WO2015098047A1 - 生体情報測定装置 - Google Patents

生体情報測定装置 Download PDF

Info

Publication number
WO2015098047A1
WO2015098047A1 PCT/JP2014/006288 JP2014006288W WO2015098047A1 WO 2015098047 A1 WO2015098047 A1 WO 2015098047A1 JP 2014006288 W JP2014006288 W JP 2014006288W WO 2015098047 A1 WO2015098047 A1 WO 2015098047A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
diffraction grating
optical path
biological information
Prior art date
Application number
PCT/JP2014/006288
Other languages
English (en)
French (fr)
Inventor
勝裕 佐藤
Original Assignee
ミツミ電機株式会社
勝裕 佐藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社, 勝裕 佐藤 filed Critical ミツミ電機株式会社
Priority to CN201480071250.2A priority Critical patent/CN105873512A/zh
Priority to KR1020167012924A priority patent/KR20160102161A/ko
Priority to US15/107,242 priority patent/US20170014057A1/en
Publication of WO2015098047A1 publication Critical patent/WO2015098047A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0242Special features of optical sensors or probes classified in A61B5/00 for varying or adjusting the optical path length in the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]

Definitions

  • the present invention relates to a biological information measuring apparatus that non-invasively measures biological information such as blood glucose level using light.
  • This type of apparatus generally includes a first optical system that guides light from a light source to a measurement target, a second optical system that guides light reflected from the measurement target, and a reflection guided by the second optical system.
  • a spectroscopic optical system that splits the light; a light receiving element that receives the split light; and a reference signal optical system for obtaining a reference signal for calibration.
  • JP 2006-87913 A JP 2002-65465 A JP 2007-259967 A JP 2012-191969 A
  • the biological information measuring device as described above is made compact and portable, the user can measure the blood glucose level at any time, which is considered very convenient. Further, if the size is reduced, there is an advantage that it can be easily incorporated into other health care devices such as an existing body composition meter.
  • the light receiving element as the main component is composed of an array type sensor, and it is still insufficient in terms of miniaturization.
  • the present invention has been made in consideration of the above points, and provides a biological information measuring apparatus capable of downsizing the apparatus configuration without degrading measurement accuracy.
  • One aspect of the biological information measuring device of the present invention is: A light source; A first optical path for guiding light emitted from the light source to a measurement target; A second optical path for guiding reflected light reflected from the measurement object; A rotating diffraction grating that splits the reflected light guided from the second optical path; A light receiving element for receiving the spectrum from the rotating diffraction grating; In place of the measurement object, a reflecting member that reflects light incident from the first optical path and emits the light to the second optical path; It comprises.
  • the present invention it is possible to realize a biological information measuring apparatus capable of downsizing the apparatus configuration without reducing the measurement accuracy.
  • FIG. 1 Schematic which shows the whole structure of the biological information measuring device which concerns on embodiment Diagram for explaining diffraction operation of rotating diffraction grating
  • FIG. 1 A plan view showing an external configuration of a MEMS device provided with a rotating diffraction grating
  • the figure which shows the change of the magnitude
  • Sectional drawing which shows the structural example of a reflection member
  • FIG. 1 is a schematic diagram showing the overall configuration of a biological information measuring apparatus according to an embodiment of the present invention.
  • the biological information measuring apparatus 100 irradiates the subject 10 with near-infrared light and analyzes the reflected light in order to noninvasively measure the blood glucose level of the subject 10 to be measured as biological information. It is like that.
  • the biological information measuring device 100 generates near-infrared rays by the light source 101.
  • the light source 101 includes an LED (Light-Emitting-Diode), a halogen lamp, or a xenon lamp.
  • the light from the light source 101 is condensed by the condenser lens 103 after passing through the pinhole 102.
  • the condensed light enters the light-emitting side optical fiber 105 from the light incident body 104.
  • One end of the light emission side optical fiber 105 is connected to the light incident body 104, while the other end of the light emission side optical fiber 105 is connected to the measurement probe 106.
  • the pinhole 102 is not essential and may be omitted.
  • the measurement probe 106 is provided at a position where the tip can contact the surface of the skin of the subject 10, or a position where the measurement probe 106 can face the skin in the very vicinity of the skin.
  • the light returning to the measurement probe 106 is emitted from the light emitting body 108 via the light receiving side optical fiber 107.
  • the light emitted from the light emitting body 108 is collimated by the lens system 109 and then enters the rotating diffraction grating 110.
  • the absorption intensity of near-infrared light in the body is greatly influenced by the presence of glucose, and thus the glucose concentration in the body, that is, the blood sugar level is measured by measuring the absorption intensity.
  • the rotating diffraction grating 110 rotates as indicated by an arrow a in the figure.
  • the incident surface of the rotary diffraction grating 110 is a mirror surface, and reflects incident light. That is, the rotating diffraction grating 110 rotates so that the incident angle on the mirror surface changes.
  • the light reflected by the rotating diffraction grating 110 passes through the slit 121 and then enters the photodetector (PD) 122.
  • the light reception signal obtained by photoelectric conversion by the PD 122 is output to the arithmetic unit 130 via the analog-digital conversion circuit (A / D conversion) 123.
  • the arithmetic device 130 is a device such as a personal computer or a smartphone having an analysis program, and obtains biological information such as a blood glucose level from the received light signal by executing the analysis program.
  • the optical system of the biological information measuring apparatus 100 is accommodated in the case 124.
  • An opening 125 for allowing light to pass between the measurement probe 106 and the subject 10 is formed at a position corresponding to the measurement probe 106 in the case 124.
  • the opening 125 is not essential and may be omitted.
  • FIG. 2 is a diagram for explaining the diffraction operation of the rotating diffraction grating 110.
  • the rotating diffraction grating 110 is in the rotational position as shown in FIG. 2A, the ⁇ 1 component is incident on the PD 122 by reflecting the ⁇ 1 component of the incident light in the direction of the slit 121.
  • the rotating diffraction grating 110 is in the rotational position as shown in FIG. 2B
  • the ⁇ 2 component is incident on the PD 122 by reflecting the ⁇ 2 component of the incident light in the direction of the slit 121.
  • the ⁇ 3 component is incident on the PD 122 by reflecting the ⁇ 3 component of the incident light in the direction of the slit 121.
  • the rotating diffraction grating 110 is configured to split incident light by inputting light having a wavelength corresponding to the rotation angle to the PD 122.
  • the photodetector (PD) 122 is not an array sensor but a single sensor as compared with the case where a fixed diffraction grating is used. It is possible to use a light receiving element having a light receiving surface. As a result, since the photodetector 122 having a simple configuration can be used, the cost can be reduced accordingly. Further, as compared with the case where a fixed diffraction grating is used, it is not necessary to provide a space for spectroscopy between the diffraction grating and the photodetector 122, so that the apparatus can be reduced in size accordingly.
  • a movable part of MEMS is a mirror surface, and a diffraction grating is formed on the mirror surface. That is, the rotating diffraction grating 110 has a grating formed on the mirror surface of the MEMS mirror.
  • FIG. 3 is a plan view showing an external configuration of the MEMS device 200 provided with the rotating diffraction grating 110.
  • the MEMS device 200 includes a drive unit 201 configured by a drive circuit, an actuator, and the like, a rotating diffraction grating 110, a fixed frame 202, a movable frame 203, and beam portions 204 and 205.
  • the drive unit 201 has a fixed frame 202 in addition to the function of driving the rotary diffraction grating 110, and serves as a base for the rotary diffraction grating 110.
  • the beam portion 204 is composed of two beams 204a and 204b.
  • the two beams 204 a and 204 b are provided so as to bridge the two opposing edge portions of the movable frame 203 and the fixed frame 202. Thereby, the movable frame 203 is suspended from the fixed frame 202 by the beams 204a and 204b.
  • the beam portion 205 includes two beams 205a and 205b.
  • the two beams 205 a and 205 b are provided so as to bridge the two opposing edges of the rotating diffraction grating 110 and the movable frame 203. Thereby, the rotary diffraction grating 110 is suspended from the movable frame 203 by the beams 205a and 205b.
  • the rotating diffraction grating 110 rotates when the beams 204 a and 204 b are driven by the driving unit 201. Specifically, the drive unit 201 alternately changes the left and right sides of the beams 204a and 204b in the front and back direction of the paper, so that the rotating diffraction grating 110 is driven to rotate within a predetermined angle range.
  • the rotating diffraction grating 110 is rotationally driven at a rotational speed of 1 to 2 [Hz].
  • the rotation speed is not limited to this.
  • the rotation speed may be selected according to the calculation speed of the calculation device 130 or the like.
  • a driving method for driving the rotary diffraction grating 110 a piezoelectric method, an electrostatic method, an electromagnetic driving method, or the like can be used.
  • the surface of the rotating diffraction grating 110 is a mirror surface, and a diffraction grating 111 is formed on the mirror surface.
  • the diffraction grating 111 is formed so as to be parallel to the rotation axes of the beams 204a and 204b.
  • the pitch of the diffraction grating 111 is 0.5 to 3 [ ⁇ m].
  • the depth of the diffraction grating 111 is 1.5 [ ⁇ m] or more. Accordingly, the rotating diffraction grating 110 can favorably disperse near-infrared rays by rotation.
  • the pitch and / or depth of the diffraction grating 111 may be selected according to the light.
  • the rotating diffraction grating 110 is also driven in a direction perpendicular to the mirror surface.
  • the beams 205a and 205b are simultaneously bent in the same front and back direction by the driving unit 201, so that the rotating diffraction grating 110 is driven in a direction perpendicular to the mirror surface.
  • high-frequency simple vibration is performed at several tens [KHz] in a direction perpendicular to the mirror surface.
  • FIGS. 4A and 4B show the change in the magnitude of the signal measured by the PD 122 when the rotational position of the rotating diffraction grating 110 is the same and the position of the rotating diffraction grating 110 is changed in the direction perpendicular to the mirror surface.
  • FIG. 4A and 4B show the change in the magnitude of the signal measured by the PD 122 when the rotational position of the rotating diffraction grating 110 is the same and the position of the rotating diffraction grating 110 is changed in the direction perpendicular to the mirror surface.
  • FIG. 4A and 4B shows the amount of light passing through the slit 121 changes, so that the amount of light incident on the PD 122 changes as shown in FIGS. 4A and 4B.
  • the chopper signal can be superimposed on the measurement signal, and the noise component can be removed by performing lock-in amplifier detection.
  • the rotating diffraction grating 110 may be rotated by driving the beams 205a and 205b. Specifically, when the beams 205a and 205b are twisted in the same direction, the rotary diffraction grating 110 is rotationally driven within a predetermined angular range.
  • FIG. 5 is a diagram for explaining lock-in amplifier detection.
  • FIG. 5A shows an ideal spectral spectrum without noise.
  • FIG. 5B noises of various frequencies are superimposed on the actual measurement signal.
  • FIG. 5C shows a spectrum when the rotating diffraction grating 110 is subjected to a single high frequency vibration at a frequency f 0 in a direction perpendicular to the mirror surface.
  • the chopper signal having the frequency f 0 is superimposed on the measured signal.
  • FIG. 5D shows the measurement signal after lock-in amplifier detection. Can be taken out only a signal of frequency f 0 as a DC signal (A in FIG. 5C, B). Thus, the frequency of the signals other than f 0 is removed as noise.
  • the measurement light is dispersed by rotating the rotary diffraction grating 110, and the S / N of the measurement signal is obtained by causing the rotary diffraction grating 110 to vibrate at a high frequency in a direction perpendicular to the mirror surface.
  • the rotary diffraction grating 110 is driven biaxially in the rotation direction and in the direction perpendicular to the mirror surface.
  • the biological information measuring apparatus 100 includes a movable reflective member 140.
  • the reflecting member 140 is for obtaining a reference signal for calibration.
  • calibration is performed by subtracting a reference signal acquired in advance from a measurement signal in the arithmetic unit 130, thereby removing noise components caused by optical path characteristics included in the measurement signal. It is to be.
  • the reflection member 140 When obtaining the reference signal, the reflection member 140 is moved to a position facing the tip of the measurement probe 106 as shown in FIG. 6A, and reflects the light emitted from the measurement probe 106 to reflect the measurement probe 106. Return to. On the other hand, when obtaining the measurement signal, the reflecting member 140 retracts from the position facing the tip of the measurement probe 106 as shown in FIG. 6B. Although omitted in FIGS. 6 and 1, a sliding mechanism such as a VCM or a stepping motor may be provided in order to move the reflecting member 140.
  • FIG. 7 is a cross-sectional view showing a configuration example of the reflecting member 140.
  • FIG. 7A shows an example in which the main body 141 is made of resin or the like, and the metal film 142 is formed on the reflecting surface by plating or vapor deposition.
  • FIG. 7B shows an example in which the main body 143 is made of aluminum, stainless steel, or the like, and the diffuse reflection surface 144 is formed by forming irregularities such as satin on the reflection surface.
  • the diffuse reflection surface 144 has a roughness approximate to the reflectance of the skin surface. By doing so, it is possible to include noise due to the skin surface in the reference signal in a pseudo manner.
  • the optical path for obtaining the measurement signal and the optical path for obtaining the reference signal are common, the optical path for obtaining the reference signal is compared with the case where it is provided separately from the optical path of the measurement signal.
  • the apparatus configuration can be simplified and downsized.
  • the reference signal of the optical path common to the measurement signal can be obtained, the accuracy of calibration can be improved.
  • the reflection member 140 When the measurement is not performed, the reflection member 140 is moved to a position that closes the opening 125 formed at a position corresponding to the measurement probe 106, thereby preventing dust from entering the optical system. That is, the reflective member 140 functions not only as a reference signal but also as a lid that closes the opening 125. As a result, the number of parts can be reduced as compared with the case where a dedicated lid is provided.
  • the number of parts and the required space of the spectroscopic optical system can be reduced by separating the reflected light from the subject 10 using the rotating diffraction grating 110.
  • an optical path for obtaining a measurement signal by providing a reflection member 140 that reflects the light incident from the measurement probe 106 and emits the light to the measurement probe 106;
  • the optical path for obtaining the reference signal can be shared, the required space can be reduced, and the calibration accuracy can be improved.
  • the spectroscopic optical system and the reference signal optical system can be reduced in size without degrading the measurement accuracy.
  • the biological information measuring device 100 having a small device configuration can be realized without reducing the measurement accuracy.
  • the rotating diffraction grating 110 is realized by forming the diffraction grating on the MEMS mirror, the rotating diffraction grating 110 can be reduced in size and compared with a case where the rotating diffraction grating 110 is realized by attaching the diffraction grating to an actuator such as a galvanometer. A low-cost rotating diffraction grating 110 can be realized.
  • the MEMS mirror can be easily created by a so-called wafer process, it can be produced at low cost. Furthermore, since the diffraction grating 111 can be easily formed by directly forming the diffraction grating 111 on the MEMS mirror by a wafer process, an increase in cost can be suppressed. Further, since the diffraction grating is formed directly on the mirror, assembly is not necessary. However, the diffraction grating 111 may be formed by a process different from the manufacturing process of the MEMS mirror and may be attached to the MEMS mirror.
  • the first optical path that guides the light emitted from the light source 101 to the measurement target and the second optical path that guides the reflected light reflected from the measurement target are connected to the optical fibers 105 and 107.
  • the present invention is not limited to this, and may be realized by a spatial optical system without using the optical fibers 105 and 107.
  • the biological information measuring device according to the present invention may be used for measuring biological information other than blood glucose level. It can.
  • the light source 101 generates ultraviolet rays having a wavelength of 300 to 400 [ ⁇ m] and irradiates the subject 10 with the ultraviolet rays, the state of the skin surface of the subject 10 can be measured.
  • the present invention can be applied to a biological information measuring apparatus that non-invasively measures biological information.
  • DESCRIPTION OF SYMBOLS 10 Subject 100 Biological information measuring device 101 Light source 102 Pinhole 103 Condensing lens 104 Light incident body 105 Light emission side optical fiber 106 Probe for measurement 107 Light reception side optical fiber 108 Light emitting body 109 Lens system 110 Rotating diffraction grating 111 Diffraction grating 121 Slit 122 Photodetector (PD) 123 Analog-digital conversion circuit (AD conversion) 124 Case 125 Opening 130 Arithmetic unit 140 Reflective member 141, 143 Main body 142 Metal film 144 Diffuse reflective surface 200 MEMS device 201 Drive unit 202 Fixed frame 203 Movable frame 204, 205 Beam portion 204a, 204b, 205a, 205b Beam

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 測定精度が低下せずに、装置構成が小型化の生体情報測定装置を提供する。回転回折格子110を用いて測定対象10からの反射光を分光したことにより、分光光学系の部品点数及び所要スペースを削減できる。また、測定対象10に代わって、測定用プローブ106から入射された光を反射して測定用プローブ106へと出射する反射部材140を設けたことにより、測定信号を得るための光学経路と、リファレンス信号を得るための光学経路とを共通化でき、所要スペースを削減できると共に、キャリブレーションの精度を向上させることができる。この結果、測定精度を低下させずに、特に、分光光学系及びリファレンス信号用光学系を小型化できる。

Description

生体情報測定装置
 本発明は、光を用いて血糖値などの生体情報を非侵襲的に測定する生体情報測定装置に関する。
 従来、近赤外線を検体(人体)に照射し、検体からの反射光を分析することで、血糖値を非侵襲的に測定する装置がある。この種の装置は、例えば特許文献1~4に開示されている。
 この種の装置は、一般に、光源からの光を測定対象に導く第1の光学系と、測定対象から反射される光を導く第2の光学系と、第2の光学系により導かれた反射光を分光する分光光学系と、分光された光を受光する受光素子と、キャリブレーション用のリファレンス信号を得るためのリファレンス信号用光学系と、を有する。
特開2006-87913号公報 特開2002-65465号公報 特開2007-259967号公報 特開2012-191969号公報
 ところで、上述したような生体情報測定装置を小型化して携帯できるようにすれば、ユーザーはいつでも血糖値を測定できるので、非常に便利であると考えられる。また、小型化すれば、既存の体組成計などの他の健康管理器具にも容易に組み込むことができるようになるといった利点もある。
 しかしながら、上述したような従来の生体情報測定装置においては、主要部品の受光素子がアレイ型センサにより構成されていることもあり、小型化の点で未だ不十分であった。
 本発明は、以上の点を考慮してなされたものであり、測定精度を低下させずに、装置構成を小型化し得る生体情報測定装置を提供する。
 本発明の生体情報測定装置の一つの態様は、
 光源と、
 前記光源から照射される光を測定対象に導く第1の光学経路と、
 前記測定対象から反射される反射光を導く第2の光学経路と、
 前記第2の光学経路より導かれた反射光を分光する回転回折格子と、
 前記回転回折格子からの分光を受光する受光素子と、
 前記測定対象に代わって、前記第1の光学経路から入射された光を反射して前記第2の光学経路へと出射する反射部材と、
 を具備する。
 本発明によれば、測定精度を低下させずに、装置構成を小型化し得る生体情報測定装置を実現できる。
実施の形態に係る生体情報測定装置の全体構成を示す概略図 回転回折格子の回折動作の説明に供する図 回転回折格子が設けられたMEMSデバイスの外観構成を示す平面図 回転回折格子の回転位置が同じで、ミラー面と垂直な方向に回転回折格子の位置を変えた場合の、フォトディテクター(PD)によって測定される信号の大きさの変化を示す図 ロックインアンプ検波の説明に供する図 反射部材の移動の説明に供する図 反射部材の構成例を示す断面図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 図1は、本発明の実施の形態に係る生体情報測定装置の全体構成を示す概略図である。生体情報測定装置100は、測定対象である被検者10の血糖値を生体情報として非侵襲的に測定するために、被検者10に近赤外光を照射し、その反射光を解析するようになっている。
 生体情報測定装置100は、光源101によって近赤外線を発生する。光源101は、LED(Light Emitting Diode)、ハロゲンランプ又はキセノンランプによって構成されている。光源101からの光は、ピンホール102を通過した後に、集光レンズ103によって集光される。集光された光は、光入射体104から発光側光ファイバー105に入射する。発光側光ファイバー105の一端は光入射体104に接続されている一方、発光側光ファイバー105の他端は測定用プローブ106に接続されている。なお、ピンホール102は必須ではなく無くてもよい。
 測定用プローブ106は、被検者10の皮膚の表面に先端が接触できる位置、又は皮膚の極近傍で皮膚に対向できる位置に設けられている。発光側光ファイバー105及び測定用プローブ106を介して被検者10に照射された近赤外光は、被検者10の体内に侵入し反射されて測定用プローブ106に戻る。測定用プローブ106に戻った光は、受光側光ファイバー107を介して光出射体108から出射する。光出射体108から出射した光は、レンズ系109によってコリメート光とされた後に、回転回折格子110に入射される。
 なお、近赤外光を用いた血糖値などの生体情報の測定原理は公知なので、ここでの詳しい説明は省略する。簡単に述べると、体内における近赤外光の吸収強度はグルコースの存在により大きな影響を受けるので、その吸収強度を測定することにより体内のグルコース濃度すなわち血糖値を測定する。
 回転回折格子110は、図中の矢印aで示すように回転する。回転回折格子110の入射面はミラー面とされており、入射した光を反射する。つまり、回転回折格子110は、ミラー面への入射角が変化するように回転する。回転回折格子110により反射された光は、スリット121を通過した後に、フォトディテクター(PD)122に入射する。PD122による光電変換により得られた受光信号は、アナログディジタル変換回路(A/D変換)123を介して演算装置130に出力される。演算装置130は、解析プログラムを有する、パーソナルコンピュータやスマートフォンなどの装置であり、解析プログラムを実行することにより、受光信号から血糖値などの生体情報を求める。
 なお、生体情報測定装置100の光学系は、ケース124内に収容されている。ケース124のうち、測定用プローブ106に対応する位置には、測定用プローブ106と被検者10との間で光を通過させるための開口125が形成されている。なお、開口125は必須では無く無くてもよい。
 図2は、回転回折格子110の回折動作の説明に供する図である。回転回折格子110は、図2Aに示すような回転位置にあるときに、スリット121の方向に入射光のλ1成分を反射することにより、PD122にλ1成分を入射させる。また、回転回折格子110は、図2Bに示すような回転位置にあるときに、スリット121の方向に入射光のλ2成分を反射することにより、PD122にλ2成分を入射させる。さらに、図2Cに示すような回転位置にあるときに、スリット121の方向に入射光のλ3成分を反射することにより、PD122にλ3成分を入射させる。このように、回転回折格子110は、回転角度に応じた波長の光をPD122に入力させることにより、入射光を分光するようになっている。
 本実施の形態では、回転回折格子110を用いて分光を行うようにしたことにより、固定型の回折格子を用いる場合と比較して、フォトディテクター(PD)122として、アレイセンサーではなく、単一の受光面からなる受光素子を用いることができるようになる。この結果、構成の簡単なフォトディテクター122を用いることができるので、その分だけ低コスト化できる。また、固定型の回折格子を用いる場合と比較して、回折格子とフォトディテクター122との間に分光のためのスペースを配する必要がないので、その分だけ装置を小型化できる。
 ここで、本実施の形態の回転回折格子110は、MEMS(Micro Electro Mechanical System)の可動部分がミラー面とされ、このミラー面に回折格子が形成されている。すなわち、回転回折格子110は、MEMSミラーのミラー面にグレーティングが形成されている。
 図3は、回転回折格子110が設けられたMEMSデバイス200の外観構成を示す平面図である。MEMSデバイス200は、駆動回路やアクチュエーターなどから構成される駆動部201と、回転回折格子110と、固定フレーム202、可動フレーム203、梁部204、205と、を有する。駆動部201は、回転回折格子110を駆動する機能に加えて、固定フレーム202を有しており回転回折格子110の基台としての役割をもっている。梁部204は、2つの梁204a、204bから構成されている。この2つの梁204a、204bは、可動フレーム203の対向する2つの縁部と固定フレーム202とを架け渡すように設けられている。これにより、可動フレーム203は、梁204a、204bによって固定フレーム202に懸架された状態となっている。また梁部205は、2つの梁205a、205bから構成されている。この2つの梁205a、205bは、回転回折格子110の対向する2つの縁部と可動フレーム203とを架け渡すように設けられている。これにより、回転回折格子110は、梁205a、205bによって可動フレーム203に懸架された状態となっている。
 回転回折格子110は、駆動部201によって梁204a、204bが駆動されることにより回転する。具体的には、駆動部201によって梁204a、204bの左右が互い違いに紙面表裏方向に変化されることにより、回転回折格子110が所定の角度範囲内で回転駆動される。因みに、回転回折格子110は、1~2[Hz]の回転速度で回転駆動される。ただし、回転速度はこれに限らない。回転速度は、演算装置130の演算速度などに応じて選定すればよい。回転回折格子110を駆動させるための駆動方式としては、圧電方式、静電方式、電磁駆動方式などを用いることができる。
 回転回折格子110の表面は、ミラー面となっており、さらにミラー面には回折格子111が形成されている。回折格子111は、梁204a、204bの回転軸と平行するように形成されている。本実施の形態の場合、回折格子111のピッチは、0.5~3[μm]である。また、回折格子111の深さは、1.5[μm]以上である。これにより、回転回折格子110は、回転により、近赤外線を良好に分光できるようになる。近赤外線以外の光を用いて測定を行う場合には、その光に応じて回折格子111のピッチ及び又は深さを選択すればよい。
 さらに、本実施の形態の場合、図4に示すように、回転回折格子110をミラー面と垂直な方向にも駆動するようになっている。具体的には、駆動部201によって梁205a、205bが同時に同じ紙面表裏方向に撓むことにより、回転回折格子110がミラー面と垂直な方向に駆動される。例えば、ミラー面と垂直な方向に数10[KHz]で高周波単振動させる。図4A及び図4Bは、回転回折格子110の回転位置が同じで、ミラー面と垂直な方向に回転回折格子110の位置を変えた場合の、PD122によって測定される信号の大きさの変化を示す図である。回転位置が同じでも、ミラー面と垂直な方向の位置を変えると、スリット121を通過する光量が変わるので、PD122に入射する光量が図4A、図4Bに示すように変化する。これにより、測定信号にチョッパー信号を重畳させることができ、ロックインアンプ検波を行うことでノイズ成分を除去できるようになる。この結果、S/Nが向上した信号を得ることができ、分析精度が向上する。なお、回転回折格子110は、梁205a、205bが駆動されることにより回転するようにしてもよい。具体的には、梁205a、205bが同じ方向にねじれることにより、回転回折格子110が所定の角度範囲内で回転駆動される。
 図5は、ロックインアンプ検波の説明に供する図である。図5Aはノイズのない理想的な分光スペクトルを示す。現実の測定信号には、図5Bに示すように様々な周波数のノイズが重畳される。図5Cは、回転回折格子110をミラー面と垂直な方向に周波数fで高周波単振動させたときの分光スペクトルを示す。図5Cのように、測定信号には周波数fのチョッパー信号が重畳される。図5Dはロックインアンプ検波後の測定信号を示す。周波数fの信号のみを直流信号として取り出すことができる(図5C中のA、B)。これにより、f以外の周波数の信号はノイズとして除去される。
 このように、本実施の形態では、回転回折格子110を回転させることにより測定光を分光するとともに、回転回折格子110をミラー面と垂直な方向に高周波単振動させることにより測定信号のS/Nを改善する。換言すると、回転回折格子110を、回転方向と、ミラー面に垂直な方向に、2軸駆動する。
 かかる構成に加えて、本実施の形態の生体情報測定装置100は、可動式の反射部材140を有する。反射部材140は、キャリブレーション用のリファレンス信号を得るためのものである。キャリブレーションとは、よく知られているように、演算装置130において、測定信号から予め取得しておいたリファレンス信号を減算することで、測定信号に含まれる光学経路特性に起因するノイズ成分を除去することである。
 反射部材140はリファレンス信号を得る際には、図6Aに示すように、測定用プローブ106の先端に対向する位置に移動され、測定用プローブ106から出射される光を反射して測定用プローブ106に戻す。これに対して、反射部材140は測定信号を得る際には、図6Bに示すように、測定用プローブ106の先端に対向する位置から退避する。なお、図6及び図1では、省略してあるが、反射部材140を移動させるためには、例えばVCMやステッピングモータなどのスライド機構を設ければよい。
 図7は、反射部材140の構成例を示す断面図である。図7Aは、本体141を樹脂などで構成し、反射面にメッキや蒸着により金属膜142を形成した例である。図7Bは、本体143をアルミやステンレスなどで構成し、反射面に梨地などの凹凸を形成することにより拡散反射面144を形成した例である。この拡散反射面144は、皮膚の表面の反射率に近似した粗さとされている。このようにすることで、リファレンス信号に擬似的に皮膚の表面によるノイズも含めることができるようになる。
 本実施の形態のような反射部材140を設けること、次のような効果を得ることができる。
 (i)測定信号を得るための光学経路と、リファレンス信号を得るための光学経路とが共通となるので、リファレンス信号を得るための光学経路を測定信号の光学経路と別個に設ける場合と比較して、装置構成を簡単化及び小型化できる。また、測定信号と共通の光学経路のリファレンス信号を得ることができるので、キャリブレーションの精度を向上させることができる。
 (ii)反射部材140の反射面を皮膚の表面の反射率に近い拡散反射面144(図7B)としたことにより、キャリブレーションにより測定信号からリファレンス信号を減算したときに、光学経路によるノイズに加えて、皮膚の表面によるノイズも除去できるようになるので、キャリブレーションの精度を向上させることができる。
 (iii)測定時以外には、反射部材140を、測定用プローブ106に対応する位置に形成された開口125を塞ぐ位置に移動させることにより、光学系へのダストの進入を防ぐことができる。つまり、反射部材140は、リファレンス信号の取得以外にも、開口125を塞ぐ蓋としても機能する。この結果、専用の蓋を設ける場合と比較して、部品点数を少なくできる。
 以上説明したように、本実施の形態によれば、回転回折格子110を用いて被検者10からの反射光を分光したことにより、分光光学系の部品点数及び所要スペースを削減できる。また、被検者10に代わって、測定用プローブ106から入射された光を反射して測定用プローブ106へと出射する反射部材140を設けたことにより、測定信号を得るための光学経路と、リファレンス信号を得るための光学経路とを共通化でき、所要スペースを削減できると共に、キャリブレーションの精度を向上させることができる。この結果、測定精度が低下せずに、特に、分光光学系及びリファレンス信号用光学系を小型化できる。かくして、測定精度を低下させずに、装置構成が小型の生体情報測定装置100を実現できる。
 また、MEMSミラーに回折格子を形成することで回転回折格子110を実現したことにより、例えばガルバノメーターのようなアクチュエーターに回折格子を取り付けて回転回折格子110を実現する場合と比較して、小型及び低コストの回転回折格子110を実現できる。
 ここで、MEMSミラーは、いわゆるウェハープロセスによって容易に作成できるため、低コストで作成できる。さらに、ウェハープロセスによってMEMSミラー上に回折格子111を直接形成することにより、回折格子111を容易に形成できるので、コストの増加を抑えることができる。また、ミラー上に直接回折格子を形成するので、組み立ても不要である。ただし、MEMSミラーの製造プロセスとは別プロセスで回折格子111を形成し、それをMEMSミラーに貼り付けてもよい。
 なお、上述の実施の形態では、光源101から照射される光を測定対象に導く第1の光学経路と、測定対象から反射される反射光を導く第2の光学経路と、を光ファイバー105、107を用いて構成した場合について述べたが、本発明はこれに限らず、光ファイバー105、107を用いずに空間光学系によって実現してもよい。
 また、上述の実施の形態では、本発明による生体情報測定装置を血糖値の測定に用いた場合について述べたが、本発明による生体情報測定装置は血糖値以外の生体情報の測定に用いることもできる。例えば、光源101にて波長300~400[μm]帯の紫外線を生成し、これを被検者10に照射すれば、被検者10の皮膚表面の状態を測定することができる。
 上述の実施の形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 2013年12月27日出願の特願2013-272964の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明は、生体情報を非侵襲的に測定する生体情報測定装置に適用し得る。
 10 被検者
 100 生体情報測定装置
 101 光源
 102 ピンホール
 103 集光レンズ
 104 光入射体
 105 発光側光ファイバー
 106 測定用プローブ
 107 受光側光ファイバー
 108 光出射体
 109 レンズ系
 110 回転回折格子
 111 回折格子
 121 スリット
 122 フォトディテクター(PD)
 123 アナログディジタル変換回路(AD変換)
 124 ケース
 125 開口
 130 演算装置
 140 反射部材
 141、143 本体
 142 金属膜
 144 拡散反射面
 200 MEMSデバイス
 201 駆動部
 202 固定フレーム
 203 可動フレーム
 204、205 梁部
 204a、204b、205a、205b 梁

Claims (6)

  1.  光源と、
     前記光源から照射される光を測定対象に導く第1の光学経路と、
     前記測定対象から反射される反射光を導く第2の光学経路と、
     前記第2の光学経路より導かれた反射光を分光する回転回折格子と、
     前記回転回折格子からの分光を受光する受光素子と、
     前記測定対象に代わって、前記第1の光学経路から入射された光を反射して前記第2の光学経路へと出射する反射部材と、
     を具備する生体情報測定装置。
  2.  前記回転回折格子は、
     MEMS(Micro Electro Mechanical System)ミラーと、
     前記MEMSミラーのミラー面に形成された回折格子と、
     を有する請求項1に記載の生体情報測定装置。
  3.  前記回転回折格子は、
     前記第2の光学経路より導かれた反射光の前記ミラー面への入射角が変化するように回転すると共に、前記ミラー面に対して垂直方向に振動する、
     請求項2に記載の生体情報測定装置。
  4.  前記反射部材の反射面は、皮膚表面の反射率に近似するよう処理がされている、
     請求項1から請求項3のいずれか一項に記載の生体情報測定装置。
  5.  前記第1の光学経路と、前記第2の光学経路との間には、前記第1の光学経路からの光を前記測定対象の方向に出射すると共に、前記測定対象から反射される反射光を前記第2の光学経路に入射させる測定用プローブが設けられ、
     前記反射部材は、前記測定用プローブから出射される光を反射して前記測定用プローブに入射させる位置に設けられている、
     請求項1から請求項3のいずれか一項に記載の生体情報測定装置。
  6.  前記生体情報測定装置の光学系が収容されるケースには、前記測定対象に前記光学系からの光を照射しかつ前記測定対象からの反射光を前記光学系に戻すための開口部が形成されており、
     前記反射部材は、測定時には前記開口部から退避した位置に移動して前記開口部を開口状態とし、測定時以外は前記開口部を塞ぐ位置に移動する、
     請求項1から請求項3のいずれか一項に記載の生体情報測定装置。
     
PCT/JP2014/006288 2013-12-27 2014-12-17 生体情報測定装置 WO2015098047A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480071250.2A CN105873512A (zh) 2013-12-27 2014-12-17 生物体信息测定装置
KR1020167012924A KR20160102161A (ko) 2013-12-27 2014-12-17 생체정보 측정 장치
US15/107,242 US20170014057A1 (en) 2013-12-27 2014-12-17 Biological-information measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013272964A JP6387610B2 (ja) 2013-12-27 2013-12-27 生体情報測定装置
JP2013-272964 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098047A1 true WO2015098047A1 (ja) 2015-07-02

Family

ID=53477952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006288 WO2015098047A1 (ja) 2013-12-27 2014-12-17 生体情報測定装置

Country Status (6)

Country Link
US (1) US20170014057A1 (ja)
JP (1) JP6387610B2 (ja)
KR (1) KR20160102161A (ja)
CN (1) CN105873512A (ja)
TW (1) TW201524472A (ja)
WO (1) WO2015098047A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006211A1 (ja) * 2014-07-08 2016-01-14 ミツミ電機株式会社 生体成分情報測定装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108424B3 (de) 2014-06-16 2015-06-11 Johann Wolfgang Goethe-Universität Nicht-invasive Stoffanalyse
EP3359948B1 (de) 2015-12-09 2019-02-27 Diamontech GmbH Vorrichtung und verfahren zum analysieren eines stoffs
EP3524962A1 (de) 2015-12-09 2019-08-14 Diamontech GmbH Vorrichtung und verfahren zum analysieren eines stoffs
JP2018054450A (ja) * 2016-09-28 2018-04-05 花王株式会社 反射スペクトルの測定方法
CN109730693A (zh) * 2018-12-13 2019-05-10 北京理工大学 一种新型管状结构三视场光学手持探头
CN110327058A (zh) * 2019-07-31 2019-10-15 清华大学 一种无创血糖仪及血糖检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087913A (ja) * 2004-08-25 2006-04-06 Matsushita Electric Works Ltd 体内成分の定量分析用検量線の作成方法、および同検量線を用いた定量分析装置
JP2006231075A (ja) * 1996-11-26 2006-09-07 Matsushita Electric Works Ltd 血液成分濃度の分析方法及びその装置
JP2010515067A (ja) * 2006-12-29 2010-05-06 アールアイシー・インベストメンツ・エルエルシー マイクロスペクトロメータ気体分析器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050450A (en) * 1976-03-05 1977-09-27 American Optical Corporation Reflection standard for fiber optic probe
US4322164A (en) * 1976-10-18 1982-03-30 Oximetrix, Inc. Sterilizable, disposable optical scattering reference medium and container assembly
US4796633A (en) * 1985-06-25 1989-01-10 American Hospital Supply Corporation Method and apparatus for in vitro calibration of oxygen saturation monitor
JPS626127A (ja) * 1985-07-02 1987-01-13 Shimadzu Corp 分光光度計
US5233405A (en) * 1991-11-06 1993-08-03 Hewlett-Packard Company Optical spectrum analyzer having double-pass monochromator
JP4212007B2 (ja) * 1996-11-26 2009-01-21 パナソニック電工株式会社 血液成分濃度の分析装置
WO2002010717A2 (en) * 2000-07-28 2002-02-07 Otsuka Electronics Co., Ltd. Automatic optical measurement method
JP2002065465A (ja) 2000-08-29 2002-03-05 Tiger Vacuum Bottle Co Ltd 生活モニター用親子電気ポット
US6901088B2 (en) * 2001-07-06 2005-05-31 Intel Corporation External cavity laser apparatus with orthogonal tuning of laser wavelength and cavity optical pathlength
JP3931638B2 (ja) * 2001-11-15 2007-06-20 松下電工株式会社 生体成分の定量装置
JP4211670B2 (ja) * 2004-04-28 2009-01-21 株式会社Ihi ガス分析装置及びガス分析方法
EP1629767B1 (en) * 2004-08-25 2010-07-21 Panasonic Electric Works Co., Ltd. Quantitative analyzer using a calibration curve
CN101184438A (zh) * 2005-06-07 2008-05-21 欧姆龙健康医疗事业株式会社 生物体信息计测传感器
CN101263388A (zh) * 2005-06-14 2008-09-10 道明资产公司 非侵入性检测人类受检体中葡萄糖的方法和设备
JP4697000B2 (ja) 2006-03-27 2011-06-08 パナソニック電工株式会社 体内成分計測装置
CN101930121A (zh) * 2009-06-24 2010-12-29 华为技术有限公司 光滤波器及其分光方法
US9662047B2 (en) * 2010-08-05 2017-05-30 Massachusetts Institute Of Technology Portable raman diagnostic system
JP2012191969A (ja) 2011-03-14 2012-10-11 Shinshu Univ 生体情報測定装置
WO2013033099A1 (en) * 2011-08-29 2013-03-07 Tk Holdings Inc. System for non-invasive measurement of an analyte in a vehicle driver
CN102359949A (zh) * 2011-09-20 2012-02-22 重庆大学 一种基于mems扫描微镜的高分辨率微型红外光谱仪

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231075A (ja) * 1996-11-26 2006-09-07 Matsushita Electric Works Ltd 血液成分濃度の分析方法及びその装置
JP2006087913A (ja) * 2004-08-25 2006-04-06 Matsushita Electric Works Ltd 体内成分の定量分析用検量線の作成方法、および同検量線を用いた定量分析装置
JP2010515067A (ja) * 2006-12-29 2010-05-06 アールアイシー・インベストメンツ・エルエルシー マイクロスペクトロメータ気体分析器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006211A1 (ja) * 2014-07-08 2016-01-14 ミツミ電機株式会社 生体成分情報測定装置

Also Published As

Publication number Publication date
CN105873512A (zh) 2016-08-17
US20170014057A1 (en) 2017-01-19
JP2015126789A (ja) 2015-07-09
JP6387610B2 (ja) 2018-09-12
TW201524472A (zh) 2015-07-01
KR20160102161A (ko) 2016-08-29

Similar Documents

Publication Publication Date Title
JP6387610B2 (ja) 生体情報測定装置
JP6395981B1 (ja) 光源一体型レンズアセンブリ及びこれを含む分光分析装置
JP6113730B2 (ja) 放出及び透過光学分光計
JP5519711B2 (ja) 光信号を生体内測定するための光学プローブ
TWI756306B (zh) 光學特性測定裝置及光學特性測定方法
JP2016070776A (ja) 分光分析装置、及び分光分析装置の校正方法
KR102372083B1 (ko) 생체 센서 및 이를 포함하는 생체 분석 시스템
WO2016171042A1 (ja) 分光測定装置
WO2016006211A1 (ja) 生体成分情報測定装置
JP7252106B2 (ja) 分光センサ、及びそれを採用した分光器
WO2017217261A1 (ja) 分光測定装置
JP6805891B2 (ja) スペクトル測定器、分光装置及び分光システム
JP2006329857A (ja) 光路長制御装置
JP5942482B2 (ja) 波長可変干渉フィルターの駆動方法、光学モジュール、及び電子機器
WO2015050444A1 (en) Probe, system, and method for non-invasive measurement of blood analytes
JP4470939B2 (ja) 生体スペクトル測定装置
JP2020513572A (ja) 液体中のndirグルコース検出
JP2016138828A (ja) 生体成分情報測定装置
JP2009047429A (ja) 光測定装置
JP6588055B2 (ja) 細菌検出装置
JP2016017829A (ja) 生体成分情報測定装置
JP6660634B2 (ja) 分光測定装置および分光測定方法
WO2009081358A1 (en) Fibre-optic probe
KR102256790B1 (ko) 라만-원자간력 현미경의 광축 얼라이너
US20220095937A1 (en) Broadband multispectral diagnostic systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167012924

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107242

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874647

Country of ref document: EP

Kind code of ref document: A1