CN106356427B - 一种扩展波长近红外探测器缓冲层的生长方法 - Google Patents

一种扩展波长近红外探测器缓冲层的生长方法 Download PDF

Info

Publication number
CN106356427B
CN106356427B CN201610978708.3A CN201610978708A CN106356427B CN 106356427 B CN106356427 B CN 106356427B CN 201610978708 A CN201610978708 A CN 201610978708A CN 106356427 B CN106356427 B CN 106356427B
Authority
CN
China
Prior art keywords
temperature
cryospheres
layer
inas
content gradually
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610978708.3A
Other languages
English (en)
Other versions
CN106356427A (zh
Inventor
璧电孩
赵红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 44 Research Institute
Original Assignee
CETC 44 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 44 Research Institute filed Critical CETC 44 Research Institute
Priority to CN201610978708.3A priority Critical patent/CN106356427B/zh
Publication of CN106356427A publication Critical patent/CN106356427A/zh
Application granted granted Critical
Publication of CN106356427B publication Critical patent/CN106356427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种扩展波长近红外探测器缓冲层的生长方法,其包括:在第一温度下采用金属有机化学气相沉积工艺或分子束外延工艺在InP衬底上生长InxGa1‑xAs低温层、InAsyP1‑y低温层或InzAl1‑zAs低温层中的一种;将InP衬底的温度升高到第二温度,并对InxGa1‑xAs低温层、InAsyP1‑y低温层或InzAl1‑zAs低温层进行退火处理;在第三温度下生长InwGa1‑wAs组分渐变层、InAswP1‑w组分渐变层或InwAl1‑wAs组分渐变层中的一种,其中,第二温度高于第一温度,第三温度高于第二温度。本发明能够减小缓冲层厚度、降低位错密度,以获得高速性能更加优良的探测器件。

Description

一种扩展波长近红外探测器缓冲层的生长方法
技术领域
本发明涉及半导体制造领域,特别是涉及一种扩展波长近红外探测器缓冲层的生长方法。
背景技术
在1~3μm的近红外波段,InGaAs、InAsP和InAlAs是非常重要的红外探测材料,与传统的HgCdTe材料和锑化物材料相比,它们具有较高的电子迁移率,良好的稳定性和抗辐照性能,并且具有更成熟的材料生长和器件制备工艺技术。以InGaAs为例,InGaAs器件在较高温度和强辐照下具有更优的性能,它的带隙可以在0.35~1.43eV之间变化,对应光谱波长范围0.88~3.6μm,已成功应用于空间遥感和红外成像等领域。近年来,在空间成像(包括地球遥感、大气探测和环境监测等)及光谱学领域,对高In组分InGaAs(扩展波长)探测器件的需求在不断增长。
在InP衬底上生长In0.53Ga0.47As材料,可以得到晶格完全匹配的材料,采用这种材料制备的探测器性能良好,但长波截止波长只有1.7μm。为了将长波截止波长扩展到1.7μm以上,需要将In组分增加到0.53以上,但是这样做会造成InGaAs材料与InP衬底形成晶格失配。为了解决这一问题,现有技术采用的手段是采用常规的外延生长方法生长缓冲层,尽量将失配位错控制在缓冲层内,而沿外延生长方向传播穿透进入探测器功能结构外延层中的位错密度尽量的小,从而获得性能优良的InGaAs扩展波长近红外探测器。
常规的外延生长方法主要分为组分渐变法(线性渐变、阶梯渐变、应变超晶格渐变)和高低温两步法两大类。组分渐变法的优势是可以将外延层的位错密度降低到很低的水平,缺点是需要生长较厚的缓冲层(厚度高达6μm),这不利于提高探测器的响应频率。高低温两步法的优势是缓冲层薄,缺点是外延层位错密度较高,这不利于降低器件暗电流。所以采用常规的外延生长方法会严重影响器件的性能。
发明内容
本发明主要解决的技术问题是提供一种扩展波长近红外探测器缓冲层的生长方法,能够减小缓冲层厚度、降低位错密度,以获得高速性能更加优良的探测器件。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种扩展波长近红外探测器缓冲层的生长方法,包括以下步骤:S1:在第一温度下采用金属有机化学气相沉积工艺或分子束外延工艺在所述InP衬底上生长InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层中的一种;S2:将所述InP衬底的温度升高到第二温度,并对所述InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层进行退火处理,其中,所述第二温度高于所述第一温度;S3:在第三温度下在所述InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层上生长InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层中的一种,其中,所述第三温度高于所述第二温度。
其中,在所述步骤S1之前,所述生长方法还包括:在第四温度和预定压力下清除所述InP衬底表面的杂质。
其中,所述InP衬底的晶向为[001]。
其中,所述第四温度为800~1000℃,所述预定压力为0~100mbar。
其中,所述InxGa1-xAs低温层的组分x的取值范围为0.53~1,所述InAsyP1-y低温层的组分y的取值范围为0.53~1,所述InzAl1-zAs低温层的组分z的取值范围为0~1。
其中,所述第一温度为400~600℃,所述InxGa1-xAs低温层、InxAl1-xAs低温层或InAsyP1-y低温层的厚度为0~200nm。
其中,所述第二温度为550~650℃,所述退火处理的持续时间为30s~300s。
其中,所述InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层的组分w的取值范围为初始值~扩展波长匹配值。
其中,所述第三温度为600~700℃,所述InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层的厚度小于3μm。
本发明的有益效果是:区别于现有技术的情况,本发明通过结合传统的组分渐变法和高低温两步法的优势,克服了组分渐变法缓冲层厚度太厚、高低温两步法位错密度较大的缺点,可生长出缓冲层厚度小于1.5μm、位错密度小于105cm-2、性能优良的近红外扩展波长外延材料,从而获得高速性能更加优良的探测器件。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的扩展波长近红外探测器缓冲层的生长方法包括以下步骤:
S1:在第一温度下采用金属有机化学气相沉积(Metal-organic Chemical VaporDeposition,MOCVD)工艺或分子束外延(Molecular Beam Epitaxy,MBE)工艺在InP衬底上生长InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层中的一种。
其中,InxGa1-xAs低温层的组分x的取值范围为0.53~1,InAsyP1-y低温层的组分y的取值范围为0.53~1,InzAl1-zAs低温层的组分z的取值范围为0~1。通过调节组分x、y、z的值,可以提高In的组分含量。在本实施例中,第一温度为400~600℃,InxGa1-xAs低温层、InxAl1-xAs低温层或InAsyP1-y低温层的厚度为0~200nm。
S2:将InP衬底的温度升高到第二温度,并对InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层进行退火处理,其中,第二温度高于第一温度。
其中,通过退火处理,可以恢复低温层材料的结构和消除缺陷。在本实施例中,第二温度为550~650℃,退火处理的持续时间为30s~300s。
S3:在第三温度下在InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层上生长InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层中的一种,其中,第三温度高于第二温度。
其中,InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层的组分w的取值范围为初始值~扩展波长匹配值。通过调节组分w的值,可以提高In的组分含量。在本实施例中,第三温度为600~700℃,InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层的厚度小于3μm。InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层和InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层共同构成了厚度较薄的InGaAs、InAsP或InAlAs缓冲层。
在其他一些实施例中,考虑到InP衬底表面的杂质会影响到缓冲层的质量,因此,在步骤S1之前,生长方法还可以包括:在第四温度和预定压力下清除InP衬底表面的杂质。其中,InP衬底的晶向为[001],第四温度为800~1000℃,预定压力为0~100mbar。
下面将利用一个具体应用实例对本发明实施例的生长方法进行举例说明,在该应用实例中,生长方法包括:
S11:将InP衬底载入MOCVD或MBE设备的反应室,在800℃和0~100mbar下清除InP衬底表面的杂质。
S12:在500℃的温度下采用金属有机化学气相沉积工艺或分子束外延工艺在InP衬底上生长InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层中的一种。
S13:将InP衬底的温度升高到580℃,并对InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层进行5分钟的退火处理。
S14:在600℃的温度下生长厚度为1.5μm的InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层中的一种。
通过上述方式,本发明实施例的扩展波长近红外探测器缓冲层的生长方法通过生长厚度较薄的InGaAs、InAsP或InAlAs缓冲层,就可以将扩展波长探测器外延结构中的位错密度降低到较低水平,从而获得高速性能优良的探测器。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (7)

1.一种扩展波长近红外探测器缓冲层的生长方法,其特征在于,包括以下步骤:
S1:在第一温度下采用金属有机化学气相沉积工艺或分子束外延工艺在InP衬底上生长InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层中的一种,所述第一温度为400~600℃;
S2:将所述InP衬底的温度升高到第二温度,并对所述InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层进行退火处理,其中,所述第二温度高于所述第一温度;
S3:在第三温度下在所述InxGa1-xAs低温层、InAsyP1-y低温层或InzAl1-zAs低温层上生长InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层中的一种,其中,所述第三温度高于所述第二温度;
所述InxGa1-xAs低温层的组分x的取值范围为0.53~1,所述InAsyP1-y低温层的组分y的取值范围为0.53~1,所述InzAl1-zAs低温层的组分z的取值范围为0~1。
2.根据权利要求1所述的生长方法,其特征在于,在所述步骤S1之前,所述生长方法还包括:
在第四温度和预定压力下清除所述InP衬底表面的杂质,所述第四温度为800~1000℃,所述预定压力为0~100mbar。
3.根据权利要求2所述的生长方法,其特征在于,所述InP衬底的晶向为[001]。
4.根据权利要求1所述的生长方法,其特征在于,所述InxGa1-xAs低温层、InzAl1-zAs低温层或InAsyP1-y低温层的厚度为0~200nm。
5.根据权利要求1所述的生长方法,其特征在于,所述第二温度为550~650℃,所述退火处理的持续时间为30s~300s。
6.根据权利要求1所述的生长方法,其特征在于,所述InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层的组分w的取值范围为初始值~扩展波长匹配值。
7.根据权利要求1或6所述的生长方法,其特征在于,所述第三温度为600~700℃,所述InwGa1-wAs组分渐变层、InAswP1-w组分渐变层或InwAl1-wAs组分渐变层的厚度小于3μm。
CN201610978708.3A 2016-11-08 2016-11-08 一种扩展波长近红外探测器缓冲层的生长方法 Active CN106356427B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610978708.3A CN106356427B (zh) 2016-11-08 2016-11-08 一种扩展波长近红外探测器缓冲层的生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610978708.3A CN106356427B (zh) 2016-11-08 2016-11-08 一种扩展波长近红外探测器缓冲层的生长方法

Publications (2)

Publication Number Publication Date
CN106356427A CN106356427A (zh) 2017-01-25
CN106356427B true CN106356427B (zh) 2017-10-13

Family

ID=57861500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610978708.3A Active CN106356427B (zh) 2016-11-08 2016-11-08 一种扩展波长近红外探测器缓冲层的生长方法

Country Status (1)

Country Link
CN (1) CN106356427B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581123A (zh) * 2018-06-08 2019-12-17 上海交通大学 一种光子频率上转换器件及其生长方法
CN108807588B (zh) * 2018-06-15 2020-12-01 杭州国翌科技有限公司 单片式n-i-p-i-n型宽光谱光电探测器
CN112233966A (zh) * 2020-10-14 2021-01-15 中国电子科技集团公司第四十四研究所 InGaAs到InP界面生长的气流切换方法
CN116581175A (zh) * 2023-07-07 2023-08-11 江苏华兴激光科技有限公司 一种2~3μm红外波段雪崩光电探测芯片外延片

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235478A (ja) * 1984-05-08 1985-11-22 Hamamatsu Photonics Kk GaAs透過形光電面
JP2629625B2 (ja) * 1994-12-01 1997-07-09 日本電気株式会社 異種基板上への半導体層の成長方法
CN103397376A (zh) * 2013-07-23 2013-11-20 中国科学院长春光学精密机械与物理研究所 一种采用lp-mocvd系统生长低位错密度高铟组分铟镓砷材料的方法
CN103383976B (zh) * 2013-07-23 2015-12-09 中国科学院长春光学精密机械与物理研究所 石墨烯增强型InGaAs红外探测器
CN103762256B (zh) * 2014-01-15 2016-03-02 华南理工大学 生长在Si衬底上的InGaAs薄膜及其制备方法

Also Published As

Publication number Publication date
CN106356427A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106356427B (zh) 一种扩展波长近红外探测器缓冲层的生长方法
Künzel et al. Material properties of Ga0. 47In0. 53As grown on InP by low‐temperature molecular beam epitaxy
EP3067941B1 (en) Infrared detection element
US9870918B2 (en) InGaAs film grown on Si substrate and method for preparing the same
CN109686809B (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
Liu et al. Comparison of β-Ga2O3 thin films grown on r-plane and c-plane sapphire substrates
Du et al. Effects of continuously or step-continuously graded buffer on the performance of wavelength extended InGaAs photodetectors
CN106684200A (zh) 一种三色红外探测器的制备方法
CN103258869A (zh) 基于氧化锌材料的紫外红外双色探测器及其制作方法
Imran et al. Molecular beam epitaxy growth of high mobility InN film for high-performance broadband heterointerface photodetectors
CN105895728B (zh) 一种近红外探测器及其制备方法
CN103383976B (zh) 石墨烯增强型InGaAs红外探测器
Jurczak et al. 2.5-µm InGaAs photodiodes grown on GaAs substrates by interfacial misfit array technique
Soylu et al. Properties of sol–gel synthesized n-ZnO/n-GaN (0001) isotype heterojunction
CN104319307A (zh) PNIN型InGaAs红外探测器
CN103077979A (zh) 一种GaAs衬底上扩展波长InGaAs探测器结构
Shang et al. Low temperature step-graded InAlAs/GaAs metamorphic buffer layers grown by molecular beam epitaxy
JP2015211166A (ja) 半導体受光素子及びその製造方法
Lee et al. Characterization of molecular beam epitaxially grown InSb layers and diode structures
CN103500766A (zh) 宽频带长波响应的GaAs/AlxGa1-xAs量子阱红外探测器及其制备方法与应用
EP3451391A1 (en) Quantum dot infrared detector
US9171978B2 (en) Epitaxial wafer, method for producing the same, photodiode, and optical sensor device
Besikci III-V infrared detectors on Si substrates
CN108022986B (zh) 近红外晶格失配探测器缓冲层
CN111524996A (zh) 一种含稀氮化合物的红外探测器外延片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant