.3~0.5 ML/s条件下生长12 nm的In0.4Ga0.6As缓冲层;
(6)采用金属有机气相沉积方法在高温In0.4Ga0.6As缓冲层上生长In0.53Ga0.47As外延薄膜:Si衬底温度为580 oC,在反应室压力为2.7×10-8 Pa、Ⅴ/Ⅲ值为60、生长速度为1 ML/s条件下,生长厚度为130 nm的In0.53Ga0.47As外延薄膜。
本实施例制备得到的生长在Si衬底上的InGaAs薄膜测试结果与实施例1相类似,在此不再赘述。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 生长在Si衬底上的InGaAs薄膜,其特征在于,包括依次排列的Si衬底、低温In0.4Ga0.6As缓冲层、高温In0.4Ga0.6As缓冲层以及In0.53Ga0.47As外延薄膜,所述低温In0.4Ga0.6As缓冲层为在350~380 oC生长的In0.4Ga0.6As缓冲层;所述高温In0.4Ga0.6As缓冲层为在500~540 oC生长的In0.4Ga0.6As缓冲层;所述低温In0.4Ga0.6As缓冲层和高温In0.4Ga0.6As缓冲层的厚度之和为10~20 nm。
  2. 权利要求1所述生长在Si衬底上的InGaAs薄膜的制备方法,其特征在于,包括以下步骤:
    (1)对Si衬底进行清洗;
    (2)对Si衬底进行预处理;
    (3)对Si衬底进行脱氧化膜;
    (4)在Si衬底上生长低温In0.4Ga0.6As缓冲层:Si衬底温度为350~380 oC,在反应室压力在7.2×10-5~1.8×10-8 Pa、Ⅴ/Ⅲ值为60~80、生长速度0.5~1 ML/s条件生长4~8 nm的In0.4Ga0. 6As缓冲层;
    (5)在低温In0.4Ga0.6As缓冲层生长高温In0.4Ga0.6As缓冲层:Si衬底温度为500~540 oC,在反应室压力为3.0×10-5~2.5×10-8 pa、Ⅴ/Ⅲ值为20~30、生长速度为0.3~0.5 ML/s条件下生长6~12 nm的In0.4Ga0.6As缓冲层;
    (6)在高温In0.4Ga0.6As缓冲层上生长In0.53Ga0.47As外延薄膜:Si衬底温度为550~580 oC,在反应室压力为4.0×10-5~2.7×10-8 Pa、Ⅴ/Ⅲ值为40~60、生长速度为0.6~1 ML/s条件下,生长In0.53Ga0.47As外延薄膜。
  3. 根据权利要求2所述生长在Si衬底上的InGaAs薄膜的制备方法,其特征在于,所述Si衬底为(111)晶向的n型Si衬底。
  4. 根据权利要求2所述生长在Si衬底上的InGaAs薄膜的制备方法,其特征在于,步骤(1)所述对Si衬底进行清洗,具体为:
    采用丙酮、去离子水洗涤,去除衬底表面有机物;将Si衬底依次置于HF:H2O=1:10溶液中超声1~3分钟、浓H2SO4:H2O2:H2O=4:1:5超声5~10分钟、HF:H2O=1:10溶液中超声1~3分钟,最后经去离子水清洗去除表面氧化物和有机物;清洗后的Si衬底用高纯氮气吹干。
  5. 根据权利要求2所述生长在Si衬底上的InGaAs薄膜的制备方法,其特征在于,步骤(2)所述对Si衬底进行预处理,具体为:
    将清洗后的Si衬底送入分子束外延进样室预除气15~30分钟;再送入传递室300~400 oC除气0.5~2小时,完成除气后送入生长室。
  6. 根据权利要求2所述生长在Si衬底上的InGaAs薄膜的制备方法,其特征在于,步骤(3)所述对Si衬底进行脱氧化膜,具体为;
    Si衬底进入生长室后,将Si衬底温度升至950~1050 oC,高温烘烤15~30分钟,除去衬底表面的氧化膜层。
  7. 根据权利要求2所述生长在Si衬底上的InGaAs薄膜的制备方法,其特征在于,步骤(4)中采用分子束外延或金属有机气相沉积方法制备低温In0.4Ga0.6As缓冲层。
  8. 根据权利要求2所述生长在Si衬底上的InGaAs薄膜的制备方法,其特征在于,步骤(5)中采用分子束外延或金属有机气相沉积方法制备高温In0.4Ga0.6As缓冲层。
  9. 根据权利要求2所述生长在Si衬底上的InGaAs薄膜的制备方法,其特征在于,步骤(6)中采用子束外延或金属有机气相沉积方法在高温In0.4Ga0.6As缓冲层上生长In0.53Ga0.47As外延薄膜。
PCT/CN2014/093143 2014-01-15 2014-12-05 生长在Si衬底上的InGaAs薄膜及其制备方法 WO2015106608A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/026,726 US9870918B2 (en) 2014-01-15 2014-12-05 InGaAs film grown on Si substrate and method for preparing the same
SG11201605743UA SG11201605743UA (en) 2014-01-15 2014-12-05 Ingaas film grown on si substrate and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410018708.XA CN103762256B (zh) 2014-01-15 2014-01-15 生长在Si衬底上的InGaAs薄膜及其制备方法
CN201410018708.X 2014-01-15

Publications (1)

Publication Number Publication Date
WO2015106608A1 true WO2015106608A1 (zh) 2015-07-23

Family

ID=50529464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093143 WO2015106608A1 (zh) 2014-01-15 2014-12-05 生长在Si衬底上的InGaAs薄膜及其制备方法

Country Status (4)

Country Link
US (1) US9870918B2 (zh)
CN (1) CN103762256B (zh)
SG (1) SG11201605743UA (zh)
WO (1) WO2015106608A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762256B (zh) 2014-01-15 2016-03-02 华南理工大学 生长在Si衬底上的InGaAs薄膜及其制备方法
CN104617166B (zh) * 2015-01-22 2017-03-01 苏州苏纳光电有限公司 基于Si衬底的InGaAs红外探测器及其制备方法
CN104835718B (zh) * 2015-03-23 2017-12-01 华南理工大学 生长在Si衬底上的GaAs薄膜及其制备方法
CN105023962B (zh) * 2015-07-30 2017-03-08 华南理工大学 一种生长在Si衬底上的GaAs薄膜及其制备方法
CN105140104B (zh) * 2015-07-31 2017-11-07 华南理工大学 生长在Si衬底上的GaAs薄膜及制备方法
CN106356427B (zh) * 2016-11-08 2017-10-13 中国电子科技集团公司第四十四研究所 一种扩展波长近红外探测器缓冲层的生长方法
CN108376640A (zh) * 2018-01-09 2018-08-07 北京邮电大学 InGaAs/Si外延材料的制备方法
CN109767972B (zh) * 2018-12-13 2021-05-14 华南理工大学 在Si衬底上生长GaAs纳米线的方法
CN113314398B (zh) * 2021-05-25 2024-02-06 中国科学院苏州纳米技术与纳米仿生研究所 在GaP/Si衬底上外延生长InGaAs薄膜的方法及InGaAs薄膜
CN116705882A (zh) * 2023-08-08 2023-09-05 中科爱毕赛思(常州)光电科技有限公司 一种低缺陷超晶格红外探测器外延材料结构及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455351A (en) * 1983-06-13 1984-06-19 At&T Bell Laboratories Preparation of photodiodes
US20030098477A1 (en) * 2001-11-27 2003-05-29 Fujitsu Quantum Devices Limited Field-effect type compound semiconductor device and method for fabricating the same
US7842595B2 (en) * 2009-03-04 2010-11-30 Alcatel-Lucent Usa Inc. Fabricating electronic-photonic devices having an active layer with spherical quantum dots
CN103346092A (zh) * 2013-07-22 2013-10-09 中国科学院半导体研究所 硅基高迁移率InGaAs沟道的环栅MOSFET制备方法
CN103762256A (zh) * 2014-01-15 2014-04-30 华南理工大学 生长在Si衬底上的InGaAs薄膜及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665578B1 (en) * 1993-11-25 2002-02-20 Nippon Telegraph And Telephone Corporation Semiconductor structure and method of fabricating the same
JPH0831791A (ja) * 1994-07-11 1996-02-02 Mitsubishi Electric Corp 半導体層の製造方法
JP3244976B2 (ja) * 1994-12-05 2002-01-07 キヤノン株式会社 半導体レーザの駆動方法及び半導体レーザ装置及び光通信方法及びノード及び光通信システム
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
CN102560634A (zh) * 2012-02-20 2012-07-11 华南理工大学 在GaAs衬底上生长InGaAs薄膜的方法
JP5953840B2 (ja) * 2012-03-13 2016-07-20 富士通株式会社 半導体装置及び受信機
CN103325863A (zh) * 2013-06-07 2013-09-25 华南理工大学 生长在GaAs衬底上的InGaAs薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455351A (en) * 1983-06-13 1984-06-19 At&T Bell Laboratories Preparation of photodiodes
US20030098477A1 (en) * 2001-11-27 2003-05-29 Fujitsu Quantum Devices Limited Field-effect type compound semiconductor device and method for fabricating the same
US7842595B2 (en) * 2009-03-04 2010-11-30 Alcatel-Lucent Usa Inc. Fabricating electronic-photonic devices having an active layer with spherical quantum dots
CN103346092A (zh) * 2013-07-22 2013-10-09 中国科学院半导体研究所 硅基高迁移率InGaAs沟道的环栅MOSFET制备方法
CN103762256A (zh) * 2014-01-15 2014-04-30 华南理工大学 生长在Si衬底上的InGaAs薄膜及其制备方法

Also Published As

Publication number Publication date
SG11201605743UA (en) 2016-08-30
CN103762256A (zh) 2014-04-30
CN103762256B (zh) 2016-03-02
US20160218006A1 (en) 2016-07-28
US9870918B2 (en) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2015106608A1 (zh) 生长在Si衬底上的InGaAs薄膜及其制备方法
JP4406995B2 (ja) 半導体基板および半導体基板の製造方法
JP4651099B2 (ja) 直接ウェハ結合による低欠陥のゲルマニウム膜の製造
JP3970011B2 (ja) 半導体装置及びその製造方法
CN106128937A (zh) 一种在Si衬底上外延生长的高质量 AlN薄膜及其制备方法
WO2017016527A2 (zh) 一种生长在Si衬底上的GaAs薄膜及其制备方法
TWI721107B (zh) 化合物半導體基板、膠片膜及化合物半導體基板之製造方法
CN111477534B (zh) 氮化铝模板及其制备方法
WO2023193409A1 (zh) 非极性AlGaN基深紫外光电探测器外延结构及其制备方法
CN113314398B (zh) 在GaP/Si衬底上外延生长InGaAs薄膜的方法及InGaAs薄膜
US20240063016A1 (en) Method for manufacturing self-supporting gallium nitride substrate
TWI556285B (zh) 在矽基板上磊晶成長鍺薄膜的方法
CN111211041B (zh) 一种制备大面积β相硒化铟单晶薄膜的方法
KR101635970B1 (ko) 저압 화학기상증착법을 이용한 게르마늄 단결정 박막 제조 방법
CN113871473A (zh) 一种控制范德瓦耳斯外延与远程外延生长模式的装置及方法
US20100187539A1 (en) Compound semiconductor epitaxial wafer and fabrication method thereof
TWI703243B (zh) 單晶三族氮化物的形成方法
CN105762065B (zh) 一种高晶体质量的氮化物外延生长的方法
CN103882526A (zh) 在SiC衬底上直接生长自剥离GaN单晶的方法
CN116867347B (zh) 一种调节AlN异质外延面内应力的方法
CN116525671B (zh) 氮化镓半导体器件及其制备方法
JPH0342818A (ja) 化合物半導体装置とその製造方法
TW202338170A (zh) 一種薄膜生成於矽基板之製備方法
TWI387999B (zh) Compound semiconductor epitaxial wafer and method of manufacturing the same
KR101134568B1 (ko) 실리콘 기판위에 단결정 CdTe 박막을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15026726

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878472

Country of ref document: EP

Kind code of ref document: A1