WO2015106479A1 - 电路基板及其制备方法 - Google Patents

电路基板及其制备方法 Download PDF

Info

Publication number
WO2015106479A1
WO2015106479A1 PCT/CN2014/072233 CN2014072233W WO2015106479A1 WO 2015106479 A1 WO2015106479 A1 WO 2015106479A1 CN 2014072233 W CN2014072233 W CN 2014072233W WO 2015106479 A1 WO2015106479 A1 WO 2015106479A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
glue
cloth
glass fiber
preparation
Prior art date
Application number
PCT/CN2014/072233
Other languages
English (en)
French (fr)
Inventor
颜善银
曾宪平
许永静
杨中强
苏晓声
罗俐
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to US14/647,412 priority Critical patent/US20160007452A1/en
Priority to EP14863038.7A priority patent/EP2913354B1/en
Priority to KR1020157017087A priority patent/KR101819805B1/ko
Publication of WO2015106479A1 publication Critical patent/WO2015106479A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/16Dipping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/30Polyolefins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/326Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/36Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0085Apparatus for treatments of printed circuits with liquids not provided for in groups H05K3/02 - H05K3/46; conveyors and holding means therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2323/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile

Definitions

  • the invention belongs to the technical field of electronic materials, and relates to a circuit substrate and a manufacturing method thereof, and particularly relates to a microscopic uniformity and an isotropic circuit substrate and a manufacturing method thereof, and more particularly to a dielectric constant in a A circuit board having a small difference from the weft direction and a method of manufacturing the same.
  • the circuit boards used have been developed in the direction of multi-layering, high-density wiring, and high-speed signal transmission, and the circuit board-metal foil-clad laminate
  • the comprehensive performance of CCL has put forward higher requirements.
  • the dielectric constant (Dk) and dielectric loss (Df) of the dielectric are important indicators that affect signal transmission speed and signal quality.
  • Dk dielectric constant
  • Df dielectric loss
  • the signal integrity is mainly related to the dielectric loss of the dielectric material and the surface roughness of the copper foil conductor.
  • the data transmission rate will become higher and faster.
  • the data transmission rate has risen from the traditional 5 Gbps to 10 Gbps, and even 25 Gbps.
  • the transmission wavelength of digital signals is getting shorter and shorter.
  • the signal delay has less influence on the signal integrity due to the longer transmission wavelength of the digital signal.
  • the transmission rate is higher than 10 Gbps, the signal delay becomes a must in the high-speed transmission link. problem.
  • copper-clad laminates play a key role in signal transmission
  • the role of the laminate material as the transmission medium determines the quality of the signal transmission.
  • copper-clad laminate materials generally use electronic grade glass fiber cloth as a reinforcing material, immersed in a thermosetting resin, and obtained by drying, laminating, and hot pressing. Due to the use of woven materials as reinforcing materials (such as fiberglass cloth), the woven fiber cloth is insulated due to the reason of weaving and the intersection of the cross-section of the woven fibers.
  • the main technical means include (1) increasing the degree of fiberglass cloth opening; (2) using a film form reinforcing material instead of the fiber woven material; (3) A reinforcing material having a lower dielectric constant, such as a low dielectric constant glass fiber cloth.
  • the glass fiber cloth is further hooked by means of fiber opening, due to the preparation process and structure of the glass fiber cloth, it is currently only uniform in the weft direction, and can only be relatively conventional in the warp direction.
  • the fiber-opening fiber cloth is looser and cannot be completely opened and homogenized, which results in the glass fiber cloth not being able to achieve complete uniformity in the plane direction; it is very difficult to implement in the process by using the film form: Poor operability, poor adhesion to resin, easy delamination; by using a low dielectric constant glass fiber cloth, the dielectric constant of the reinforcing material can be reduced to some extent, but it is still different from the low dielectric constant resin composition currently used. If it is enlarged, the uniformity of the dielectric constant in the plane direction cannot be satisfied.
  • the conventional epoxy resin is replaced by a modified epoxy resin, a cyanate resin, a bismaleimide resin, a polyphenylene ether resin, a hydrocarbon resin, and a thermoplastic material such as polytetrafluoroethylene, a liquid crystal resin, or the like. It has a very low dielectric constant and dielectric loss characteristics, which can provide better high-speed transmission characteristics.
  • the dielectric constant and dielectric loss of the copper clad laminate material can also be reduced by changing the reinforcing material, since the conventional general reinforcing material is an electronic grade glass fiber cloth (E type fiberglass cloth), its own dielectric constant For the 6.2 to 6.6, the dielectric constant of the resin portion used is much higher, this The Dk of the copper clad laminate material is generally between 3.5 and 4.5.
  • the skilled person has also proposed to replace the traditional electronic grade glass with a low dielectric constant glass fiber cloth.
  • the fiber cloth because the low dielectric constant glass fiber cloth Dk is 4.4 to 4.6, can greatly reduce the dielectric constant of the entire laminate material, can effectively improve the signal transmission rate, and, in addition, due to its dielectric loss (Df) value ratio
  • the electronic grade fiberglass cloth is also low, which also helps to improve the loss of the signal transmission process, and significantly improves the signal integrity problem caused by the signal transmission rate and frequency rise.
  • the Dk of the reinforcing material is much higher than The Dk of the resin composition is as follows:
  • the dielectric constant of the resin composition currently applied to the high-speed material is remarkably lower than that of the reinforcing material-glass cloth, and the dielectric constant of the final laminate is the resin composition and increase.
  • the weighted sum of strong materials is shown in the following formula.
  • Dk fine the dielectric constant of the reinforcing material
  • the copper-clad laminate material composed of the resin composition and the reinforcing material has a high Dk in the place where the warp and weft are interlaced due to the unevenness of the microstructure of the woven structure of the reinforcing material.
  • the warp or weft is Dk is relatively high, and where there is no yarn, the Dk is low, and this unevenness causes a microscopic difference in the dielectric constant of the dielectric layer.
  • the transmission time of the signal is determined by the transmission speed and the transmission distance.
  • the transmission speed is inversely proportional to the dielectric constant of the transmission medium, which is directly caused by the microscopic difference of the dielectric constant of the surrounding medium corresponding to the transmission line.
  • the time from the emitting end to the receiving end is inconsistent, resulting in signal mismatch and immediate delay.
  • the signal delay is divided into a warp signal delay and a latitudinal signal delay.
  • the warp signal delay refers to a signal delay when the transmission line is routed in the warp direction of the circuit substrate, and the latitudinal signal delay refers to the transmission line on the circuit substrate. Signal delay when wiring in the latitudinal direction.
  • the laminate material is flat.
  • the non-uniformity in the plane direction causes the dielectric constant and dielectric loss of the laminate material on the microstructure to be anisotropic, and there are also large differences in microscopic appearance in different places in the same plane direction.
  • engineers have taken various measures to solve the signal integrity problem, and the method of transmitting high-speed digital signals by using differential lines is one of them.
  • the differential line in the PCB is a coupled strip line or a coupled microstrip line. When the signal is transmitted on the above, it is an odd-mode transmission method. Therefore, the differential signal has the advantages of strong anti-interference and easy matching.
  • differential lines With the increase of the information transmission rate requirement of digital circuits, the differential transmission mode of signals will be more and more widely used.
  • the main advantages of differential lines are: strong anti-interference ability, effective suppression of electromagnetic interference, accurate timing positioning, etc. Therefore, the use of differential lines to transmit high-speed signals, on the one hand, is of great benefit to the signal integrity and low power consumption of the PCB system, on the other hand, it also puts higher requirements on the PCB design level.
  • Cia Patent No. CN102548200A discloses a circuit substrate comprising a glass film which is roughened by surface roughening, a resin bonding layer respectively located on the rough layers on both sides of the glass film, and a metal located outside the resin bonding layer.
  • the foil, the glass film, the resin bonding layer, and the metal foil are bonded together by pressing.
  • the glass film is easily broken when pressed; and the surface roughening treatment process of the glass film is troublesome and difficult to control, and at the same time, the roughening treatment will destroy the isotropic characteristics of the glass film to some extent; in addition, the glass film is used for production.
  • the process is different from the conventional CCL production process, and equipment modification and adjustment are required.
  • European Patent EP 1140373A first impregnates a glass cloth with a solution having a relatively low solid content containing a curable resin, drying it, impregnating it with a solution having a relatively high solid content of a curable resin, and finally curing it. Reducing the solids content of the resin solution to increase the solvent content and lower the viscosity is aimed at increasing the permeability of the resin to reduce the amount of voids in the prepreg and the cured article, and how to reduce the Dk and solve the signal delay problem is not mentioned.
  • Chinese patent CN101494949A discloses that the glass cloth is opened before the sizing process of the glass cloth. Or flattening, and then immersed in epoxy resin glue and dried to obtain an insulating material layer, thereby reducing the signal loss of the copper-clad substrate, increasing the signal propagation speed and reducing the production cost.
  • Chinese patent CN101570640B discloses a prepreg prepared by using a quartz glass cloth (preferably open fiber) with a sparsely dense quartz glass fiber as a substrate, and a thermosetting resin composition having a dielectric loss of 0.003 or less, which is applied to a high-frequency material to ensure the medium. At the same time as the electric constant, the processing performance is improved.
  • One of the objects of the present invention is to provide a method of preparing a bonding sheet for constituting a circuit substrate, comprising the step of performing a special pretreatment on a reinforcing material, the circuit substrate thus prepared having excellent dielectric properties, warp direction and The difference in latitudinal dielectric constant is small, and the microscopic uniformity of dielectric constant is achieved.
  • the pretreatment glue is a glue obtained by dissolving a resin composition in an organic solvent; preferably, the glue further comprises a filler.
  • the resin composition comprises a resin and a curing agent, wherein the resin is selected from the group consisting of epoxy resins, cyanate resins, polyphenylene ether resins, polybutadiene resins, polybutadiene, and styrene. Copolymer resin, polytetrafluoroethylene resin, polybenzoxazine resin, polyimide, silicone resin, bismaleimide resin, liquid crystal polymer, bismaleimide triazine resin, thermoplastic resin
  • the curing agent is selected from the group consisting of a phenolic curing agent, an amine curing agent, a high molecular acid curing agent, and a living agent.
  • an ester a radical initiator
  • the organic solvent is selected from the group consisting of alcohols such as methanol, ethanol, and butanol, ethyl cellosolve, butyl cellosolve, ethylene glycol methyl ether, and diethylene glycol.
  • Ethers such as diethyl ether and diethylene glycol butyl ether; ketones such as acetone, butanone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and mesitylene; , ethoxyethyl acetate, ethyl acetate and other esters, hydrazine, hydrazine-dimethylformamide, hydrazine, hydrazine-dimethylacetamide, hydrazine-methyl-2-pyrrolidone, etc.
  • the resin composition further comprises a filler selected from the group consisting of silica, alumina, titania, barium titanate, barium titanate, magnesium titanate, calcium silicate, barium titanate, titanic acid And one or more of the glass frits;
  • the silica comprises molten amorphous silica and crystalline silica, preferably molten amorphous silica, the titania comprising rutile and anatase titanium dioxide, Rutile type titanium dioxide is preferred.
  • the reinforcing material is an electronic grade glass fiber cloth, a glass fiber nonwoven fabric, an aramid or other organic fiber woven fabric for a circuit substrate; more preferably, the reinforcing material is an electronic grade glass fiber. cloth.
  • the pretreated fiberglass cloth has a resin content of from 20% by weight to 50% by weight.
  • the mass per unit area of the pretreated glass cloth is ⁇ 3 (3 ⁇ 4/111 2 , the resin content of the pretreated glass cloth is 25 wt% to 50 wt% ; the pretreated glass fiber mass per unit area of fabric 30g / m 2 ⁇ 100g / m 2, the resin content of the glass fiber cloth is pretreated 20wt% ⁇ 45wt%; the fiberglass cloth pretreated mass per unit area of 100g / m 2 ⁇ 175g When /m 2 , the resin content of the pretreated glass cloth is 20% by weight to 40% by weight.
  • the fiberglass cloth is an E-type fiberglass cloth
  • the corresponding pretreatment glue has a Dk (10 GHz) of 6.2 to 6.6.
  • the fiberglass cloth is a NE type fiberglass cloth
  • the corresponding pretreatment glue has a Dk (10 GHz) of 4.4 to 4.6.
  • the Dk of the resin is in the range of Dk ⁇ 10% of the fiberglass cloth; preferably, the Dk of the resin is in the range of Dk ⁇ 5% of the fiberglass cloth.
  • Another object of the present invention is to provide a bonding sheet prepared according to the production method of the present invention.
  • a third object of the present invention is to provide a circuit board made of the bonding sheet of the present invention.
  • Fig. 1 is a schematic plan view showing the structure of an E-type glass fiber cloth.
  • FIG. 2 is a schematic plan view showing the plane structure of an E-type glass fiber opened cloth.
  • Figure 3 is a schematic cross-sectional view of an E-glass fiber cloth.
  • Figure 4 shows the planar non-uniformity of the dielectric constant of the E-glass fabric.
  • Figure 5 is a graph showing the planar uniformity of the dielectric constant of the pre-treated E-glass fabric of the present invention. Specific form
  • the Dk used in the present invention means a dielectric constant, which is a value measured by the SPDR method at a frequency of 10 GHz.
  • the Df used in the present invention means a dielectric loss value which is tested by the SPDR method at a frequency of 10 GHz.
  • the fiberglass cloth used in the present invention refers to a glass fiber cloth, which is referred to as a fiberglass cloth, and the fiberglass cloth includes an E type fiberglass cloth, a NE type fiberglass cloth, an S type fiberglass cloth, a D type fiberglass cloth, and the like, each type
  • the type of fiberglass cloth can be further divided into 7628, 2116, 1080, 106, 1037, 1078, 2112, 3313, 1500 and other specifications. It is well known to those skilled in the art that when the fiberglass cloth is applied in the field of circuit boards, its main function is As a reinforcing material for the circuit substrate.
  • the resin composition used in the present invention means a composition comprising a resin and a curing agent.
  • an epoxy resin composition refers to a composition comprising an epoxy resin and a suitable curing agent.
  • Those skilled in the art can select a suitable curing agent and its amount depending on the resin to be used, and can also select a suitable organic solvent depending on the resin to be used and the curing agent.
  • the filler used in the present invention refers to a filler material, referred to as a filler, and a filler used in the copper clad laminate industry. It is not only to reduce costs, but to improve the performance of CCL, such as the reduction of CTE, the improvement of flame retardancy, the thermal conductivity and the improvement of the mechanical properties of the board. With the development of filler technology, more and more new fillers are used in copper clad laminates, such as the functional fillers used in the present invention to adjust the pretreatment glue Dk.
  • the pretreatment gum used in the present invention means a gum solution in which the resin composition of the present invention is dissolved in a suitable organic solvent.
  • the pretreatment gum used in the present invention refers to a dispersion obtained by dissolving the resin composition of the present invention in a suitable organic solvent and then adding the filler.
  • a suitable dielectric constant Dk:
  • the Dk of the pretreatment glue is the Dk of the obtained gum after the solvent is removed from the pretreatment glue, and the value is only related to the amount of the resin composition and the filler, regardless of the amount of the solvent.
  • the dipping used in the present invention refers to the operation of dipping the fiberglass cloth into the glue and then drying the solvent through the gluing machine.
  • the prepreg used in the present invention refers to an operation of dipping a glass cloth into a pre-formed glue and then drying the solvent through a gluing machine.
  • the main dipping used in the present invention refers to the operation of dipping the glass cloth into the main glue and then drying the solvent through the gluing machine.
  • the content of the resin used in the present invention means the mass percentage of the solid composition including the resin in addition to the reinforcing fiberglass cloth in the pretreated glass cloth, the bonding sheet, and the circuit substrate, for example, a glue liquid.
  • the resin composition contains a resin, a curing agent and a filler, and the resin content is the mass percentage of the tree, the curing agent and the filler.
  • the resin content is a fixed term in the art. It is known to those skilled in the art that the resin content can be adjusted by adjusting the solid content of the pretreatment glue to adjust the gap of the gluing machine clamping shaft, the speed of the gluing machine, and the like. Process parameters to control.
  • the specific method is to use Dk with the Dk characteristics of the fiberglass cloth, and the matching property is good.
  • the difference between the dielectric constant and the weft direction is smaller, forming a semi-finished product for the main dipping reinforcement material - pretreatment fiberglass cloth .
  • the pretreatment glue may be selected from a resin having a Dk equal to Dk ⁇ 10% of the fiberglass cloth, and preferably a resin having a Dk of Dk ⁇ 5%. The closer Dk is to the Dk of the fiberglass cloth, the smaller the difference in dielectric constant between the warp and weft directions, and the smaller the delay of the signal.
  • the fiberglass cloth is one of an E-type fiberglass cloth and an NE-type fiberglass cloth.
  • the E-type fiberglass cloth is pretreated, and the Dk (10 GHz) of the pretreatment glue is selected to be 6.2 to 6.6.
  • the NE type fiberglass cloth is pretreated, and the Dk (10 GHz) of the pretreatment glue is selected to be 4 ⁇ 4 to 4.6.
  • the resin content thereof is from 20% by weight to 50% by weight. If the resin content is too high, the prepreg will dissolve and mix with the main dipping solution after main immersion, which will affect the amount of sizing of the main dipping. If the resin content is too low, the void filling of the glass fiber cloth is not full, and the dielectric constant cannot be uniform in the warp and weft directions, which affects the signal transmission delay.
  • the mass per unit area of the pretreated glass cloth is ⁇ 3 ( ⁇ /111 2 , the resin content of the treated glass cloth is 25 wt% to 50 wt%; the unit area of the pretreated glass cloth mass of 30g / m 2 ⁇ 100g / m 2 , the resin content of the glass fiber cloth is pretreated 20wt% ⁇ 45wt%; the fiberglass cloth pretreated mass per unit area of 100g / m 2 ⁇ 175g / m 2 when , fiberglass cloth pretreated resin content is 20wt% ⁇ 40wt% o
  • the resin content of the pretreated glass fiber cloth is selected.
  • the content of the tree is too high.
  • the prepreg will be dissolved and mixed with the main dipping solution, which will affect the main dipping.
  • the amount of glue at the same time, because the Dk of the general fiberglass cloth is much higher than the Dk of the main dipping liquid, resulting in the Dk of the circuit substrate prepared by the main immersion being too high, and the dielectric properties of the circuit substrate are deteriorated.
  • the resin content is too low, the gap of the fiberglass cloth will not be filled. Full, the microscopic consistency of the dielectric constant in the warp and weft directions cannot be achieved, affecting the signal transmission delay.
  • the resin composition comprises a resin, a curing agent, wherein the resin is selected from the group consisting of epoxy resin, cyanate resin, polyphenylene ether resin, polybutadiene resin, polybutadiene and styrene copolymer. Resin, polytetrafluoroethylene resin, polybenzoxazine resin, polyimide, silicone resin, bismaleimide resin, liquid crystal polymer, bismaleimide triazine resin, thermoplastic resin One or more. .
  • the curing agent is selected from one or more of a phenolic curing agent, an amine curing agent, a high molecular acid anhydride curing agent, an active ester, a radical initiator, and the like.
  • the filler is selected from the group consisting of silica (fused amorphous silica and crystalline silica-silicon), alumina, titania (rutile and anatase), barium titanate, barium titanate, titanic acid One or more of magnesium, calcium titanate, barium titanate, lead titanate, and glass powder.
  • silica is preferably amorphous silica
  • titanium dioxide is preferably rutile titanium dioxide.
  • the pretreated glass fiber cloth is used to dry the organic solvent in the resin glue liquid.
  • the pretreatment glue on the fiberglass cloth may undergo a crosslinking reaction, or may not occur. Cross-linking reaction.
  • the method for pretreating the E-type fiberglass cloth is characterized in that:
  • Step 2 Prepare a pretreatment glue according to the Dk (10 GHz) value of the selected E-type fiberglass cloth, and select a resin composition with a Dk equal to 10% of the E-type fiberglass cloth Dk soil, preferably Dk is equal to the E type. Glass fiber cloth Dk ⁇ 5% resin composition.
  • Step 3 According to the mass per unit area of the pretreated fiberglass cloth, combined with the solid content of the pretreatment glue to adjust the process parameters such as the gap of the gluing machine clamping shaft and the speed of the gluing machine, when pretreating the glass fiber
  • the resin content of the control pretreated glass cloth is 25 wt% ⁇ 50wt%
  • the resin content of the pretreated glass cloth is controlled to be 20wt% to 45wt%
  • the unit area of the pretreated fiberglass cloth is mass of 100g / m 2 ⁇ 175g / m 2, the control pretreated glass fiber cloth resin content was 20wt% ⁇ 40wt%.
  • Step 4 Drying the organic solvent in the pre-dipped E-glass fabric to obtain a special pre-treated E-type fiberglass cloth.
  • the method for pretreating the NE type fiberglass cloth is characterized in that:
  • Step 1 Find or test the Dk (10 GHz) value of the NE type fiberglass cloth according to the selected E-type fiberglass cloth.
  • Step 2 Prepare a pretreatment glue according to the Dk (10 GHz) value of the selected NE type fiberglass cloth, and select a resin composition with a Dk equal to the NE type fiberglass cloth Dk ⁇ 10%, preferably Dk is equal to the NE type. Glass fiber cloth Dk ⁇ 5% resin composition.
  • Step 3 According to the mass per unit area of the pretreated fiberglass cloth, combined with the solid content of the pretreatment glue to adjust the process parameters such as the gap of the gluing machine clamping shaft and the speed of the gluing machine, when pretreating the glass fiber fabric mass per unit area of ⁇ 30g / m 2, the control pretreated glass fiber cloth resin content of 25wt% ⁇ 50wt%; when / m 2, pretreated glass fiber cloth mass per unit area of 30g / m 2 ⁇ 100g the control pretreatment of glass fiber cloth resin content of 20wt% ⁇ 45wt%; when the resin content of fiberglass cloth pretreated mass per unit area of 100g / m 2 ⁇ 175g / m 2, the glass fiber cloth is pretreated controls 20wt % ⁇ 40wt%.
  • Step 4 Drying the organic solvent in the pre-dipped NE type fiberglass cloth to obtain a special pretreated NE type fiberglass cloth.
  • a second aspect of the present invention provides a bonding sheet comprising a special pretreated fiberglass cloth as described above and a resin composition impregnated on a special pretreated fiberglass cloth.
  • the resin composition comprises a resin, a curing agent, wherein the resin is selected from the group consisting of epoxy resins, cyanate resins, polyphenylene ether resins, polybutadiene resins, polybutadiene and styrene copolymer resins, Gather One or more of a tetrafluoroethylene resin, a polybenzoxazine resin, a polyimide, a silicone-containing resin, a bismaleimide resin, a liquid crystal polymer, and a bismaleimide triazine resin.
  • the resin is selected from the group consisting of epoxy resins, cyanate resins, polyphenylene ether resins, polybutadiene resins, polybutadiene and styrene copolymer resins, Gather One or more of a tetrafluoroethylene resin, a polybenzoxazine resin, a polyimide, a silicone-containing resin, a bismaleimide resin, a liquid crystal polymer
  • the resin composition may further comprise a filler, a thermoplastic resin, different flame retardant compounds or additives, etc., which may be used singly or in combination of plural kinds as needed.
  • a third aspect of the invention provides a circuit substrate comprising the bonding sheet of the second aspect of the invention.
  • the manufacturing method of the circuit substrate may include the following steps: Step 1: Preparing a pretreatment glue. According to the Dk of the fiberglass cloth used, a pretreatment glue is prepared, so that the Dk of the dry glue after the pretreatment glue is dried can be the same as or close to the Dk of the fiberglass cloth used.
  • Step 2 Prepare a pretreated glass cloth.
  • the glass fiber cloth is pre-impregnated with the above pretreatment glue, and then the solvent is dried to obtain a pretreated glass fiber cloth.
  • Step 3 Prepare the bonding sheet.
  • the special pretreated glass cloth is subjected to main dipping, and then the solvent is dried to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a metal foil on each side of the laminated bonding sheets.
  • the laminated laminate is placed in a press for hot pressing to obtain the circuit substrate, the curing temperature is 100 ° C to 400 ° C, the curing time is lh 4 h, and the curing pressure is 10 Kgf / cm 2 ⁇ 65 Kgf / cm 2 .
  • the present invention has the following beneficial effects:
  • the circuit substrate of the present invention has a characteristic that the dielectric constant is small in the warp and weft directions, and the signal delay problem can be solved in the high frequency field;
  • the circuit board of the present invention uses the adhesive sheet of the main dipping, and does not break when the substrate is pressed, and the interlayer adhesion is greatly improved;
  • the circuit board of the present invention uses the adhesive sheet of the dipped rubber, and the production process is exactly the same as that of the conventional copper clad laminate, and no equipment modification and adjustment are required;
  • the circuit board of the present invention has the advantage of low cost compared to the use of the open fiber cloth, and the circuit substrate It has the advantage that the dielectric constant has a smaller difference in the warp and weft directions, and it can solve the signal delay problem in the high frequency field;
  • the dielectric constant (Dk), dielectric loss (Df), signal delay and the like are measured, and the following examples are further described and described in detail, wherein the mass fraction of the organic resin is organically solid.
  • the mass of the substance is organically solid.
  • E-type 1080 fiberglass cloth (mass area 46.8 g/m 2 ) as reinforcing material, epoxy resin composition dissolved in solvent and then add filler as pre-treatment glue, glue composition and circuit board physical property data sheet As shown in Table 1.
  • the steps for making the circuit board are as follows:
  • Step 1 Prepare a pretreatment gel. Taking a suitable container, adding 40 parts by mass of the epoxy resin composition, adding an appropriate amount of methyl ethyl ketone solvent, stirring for a certain period of time, and then adding 52 parts by mass of the rutile-type titanium dioxide filler and 8 parts by mass of the amorphous silica filler. Stir well and emulsify and disperse to form a pre-treatment glue.
  • the glue Dk is 6.6.
  • Step 2 Prepare a pretreated E-type fiberglass cloth.
  • the E-type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 45 wt%.
  • Step 3 Prepare a bonding sheet.
  • the pretreated E-type fiberglass cloth was subjected to main dipping using a conventional epoxy resin system glue having a Dk of 3.8, and the solvent was dried after completion to obtain a bonding sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and forming a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 190 ° C, the curing time was 2 h, and the curing pressure was 35 Kgf/cm 2 .
  • Example 2
  • E-type 1080 fiberglass cloth (mass area 46.8 g/m 2 ) as reinforcing material, epoxy resin composition dissolved in solvent and then add filler as pre-treatment glue, glue composition and circuit board physical property data sheet As shown in Table 1.
  • the steps for making the circuit board are as follows:
  • Step 1 Prepare a pretreatment gel. Taking a suitable container, adding 42 parts by mass of the epoxy resin composition, adding an appropriate amount of methyl ethyl ketone solvent, stirring for a certain period of time, and then adding 50 parts by mass of the rutile-type titanium dioxide filler and 8 parts by mass of the amorphous silica filler, Stir well and emulsify and disperse to form a pre-treatment glue with a Dk of 6.5.
  • Step 2 Prepare a pretreated E-type fiberglass cloth.
  • the E-type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 45 wt%.
  • Step 3 Prepare a bonding sheet.
  • the pretreated E-type fiberglass cloth was subjected to main dipping using a conventional polyphenylene ether resin composition glue having a Dk of 2.6, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 200 ° C, the curing time was 2 h, and the curing pressure was 35 Kgf/cm 2 .
  • E-type 1080 fiberglass cloth (mass area: 46.8 g/m 2 ) is used as the reinforcing material, the cyanate resin composition is dissolved in the solvent and the filler is added as the pretreatment glue, the composition of the glue solution and the physical property data of the circuit substrate.
  • the table is shown in Table 1. The steps for making the circuit board are as follows:
  • Step 1 Prepare a pretreatment gel. Taking a suitable container, adding 40 parts by mass of the cyanate resin composition, an appropriate amount of methyl ethyl ketone solvent, stirring for a certain period of time, and then adding 54 parts by mass of the rutile-type titanium dioxide filler and 6 parts by mass of the amorphous silica filler. The mixture was thoroughly stirred and emulsified and dispersed to form a pretreatment glue, and the glue Dk was 6.5.
  • Step 2 Prepare a pretreated E-type fiberglass cloth. The E-type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 45 wt%.
  • Step 3 Prepare a bonding sheet.
  • the pretreated E-type fiberglass cloth was subjected to main dipping using a conventional polyphenylene ether resin composition glue having a Dk of 2.6, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 200 ° C, the curing time was 2 h, and the curing pressure was 35 Kgf/cm 2 .
  • Step 1 Prepare the pre-treatment glue. Taking a suitable container, adding 38 parts by mass of the polyphenylene ether resin composition, an appropriate amount of xylene solvent, stirring for a certain period of time, and then adding 54 parts by mass of the rutile-type titanium dioxide filler and 8 parts by mass of the amorphous silica filler. The mixture was thoroughly stirred and emulsified and dispersed to form a pretreatment glue, and the glue Dk was 6.4.
  • Step 2 Prepare a pretreated E-type fiberglass cloth.
  • the E-type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 30% by weight.
  • Step 3 Prepare a bonding sheet.
  • the pretreated E-type fiberglass cloth was subjected to main dipping using a conventional cyanate resin composition glue having a Dk of 3.2, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 200 ° C, the curing time was 2 h, and the curing pressure was 35 Kgf / cm 2 .
  • Example 5 Using E-type 1080 fiberglass cloth (mass area 46.8 g / m 2 ) as a reinforcing material, polybutadiene resin composition dissolved in solvent and then added filler as pre-treatment glue, glue composition and circuit board
  • the physical property data table is shown in Table 1. The steps for making the circuit board are as follows:
  • Step 1 Prepare a pretreatment gel. Taking a suitable container, adding 34 parts by mass of the polybutadiene resin composition, an appropriate amount of xylene solvent, stirring for a certain period of time, and then adding 56 parts by mass of the rutile-type titanium dioxide filler and 10 parts by mass of the amorphous silica filler. , thoroughly stirred, and emulsified and dispersed to form a pretreatment glue, the glue Dk is 6.2.
  • Step 2 Prepare a pretreated E-type fiberglass cloth.
  • the E-type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 20% by weight.
  • Step 3 Prepare a bonding sheet.
  • the pretreated E-type fiberglass cloth was subjected to main dipping using a conventional polyphenylene ether resin composition glue having a Dk of 2.6, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 240 ° C, the curing time was 3 h, and the curing pressure was 55 Kgf/cm 2 .
  • an E-type 1500 glass cloth (having a mass per unit area of 164.1 g/m 2 ) was used, and the resin content of the pretreated glass cloth was 25 wt%. The rest is the same as in the fifth embodiment.
  • Step 1 Prepare a pretreatment gel. Take a suitable container, add 50 parts by mass of the epoxy resin jM composition, and mix the appropriate amount of methyl ethyl ketone solvent for a certain period of time, and then add 42 parts by mass of rutile type II. The titanium oxide filler and 8 parts by mass of the amorphous silica filler were thoroughly stirred, and emulsified and dispersed to form a pretreatment glue, and the glue Dk was 4.6.
  • Step 2 Prepare a pretreated E-type fiberglass cloth.
  • the NE type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 20% by weight.
  • Step 3 Prepare a bonding sheet.
  • the pretreated NE type fiberglass cloth was subjected to main dipping using a conventional cyanate resin composition glue having a Dk of 3.2, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 200 ° C, the curing time was 2 h, and the curing pressure was 35 Kgf/cm 2 .
  • NE type 2116 glass fiber cloth (mass area: 103.8g/m 2 ) is used as the reinforcing material, the cyanate resin composition is dissolved in the solvent and the filler is added as the pretreatment glue, the composition of the glue solution and the physical property data of the circuit board.
  • the table is shown in Table 1. The steps for making the circuit board are as follows:
  • Step 1 Prepare a pretreatment gel. Taking a suitable container, adding 50 parts by mass of a cyanate ester T composition, an appropriate amount of methyl ethyl ketone solvent, stirring for a certain period of time, and then adding 44 parts by mass of rutile-type titanium dioxide filler and 6 parts by mass of amorphous silica The filler, fully stirred, and emulsified and dispersed to form a pretreatment glue, the glue Dk is 4.4.
  • Step 2' Prepare a special pretreatment NE type fiberglass cloth.
  • the NE type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 30% by weight.
  • Step 3 Prepare a bonding sheet.
  • the pretreated NE type fiberglass cloth was subjected to main dipping using a conventional cyanate resin composition glue having a Dk of 3.2, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate is placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature is The curing time was 2 h at 200 ° C and the curing pressure was 35 Kgf/cm 2 .
  • Example 9
  • NE type 1078 fiberglass cloth (mass area: 47.8g/m 2 ) is used as the reinforcing material, the polyphenylene ether resin composition is dissolved in the solvent and the filler is added as the pretreatment glue, the composition of the glue solution and the physical property data of the circuit substrate.
  • the table is shown in Table 1. The steps for making the circuit board are as follows:
  • Step 1 Prepare a pretreatment gel. Taking a suitable container, adding 48 parts by mass of the polyphenylene ether resin composition, an appropriate amount of xylene solvent, stirring for a certain period of time, and then adding 44 parts by mass of the rutile-type titanium dioxide filler and 8 parts by mass of the amorphous silica filler. Stir well and emulsifie and disperse to form a pre-treatment glue with a Dk of 4.5.
  • Step 2 Prepare a pretreated NE type fiberglass cloth.
  • the NE type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 45 wt%.
  • Step 3 Prepare a bonding sheet.
  • the pretreated NE type fiberglass cloth was subjected to main dipping using a conventional polyphenylene ether resin composition glue having a Dk of 2.6, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 200 ° C, the curing time was 2 h, and the curing pressure was 35 Kgf / cm 2 .
  • NE type 106 fiberglass cloth (mass area: 24.4g/m 2 ) is used as the reinforcing material, the polybutadiene resin composition is dissolved in the solvent and the filler is added as the pretreatment glue, the composition of the glue solution and the physical properties of the circuit substrate.
  • the data table is shown in Table 1. The steps for making the circuit board are as follows:
  • Step 1 Prepare a pretreatment gel. Taking a suitable container, adding 44 parts by mass of the polybutadiene resin composition, an appropriate amount of xylene solvent, stirring for a certain period of time, and then adding 46 parts by mass of the rutile-type titanium dioxide filler and 10 parts by mass of the amorphous silica filler. , stir well, and carry out the milk
  • the dispersion is a pretreatment glue with a Dk of 4.5.
  • Step 2 Prepare a pretreated NE type fiberglass cloth.
  • the NE type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 50% by weight.
  • Step 3 Prepare a bonding sheet.
  • the main dipping was carried out by using the above-mentioned special pretreatment NE type fiberglass cloth, and the main dipping was carried out using a conventional polyphenylene ether resin composition glue having a glue Dk of 2.6, and the solvent was dried after completion to obtain a bonding sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 240 ⁇ , the curing time was 3 hours, and the curing pressure was 55 Kgf/cm 2 .
  • E-type 2116 glass fiber cloth (mass area: 103.3 ⁇ 4/m 2 ) is used as a reinforcing material, cyanate resin composition is dissolved in solvent and filler is added as pretreatment glue, glue composition and circuit board.
  • the physical property data table is shown in Table 2. The steps for making the circuit board are as follows:
  • Step 1 Prepare a pretreatment gel. Taking a suitable container, adding 40 parts by mass of the cyanate resin composition, an appropriate amount of methyl ethyl ketone solvent, stirring for a certain period of time, and then adding 54 parts by mass of the rutile-type titanium dioxide filler and 6 parts by mass of the amorphous silica filler. The mixture was thoroughly stirred and emulsified and dispersed to form a pretreatment glue, and the glue Dk was 6.5.
  • Step 2 Prepare a pretreated E-type fiberglass cloth.
  • the E-type fiberglass cloth was pre-impregnated with the above glue, and the solvent was dried to obtain a pretreated glass cloth having a resin content of 35 wt%/. .
  • Step 3 Prepare a bonding sheet.
  • the pretreated E-type fiberglass cloth was subjected to main dipping using a conventional cyanate resin composition glue having a Dk of 3.2, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 200, the curing time was 2 h, and the curing pressure was 35 Kgf/cm 2 .
  • the E-type 1080 glass cloth (having a mass per unit area of 46.8 g/m 2 ) was used as the reinforcing material, and the prepared pretreated glass cloth had a resin content of 10% by weight, and the rest was identical to that of Example 1.
  • E-type 1080 fiberglass cloth (mass area: 46.8 g/m 2 ) is used as the reinforcing material, the cyanate resin composition is dissolved in the solvent and the filler is added as the pretreatment glue, the composition of the glue solution and the physical property data of the circuit substrate.
  • the table is shown in Table 2. The steps for making the circuit board are as follows:
  • Step 1 Prepare a pretreatment gel. Taking a suitable container, adding 70 parts by mass of a cyanate ester T composition, an appropriate amount of methyl ethyl ketone solvent, stirring for a certain period of time, and then adding 24 parts by mass of rutile-type titanium dioxide filler and 6 parts by mass of amorphous silica fillers, sufficiently stirred. ⁇ J and Serve pretreatment of dispersion glue, glue Dk 5.2.
  • Step 2 Prepare a pretreated E-type fiberglass cloth. The E-type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 45 wt%.
  • Step 3 Prepare a bonding sheet.
  • the pretreated E-type fiberglass cloth was subjected to main dipping using a conventional polyphenylene ether resin composition glue having a Dk of 2.6, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 200 ° C, the curing time was 2 h, and the curing pressure was 35 Kgf/cm 2 .
  • Step 1 Prepare a pretreatment gel. Taking a suitable container, adding 22 parts by mass of the polyphenylene ether resin composition, an appropriate amount of xylene solvent, stirring for a certain period of time, and then adding 70 parts by mass of the rutile-type titanium dioxide filler and 8 parts by mass of the amorphous silica filler. The mixture was thoroughly stirred and emulsified and dispersed to form a pretreatment glue, and the glue Dk was 7.8.
  • Step 2 Prepare a pretreated E-type fiberglass cloth.
  • the E-type fiberglass cloth was pre-impregnated with the above pretreatment glue, and the solvent was dried after completion to obtain a pretreated glass fiber cloth having a resin content of 30% by weight.
  • Step 3 Prepare a bonding sheet. Using the main dipping, the above-mentioned pretreated E-type fiberglass cloth was subjected to main dipping using a conventional cyanate resin composition glue having a Dk of 3.2, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 200 ° C, the curing time was 2 h, and the curing pressure was 35 Kgf/cm 2 . Comparative example 4
  • the prepared pretreated glass cloth had a resin content of 60% by weight, and the rest was identical to that of Example 5.
  • the prepared pretreated glass cloth had a resin content of 15% by weight, and the rest was identical to that of Example 7.
  • the prepared pretreated glass cloth had a resin content of 62% by weight, and the remainder was identical to that of Example 10.
  • E type 2116 fiberglass cloth (mass area: 103.8g/m 2 ) is used as the reinforcing material, the cyanate resin composition is dissolved in the solvent and the filler is added as the pretreatment glue, the composition of the glue solution and the physical property data of the circuit substrate.
  • the table is shown in Table 2. The steps for making the circuit board are as follows:
  • Step 1 Preparation of a conventional resin composition glue. Take a suitable container, add 90 parts by mass of a cyanate resin composition, an appropriate amount of methyl ethyl ketone solvent, stir for a certain period of time, and then add 10 parts by mass of amorphous silica filler, and stir well to obtain a conventional cyanic acid.
  • the ester resin composition glue, the glue Dk was 3.2.
  • Step 2 Prepare a pretreated E-type fiberglass cloth.
  • the E-type fiberglass cloth was pre-impregnated with the above glue, and the solvent was dried to obtain a pretreated glass cloth having a resin content of 35 wt%.
  • Step 3 Prepare a bonding sheet.
  • the pretreated E-type fiberglass cloth was subjected to main dipping using the above conventional cyanate resin composition glue having a Dk of 3.2, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 4 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate is placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature is The curing time was 2 h at 200 ° C and the curing pressure was 35 Kgf/cm 2 .
  • E-type 1080 fiberglass cloth (mass area: 46.8 g/m 2 ) is used as the reinforcing material, the epoxy resin composition is dissolved in the solvent and the filler is added as the glue for dipping the E-type fiberglass cloth, and the glue solution is formulated.
  • the physical property data sheets of the composition and the circuit board are shown in Table 2. The steps for making the circuit board are as follows:
  • Step 1 Prepare the glue. Take a suitable container, add 85 parts by mass of epoxy resin composition, an appropriate amount of methyl ethyl ketone solvent, stir for a certain period of time, and then add 15 parts by mass of amorphous silica filler, and stir well to obtain epoxy resin combination.
  • the glue solution, the glue Dk is 3.8.
  • Step 2 Prepare a bonding sheet.
  • the E-type fiberglass cloth was dipped using the above-mentioned resin composition glue having a Dk of 3.8, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 3 Laminating one or more of the above-mentioned bonding sheets together, and laminating a copper foil on each side of the laminated bonding sheets.
  • the laminated laminate was placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature was 190 ° C, the curing time was 2 h, and the curing pressure was 35 Kgf/cm 2 .
  • Step 1 Prepare a glue solution. Take a suitable container, add 85 parts by mass of epoxy resin composition, an appropriate amount of methyl ethyl ketone solvent, stir for a certain period of time, and then add 15 parts by mass of amorphous silica filler, and stir well to obtain epoxy resin combination.
  • the glue solution, the glue Dk is 3.8.
  • Step 2 Prepare a bonding sheet.
  • the epoxy resin composition was glued to the opened fiberglass cloth with the above glue Dk of 3.8, and the solvent was dried after completion to obtain a bonded sheet.
  • Step 3 Laminating one or more of the above-mentioned bonding sheets together, and superimposing on both sides of the laminated bonding sheets A piece of copper foil.
  • the laminated laminate is placed in a press for hot pressing to obtain the circuit substrate, and the curing temperature is
  • the curing time was 2 h at 190 ° C and the curing pressure was 35 Kgf/cm 2 .
  • Dielectric properties Dk/Df The dielectric constant Dk and dielectric loss Df of the sheet at 10 GHz are measured by SPDR method;
  • the measurement is performed according to the method specified in IPC TM-650 2.5.5.11.
  • the test frequency is 12.5 GHz and the test line length is 40 inches.
  • the signal delay of the test is divided into a warp signal delay and a latitudinal signal delay, and the warp signal delay refers to a signal when the transmission line is tested in the warp direction of the circuit substrate.
  • Delay, latitudinal signal delay refers to the signal delay tested when the transmission line is routed in the latitudinal direction of the circuit board;
  • Comparative Example 7 Compared with Example 11, although the method of pretreating and main dipping the fiberglass cloth was also adopted, the same glue was used for the pretreatment and the main dipping, and the pretreatment glue Dk and the fiberglass cloth were used. The Dk difference is large, and the circuit substrate has a signal delay problem. Comparative Example 8 is a common production method of a circuit board. The dk of the glue Dk and the fiberglass cloth are largely different by one dipping, and the circuit board has a signal delay problem as compared with the first embodiment.
  • Comparative Example 9 the dipping of the fiberglass cloth was used for one dipping, and the Dk of the glue Dk and the fiberglass cloth of the fiberglass cloth were greatly different. Compared with the first embodiment, the circuit substrate still had a signal delay problem, especially the warp direction signal. The delay problem is serious.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)

Abstract

一种用于构成电路基板的粘结片的制备方法,所述方法包括使用具有介电常数与所用玻璃纤维布的介电常数值相同或接近的预处理胶液对玻纤布进行预处理。还提供通过所述方法制备得到的粘结片及电路基板。该电路基板制备方法,不需要进行设备改造与调整,成本较低,制备得到的电路基板的介电常数在经向和纬向上差别更小,能够有效地解决信号时延问题。

Description

电路基板及其制备方法 技术领域
本发明属于电子材料技术领域, 涉及一种电路基板及其制作方法, 具体涉 及一种微观均勾性、 及各向同性的电路基板及其制作方法, 更具体地涉及一种 介电常数在经向和纬向上差别小的电路基板及其制作方法。
背景技术
近年来, 随着电子产品向多功能、 小型化的方向发展, 使用的电路板朝着 多层化、 布线高密度化以及信号传输高速化的方向发展, 对电路基板——覆金 属箔层压板, 如覆铜板的综合性能提出了更高的要求。 具体来讲, 介质的介电 常数 (Dk)和介电损耗 (Df) 是影响信号传输速度和信号质量的重要指标。 对 于传输速度而言, 介质材料的介电常数值越低, 信号的传输速度越快; 对于信 号完整性而言, 由于材料的介电损耗特性, 使信号在传输过程中产生损失, 而 且随着传输频率和传输线长度增加而急剧增加, 对于基材而言, 信号完整性主 要和介质材料的介电损耗和铜箔导体的表面粗糙度有关, 介质材料的介电损耗 越低, 信号的传输损耗越小, 特别是在高频率, 长链路传输情况下尤为突出。
与此同时, 随着信息通讯设备高性能化、 高功能化以及网络化的发展, 在 云计算、 大数据时代, 数据传输速率将变得越来越高, 越来越快。 数据传输速 率由传统的 5Gbps上升到 lOGbps,更甚者 25Gbps,当数据传输速率越来越高时, 数字信号的传输波长越来越短。 在传输速率较低时, 由于数字信号的传输波长 较长, 信号时延对信号的完整性影响较小; 但是当传输速率高于 lOGbps时, 信 号时延成为高速传输链路中一个必须考虑的问题。
作为通信设备传输信号的载体之一——覆铜箔层压板在信号传输起到关键 作用, 作为传输介质的层压板材料决定信号传输的质量。 目前, 覆铜箔层压板 材料一般使用电子级玻璃纤维布作为增强材料, 浸以热固性树脂, 经过烘干、 叠层、 热压得到。 因使用编织材料做增强材料(如玻璃纤维布), 编织纤维布因 编织的原因以及编织纤维交叉部分的十字节点存在, 使得电路基板中绝缘介质
(如玻璃成分) 并不是均匀的分布。 如图 1〜图 5所示。
要解决该问题, 根本上需要制得在平面方向上均一的介质材料, 主要的技 术手段包括(1 )加大玻璃纤维布的开纤程度; (2)采用膜形式增强材料代替纤 维编织材料; (3 ) 采用介电常数更低的增强材料, 如低介电常数玻璃纤维布。 虽然通过开纤的方式将玻璃纤维布变得进一步均勾, 但由于玻璃纤维布的编制 工艺及其结构, 目前还只能在纬向方向做到均匀, 在经向方向仅能相对传统的 非开纤纤维布更松散, 无法做到完全开纤、 均匀化, 这也就导致的玻璃纤维布 在平面方向上无法达到完全的均匀性; 通过采用膜的形式在工艺性实施时难度 很大: 操作性差, 和树脂的结合性差, 容易分层; 通过采用低介电常数玻璃纤 维布, 可以在一定程度上降低增强材料的介电常数, 但是还是和目前使用的低 介电常数树脂组合物相差加大, 无法满足介电常数在平面方向的均一性。
截止目前为止, 为了适应高速通信对覆铜箔层压板材料的技术要求, 本领 域技术人员致力于通过各种技术手段, 降低其介电常数和介电损耗, 一般通过 两个方面来实现: 将传统的环氧树脂替换为改性环氧树脂、 氰酸酯树脂、 双马 来酰亚胺树脂、 聚苯醚树脂、 碳氢树脂, 以及热塑性材料聚四氟乙烯、 液晶树 脂等, 这些树脂材料本身具有很低的介电常数和介电损耗特性, 可以提供更优 良高速传输特性。 另外, 通过改变增强材料也可以降低覆铜箔层压板材料的介 电常数和介电损耗, 由于现有的一般的增强材料为电子级玻璃纤维布(E型玻纤 布), 本身介电常数为 6.2〜6.6, 相比较使用的树脂部分的介电常数高很多, 这 样制造得到覆铜箔层压板材料的 Dk—般为 3.5〜4.5之间,为了进一步降低层压 板材料的介电常数, 行业技术人员也提出了采用低介电常数玻璃纤维布替代传 统电子级玻璃纤维布, 由于低介电常数玻璃纤维布 Dk为 4.4〜4.6, 可以大幅度 降低整个层压板材料的介电常数, 可以有效的提高信号的传输速率, 另外, 由 于其介质损耗 (Df)值比电子级玻璃纤维布也低, 也有利于改善信号传输过程 的损耗, 显著地改善由于信号传输速率和频率上升带来的信号完整性问题。
根据前所述可知, 作为覆铜箔层压板材料的两个必要成分: 树脂组合物和 增强材料; 而作为这两个组份的介电常数的差别, 体现为增强材料的 Dk远远高 于树脂组合物的 Dk, 具体如下表:
Figure imgf000005_0001
从上表可以明显看出, 目前应用于高速材料的树脂组合物的介电常数明显 要低于增强材料——玻璃纤维布, 而最终层压板的介电常数为树脂组合物和增 强材料的加权和, 具体如下公式所示。
Dk /^ι;:板 =Dk树脂 X V树脂 +Dk mn X V增强材料
Ok mM: 层压板材料的介电常数;
Dk «: 树脂的介电常数;
V m . 树脂所占体积份数;
Dk細 : 增强材料的介电常数; .
V m 增强材料所占体积份数。
从微观结构上不难看出, 由树脂组合物和增强材料组成的覆铜箔层压板材 料由于增强材料的编织结构在微观结构上的不均匀性, 导致了在经纬纱交织的 地方 Dk很高, 有经纱或纬纱的地方 Dk比较高, 而没有纱的地方 Dk低, 这种 不均匀导致了介质层的介电常数的微观差异。
信号的传输时间是由传输速度和传输距离决定, 当传输距离相同的情况下, 传输速度与传输介质的介电常数成反比, 由于传输线对应的周围的介质的介电 常数的微观差异, 直接导致了信号从发出端到接受端的时间不一致, 导致信号 的不匹配, 即时延效应。 信号时延分为经向信号时延和纬向信号时延, 经向信 号时延是指传输线在电路基板经向方向上布线时的信号时延, 纬向信号时延是 指传输线在电路基板纬向方向上布线时的信号时延。
综上所述, 随着数据传输速率的不断提高, 时延问题已经成为了一个对于 高速链路中信号传输的必须面对的问题, 目前在某种程度上可以通过一些设计 手段来降低时延的产生, 但是会带来成本的大量增加, 所以, 如何从介质材料 本身出发, 提高介质材料——层压板的微观均匀性, 从根本上解决信号时延问 题, 已经成为高速材料技术研究的一个重要技术问题。 ·
但是如前所言, 由于目前的增强材料的结构特性, 导致了层压板材料的平 面方向的不均匀性, 导致微观结构上层压板材料的介电常数和介电损耗是各向 异性的, 且在同一平面方向上不同地方的微观上也有巨大的差别。 在高速数字 电路设计过程中, 工程师采取了各种措施来解决信号完整性问题, 利用差分线 传输高速数字信号的方法就是其中之一。 在 PCB中的差分线是耦合带状线或耦 合微带线, 信号在上面传输时是奇模传输方式, 因此差分信号具有抗干扰性强, 易匹配等优点。 随着人们对数字电路的信息传输速率要求的提高, 信号的差分 传输方式必将得到越来越广泛的应用, 差分线主要优势有: 抗干扰能力强, 能 有效抑制电磁干扰、 时序定位精确等, 所以运用差分线传输高速信号, 一方面 在对 PCB系统的信号完整性和低功耗等方面大有裨益,另一方面也对 PCB设计 水平提出了更高要求。
中国专利 CN102548200A公开了一种电路基板, 包括经过表面粗糙化处理 形成粗糙层的玻璃膜、 分别位于所述玻璃膜两侧粗槌层上的树脂粘接层、 以及 位于树脂粘接层外侧的金属箔, 所述玻璃膜、 树脂粘接层及金属箔通过压制结 合在一起。 玻璃膜在压制的时候容易破碎; 而且玻璃膜的表面粗糙化处理工艺 麻烦, 且难以控制, 同时粗糙化处理后会在一定程度上破坏玻璃膜各向同性的 特点; 另外, 使用玻璃膜生产的工艺与常规覆铜板生产工艺不一样, 需要进行 设备改造与调整。
欧洲专利 EP1140373A先用具有相对较低的固含量的含可固化树脂的溶液 浸渍玻纤布, 干燥后再用具有相对较高的固含量的含可固化树脂的溶液浸渍, 最后再进行固化, 通过降低树脂溶液的固体含量, 来增加溶剂含量, 降低粘度, 目的是提高树脂的渗透性, 来减少半固化片和固化制品中空隙数量, 而如何降 低 Dk以及解决信号时延问题并未提及。
中国专利 CN101494949A披露在玻璃布的上胶工序之前对玻璃布进 fi开纤 或扁平化处理, 然后浸渍在环氧树脂胶液中并经烘干后制得绝缘材料层, 来降 低覆铜箔基板的信号损失, 提高信号传播速度以及降低生产成本。
中国专利 CN101570640B披露用石英玻璃纤维的密集度稀疏的石英玻璃布 (优选开纤)为基材, 含浸介电损耗为 0.003以下的热固性树脂组合物制备预浸 料, 应用于高频材料来保证介电常数的同时, 改善加工性能。
以上都未考虑或提出在常规生产工艺中简单方便地解决电路基板平面方向 即经向和纬向上的信号时延问题。
发明内容
本发明的目的之一在于提供一种制备用于构成电路基板的粘结片的方法, 包括对增强材料进行特殊预处理的步骤, 这样制备的电路基板具有优异的介电 性能, 其经向和纬向介电常数在差别很小, 实现了介电常数微观一致性。
为了达到上述目的, 本发明采用了如下技术方案:
( 1 ) 制备预处理胶液, 其 Dk与所用增强材料的 Dk相同或接近;
(2)将所述增强材料在所述预处理胶液中进行预浸胶, 然后烘干溶剂, 得 到预处理玻纤布;
(3 ) 将所述预处理增强材料进行主浸胶, 然后烘干溶剂, 制得粘结片。 在一些实施方案中, 所述预处理胶液为树脂组合物溶于有机溶剂得到的胶 液; 优选地, 所述胶液还包含填料。
在一些优选的实施方案中, 所述树脂组合物包含树脂和固化剂, 其中树脂 选自环氧树脂、 氰酸酯树脂、 聚苯醚树脂、 聚丁二烯树脂、 聚丁二烯与苯乙烯 共聚物树脂、 聚四氟乙烯树脂、 聚苯并噁嗪树脂、 聚酰亚胺、 含硅树脂、 双马 来酰亚胺树脂、 液晶聚合物、 双马来酰亚胺三嗪树脂、 热塑性树脂中的一种或 多种; 所述固化剂选自酚醛类固化剂、 胺类固化剂、 高分子酸酐类固化剂、 活 性酯、 自由基引发剂的一种或多种; 所述有机溶剂选自甲醇、 乙醇、 丁醇等醇 类, 乙基溶纤剂、 丁基溶纤剂、 乙二醇甲醚、 二乙二醇乙醚、 二乙二醇丁醚等 醚类, 丙酮、 丁酮、 甲基乙基甲酮、 甲基异丁基甲酮、 环己酮等酮类, 甲苯、 二甲苯、 均三甲苯等芳香族烃类, 乙氧基乙基乙酸酯、 醋酸乙酯等酯类, Ν,Ν- 二甲基甲酰胺、 Ν,Ν-二甲基乙酰胺、 Ν-甲基 -2-吡咯垸酮等含氮类溶剂中的一种 或为其中至少两种的混合物。 优选地, 所述树脂组合物还包括填料, 所述.填料 选自二氧化硅、 氧化铝、 二氧化钛、 钛酸钡、 钛酸锶、 钛酸镁、 钕酸钙、 钛酸 锶钡、 钛酸^、 玻璃粉中的一种或多种; 所述二氧化硅包括熔融无定形二氧化 硅和结晶二氧化硅, 优选熔融无定形二氧化硅, 所述二氧化钛包括金红石型和 锐钛型二氧化钛, 优选金红石型二氧化钛。
在一些优选实施方案中, 所述增强材料为电路基板用的电子级玻璃纤维布、 玻璃纤维无纺布、 芳纶或其它有机纤维编织布; 更优选地, 所述增强材料为电 子级玻璃纤维布。
在一些优选实施方案中, 所述预处理玻纤布的树脂含量为 20wt%〜50wt%。 在进一步的优选实施方案中, 所述预处理玻纤布的单位面积质量为<3(¾/1112 时,预处理玻纤布的树脂含量为 25wt%〜50wt%;所述预处理玻纤布的单位面积 质量为 30g/m2〜100g/m2时, 预处理玻纤布的树脂含量为 20wt%〜45wt%; 所述 预处理玻纤布的单位面积质量为 100g/m2〜175g/m2时, 预处理玻纤布的树脂含 量为 20wt%〜40wt%。
在另一些优选实施方案中, 所述玻纤布为 E型玻纤布, 相应的预处理胶液 的 Dk ( 10GHz) 为 6.2〜6.6。
在又一些优选实施方案中,所述玻纤布为 NE型玻纤布,相应的预处理胶液 的 Dk ( 10GHz) 为 4.4〜4·6。 在再一些优选实施方案中, 所述树脂的 Dk在玻纤布的 Dk± 10%的范围内; 优选地, 所述树脂的 Dk在玻纤布 Dk± 5%的范围内。
本发明的目的之二在于提供根据本发明的制备方法制备的粘结片。
本发明的目的之三在于提供由本发明的粘结片制成的电路基板。
跗图说明
图 1是 E型玻璃纤维布的平面结构示意图。
图 2是 E型玻璃纤维开纤布的平面结构示意图。
图 3是 E型玻璃纤维布的横截面结构示意图。
图 4示出了 E型玻璃纤维布的介电常数的平面不均匀性。
图 5示出了本发明经预^ b理的 E型玻璃纤维布的介电常数的平面均匀性。 具体实 式
本发明所用的 Dk是指介电常数, 在 10GHz频率下用 SPDR法测试的值。 本发明所用的 Df是指介电损耗, 在 10GHz频率下用 SPDR法测试的值。 本发明所用的玻纤布是指玻璃纤维布, 简称玻纤布, 玻纤布包含 E型玻纤 布、 NE型玻纤布、 S型玻纤布、 D型玻纤布等类型, 每种类型的玻纤布又可以 分为 7628、 2116、 1080、 106、 1037、 1078、 2112、 3313、 1500等规格型号, 本领域技术人员熟知, 玻纤布应用在电路基板领域时, 其主要作用是作为电路 基板的增强材料。
本发明所用的树脂组合物是指包括树脂和固化剂的组合物。 例如, 环氧树 脂组合物是指包括环氧树脂和合适固化剂的组合物。 本领域技术人员能够根据 所用的树脂选择合适的固化剂及其量, 也能够根据所用的树脂及固化剂选择合 适的有机溶剂。
本发明所用的填料是指填充材料, 简称填料, 在覆铜板行业使用填料的目 的不只是为了降低成本, 而是为了提高覆铜板的性能, 如 CTE的降低、 阻燃性 的提高、 导热系数及板材力学性能的提高等。 随着填料技术的发展, 越来越多 新型填料在覆铜板中使用, 如本发明中用来调节预处理胶液 Dk的功能填料。
本发明所用的预处理胶液是指将本发明的树脂组合物溶于合适有机溶剂的 胶液。 优选地, 本发明所用的预处理胶液是指将本发明的树脂组合物溶于合适 有机溶剂后再加入填料所获得的分散体系。 本领域技术人员能够通过调整所述 预处理胶液中填料的用量使得所述预处理胶液具有合适的介电常数(Dk:)。在本 发明中, 所述预处理胶液的 Dk, 为预处理胶液去掉溶剂后所得千胶的 Dk, 该 值仅与树脂组合物和填料的量有关, 而与溶剂的量无关。
本发明所用的浸胶是指将玻纤布浸入胶液中, 然后再经过上胶机进行烘干 溶剂的操作。 ,
本发明所用的预浸胶是指将玻纤布浸入预制胶液中, 然后再经过上胶机进 行烘干溶剂的操作。
本发明所用的主浸胶是指将玻纤布浸入主胶液中, 然后再经过上胶机进行 烘干溶剂的操作。
本发明所用的树脂含量是指在预处理玻纤布、 粘结片、 电路基板中, 除增 强材料玻纤布之外, 包含树脂在内的固形组合物的质量百分含量, 例如, 胶液 的树脂组合物配方中含有树脂、 固化剂和填料, 那么树脂含量就是树月旨、 固化 剂和填料的质量百分含量。 树脂含量是本领域的一个固定词汇, 本领域技术人 员知晓, 所述树脂含量可以通过结合预处理胶液的固体含量来调节上胶时上胶 机夹轴的间隙、 上胶机上胶的车速等工艺参数来控制。
对现有玻纤布(如 E型玻纤布、 NE型玻纤布等)进行预处理, 具体方法是 使用 Dk能与玻纤布的 Dk特性相当、 匹配性好的预处理胶液, 先对玻纤布进行 预处理,. 以填充玻纤布网格及空隙为基本控制目标, 使其介电常数在经向和纬 向上差别更小, 形成供主浸胶的增强材料的半成品——预处理玻纤布。
根据本发明, 所述预处理胶液, 可选择 Dk等于玻纤布 Dk± 10%的树脂, 优选 Dk为玻纤布 Dk±5%的树脂。 Dk与玻纤布的 Dk越接近, 则介电常数在经 向和纬向上差别越小, 信号的时延就越小。
根据本发明, 所述玻纤布为 E型玻纤布、 NE型玻纤布中的一种。
,根据本发明,所述 E型玻纤布进行预处理,选择预处理胶液的 Dk ( lOGHz) 为 6.2〜6.6。
根据本发明,所述 NE型玻纤布进行预处理,选择预处理胶液的 Dk( 10GHz) 为 4·4〜4.6 ο
根据本发明, 所述玻纤布经过预处理后, 其树脂含量为 20wt%〜50wt%。 树脂含量过高, 主浸后预浸胶液会与主浸胶液溶解混合, 会影响主浸胶的 上胶量。 树脂含量过低, 则导致玻纤布空隙填充不满, 无法实现介电常数在经 向和纬向上一致性, 影响信号传输时延。
根据本发明, 所述预处理玻纤布的单位面积质量为<3(^/1112时, ¾处理玻纤 布的树脂含量为 25wt%〜50wt%;所述预处理玻纤布的单位面积质量为 30g/m2〜 100g/m2时, 预处理玻纤布的树脂含量为 20wt%〜45wt%; 所述预处理玻纤布的 单位面积质量为 100g/m2〜175g/m2时, 预处理玻纤布的树脂含量为 20wt%〜 40wt%o
根据玻纤布的单位面积质量来选择预处理玻纤布的树脂含量, 树 ]¾旨含量过 高, 主浸后预浸胶液会与主浸胶液溶解混合, 会影响主浸胶的上胶量, 同时因 一般玻纤布的 Dk远远高于主浸胶液的 Dk, 导致经过主浸, 制备的电路基板的 Dk过高, 电路基板的介电性能变差。 树脂含量过低, 则导致玻纤布空隙填充不 满, 无法实现介电常数在经向和纬向上的微观一致性, 影响信号传输时延。
根据本发明, 所述树脂组合物包含树脂、 固化剂, 其中树脂选自环氧树月旨、 氰酸酯树脂、 聚苯醚树脂、 聚丁二烯树脂、 聚丁二烯与苯乙烯共聚物树脂、 聚 四氟乙烯树脂、 聚苯并噁嗪树脂、 聚酰亚胺、 含硅树脂、 双马来酰亚胺树脂、 液晶聚合物、 双马来酰亚胺三嗪树脂、 热塑性树脂中的一种或多种。 .
固化剂选自酚醛类固化剂、 胺类固化剂、 高分子酸酐类固化剂、 活性酯、 自由基引发剂等中的一种或多种。
根据本发明, 所述填料选自二氧化硅 (熔融无定形二氧化硅和结晶二氧化- 硅)、 氧化铝、 二氧化钛 (金红石型和锐钛型)、 钛酸钡、 钛酸锶、 钛酸镁、 钛 酸钙、 钛酸锶钡、 钛酸铅、 玻璃粉中的一种或多种。 二氧化硅优选无定形二氧 化硅, 二氧化钛优选金红石型二氧化钛。
根据本发明, 所述预处理玻纤布是将树脂胶液中的有机溶剂进行烘干, 在 烘干过程中, 在玻纤布上的预处理胶液可以发生交联反应, 也可以未发生交联 反应。
根据本发明, 所述 E型玻纤布预处理的方法, 其特征在于:
步骤 根据选择的 E型玻纤布, 查找或者测试 E型玻纤布的 Dk ( 10GHz) 值。
步骤 2: 根据选择的 E型玻纤布的 Dk ( 10GHz)值, 制备预处理胶液, 预 处理胶液选择 Dk等于 E型玻纤布 Dk土 10%的树脂组合物, 优选 Dk等于 E型 玻纤布 Dk± 5%的树脂组合物。
步骤 3: 根据预处理玻纤布的单位面积质量,结合预处理胶液的固体含量来 调节上胶时上胶机夹轴的间隙、 上胶机上胶的车速等工艺参数, 当预处理玻纤 布的单位面积质量为 <30g/m2时, 控制预处理玻纤布的树脂含量为 25wt%〜 50wt%; 当预处理玻纤布的单位面积质量为 30g/m2〜100g/m2时, 控制预处理玻 纤布的树脂含量为 20wt%〜45wt% ; 当预处理玻纤布的单位面积质量为 100g/m2〜175g/m2时, 控制预处理玻纤布的树脂含量为 20wt%〜40wt%。
步骤 4:将经过预浸胶的 E型玻纤布中的有机溶剂烘干, 制得特殊预处理 E 型玻纤布。
根据本发明, 所述 NE型玻纤布预处理的方法, 其特征在于:
步骤 1:根据选择的 E型玻纤布,查找或者测试 NE型玻纤布的 Dk( 10GHz) 值。
步骤 2: 根据选择的 NE型玻纤布的 Dk ( 10GHz)值, 制备预处理胶液, 预处理胶液选择 Dk等于 NE型玻纤布 Dk± 10%的树脂组合物, 优选 Dk等于 NE型玻纤布 Dk±5%的树脂组合物。
步骤 3:根据预处理玻纤布的单位面积质量, 结合预处理胶液的固体含量来 调节上胶时上胶机夹轴的间隙、 上胶机上胶的车速等工艺参数, 当预处理玻纤 布的单位面积质量为 <30g/m2时, 控制预处理玻纤布的树脂含量为 25wt%〜 50wt%; 当预处理玻纤布的单位面积质量为 30g/m2〜100g/m2时, 控制预处理玻 纤布的树脂含量为 20wt%〜45wt%; 当预处理玻纤布的单位面积质量为 100g/m2〜175g/m2时, 控制预处理玻纤布的树脂含量为 20wt%〜40wt%。
步骤 4: 将经过预浸胶的 NE型玻纤布中的有机溶剂烘干, 制得特殊预处理 NE型玻纤布。
本发明的第二方面在于提供一种粘结片, 所述粘结片包括如上所述的特殊 预处理玻纤布和浸胶在特殊预处理玻纤布上的树脂组合物。
根据本发明, 所述树脂组合物包含树脂、 固化剂, 其中树脂选自环氧树脂、 氰酸酯树脂、 聚苯醚树脂、 聚丁二烯树脂、 聚丁二烯与苯乙烯共聚物树脂、 聚 四氟乙烯树脂、 聚苯并噁嗪树脂、 聚酰亚胺、 含硅树脂、 双马来酰亚胺树脂、 液晶聚合物、 双马来酰亚胺三嗪树脂中的一种或多种。
根据本发明, 所述树脂组合物还可以包括填料、 热塑性树脂、 不同的阻燃 化合物或添加剂等, 它们可以根据需要单独使用或多种组合使用。
本发明的第三方面提供包括本发明第二方面所述的粘结片的电路基板。 作为典型但非限制性的实例, 所述电路基板的制作方法可包括如下步骤: 步骤 1 : 制备预处理胶液。根据使用的玻纤布的 Dk, 制备一种预处理胶液, 使得预处理胶液烘干溶剂后干胶的 Dk能与所用玻纤布的 Dk相同或接近。
步骤 2: 制备预处理玻纤布。使用上述预处理胶液对玻纤布进行预浸胶, 然 后烘干溶剂, 制得预处理玻纤布。 ― 步骤 3:制备粘结片。将上述特殊预处理玻纤布进行主浸胶,然后烘干溶剂, 制得粘结片。
步骤 4: 将一张或多张上述粘结片叠合在一起, 在叠好的粘结片两面各叠合 一张金属箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度 为 100°C〜400°C, 固化时间为 lh〜4h, 固化压力为 10Kgf/cm2〜65Kgf/cm2
与现有技术相比, 本发明具有如下有益效果:
①相比一般的电路基板, 本发明的电路基板具有介电常数在经向和纬向上 差别小的特点, 应用于高频领域则能够解决信号时延问题;
②相比使用玻璃膜压板, 本发明的电路基板使用主浸胶的粘结片, 在基板 压制的时候不会出现破碎, 且层间粘合力大大提高;
'③相比使用玻璃膜压板, 本发明的电路基板使用 ΐ浸胶的粘结片, 生产工 艺与常规覆铜板生产工艺完全一样, 不需要进行设备改造与调整;
④相比使用开纤布, 本发明的电路基板具有成本低的优势, 而且电路基板 具有介电常数在经向和纬向上差别更小的优势, 应用于高频领域则能够 解决信号时延问题;
实施例
为更好地说明本发明, 便于理解本发明的技术方案, 本发明的典型但非限 制性的实施例如下:
针对上述制成的电路基板, 测其介电常数 (Dk)、 介电损耗 (Df)、 信号时 延等性能, 下述实施例进一步给予详细说明与描述, 其中有机树脂的质量份按 有机固形物质量份计。
实施例 1
使用 E型 1080玻纤布(单位面积质量为 46.8 g/m2)作为增强材料, 环氧树 脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板的物 性数据表如表 1所示。 进行电路基板制作的步骤如下: ·
步骤 1 : 制备预处理胶液。 取一合适容器, 加入 40质量份的环氧树脂组合 物, 适量的丁酮溶剂, 进行搅拌一定时间, 然后再加入 52质量份的金红石型二 氧化钛填料和 8质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳化分散 即成预处理胶液, 胶液 Dk为 6.6。
步骤 2: 制备预处理 E型玻纤布。 使用上述预处理胶液对 E型玻纤布进行 预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 45wt%。
步骤 3 : 制备粘结片。 使用胶液 Dk为 3.8的常规环氧树脂体系胶液对上述 预处理 E型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4:将一张或多张上述粘结片叠合在一起,在叠好的粘结片两面各 ¾合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 190 °C , 固化时间为 2h, 固化压力为 35Kgf/cm2。 实施例 2
使用 E型 1080玻纤布(单位面积质量为 46.8 g/m2)作为增强材料, 环氧树 脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板的物 性数据表如表 1所示。 进行电路基板制作的步骤如下:
步骤 1 : .制备预处理胶液。 取一合适容器, 加入 42质量份的环氧树脂组合 物, 适量的丁酮溶剂, 进行搅拌一定时间, 然后再加入 50质量份的金红石型二 氧化钛填料和 8质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳化分散 即成预处理胶液, 胶液 Dk为 6.5。
步骤 2: 制备预处理 E型玻纤布。 使用上述预处理胶液对 E型玻纤布进行 预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 45wt%。
步骤 3: 制备粘结片。 使用胶液 Dk为 2.6的常规聚苯醚树脂组合物胶液对 上述预处理 E型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4:将一张或多张上述粘结片叠合在一起,在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 200 °C , 固化时间为 2h, 固化压力为 35Kgf/cm2
实施例 3
使用 E型 1080玻纤布(单位面积质量为 46.8 g/m2)作为增强材料, 氰酸酯 树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板的 物性数据表如表 1所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备预处理胶液。 取一合适容器, 加入 40质量份的氰酸酯树脂组 合物, 适量的丁酮溶剂, 进行搅拌一定时间, 然后再加入 54质量份的金红石型 二氧化钛填料和 6质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳化分 散即成预处理胶液, 胶液 Dk为 6.5。 步骤 2: 制备预处理 E型玻纤布。 使用上述预处理胶液对 E型玻纤布进行 预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 45wt%。
步骤 3 : 制备粘结片。 使用胶液 Dk为 2.6的常规聚苯醚树脂组合物胶液对 上述预处理 E型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4: 将一张或多张上述粘结片叠合在一起,在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 200 °C , 固化时间为 2h, 固化压力为 35Kgf/cm2
实施例 4
使用 E型 1080玻纤布(单位面积质量为 46.8 g/m2)作为增强材料, 聚苯醚 树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板的 物性数据表如表 1所示。 进行电路基板制作的步骤如下:
• 步骤 1 : 制备预处理胶液。 取一合适容器, 加入 38质量份的聚苯醚树脂组 合物, 适量的二甲苯溶剂, 进行搅拌一定时间, 然后再加入 54质量份的金红石 型二氧化钛填料和 8质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳化 分散即成预处理胶液, 胶液 Dk为 6.4。
步骤 2: 制备预处理 E型玻纤布。 使用上述预处理胶液对 E型玻纤布进行 预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 30wt%。
步骤 3: 制备粘结片。 使用胶液 Dk为 3.2的常规氰酸酯树脂组合物胶液对 上述预处理 E型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4: 将一张或多张上述粘结片叠合在一起,在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 200°C, 固化时间为 2h, 固化压力为 35Kgf/cm2
实施例 5 ' 使用 E型 1080玻纤布(单位面积质量为 46.8 g/m2)作为增强材料, 聚丁二 烯树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板 的物性数据表如表 1所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备预处理胶液。 取一合适容器, 加入 34质量份的聚丁二烯树脂 组合物, 适量的二甲苯溶剂, 进行搅拌一定时间, 然后再加入 56质量份的金红 石型二氧化钛填料和 10质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳 化分散即成预处理胶液, 胶液 Dk为 6.2。
步骤 2: 制备预处理 E型玻纤布。 使用上述预处理胶液对 E型玻纤布进行 预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 20wt%。
步骤 3 : 制备粘结片。 使用胶液 Dk为 2.6的常规聚苯醚树脂组合物胶液对 上述预处理 E型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4:将一张或多张上述粘结片叠合在一起, 在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 240 °C , 固化时间为 3h, 固化压力为 55Kgf/cm2
实施例 6
使用 E型 1500玻纤布 (单位面积质量为 164.1g/m2) 作为增强材料, 预处 理玻纤布的树脂含量为 25wt%。 其余与实施例 5相同。
实施例 7
使用 E型 3313玻纤布 (单位面积质量为 81.4 g/m2)作为增强材料, 环氧 树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板的 物性数据表如表 1所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备预处理胶液。 取一合适容器, 加入 50质量份的环氧树 jM组合 物, 适量的丁酮溶剂, 进行搅拌一定时间, 然后再加入 42质量份的金红石型二 氧化钛填料和 8质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳化分散 即成预处理胶液, 胶液 Dk为 4.6。
步骤 2: 制备预处理 E型玻纤布。 使用上述预处理胶液对 NE型玻纤布进 行预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 20wt%。
步骤 3 : 制备粘结片。 使用胶液 Dk为 3.2的常规氰酸酯树脂组合物胶液对 上述预处理 NE型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4: 将一张或多张上述粘结片叠合在一起, 在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 200 °C , 固化时间为 2h, 固化压力为 35Kgf/cm2
实施例 8
使用 NE型 2116玻纤布(单位面积质量为 103.8g/m2)作为增强材料, 氰酸 酯树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板 的物性数据表如表 1所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备预处理胶液。 取一合适容器, 加入 50质量份的氰酸酯^ T脂组 合物, 适量的丁酮溶剂, 进行搅拌一定时间, 然后再加入 44质量份的金红石型 二氧化钛填料和 6质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳化分 散即成预处理胶液, 胶液 Dk为 4.4。
步骤 2': 制备特殊预处理 NE型玻纤布。 使用上述预处理胶液对 NE型玻纤 布进行预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 30wt%。
步骤 3 : 制备粘结片。 使用胶液 Dk为 3.2的常规氰酸酯树脂组合物胶液对 上述预处理 NE型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4: 将一张或多张上述粘结片叠合在一起,在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 200 °C , 固化时间为 2h, 固化压力为 35Kgf/cm2。 - 实施例 9
使用 NE型 1078玻纤布 (单位面积质量为 47.8g/m2) 作为增强材料, 聚苯 醚树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板 的物性数据表如表 1所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备预处理胶液。 取一合适容器, 加入 48质量份的聚苯醚树脂组 合物, 适量的二甲苯溶剂, 进行搅拌一定时间, 然后再加入 44质量份的金红石 型二氧化钛填料和 8质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳化 分散即成预处理胶液, 胶液 Dk为 4.5。
步骤 2: 制备预处理 NE型玻纤布。 使用上述预处理胶液对 NE型玻纤布进 行预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 45wt%。
步骤 3 : 制备粘结片。 使用胶液 Dk为 2.6的常规聚苯醚树脂组合物胶液对 上述预处理 NE型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4: 将一张或多张上述粘结片叠合在一起,在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 200°C, 固化时间为 2h, 固化压力为 35Kgf/cm2
实施例 10
使用 NE型 106玻纤布(单位面积质量为 24.4g/m2)作为增强材料, 聚丁二 烯树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板 的物性数据表如表 1所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备预处理胶液。 取一合适容器, 加入 44质量份的聚丁二烯树脂 组合物, 适量的二甲苯溶剂, 进行搅拌一定时间, 然后再加入 46质量份的金红 石型二氧化钛填料和 10质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳 化分散即成预处理胶液, 胶液 Dk为 4.5。
步骤 2: 制备预处理 NE型玻纤布。 使用上述预处理胶液对 NE型玻纤布进 行预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 50wt%。
步骤 3: 制备粘结片。 使用上述特殊预处理 NE型玻纤布进行主浸胶, 使用 胶液 Dk为 2.6的常规聚苯醚树脂组合物胶液进行主浸胶, 完成后烘干溶剂, 制 得粘结片。
步骤 4:将一张或多张上述粘结片叠合在一起, 在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 240Ό , 固化时间为 3h, 固化压力为 55Kgf/cm2
表 1.各实施例的配方组成及其物性数据
Figure imgf000022_0001
实施例 11
使用 E型 2116玻纤布 (单位面积质量为 103.¾/m2) 作为增强材料, 氰酸 酯树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板 的物性数据表如表 2所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备预处理胶液。 取一合适容器, 加入 40质量份的氰酸酯树脂组 合物, 适量的丁酮溶剂, 进行搅拌一定时间, 然后再加入 54质量份的金红石型 二氧化钛填料和 6质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳化分 散即成预处理胶液, 胶液 Dk为 6.5。
步骤 2: 制备预处理 E型玻纤布。 使用上述胶液对 E型玻纤布进行预浸胶, 烘干溶剂, 得到预处理玻纤布, 其树脂含量为 35wt°/。。
步骤 3 : 制备粘结片。 使用 Dk为 3.2的常规氰酸酯树脂组合物胶液对上述 预处理 E型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4: 将一张或多张上述粘结片叠合在一起, 在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 200 固化时间为 2h, 固化压力为 35Kgf/cm2
比较例 1
使用 E型 1080玻纤布(单位面积质量为 46.8 g/m2)作为增强材料, 制备的 预处理玻纤布的树脂含量为 10wt%, 其余与实施例 1完全相同。
比较例 2
使用 E型 1080玻纤布(单位面积质量为 46.8 g/m2)作为增强材料, 氰酸酯 树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板的 物性数据表如表 2所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备预处理胶液。 取一合适容器, 加入 70质量份的氰酸酯^ T脂组 合物, 适量的丁酮溶剂, 进行搅拌一定时间, 然后再加入 24质量份的金红石型 二氧化钛填料和 6质量份无定形二氧化硅填料, 进行充分搅拌, .并进行^ J化分 散即成预处理胶液, 胶液 Dk为 5.2。 , 步骤 2: 制备预处理 E型玻纤布。 使用上述预处理胶液对 E型玻纤布进行 预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 45wt%。
步骤 3: 制备粘结片。 使用胶液 Dk为 2.6的常规聚苯醚树脂组合物胶液对 上述预处理 E型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4:将一张或多张上述粘结片叠合在一起,在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 200 °C , 固化时间为 2h, 固化压力为 35Kgf/cm2
比较例 3
使用 E型 1080玻纤布(单位面积质量为 46.8 g/m2)作为增强材料, 聚苯醚 树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板的 物性数据表如表 2所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备预处理胶液。 取一合适容器, 加入 22质量份的聚苯醚树脂组 合物, 适量的二甲苯溶剂, 进行搅拌一定时间, 然后再加入 70质量份的金红石 型二氧化钛填料和 8质量份无定形二氧化硅填料, 进行充分搅拌, 并进行乳化 分散即成预处理胶液, 胶液 Dk为 7.8。
步骤 2: 制备预处理 E型玻纤布。 使用上述预处理胶液对 E型玻纤布进行 预浸胶, 完成后烘干溶剂, 得到预处理玻纤布, 其树脂含量为 30wt%。
步骤 3 : 制备粘结片。 使用主浸胶, 使用胶液 Dk为 3.2的常规氰酸酯树脂 组合物胶液对上述预处理 E型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结 片。
步骤 4:将一张或多张上述粘结片叠合在一起, 在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 200 °C , 固化时间为 2h, 固化压力为 35Kgf/cm2。 比较例 4
使用 E型 1080玻纤布(单位面积质量为 46.8 g/m2)作为增强材料, 制备的 预处理玻纤布的树脂含量为 60wt%, 其余与实施例 5完全相同。
比较例 5
使用 E型 3313玻纤布 (单位面积质量为 81.4 g/m2) 作为增强材料, 制备 的预处理玻纤布的树脂含量为 15wt%, 其余与实施例 7完全相同。
比较例 6
使用 NE型 106玻纤布(单位面积质量为 24.4g/m2)作为增强材料, 制备的 预处理玻纤布的树脂含量为 62wt%, 其余与实施例 10完全相同。
比较例 7
使用 E型 2116玻纤布 (单位面积质量为 103.8g/m2) 作为增强材料, 氰酸 酯树脂组合物溶于溶剂再加入填料作为预处理胶液, 胶液配方组成及电路基板 的物性数据表如表 2所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备常规树脂组合物胶液。 取一合适容器, 加入 90质量份的氰酸 酯树脂组合物, 适量的丁酮溶剂, 进行搅拌一定时间, 然后再加入 10质量份无 定形二氧化硅填料, 进行充分搅拌, 制得常规氰酸酯树脂组合物胶液, 胶液 Dk 为 3.2。
步骤 2: 制备预处理 E型玻纤布。 使用上述胶液对 E型玻纤布进行预浸胶, 烘干溶剂, 得到预处理玻纤布, 其树脂含量为 35wt%。
步骤 3 : 制备粘结片。 使用上述 Dk为 3.2的常规氰酸酯树脂组合物胶液对 上述预处理 E型玻纤布进行主浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 4: 将一张或多张上述粘结片叠合在一起, 在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 200 °C , 固化时间为 2h, 固化压力为 35Kgf/cm2
比较例 8
使用 E型 1080玻纤布(单位面积质量为 46.8 g/m2)作为增强材料, 环氧树 脂组合物溶于溶剂再加入填料作为对 E型玻纤布进行浸胶的胶液, 胶液配方组 成及电路基板的物性数据表如表 2所示。 进行电路基板制作的步骤如下:
步骤 1 : 制备胶液。 取一合适容器, 加入 85质量份的环氧树脂组合物, 适 量的丁酮溶剂,进行搅拌一定时间,然后再加入 15质量份无定形二氧化硅填料, 进行充分搅拌, 制得环氧树脂组合物胶液, 胶液 Dk为 3.8。
步骤 2: 制备粘结片。 使用上述 Dk为 3.8的树脂组合物胶液对 E型玻纤布 浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 3: 将一张或多张上述粘结片叠合在一起, 在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为 190 °C , 固化时间为 2h, 固化压力为 35Kgf/cm2
比较例 9 .
使用 E型 1080开纤玻纤布 (单位面积质量为 46.8 g/m2)作为增强材料, Dk为 3.8的常规环氧树脂组合物胶液作为对开纤玻纤布进行浸胶的胶液, 胶液 配方组成及电路基板的物性数据表如表 2所示。进行电路基板制作的步骤如下: 步骤 1 : 制备胶液。 取一合适容器, 加入 85质量份的环氧树脂组合物, 适 量的丁酮溶剂,进行搅拌一定时间,然后再加入 15质量份无定形二氧化硅填料, 进行充分搅拌, 制得环氧树脂组合物胶液, 胶液 Dk为 3.8。
步骤 2: 制备粘结片。 使用上述胶液 Dk为 3.8的环氧树脂组合物胶液对开 纤玻纤布浸胶, 完成后烘干溶剂, 制得粘结片。
步骤 3 : 将一张或多张上述粘结片叠合在一起,在叠好的粘结片两面各叠合 一张铜箔。 将叠合好的叠层放进压机进行热压制得所述电路基板, 固化温度为
190°C , 固化时间为 2h, 固化压力为 35Kgf/cm2
表 2. 实施例 11、 比较例 1〜9的配方组成及其物性数据
Figure imgf000027_0001
上述性能的测试方法如下:
( 1 ) 介电性能 Dk/Df: 采用 SPDR法测定 10GHz下板材的介电常数 Dk和 介电损耗 Df;
(2)信号时延: 按照 IPC TM-650 2.5.5.11所规定的方法进行测定, 测试频 率为 12.5GHz, 测试线长为 40inch。根据传输线在电路基板上的方向不同, 测试 的信号时延分为经向信号时延和纬向信号时延, 经向信号时延是指传输线在电 路基板经向方向上布线时测试的信号时延, 纬向信号时延是指传输线在电路基 板纬向方向上布线时测试的信号时延;
(3 ) 树脂含量: 按照 IPC TM-650 2.3.16.1所规定的方法进行测定。
物性结果分析: 从表 1和表 2可知, 比较例 1相比于实施例 1、 比较例 5相比于实施例 7, 预处理玻纤布的树脂含量太低, 导致没有全部填满玻纤布孔隙, 电路基板有信 号时延问题。 比较例 2相比于实施例 3、 预处理胶液的 Dk相比玻纤布的 Dk严 重偏低, 电路基板有信号时延问题。 比较例 3 相比于实施例 4, 预处理胶液的 Dk相比玻纤布的 Dk严重偏高, 电路基板有信号时延问题。 比较例 4相比于实 施例 5、 比较例 6相比于实施例 10, 虽然电路基板没有信号时延问题, 但是预 处理玻纤布的树脂含量太高, 减少主浸胶的上胶量, 导致电路基板的 Dk偏高。 比较例 7与实施例 11相比, 虽然也采用对玻纤布进行预处理和主浸胶的方式, 但是预处理和主浸胶采用相同的胶液, 且预处理胶液 Dk与玻纤布的 Dk相差较 大, 电路基板有信号时延问题。 比较例 8 是电路基板常用的生产方式, 采用一 次浸胶, 胶液 Dk与玻纤布的 Dk相差较大, 与实施例 1相比, 电路基板有信号 时延问题。 比较例 9采用开纤玻纤布一次浸胶, 胶液 Dk与开纤玻纤布的 Dk相 差较大, 与实施例 1 相比, 电路基板依然有信号时延问题, 尤其是经向方向信 号时延问题严重。
以上所述, 仅为本发明的较佳比较例, 并非对本发明的组合物的含量作任 何限制, 对于本领域的普通技术人员来说, 可以根据本发明的技术方案和技术 构思作出其他各种相应的改变和变形, 凡是依据本发明的技术实质或组合物成 份或含量对以上比较例所作的任何细微修改、 等同变化与修饰, 均属于本发明 技术方案的范围内。

Claims

权 利 要 求 书
1、 一种用于制备构成电路基板的粘结片的方法, 包括以下步骤:
( 1 )制备预处理胶液, 其介电常数 (Dk) 与所用增强材料的 Dk相同或接 近;
(2 )将所述增强材料在所述预处理胶液中进行预浸胶, 然后烘干溶剂, 得 到预处理的增强材料;
(3 ) 将所述预处理增强材料进行主浸胶, 然后烘干溶剂, 制得粘结片。
2、 根据权利要求 1所述的制备方法, 其特征在于, 所述预处理胶液为树脂 组合物溶于有机溶剂得到的胶液。
3、 根据权利要求 2所述的制备方法, 其特征在于, 所述树脂组合物包含树 脂和固化剂, 其中所述树脂选自环氧树脂、 氰酸酯树脂、 聚苯醚树脂、 聚丁二 烯树脂、 聚丁二烯与苯乙烯共聚物树脂、 聚四氟乙烯树脂、 聚苯并噁嗪树脂、 聚酰亚胺、 含硅树脂、 双马来酰亚胺树脂、 液晶聚合物、 双马来酰亚胺三嗪树 月旨、 热塑性树脂中的一种或为其中至少两种的混合物;
4、 根据权利要求 3所述的制备方法, 其特征在于, 所述固化剂选自酚醛类 固化剂、 胺类固化剂、 高分子酸酐类固化剂、 活性酯、 自由基引发剂的一种或 多种;
5、根据权利要求 2所述的制备方法,其特征在于,所述有机溶剂选自甲醇、 乙醇、 丁醇等醇类, 乙基溶纤剂、 丁基溶纤剂、 乙二醇甲醚、 二乙二醇乙醚、 二乙二醇丁醚等醚类, 丙酮、 丁酮、 甲基乙基甲酮、 甲基异丁基甲酮、 环己酮 等酮类, 甲苯、 二甲苯、 均三甲苯等芳香族烃类, 乙氧基乙基乙酸酯、 醋酸乙 酯等酯类, Ν,Ν-二甲基甲酰胺、 Ν,Ν-二甲基乙酰胺、 Ν-甲基 -2-吡咯垸酮等含氮 类溶剂中的一种或为其中至少两种的混合物。
6、根据权利要求 3所述的方法,'其特征在于,所述预处理胶液还包含填料, 所述填料选自二氧化硅、 氧化铝、 二氧化钛、 钛酸钡、 钛酸锶、 钛酸镁、 钛酸 钙、 钛酸锶钡、 钛酸铅、 玻璃粉中的一种或多种; 所述二氧化硅包括熔融无定 形二氧化硅和结晶二氧化硅, 优选熔融无定形二氧化硅, 所述二氧化钛包括金 红石型和锐钛型二氧化钛, 优选金红石型二氧化钛。
7、裉据权利要求 1所述的制备方法, 其特征在于, 所述增强材料为电路基 板用的电子级玻璃纤维布、 玻璃纤维无纺布、 芳纶或其它有机纤维编织布;
8、 根据权利要求 7所述的制备方法, 其特征在于, 所述增强材料为电子级 玻璃纤维布。
9、 根据权利要求 1〜8任一项所述的制备方法, 其特征在于, 所述预处理 玻纤布的树脂含量为 20wt%〜50wt%;
10、 根据权利要求 9所述的制备方法, 其特征在于, 所述预处理玻纤布的 单位面积质量为<3(^/1112时, 预处理玻纤布的树脂含量为 25wt%〜50wt%;
11、 根据权利要求 9所述的制备方法, 其特征在于, 所述预处理玻纤布的 单位面积质量为 30g/m2〜100g/m2时, 预处理玻纤布的树脂含量为 20wt%〜 45wt%;
12、 根据权利要求 9所述的制备方法, 其特征在于, 所述预处理玻纤布的 单位面积质量为 100g/m2〜175g/m2时, 预处理玻纤布的树脂含量为 20wt%〜 40wt%o
13、 根据权利要求 1〜8任一项所述的制备方法, 其特征在于, 所述玻纤布 为 E型玻纤布, 相应的处理胶液的 Dk为 6.2〜6.6;
14、 根据权利要求 1〜8任一项所述的制备方法, 其特征在于, 所述玻纤布 为 NE型玻纤布, 相应的预处理胶液的 Dk为 4.4〜4.6。
15、 根据权利要求 1〜8任一项所述的制备方法, 其特征在于, 所述预处理 胶液的 Dk在玻纤布的 Dk± 10%的范围内;
16、 根据权利要求 15 所述的制备方法, 其特征在于, 所述预处理胶液的 Dk在玻纤布 Dk±5%的范围内。
17、 根据权利要求 1〜16任一项所述的方法制备的粘结片。
18、 由根据权利要求 17所述的粘结片制成的电路基板。
19、 由根据权利要求 18所述的电路基板制成的印制电路板。
PCT/CN2014/072233 2014-01-14 2014-02-19 电路基板及其制备方法 WO2015106479A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/647,412 US20160007452A1 (en) 2014-01-14 2014-02-19 Circuit substrate and process for preparing the same
EP14863038.7A EP2913354B1 (en) 2014-01-14 2014-02-19 Circuit substrate and preparation method thereof
KR1020157017087A KR101819805B1 (ko) 2014-01-14 2014-02-19 회로기판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410016714.1A CN103755989B (zh) 2014-01-14 2014-01-14 电路基板及其制备方法
CN201410016714.1 2014-01-14

Publications (1)

Publication Number Publication Date
WO2015106479A1 true WO2015106479A1 (zh) 2015-07-23

Family

ID=50523329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072233 WO2015106479A1 (zh) 2014-01-14 2014-02-19 电路基板及其制备方法

Country Status (6)

Country Link
US (1) US20160007452A1 (zh)
EP (1) EP2913354B1 (zh)
KR (1) KR101819805B1 (zh)
CN (1) CN103755989B (zh)
TW (1) TWI625997B (zh)
WO (1) WO2015106479A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3342925A4 (en) * 2015-08-28 2019-04-24 Shengyi Technology Co., Ltd. CIRCUIT SUBSTRATE AND METHOD FOR PREPARING THE SAME

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104744891A (zh) * 2013-12-27 2015-07-01 台燿科技股份有限公司 半固化片及其应用
CN104263306B (zh) * 2014-09-26 2016-02-10 四川东材科技集团股份有限公司 一种聚苯醚胶黏剂及其覆铜板的制备方法
CN104650574B (zh) * 2015-02-10 2017-02-22 郴州功田电子陶瓷技术有限公司 一种聚苯醚覆铜板组合物
CN105348732A (zh) * 2015-09-15 2016-02-24 广东生益科技股份有限公司 电路基板及其制备方法
CN105398179B (zh) * 2015-12-25 2017-11-03 广东生益科技股份有限公司 半挠性覆铜板的制作方法
JP6751910B2 (ja) * 2016-10-05 2020-09-09 パナソニックIpマネジメント株式会社 多層プリント配線板、多層プリント配線板の製造方法
CN106626690B (zh) * 2016-10-14 2018-09-28 厦门大学 一种高电容率金属化表面板材的制备方法
CN106633633A (zh) * 2016-10-20 2017-05-10 蓝星(成都)新材料有限公司 一种芳纶复合材料及其制备方法
CN106633785B (zh) * 2016-12-30 2019-06-14 广东生益科技股份有限公司 用于电路基板的预浸渍料、层压板、制备方法及包含其的印制电路板
CN107057098B (zh) * 2016-12-30 2020-07-28 广东生益科技股份有限公司 用于电路基板的预浸渍料、层压板、制备方法及包含其的印制电路板
JP6787210B2 (ja) * 2017-03-23 2020-11-18 味の素株式会社 樹脂組成物
KR102419891B1 (ko) * 2017-08-14 2022-07-13 삼성전자주식회사 회로 기판 및 이를 이용한 반도체 패키지
WO2019065940A1 (ja) 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板、及び配線板
CN107964203B (zh) * 2017-12-26 2020-09-22 浙江华正新材料股份有限公司 一种低介电预浸料组合物、覆铜板及其制作方法
JP6999487B2 (ja) * 2018-05-01 2022-01-18 信越化学工業株式会社 石英ガラス繊維含有基板
CN113496898A (zh) * 2020-04-01 2021-10-12 澜起电子科技(昆山)有限公司 封装基板及其制作方法
TW202206286A (zh) 2020-07-28 2022-02-16 美商聖高拜塑膠製品公司 介電基板及其形成方法
US20230191761A1 (en) * 2021-12-17 2023-06-22 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same
CN116334949A (zh) * 2021-12-24 2023-06-27 广东生益科技股份有限公司 一种低介电损耗无纺布及其制备及其应用
CN115073864B (zh) * 2022-07-05 2023-11-10 陕西生益科技有限公司 一种磁介电无纺布预浸料、包含其的覆铜板及应用
CN114957893B (zh) * 2022-07-05 2023-11-07 广东生益科技股份有限公司 一种无纺布预浸料、覆铜板及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1140373A1 (en) 1999-01-04 2001-10-10 Isola Laminate Systems Corporation Methods of manufacturing voidfree resin impregnated webs
JP2005015729A (ja) * 2003-06-30 2005-01-20 Nitto Boseki Co Ltd 誘電率のばらつきが小さいプリント配線板用プリプレグ及び積層板
US20090169842A1 (en) * 2007-12-28 2009-07-02 Fujitsu Limited Printed wiring board and printed circuit board unit
CN101494949A (zh) 2009-03-04 2009-07-29 腾辉电子(苏州)有限公司 高频覆铜箔基板,其半固化片及降低覆铜箔基板信号损失的方法
WO2010011701A2 (en) * 2008-07-25 2010-01-28 Dielectric Solutions, Llc Glass fiber composition and printed circuit board made from the glass fiber composition
CN201872349U (zh) * 2010-11-24 2011-06-22 广东生益科技股份有限公司 改善覆铜板用粘结片浸润效果的装置
CN102114453A (zh) * 2011-03-03 2011-07-06 吴江市东风电子有限公司 一种制备覆铜板用介质布的制备方法
CN102166852A (zh) * 2010-12-31 2011-08-31 广东生益科技股份有限公司 一种高弹性模量的ptfe覆铜板的制备方法
CN101570640B (zh) 2008-04-28 2011-12-14 日立化成工业株式会社 含有薄层石英玻璃布的预浸料、及使用其的布线板
CN102548200A (zh) 2011-12-29 2012-07-04 广东生益科技股份有限公司 电路基板及其制作方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024305A (en) * 1975-06-04 1977-05-17 International Business Machines Corporation Method for producing a resin rich epoxy prepreg and laminate
JP2001031782A (ja) * 1999-07-19 2001-02-06 Matsushita Electric Works Ltd プリプレグおよびこれを用いた積層板
JP4348785B2 (ja) * 1999-07-29 2009-10-21 三菱瓦斯化学株式会社 高弾性率ガラス布基材熱硬化性樹脂銅張積層板
JP2003017820A (ja) * 2001-06-29 2003-01-17 Hitachi Chem Co Ltd 比誘電率安定化型プリント配線板材料及びその用途
US6632511B2 (en) * 2001-11-09 2003-10-14 Polyclad Laminates, Inc. Manufacture of prepregs and laminates with relatively low dielectric constant for printed circuit boards
US7270845B2 (en) * 2004-03-31 2007-09-18 Endicott Interconnect Technologies, Inc. Dielectric composition for forming dielectric layer for use in circuitized substrates
JP4747608B2 (ja) * 2005-02-23 2011-08-17 パナソニック電工株式会社 ポリフェニレン樹脂組成物を含有するプリプレグ及び積層体
JP2008047655A (ja) * 2006-08-11 2008-02-28 Mitsui Mining & Smelting Co Ltd 配線基板およびその製造方法
JP5048307B2 (ja) * 2006-11-13 2012-10-17 信越石英株式会社 複合織物及びプリント配線基板
CN104011163A (zh) * 2011-12-12 2014-08-27 株式会社Lg化学 用于制造电路板的氰酸酯树脂组合物以及含有其的柔性覆金属层压制品
CN102850726A (zh) * 2012-09-07 2013-01-02 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1140373A1 (en) 1999-01-04 2001-10-10 Isola Laminate Systems Corporation Methods of manufacturing voidfree resin impregnated webs
JP2005015729A (ja) * 2003-06-30 2005-01-20 Nitto Boseki Co Ltd 誘電率のばらつきが小さいプリント配線板用プリプレグ及び積層板
US20090169842A1 (en) * 2007-12-28 2009-07-02 Fujitsu Limited Printed wiring board and printed circuit board unit
CN101570640B (zh) 2008-04-28 2011-12-14 日立化成工业株式会社 含有薄层石英玻璃布的预浸料、及使用其的布线板
WO2010011701A2 (en) * 2008-07-25 2010-01-28 Dielectric Solutions, Llc Glass fiber composition and printed circuit board made from the glass fiber composition
CN101494949A (zh) 2009-03-04 2009-07-29 腾辉电子(苏州)有限公司 高频覆铜箔基板,其半固化片及降低覆铜箔基板信号损失的方法
CN201872349U (zh) * 2010-11-24 2011-06-22 广东生益科技股份有限公司 改善覆铜板用粘结片浸润效果的装置
CN102166852A (zh) * 2010-12-31 2011-08-31 广东生益科技股份有限公司 一种高弹性模量的ptfe覆铜板的制备方法
CN102114453A (zh) * 2011-03-03 2011-07-06 吴江市东风电子有限公司 一种制备覆铜板用介质布的制备方法
CN102548200A (zh) 2011-12-29 2012-07-04 广东生益科技股份有限公司 电路基板及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2913354A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3342925A4 (en) * 2015-08-28 2019-04-24 Shengyi Technology Co., Ltd. CIRCUIT SUBSTRATE AND METHOD FOR PREPARING THE SAME
US11191158B2 (en) 2015-08-28 2021-11-30 Shengyi Technology Co., Ltd. Circuit board and process for preparing the same

Also Published As

Publication number Publication date
EP2913354B1 (en) 2020-10-21
TWI625997B (zh) 2018-06-01
KR101819805B1 (ko) 2018-01-17
TW201528900A (zh) 2015-07-16
US20160007452A1 (en) 2016-01-07
EP2913354A1 (en) 2015-09-02
KR20150100701A (ko) 2015-09-02
CN103755989B (zh) 2017-01-11
CN103755989A (zh) 2014-04-30
EP2913354A4 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2015106479A1 (zh) 电路基板及其制备方法
TWI631258B (zh) Circuit substrate and preparation method thereof
KR101575944B1 (ko) 복합재료, 이를 이용하여 제조된 고주파 회로기판 및 그 제조 방법
WO2015180206A1 (zh) 一种热固性树脂夹心预浸体、制备方法及覆铜板
US8397378B2 (en) Manufacturing an insulating sheet, a copper clad laminate, and a printed circuit board
CN105348732A (zh) 电路基板及其制备方法
WO2014036712A1 (zh) 复合材料、用其制作的高频电路基板及其制作方法
CN113597121B (zh) 一种玻璃纤维布增强的覆铜板制造方法
CN101494949A (zh) 高频覆铜箔基板,其半固化片及降低覆铜箔基板信号损失的方法
KR102054093B1 (ko) 에폭시 수지 조성물 및 이를 함유한 프리프레그, 적층판 및 인쇄회로기판
CN105437668A (zh) 一种超薄覆铜板及其制作方法
CN204894661U (zh) 一种电路基板用预浸夹心结构体及由其制备的电路基板、印刷电路板
CN114889273A (zh) 无玻纤的陶瓷/碳氢树脂基微波介质基板及其制备方法
CN204887693U (zh) 一种电路基板用预浸夹心结构体及由其制备的电路基板、印刷电路板
JP2016509107A (ja) 均一な誘電特性を有するプレプレグ及びラミネート
CN112519357A (zh) 挠性绝缘板的制备方法及得到的挠性绝缘板、挠性层压板及其制备方法、和应用
CN204887694U (zh) 一种印刷电路板用预浸夹心结构体及由其制备的印刷电路板
CN204906855U (zh) 一种电路基板用预浸夹心结构体及由其制备的电路基板、印刷电路板
JP2020040343A (ja) 金属張積層板、樹脂付き金属箔、及び配線板
CN115610045B (zh) 一种含核壳结构粉体的低损耗和低吸水率覆铜板制备方法
CN111454539B (zh) 一种热固性树脂组合物及其在毫米波电路基板中的应用
TW201946977A (zh) 樹脂組合物、印刷電路用預浸片及覆金屬層壓板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014863038

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14647412

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157017087

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE