CN112233966A - InGaAs到InP界面生长的气流切换方法 - Google Patents

InGaAs到InP界面生长的气流切换方法 Download PDF

Info

Publication number
CN112233966A
CN112233966A CN202011097360.XA CN202011097360A CN112233966A CN 112233966 A CN112233966 A CN 112233966A CN 202011097360 A CN202011097360 A CN 202011097360A CN 112233966 A CN112233966 A CN 112233966A
Authority
CN
China
Prior art keywords
source
inp
ingaas
tmin
time interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011097360.XA
Other languages
English (en)
Inventor
周勇
赵红
吴唯
刘尚军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 44 Research Institute
Original Assignee
CETC 44 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 44 Research Institute filed Critical CETC 44 Research Institute
Priority to CN202011097360.XA priority Critical patent/CN112233966A/zh
Publication of CN112233966A publication Critical patent/CN112233966A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)

Abstract

本发明公开了一种InGaAs到InP界面生长的气流切换方法,先在高温低压下消除InP衬底的表面杂质;然后生长InP缓冲层;再生长InGaAs外延层;之后先关闭TMIn源和TMGa源,保持一段时间后再关闭AsH3源,然后先提前打开PH3源,过一段时间再打开TMIn源,在InGaAs外延层上生长InP。本发明结合了传统的H2中断和V族源中断的优势,通过延迟关闭AsH3源,以及提前打开PH3源,能够扩大InGaAs到InP界面生长切换的最佳工艺参数的窗口,稳定重复地获得陡峭、无夹层的InGaAs/InP界面,使工艺的重复性得到大幅改善,从而提高制备InGaAs光电子器件的成品率。

Description

InGaAs到InP界面生长的气流切换方法
技术领域
本发明涉及InGaAs器件制作领域,特别涉及一种InGaAs到InP界面生长的气流切换方法。
背景技术
在1~1.5μm的近红外波段,InGaAs是非常重要的红外探测材料。与传统的HgCdTe材料和锑化物材料相比,三元InGaAs材料具有较高的电子迁移率,良好的稳定性和抗辐照性能,并且具有更成熟的材料生长和器件制备工艺技术,尤其是在较高温度和强辐照下InGaAs器件的性能更优。它的带隙可以在0.35~1.43eV之间变化,对应光谱波长范围0.88~3.6μm,已成功应用于空间遥感和红外成像等领域。
光通信系统中使用的半导体LD和光电探测器通常是采用MOCVD(金属有机物化学汽相沉积)生长的InGaAs(P)/InGaAsP/InP异质材料制作的。该器件的特性不仅与结构设计、工艺制作有关,而且与异质结界面质量紧密相关。理想异质界面的要求:无失配位错;垂直于界面的组分原子级突变;平行于界面的组分均匀;无夹层;无较大的应力;平整光滑。
然而实际异质结界面总是与理想异质结界面有不同程度的差距,尤其实际界面总是有一定的粗糙度、组分缓变和不期望的夹层。这些情况与MOCVD的生长时的开关技术紧密相关。传统InGaAs到InP界面生长的切换方法有氢中断法和AsH3与PH3相互切换法。在MOCVD工艺中,衬底表面温度是最重要的工艺参数,但设备是通过测量和控制衬底下面的石墨盘底部的温度来间接控制衬底表面温度,并非直接控制衬底表面温度;所以,当反应室沉积厚度发生变化,或测温光管表面发生沉积等情况,都会使衬底表面实际温度发生变化。因此,传统的方法在实践中经常要对中断时间进行微调,当工艺温度窗口较窄时,衬底表面实际温度的变化就会导致工艺重复性变差。
发明内容
本发明要解决的技术问题是提供了一种能够提高InGaAs光电子器件的成品率的InGaAs到InP界面生长的气流切换方法。
本发明的技术方案如下:
一种InGaAs到InP界面生长的气流切换方法,包括以下步骤:
步骤S1、将InP衬底放入MOCVD设备反应室,在高温低压下消除InP衬底的表面杂质;
步骤S2、打开PH3源和TMIn源,生长InP缓冲层;
步骤S3、InP缓冲层生长完成后关闭PH3源和TMIn源;
步骤S4、打开TMIn源、TMGa源和AsH3源,生长InGaAs外延层;
步骤S4、InGaAs外延层生长完成后关闭TMIn源和TMGa源,并开始计时;
步骤S5、计时时间达到第一预设时间间隔后关闭AsH3源,并重新开始计时;
步骤S6、计时时间达到第二预设时间间隔后打开PH3源,并重新开始计时;
步骤S7、计时时间达到第三预设时间间隔后打开TMIn源,生长InP。
进一步的,所述InP衬底的晶向为(001)。
进一步的,在所述步骤S1中,在高温低压下消除InP衬底的表面杂质时,温度为600~800℃,压力为0~100mbar。
进一步的,所述步骤S2中,生长InP缓冲层时的温度为500~700℃,InP缓冲层的厚度为100nm~1000nm。
进一步的,所述第一预设时间间隔为0.1~1s。
进一步的,所述第二预设时间间隔为0.1~1s。
进一步的,所述第三预设时间间隔为0.1~1s。
有益效果:本发明结合了传统的H2中断和V族源中断的优势,通过延迟关闭AsH3源,以及提前打开PH3源,能够扩大InGaAs到InP界面生长切换的最佳工艺参数的窗口,稳定重复地获得陡峭、无夹层的InGaAs/InP界面,使工艺的重复性得到大幅改善,从而提高制备InGaAs光电子器件的成品率。
附图说明
图1为本发明InGaAs到InP界面生长的气流切换方法的一个优选实施例的流程图;
图2为InGaAs到InP界面生长气流切换的时序图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明实施例中技术方案作进一步详细的说明。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
如图1所示,本发明InGaAs到InP界面生长的气流切换方法的一个优选实施例包括以下步骤:
步骤S1、将InP衬底放入MOCVD设备反应室,在高温低压下消除InP衬底的表面杂质;所述InP衬底的晶向为(001);温度为600~800℃,优选为700℃;压力为0~100mbar,优选为100mbar。
步骤S2、打开PH3源和TMIn源,向MOCVD设备反应室注入PH3和TMIn,在InP衬底上生长InP缓冲层;生长温度为500~700℃,优选为670℃;InP缓冲层的厚度为100nm~1000nm,优选为300nm。
步骤S3、InP缓冲层生长完成后关闭PH3源和TMIn源。
步骤S4、打开TMIn源、TMGa源和AsH3源,向MOCVD设备反应室注入TMIn、TMGa和AsH3,在InP缓冲层上生长InGaAs外延层;生长温度为500~700℃,优选为670℃。
步骤S5、InGaAs外延层生长完成后关闭TMIn源和TMGa源,并开始计时。
步骤S6、计时时间达到第一预设时间间隔T1后关闭AsH3源,并重新开始计时;其中,第一预设时间间隔T1为0.1~1s,优选为0.5s。
步骤S7、计时时间达到第二预设时间间隔T2后打开PH3源,向MOCVD设备反应室注入PH3,并重新开始计时;其中,第二预设时间间隔T2为0.1~1s,优选为0.5s。
步骤S8、计时时间达到第三预设时间间隔T3后打开TMIn源,向MOCVD设备反应室注入TMIn,在InGaAs外延层上生长InP;其中,第三预设时间间隔T3为0.1~1s,优选为0.5s。
本实施例通过延迟关闭AsH3源,以及提前打开PH3源,能够扩大InGaAs到InP界面生长切换的最佳工艺参数的窗口,稳定重复地获得陡峭、无夹层的InGaAs/InP界面,使工艺的重复性得到大幅改善,从而提高制备InGaAs光电子器件的成品率。
本发明未描述部分与现有技术一致,在此不做赘述。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明的专利保护范围之内。

Claims (7)

1.一种InGaAs到InP界面生长的气流切换方法,其特征在于,包括以下步骤:
步骤S1、将InP衬底放入MOCVD设备反应室,在高温低压下消除InP衬底的表面杂质;
步骤S2、打开PH3源和TMIn源,生长InP缓冲层;
步骤S3、InP缓冲层生长完成后关闭PH3源和TMIn源;
步骤S4、打开TMIn源、TMGa源和AsH3源,生长InGaAs外延层;
步骤S5、InGaAs外延层生长完成后关闭TMIn源和TMGa源,并开始计时;
步骤S6、计时时间达到第一预设时间间隔后关闭AsH3源,并重新开始计时;
步骤S7、计时时间达到第二预设时间间隔后打开PH3源,并重新开始计时;
步骤S8、计时时间达到第三预设时间间隔后打开TMIn源,生长InP。
2.根据权利要求1所述的InGaAs到InP界面生长的气流切换方法,其特征在于,所述InP衬底的晶向为(001)。
3.根据权利要求1所述的InGaAs到InP界面生长的气流切换方法,其特征在于,在所述步骤S1中,在高温低压下消除InP衬底的表面杂质时,温度为600~800℃,压力为0~100mbar。
4.根据权利要求1所述的InGaAs到InP界面生长的气流切换方法,其特征在于,所述步骤S2中,生长InP缓冲层时的温度为500~700℃,InP缓冲层的厚度为100nm~1000nm。
5.根据权利要求1所述的InGaAs到InP界面生长的气流切换方法,其特征在于,所述第一预设时间间隔为0.1~1s。
6.根据权利要求1所述的InGaAs到InP界面生长的气流切换方法,其特征在于,所述第二预设时间间隔为0.1~1s。
7.根据权利要求1所述的InGaAs到InP界面生长的气流切换方法,其特征在于,所述第三预设时间间隔为0.1~1s。
CN202011097360.XA 2020-10-14 2020-10-14 InGaAs到InP界面生长的气流切换方法 Pending CN112233966A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011097360.XA CN112233966A (zh) 2020-10-14 2020-10-14 InGaAs到InP界面生长的气流切换方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011097360.XA CN112233966A (zh) 2020-10-14 2020-10-14 InGaAs到InP界面生长的气流切换方法

Publications (1)

Publication Number Publication Date
CN112233966A true CN112233966A (zh) 2021-01-15

Family

ID=74112829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011097360.XA Pending CN112233966A (zh) 2020-10-14 2020-10-14 InGaAs到InP界面生长的气流切换方法

Country Status (1)

Country Link
CN (1) CN112233966A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114204419A (zh) * 2021-10-26 2022-03-18 长春理工大学 高性能高质量InGaAs/InGaAsP多量子阱的外延结构及其生长方法和应用
CN114232085A (zh) * 2021-12-06 2022-03-25 中国电子科技集团公司第五十五研究所 一种在InP衬底上外延生长InGaAs的方法
CN117476816A (zh) * 2023-12-28 2024-01-30 苏州焜原光电有限公司 分子束外延生长InGaAs/InP的界面处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833101A (en) * 1985-12-16 1989-05-23 Fujitsu Limited Method of growing quaternary or pentanary alloy semiconductor lattice-matched to substrate by MBE
JPH0786162A (ja) * 1993-09-13 1995-03-31 Hitachi Ltd ヘテロ構造薄膜の成長方法およびその装置
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
JP2003197948A (ja) * 2001-12-28 2003-07-11 Showa Denko Kk 受光素子用エピタキシャルウェーハ、その製造方法、受光素子およびその使用方法
US20090057721A1 (en) * 2007-09-03 2009-03-05 Sumitomo Electric Industries, Ltd. Semiconductor device, epitaxial wafer, and method of manufacturing the same
CN106356427A (zh) * 2016-11-08 2017-01-25 中国电子科技集团公司第四十四研究所 一种扩展波长近红外探测器缓冲层的生长方法
CN111725054A (zh) * 2020-06-30 2020-09-29 度亘激光技术(苏州)有限公司 一种外延层续长方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833101A (en) * 1985-12-16 1989-05-23 Fujitsu Limited Method of growing quaternary or pentanary alloy semiconductor lattice-matched to substrate by MBE
JPH0786162A (ja) * 1993-09-13 1995-03-31 Hitachi Ltd ヘテロ構造薄膜の成長方法およびその装置
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
JP2003197948A (ja) * 2001-12-28 2003-07-11 Showa Denko Kk 受光素子用エピタキシャルウェーハ、その製造方法、受光素子およびその使用方法
US20090057721A1 (en) * 2007-09-03 2009-03-05 Sumitomo Electric Industries, Ltd. Semiconductor device, epitaxial wafer, and method of manufacturing the same
CN106356427A (zh) * 2016-11-08 2017-01-25 中国电子科技集团公司第四十四研究所 一种扩展波长近红外探测器缓冲层的生长方法
CN111725054A (zh) * 2020-06-30 2020-09-29 度亘激光技术(苏州)有限公司 一种外延层续长方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114204419A (zh) * 2021-10-26 2022-03-18 长春理工大学 高性能高质量InGaAs/InGaAsP多量子阱的外延结构及其生长方法和应用
CN114204419B (zh) * 2021-10-26 2024-04-19 长春理工大学 高性能高质量InGaAs/InGaAsP多量子阱的外延结构及其生长方法和应用
CN114232085A (zh) * 2021-12-06 2022-03-25 中国电子科技集团公司第五十五研究所 一种在InP衬底上外延生长InGaAs的方法
CN114232085B (zh) * 2021-12-06 2024-02-06 中国电子科技集团公司第五十五研究所 一种在InP衬底上外延生长InGaAs的方法
CN117476816A (zh) * 2023-12-28 2024-01-30 苏州焜原光电有限公司 分子束外延生长InGaAs/InP的界面处理方法
CN117476816B (zh) * 2023-12-28 2024-03-26 苏州焜原光电有限公司 分子束外延生长InGaAs/InP的界面处理方法

Similar Documents

Publication Publication Date Title
CN112233966A (zh) InGaAs到InP界面生长的气流切换方法
US5019529A (en) Heteroepitaxial growth method
CA2170922C (en) Compound semiconductor light emitting device and method of preparing the same
CN103614769B (zh) 一种基于原位刻蚀的氮化镓同质外延方法
JP5244487B2 (ja) 窒化ガリウム成長用基板及び窒化ガリウム基板の製造方法
JPH01225114A (ja) 半導体薄膜の製造方法
Green et al. High‐quality homoepitaxial silicon films deposited by rapid thermal chemical vapor deposition
US20100252834A1 (en) Method for growing group iii-v nitride film and structure thereof
KR100450781B1 (ko) Gan단결정제조방법
US9396936B2 (en) Method for growing aluminum indium nitride films on silicon substrate
Ren et al. Selective-area InAsSb nanowires on InP for 3–5 μm mid-wavelength infrared optoelectronics
KR100281939B1 (ko) 반도체 에피택셜 기판
Hsu et al. Quality improvement of GaN on Si substrate for ultraviolet photodetector application
JP4940562B2 (ja) 化合物半導体エピタキシャル基板およびその製造方法
US7473316B1 (en) Method of growing nitrogenous semiconductor crystal materials
TW201608608A (zh) 在矽基板上磊晶成長鍺薄膜的方法
KR102557905B1 (ko) 고품질의 대면적 초박형 산화갈륨 박막 제조 방법
Chang et al. A GeSi-buffer structure for growth of high-quality GaAs epitaxial layers on a Si substrate
KR101539073B1 (ko) 반극성 GaN 템플레이트를 제조하기 위한 방법
JP6130774B2 (ja) 半導体素子とその作製方法
CN112853319A (zh) 在ZnO纳米线表面低温外延生长高质量GaN薄膜的方法
JP4078169B2 (ja) 電界効果トランジスター
JP2006080503A (ja) 半導体エピタキシャル基板
KR100980563B1 (ko) 기판의 국소적 온도 조절이 가능한 나노 구조체 제조장치 및 나노 구조체 제조방법
JPH076957A (ja) 半導体エピタキシャル基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210115