WO2016006211A1 - 生体成分情報測定装置 - Google Patents

生体成分情報測定装置 Download PDF

Info

Publication number
WO2016006211A1
WO2016006211A1 PCT/JP2015/003327 JP2015003327W WO2016006211A1 WO 2016006211 A1 WO2016006211 A1 WO 2016006211A1 JP 2015003327 W JP2015003327 W JP 2015003327W WO 2016006211 A1 WO2016006211 A1 WO 2016006211A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction grating
light
component information
biological component
information measuring
Prior art date
Application number
PCT/JP2015/003327
Other languages
English (en)
French (fr)
Inventor
勝裕 佐藤
範芳 村山
政大 齊藤
裕史 松田
望 成澤
Original Assignee
ミツミ電機株式会社
勝裕 佐藤
範芳 村山
政大 齊藤
裕史 松田
望 成澤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014140395A external-priority patent/JP2016017829A/ja
Priority claimed from JP2015014302A external-priority patent/JP2016138828A/ja
Application filed by ミツミ電機株式会社, 勝裕 佐藤, 範芳 村山, 政大 齊藤, 裕史 松田, 望 成澤 filed Critical ミツミ電機株式会社
Priority to CN201580036621.8A priority Critical patent/CN106471354A/zh
Priority to US15/319,838 priority patent/US20170138842A1/en
Priority to EP15818474.7A priority patent/EP3168600A1/en
Publication of WO2016006211A1 publication Critical patent/WO2016006211A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0213Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using attenuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light

Definitions

  • the present invention relates to a biological component information measuring apparatus for measuring biological component information such as blood components and urine components using light.
  • This type of apparatus generally includes a first optical system that guides light from a light source to a measurement target, a second optical system that guides light reflected from the measurement target, and a reflection guided by the second optical system.
  • a spectroscopic optical system that splits the light; a light receiving element that receives the split light; and a reference signal optical system for obtaining a reference signal for calibration.
  • a technique for analyzing a biological component by putting a sample in an analysis cell and analyzing the sample is widely used.
  • Typical examples include the ultraviolet-visible light near-infrared spectrophotometer series of Shimadzu Corporation and the spectrophotometer series of Hitachi High-Technologies Corporation.
  • Patent Document 5 a method for measuring components in urine using light is disclosed in Patent Document 5, for example.
  • the method described in Patent Document 5 irradiates each urine component by irradiating a urine sample with visible light or near-infrared light, and measuring the absorbance at a wavelength corresponding to each urine component to be measured. It is determined at the same time.
  • this method of measuring components in urine using light eliminates the need for consumable reagents and test paper. There is an advantage that a complicated procedure is unnecessary.
  • JP 2006-87913 A JP 2002-65465 A JP 2007-259967 A JP 2012-191969 A Japanese Patent Laid-Open No. 7-294519
  • the light receiving element as the main component may be constituted by an array type sensor, which is reduced in size and cost. It was still insufficient.
  • the present invention has been made in consideration of the above points, and provides a biological component information measuring apparatus capable of downsizing the apparatus configuration without degrading measurement accuracy.
  • a light source A measurement object placement unit for placing a measurement object that transmits and emits light from the light source; A light receiving element for receiving transmitted light from the measurement object; An optical path from the light source to the measurement target, or an optical path from the measurement target to the light receiving element, and splits light from the light source to enter the measurement target, or from the measurement target A rotating diffraction grating that splits the transmitted light and makes it incident on the light receiving element; It comprises.
  • the present invention it is possible to realize a biological component information measuring device capable of downsizing the device configuration without reducing the measurement accuracy.
  • FIG. 2A, 2B, and 2C are diagrams for explaining the diffraction operation of the rotating diffraction grating.
  • a plan view showing an external configuration of a MEMS device provided with a rotating diffraction grating 4A and 4B show changes in the magnitude of a signal measured by a photodetector (PD) when the rotational position of the rotational diffraction grating is the same and the position of the rotational diffraction grating is changed in a direction perpendicular to the mirror surface.
  • Figure showing 5A, 5B, 5C, and 5D are diagrams for explaining lock-in amplifier detection. Schematic which shows the whole structure of the biological component information measuring apparatus by other embodiment.
  • the perspective view which shows the structure of the biological component information measuring device embodied more
  • the figure which shows the spectrum of the rotation diffraction grating of embodiment The figure which shows the light source output when the light source is pulse driven Schematic which shows the whole structure of the biological component information measuring apparatus by other embodiment.
  • FIG. 1 is a schematic diagram showing an overall configuration of a biological component information measuring apparatus 100 according to an embodiment of the present invention.
  • the biological component information measuring apparatus 100 causes light from the light source 101 to enter the rotary diffraction grating 110 via the optical system 102.
  • the light source 101 includes an LED (Light-Emitting-Diode), a halogen lamp, or a xenon lamp.
  • the rotating diffraction grating 110 rotates as indicated by an arrow a in the figure.
  • the incident surface of the rotary diffraction grating 110 is a mirror surface, and reflects incident light. That is, the rotating diffraction grating 110 rotates so that the incident angle on the mirror surface changes.
  • the rotating diffraction grating 110 separates incident light by reflecting light having a wavelength according to the rotation angle in the direction of the slit 103.
  • the light dispersed by the rotating diffraction grating 110 enters the sample container 104.
  • the sample container 104 is a transparent container such as quartz or glass, and contains blood, cultured cells, urine or the like, which is the measurement target 105, inside.
  • the light transmitted through the sample container 104 and the measurement target 105 inside thereof enters the PD 107 via the optical system 106.
  • the light reception signal obtained by the photoelectric conversion by the PD 107 is output to the arithmetic unit 120 via the analog / digital conversion circuit (A / D conversion) 108.
  • the computing device 120 is a device such as a personal computer or a smartphone having an analysis program, and obtains biological component information such as blood components and urine components from the received light signal by executing the analysis program. Note that the entire optical system of the biological component information measuring apparatus 100 is housed in the case 109.
  • the arithmetic unit 120 calculates a transmission spectrum and an absorption spectrum from a signal detected for each wavelength, and performs spectrum analysis to thereby obtain glucose, creatinine, bilirubin, urea nitrogen, albumin, Qualitative and quantitative determination of urinary components including ketone bodies, sodium chloride, occult blood, nitrite, urobilinogen, etc.
  • this spectrum analysis method for example, a known method described in Patent Document 5 can be used, and detailed description thereof is omitted here.
  • FIG. 2 is a diagram for explaining the diffraction operation of the rotating diffraction grating 110.
  • the optical system 106 is omitted.
  • the rotating diffraction grating 110 is in the rotational position as shown in FIG. 2A, the ⁇ 1 component is incident on the sample container 104 by reflecting the ⁇ 1 component of the incident light in the direction of the slit 103.
  • the rotating diffraction grating 110 is at the rotational position as shown in FIG. 2B, the ⁇ 2 component is incident on the sample container 104 by reflecting the ⁇ 2 component of the incident light in the direction of the slit 103.
  • the ⁇ 3 component is incident on the sample container 104 by reflecting the ⁇ 3 component of the incident light in the direction of the slit 103.
  • the rotating diffraction grating 110 is configured to split incident light by emitting light having a wavelength corresponding to the rotation angle.
  • the photodetector (PD) 107 is not an array sensor but a single sensor as compared with the case where a fixed diffraction grating is used. It is possible to use a light receiving element having a light receiving surface. As a result, since the photodetector 107 having a simple configuration can be used, the cost can be reduced accordingly. Further, as compared with the case where a fixed diffraction grating is used, it is not necessary to provide a space for spectroscopy between the diffraction grating and the photodetector 107, so that the apparatus can be reduced in size accordingly.
  • a movable part of MEMS is a mirror surface, and a diffraction grating is formed on the mirror surface. That is, the rotating diffraction grating 110 has a grating formed on the mirror surface of the MEMS mirror.
  • FIG. 3 is a plan view showing an external configuration of the MEMS device 200 provided with the rotating diffraction grating 110.
  • the MEMS device 200 includes a drive unit 201 configured by a drive circuit, an actuator, and the like, a rotating diffraction grating 110, a fixed frame 202, a movable frame 203, and beam portions 204 and 205.
  • the drive unit 201 has a fixed frame 202 in addition to the function of driving the rotary diffraction grating 110, and serves as a base for the rotary diffraction grating 110.
  • the beam portion 204 is composed of two beams 204a and 204b.
  • the two beams 204 a and 204 b are provided so as to bridge the two opposing edge portions of the movable frame 203 and the fixed frame 202. Thereby, the movable frame 203 is suspended from the fixed frame 202 by the beams 204a and 204b.
  • the beam portion 205 includes two beams 205a and 205b.
  • the two beams 205 a and 205 b are provided so as to bridge the two opposing edges of the rotating diffraction grating 110 and the movable frame 203. Thereby, the rotary diffraction grating 110 is suspended from the movable frame 203 by the beams 205a and 205b.
  • the rotating diffraction grating 110 rotates when the beams 204 a and 204 b are driven by the driving unit 201. Specifically, the drive unit 201 alternately changes the left and right sides of the beams 204a and 204b in the front and back direction of the paper, so that the rotating diffraction grating 110 is driven to rotate within a predetermined angle range.
  • the rotating diffraction grating 110 is rotationally driven at a rotational speed of 1 to 100 [Hz].
  • the rotation speed is not limited to this.
  • the rotation speed may be selected according to the calculation speed of the calculation device 120 or the like.
  • a driving method for driving the rotary diffraction grating 110 a piezoelectric method, an electrostatic method, an electromagnetic driving method, or the like can be used.
  • the surface of the rotating diffraction grating 110 is a mirror surface, and a diffraction grating 111 is formed on the mirror surface.
  • the diffraction grating 111 is formed so as to be parallel to the rotation axes of the beams 204a and 204b.
  • the pitch of the diffraction grating 111 is 0.1 to 4 [ ⁇ m].
  • the depth of the diffraction grating 111 is 0.01 to 4 [ ⁇ m]. Accordingly, the rotating diffraction grating 110 can favorably disperse near-infrared rays by rotation.
  • the pitch and / or depth of the diffraction grating 111 may be selected according to the light.
  • the rotating diffraction grating 110 is also driven in a direction perpendicular to the mirror surface.
  • the sample container 104 and the optical system 106 are omitted.
  • the beams 205a and 205b are simultaneously bent in the same front and back direction by the driving unit 201, so that the rotating diffraction grating 110 is driven in a direction perpendicular to the mirror surface.
  • high-frequency simple vibration is performed at several tens [KHz] in a direction perpendicular to the mirror surface.
  • FIGS. 4A and 4B show changes in the magnitude of a signal measured by the PD 107 when the rotational position of the rotary diffraction grating 110 is the same and the position of the rotary diffraction grating 110 is changed in a direction perpendicular to the mirror surface.
  • FIG. 4A and 4B show changes in the magnitude of a signal measured by the PD 107 when the rotational position of the rotary diffraction grating 110 is the same and the position of the rotary diffraction grating 110 is changed in a direction perpendicular to the mirror surface.
  • FIG. 4A and 4B show changes in the magnitude of a signal measured by the PD 107 when the rotational position of the rotary diffraction grating 110 is the same and the position of the rotary diffraction grating 110 is changed in a direction perpendicular to the mirror surface.
  • the rotating diffraction grating 110 may be rotated by driving the beams 205a and 205b. Specifically, when the beams 205a and 205b are twisted in the same direction, the rotary diffraction grating 110 is rotationally driven within a predetermined angular range.
  • FIG. 5 is a diagram for explaining lock-in amplifier detection.
  • FIG. 5A shows an ideal spectral spectrum without noise.
  • FIG. 5B noises of various frequencies are superimposed on the actual measurement signal.
  • FIG. 5C shows a spectrum when the rotating diffraction grating 110 is subjected to a single high frequency vibration at a frequency f 0 in a direction perpendicular to the mirror surface.
  • the chopper signal having the frequency f 0 is superimposed on the measured signal.
  • FIG. 5D shows the measurement signal after lock-in amplifier detection. Can be taken out only a signal of frequency f 0 as a DC signal (A in FIG. 5C, B). Thus, the frequency of the signals other than f 0 is removed as noise.
  • the measurement light is dispersed by rotating the rotary diffraction grating 110, and the S / N of the measurement signal is obtained by causing the rotary diffraction grating 110 to vibrate at a high frequency in a direction perpendicular to the mirror surface.
  • the rotary diffraction grating 110 is driven biaxially in the rotation direction and in the direction perpendicular to the mirror surface.
  • the ⁇ 1 component light, the ⁇ 2 component light, and the ⁇ 3 component light, which are split according to the rotation of the rotary diffraction grating 110, are sequentially incident on the sample container 104.
  • the sequentially incident ⁇ 1 component light, ⁇ 2 component light, and ⁇ 3 component light are modulated by the measurement target 105 in the sample container 104 and then emitted from the sample container 104.
  • the light of the ⁇ 1 component, the light of the ⁇ 2 component, and the light of the ⁇ 3 component are subjected to different modulation for each component by passing through the measurement target 105. Therefore, the biological component of the measurement target 105 can be analyzed by analyzing how the wavelength components are modulated by the arithmetic unit 120.
  • the spectroscopic optical system can be miniaturized by performing the spectroscopy using the rotating diffraction grating 110, and as a result, the living body having a miniaturized apparatus configuration without reducing measurement accuracy.
  • the component information measuring apparatus 100 can be realized.
  • the urinary component can be qualitatively and quantitatively determined without requiring a reagent or a test paper, and the device can be downsized. A simple urine test can be performed without selecting any. As a result, it becomes possible to grasp the daily renal function or liver function, which helps to maintain health.
  • the biological information measuring device of the present invention can be applied to both a portable portable type and a toilet equipped type.
  • a rotating diffraction grating 110 having a MEMS mirror and a diffraction grating 111 formed on the mirror surface of the MEMS mirror is arranged in the optical path from the light source 101 to the measurement target 105.
  • the arrangement of the present invention is not limited to this, and an arrangement such as that shown in FIG.
  • the rotary diffraction grating 110 is provided in the optical path from the measurement target 105 to the light receiving element (PD) 107, and the rotary diffraction grating 110 divides the transmitted light from the measurement target 105. The light is incident on a light receiving element (PD) 107.
  • FIG. 7 shows a configuration further embodying the biological component information measuring apparatus 100 of FIG.
  • FIG. 7 is a perspective view of the biological component information measuring apparatus 100.
  • the biological component information measuring apparatus 100 of FIG. 7 includes an optical system 102, a rotating diffraction grating (rotating diffraction grating unit) 110, a reflecting mirror 132, a sample container 104, an optical system 106, and a PD 107 by a partition plate 131 in a case 109. And are divided.
  • Light emitted from the light source (light source unit) 101 is incident on the rotating diffraction grating 110 via the optical system 102.
  • the optical system 102 for example, a collimating system can be considered.
  • the light separated by the rotating diffraction grating 110 enters the reflection mirror 132 through the opening 133 of the partition plate 131.
  • the light reflected by the reflection mirror 132 passes through the sample container 104 and then enters the PD 107 through the slit 103 and the optical system 106.
  • the slit 103 is arranged on the light emission side from the sample container 104, but the slit 103 is arranged on the light incident side to the sample container 104 as shown in FIG. 1. It may be.
  • Circuits such as the AD conversion circuit 108 are provided on the circuit board 134. Further, an output cable 135 connected to the arithmetic device 120 (FIG. 1) is connected to the circuit board 134.
  • 7 can be miniaturized to, for example, a longitudinal direction of 10 cm and a width direction of about 5 cm.
  • FIG. 8 shows a result of calculating a spectrum when LED light having a central wavelength of 1.45 ⁇ m is dispersed by the rotating diffraction grating 110 described in the embodiment. From FIG. 8, it was found that a spectrum similar to that obtained when the line sensor was used for spectroscopy was obtained. Incidentally, the calculation conditions are that the angle formed by the light source 101, the rotating diffraction grating 110, and the PD 107 is 50 °, and the grating pitch of the diffraction grating 111 is 2 ⁇ m.
  • the chopper signal is superimposed on the measurement signal by causing the rotary diffraction grating 110 to vibrate at a high frequency in a direction perpendicular to the mirror surface.
  • the chopper signal may be superimposed by driving the light source 101 in pulses.
  • the light emission period of the pulse-driven light source 101 may be set to a frequency used in the lock-in amplifier.
  • the measurement target placement unit is not limited thereto.
  • the measurement target 105 is not limited to a solution such as blood, cultured cells, or urine, but may be anything that transmits light.
  • the measurement object 105 may be a skin piece or the like, and in this case, the measurement object placement unit holds the skin piece. Further, the measurement target placement unit may be a space for simply positioning the measurement target 105.
  • the biological information measuring device of the present invention may be realized by an arrangement as shown in FIG. In FIG. 10, in which parts corresponding to those in FIGS. 1 and 6 are denoted by the same reference numerals, the biological information measuring apparatus 400 makes light from the light source 101 enter the collimator mirror 402 through the slit 401.
  • the collimator mirror 402 converts the light source light into parallel light and emits it to the rotating diffraction grating 110.
  • the light dispersed by the rotary diffraction grating 110 enters the sample container 104 and passes through the measurement target in the sample container 104 (partly absorbed).
  • the transmitted light is collected by the condenser mirror 403 and then enters the PD 107 through the slit 404.
  • the sample container 104 may be disposed between the collimator mirror 402 and the rotary diffraction grating 110.
  • the PD 107 and each optical component are not limited to one and may be plural.
  • the collimating mirror 402 and the condensing mirror 403 may be a lens system.
  • the rotary diffraction grating 110 may include an electromagnetically driven mirror and a diffraction grating formed on the mirror surface of the electromagnetically driven mirror. If the mirror surface of the electromagnetically driven mirror is rotationally driven in the same manner as in the above-described embodiment, the same effect as in the above-described embodiment can be obtained.
  • the rotary diffraction grating 110 is not limited to a reflection type (mirror type) diffraction grating, and may be a transmission type diffraction grating. In short, any configuration that allows spectroscopic analysis according to rotation by a diffraction grating may be used.
  • FIG. 11 shows a usage example of the biological information measuring apparatus 100 (300, 400).
  • a urine collection unit 502 is provided in the front part of the toilet 501, and the biological information measuring device 100 (300, 400) is provided outside the toilet 501.
  • the position of the urine collection unit 502 in the toilet 501 is not limited to this, and may be anywhere as long as urine collection is possible.
  • the urine collected by the urine collection unit 502 is sent into the sample container 104 of the biological information measuring device 100 (300, 400) and stored or flowed in the urine component by the biological information measuring device 100 (300, 400). Is measured.
  • the urine in the sample container 104 is returned to the toilet 501.
  • the biological information measuring device 100 (300, 400) can be arranged in a space that does not interfere with the user of the toilet 501. .
  • the present invention can be applied to a biological component information measuring apparatus that analyzes biological components with light.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hematology (AREA)
  • Astronomy & Astrophysics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 測定精度が低下せずに、装置構成が小型化の生体成分情報測定装置。生体成分情報測定装置(100)は、試料容器(104)には血液や培養細胞、尿などの測定対象(105)が収容されており、光源(101)の光を回転回折格子(110)を用いて分光して測定対象(105)に入射させる。これにより、分光光学系の部品点数及び所要スペースを削減できる。この結果、測定精度を低下させずに、特に分光光学系を小型化できる。

Description

生体成分情報測定装置
 本発明は、光を用いて血液成分や尿中成分などの生体成分情報を測定する生体成分情報測定装置に関する。
 従来、近赤外線を検体(人体)に照射し、検体からの反射光を分析することで、血液成分を測定する装置がある。この種の装置は、例えば特許文献1~4に開示されている。
 この種の装置は、一般に、光源からの光を測定対象に導く第1の光学系と、測定対象から反射される光を導く第2の光学系と、第2の光学系により導かれた反射光を分光する分光光学系と、分光された光を受光する受光素子と、キャリブレーション用のリファレンス信号を得るためのリファレンス信号用光学系と、を有する。
 また、サンプルを分析用セルに入れ、それを分光することにより生体成分を分析する手法も広く用いられている。代表的な例としては株式会社島津製作所の紫外可視光近赤外分光光度計シリーズ、株式会社日立ハイテクノロジーズの分光光度計シリーズがある。
 また、従来、光を用いて尿中成分を測定する方法が、例えば特許文献5などで開示されている。特許文献5に記載された方法は、尿試料に対して可視光又は近赤外線を照射し、測定しようとする各尿中成分に応じた波長についての吸光度を測定することで、各尿中成分を同時に定量するものである。
 このような光を用いて尿中成分を測定する方法は、試薬法、試験紙法、化学発光法などの他の方法と比較して、消耗品である試薬や試験紙などを用いずに済み、かつ煩雑な手順が不要であるなどの利点がある。
特開2006-87913号公報 特開2002-65465号公報 特開2007-259967号公報 特開2012-191969号公報 特開平7-294519号公報
 しかしながら、特許文献1-4で開示されたような従来の生体成分情報測定装置においては、主要部品の受光素子がアレイ型センサにより構成されていることもあり、小型化や低コスト化の点で未だ不十分であった。
 また、特許文献5に記載された方法においては、複数の光源(特許文献5の図2参照)、又は、分光部(特許文献5の図5参照)を設けることで、尿試料に照射する照射光を得るようになっている。しかしながら、複数の光源を設けるとその分構成が複雑となり、装置の小型化が制限される欠点がある。また、分光部を設ける場合には、分光部の構成要素として複数のフィルタが必要となり、装置の小型化及び低価格化が制限される欠点がある。
 本発明は、以上の点を考慮してなされたものであり、測定精度を低下させずに、装置構成を小型化し得る生体成分情報測定装置を提供する。
 本発明の生体成分情報測定装置の一つの態様は、
 光源と、
 前記光源からの光を透過して出射する測定対象を配置する測定対象配置部と、
 前記測定対象からの透過光を受光する受光素子と、
 前記光源から前記測定対象までの光学経路、或いは、前記測定対象から前記受光素子までの光学経路に設けられ、前記光源からの光を分光して前記測定対象に入射させ、或いは、前記測定対象からの透過光を分光して前記受光素子に入射させる回転回折格子と、
 を具備する。
 本発明によれば、測定精度を低下させずに、装置構成を小型化し得る生体成分情報測定装置を実現できる。
 また、例えば、試薬や試験紙を必要とせずに尿中成分の定性、定量が可能となる上に、装置が小型化できるので、場所を選ばずに簡易的に尿検査を行うことができるようになる。この結果、日々の腎機能又は肝機能を把握できるようになり、健康維持に役立つようになる。
実施の形態に係る生体成分情報測定装置の全体構成を示す概略図 図2A、図2B、図2Cは、回転回折格子の回折動作の説明に供する図 回転回折格子が設けられたMEMSデバイスの外観構成を示す平面図 図4A、図4Bは、回転回折格子の回転位置が同じで、ミラー面と垂直な方向に回転回折格子の位置を変えた場合の、フォトディテクター(PD)によって測定される信号の大きさの変化を示す図 図5A、図5B、図5C、図5Dは、ロックインアンプ検波の説明に供する図 他の実施の形態による生体成分情報測定装置の全体構成を示す概略図 より具現化した生体成分情報測定装置の構成を示す斜視図 実施の形態の回転回折格子のスペクトルを示す図 光源をパルス駆動したときの光源出力を示す図 他の実施の形態による生体成分情報測定装置の全体構成を示す概略図 実施の形態による生体成分情報測定装置の使用例の説明に供する図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 図1は、本発明の実施の形態に係る生体成分情報測定装置100の全体構成を示す概略図である。
 生体成分情報測定装置100は、光源101からの光を光学系102を介して回転回折格子110に入射させる。光源101は、LED(Light Emitting Diode)、ハロゲンランプ又はキセノンランプによって構成されている。回転回折格子110は、図中の矢印aで示すように回転する。回転回折格子110の入射面はミラー面とされており、入射した光を反射する。つまり、回転回折格子110は、ミラー面への入射角が変化するように回転する。回転回折格子110は、回転角度に応じた波長の光をスリット103の方向に反射することにより、入射光を分光する。
 回転回折格子110によって分光された光は、試料容器104に入射する。試料容器104は、石英やガラス等の透明な容器であり、内部に測定対象105である血液や培養細胞、尿などを収容している。試料容器104及びその内部の測定対象105を透過した光は、光学系106を介してPD107に入る。PD107による光電変換により得られた受光信号は、アナログディジタル変換回路(A/D変換)108を介して演算装置120に出力される。演算装置120は、解析プログラムを有する、パーソナルコンピュータやスマートフォンなどの装置であり、解析プログラムを実行することにより、受光信号から血液成分、尿中成分などの生体成分情報を求める。なお、生体成分情報測定装置100の全光学系は、ケース109内に収容されている。
 例えば尿中成分を測定する場合、演算装置120は、波長毎に検出される信号から透過スペクトル及び吸収スペクトルを算出し、そのスペクトル分析を行うことにより、グルコース、クレアチニン、ビリルビン、尿素窒素、アルブミン、ケトン体、塩化ナトリウム、潜血、亜硝酸塩、ウロビリノーゲンなどを含む尿中成分の定性と定量を行う。このスペクトル分析の方法は、例えば特許文献5などにも記載されている既知の方法を用いることができるので、ここでの詳しい説明は省略する。
 図2は、回転回折格子110の回折動作の説明に供する図である。なお図2は、光学系106を省略して示してある。回転回折格子110は、図2Aに示すような回転位置にあるときに、スリット103の方向に入射光のλ1成分を反射することにより、試料容器104にλ1成分を入射させる。また、回転回折格子110は、図2Bに示すような回転位置にあるときに、スリット103の方向に入射光のλ2成分を反射することにより、試料容器104にλ2成分を入射させる。さらに、図2Cに示すような回転位置にあるときに、スリット103の方向に入射光のλ3成分を反射することにより、試料容器104にλ3成分を入射させる。このように、回転回折格子110は、回転角度に応じた波長の光を出射することにより、入射光を分光するようになっている。
 本実施の形態では、回転回折格子110を用いて分光を行うようにしたことにより、固定型の回折格子を用いる場合と比較して、フォトディテクター(PD)107として、アレイセンサーではなく、単一の受光面からなる受光素子を用いることができるようになる。この結果、構成の簡単なフォトディテクター107を用いることができるので、その分だけ低コスト化できる。また、固定型の回折格子を用いる場合と比較して、回折格子とフォトディテクター107との間に分光のためのスペースを配する必要がないので、その分だけ装置を小型化できる。
 ここで、本実施の形態の回転回折格子110は、MEMS(Micro Electro Mechanical Systems)の可動部分がミラー面とされ、このミラー面に回折格子が形成されている。すなわち、回転回折格子110は、MEMSミラーのミラー面にグレーティングが形成されている。
 図3は、回転回折格子110が設けられたMEMSデバイス200の外観構成を示す平面図である。MEMSデバイス200は、駆動回路やアクチュエーターなどから構成される駆動部201と、回転回折格子110と、固定フレーム202、可動フレーム203、梁部204、205と、を有する。駆動部201は、回転回折格子110を駆動する機能に加えて、固定フレーム202を有しており回転回折格子110の基台としての役割をもっている。梁部204は、2つの梁204a、204bから構成されている。この2つの梁204a、204bは、可動フレーム203の対向する2つの縁部と固定フレーム202とを架け渡すように設けられている。これにより、可動フレーム203は、梁204a、204bによって固定フレーム202に懸架された状態となっている。また梁部205は、2つの梁205a、205bから構成されている。この2つの梁205a、205bは、回転回折格子110の対向する2つの縁部と可動フレーム203とを架け渡すように設けられている。これにより、回転回折格子110は、梁205a、205bによって可動フレーム203に懸架された状態となっている。
 回転回折格子110は、駆動部201によって梁204a、204bが駆動されることにより回転する。具体的には、駆動部201によって梁204a、204bの左右が互い違いに紙面表裏方向に変化されることにより、回転回折格子110が所定の角度範囲内で回転駆動される。因みに、回転回折格子110は、1~100[Hz]の回転速度で回転駆動される。ただし、回転速度はこれに限らない。回転速度は、演算装置120の演算速度などに応じて選定すればよい。回転回折格子110を駆動させるための駆動方式としては、圧電方式、静電方式、電磁駆動方式などを用いることができる。
 回転回折格子110の表面は、ミラー面となっており、さらにミラー面には回折格子111が形成されている。回折格子111は、梁204a、204bの回転軸と平行するように形成されている。本実施の形態の場合、回折格子111のピッチは、0.1~4[μm]である。また、回折格子111の深さは、0.01~4[μm]である。これにより、回転回折格子110は、回転により、近赤外線を良好に分光できるようになる。近赤外線以外の光を用いて測定を行う場合には、その光に応じて回折格子111のピッチ及び又は深さを選択すればよい。
 さらに、本実施の形態の場合、図4に示すように、回転回折格子110をミラー面と垂直な方向にも駆動するようになっている。なお図4は、試料容器104及び光学系106を省略して示してある。具体的には、駆動部201によって梁205a、205bが同時に同じ紙面表裏方向に撓むことにより、回転回折格子110がミラー面と垂直な方向に駆動される。例えば、ミラー面と垂直な方向に数10[KHz]で高周波単振動させる。図4A及び図4Bは、回転回折格子110の回転位置が同じで、ミラー面と垂直な方向に回転回折格子110の位置を変えた場合の、PD107によって測定される信号の大きさの変化を示す図である。回転位置が同じでも、ミラー面と垂直な方向の位置を変えると、スリット103を通過する光量が変わるので、PD107に入射する光量が図4A、図4Bに示すように変化する。これにより、測定信号にチョッパー信号を重畳させることができ、ロックインアンプ検波を行うことでノイズ成分を除去できるようになる。この結果、S/Nが向上した信号を得ることができ、分析精度が向上する。なお、回転回折格子110は、梁205a、205bが駆動されることにより回転するようにしてもよい。具体的には、梁205a、205bが同じ方向にねじれることにより、回転回折格子110が所定の角度範囲内で回転駆動される。
 図5は、ロックインアンプ検波の説明に供する図である。図5Aはノイズのない理想的な分光スペクトルを示す。現実の測定信号には、図5Bに示すように様々な周波数のノイズが重畳される。図5Cは、回転回折格子110をミラー面と垂直な方向に周波数fで高周波単振動させたときの分光スペクトルを示す。図5Cのように、測定信号には周波数fのチョッパー信号が重畳される。図5Dはロックインアンプ検波後の測定信号を示す。周波数fの信号のみを直流信号として取り出すことができる(図5C中のA、B)。これにより、f以外の周波数の信号はノイズとして除去される。
 このように、本実施の形態では、回転回折格子110を回転させることにより測定光を分光するとともに、回転回折格子110をミラー面と垂直な方向に高周波単振動させることにより測定信号のS/Nを改善する。換言すると、回転回折格子110を、回転方向と、ミラー面に垂直な方向に、2軸駆動する。
 試料容器104には、回転回折格子110の回転に応じて分光された、λ1成分の光、λ2成分の光、λ3成分の光が順次入射する。順次入射した、λ1成分の光、λ2成分の光、λ3成分の光は、試料容器104内の測定対象105によって変調された後に試料容器104から出射する。因みに、λ1成分の光、λ2成分の光、λ3成分の光は、測定対象105を通過することで、成分毎にそれぞれ異なる変調を受ける。よって、各波長成分の変調の受け方を演算装置120で分析することで、測定対象105の生体成分を分析することができる。
 以上の構成によれば、回転回折格子110を用いて分光を行うようにしたことにより、分光光学系を小型化でき、その結果、測定精度を低下させずに、装置構成が小型化である生体成分情報測定装置100を実現できる。
 また、この生体情報測定装置100を用いて尿中成分を測定すれば、試薬や試験紙を必要とせずに尿中成分の定性、定量が可能となる上に、装置が小型化できるので、場所を選ばずに簡易的に尿検査を行うことができるようになる。この結果、日々の腎機能又は肝機能を把握することができるようになり、健康維持に役立つようになる。因みに、本発明の生体情報測定装置は、持ち運び可能なポータブル型、及び便器備え付け型の双方に応用可能である。
 なお、図1では、MEMSミラーとMEMSミラーのミラー面に形成された回折格子111とを有する回転回折格子110を、光源101から測定対象105までの光学経路に配置して、回転回折格子110が光源101からの光を分光して測定対象105に入射させる場合について述べたが、本発明の配置はこれに限らず、例えば図6のような配置を採用することもできる。図6の生体成分情報測定装置300は、回転回折格子110が測定対象105から受光素子(PD)107までの光学経路に設けられ、回転回折格子110が測定対象105からの透過光を分光して受光素子(PD)107に入射させるようになっている。
 図1及び図6では、本実施の形態による生体成分情報測定装置の概略を示した。図7は、図1の生体成分情報測定装置100をさらに具現化した構成を示す。図7は、生体成分情報測定装置100の斜視図である。
 図7の生体成分情報測定装置100は、ケース109内で、仕切板131によって、光学系102、回転回折格子(回転回折格子ユニット)110と、反射ミラー132、試料容器104、光学系106、PD107とが分けられている。
 これにより、全光学系を2列に配列できるのでバランスの良い配置を実現できる。また、全光学系を2列にしたことにより、小型化を実現しつつ、回転回折格子110から測定対象までの光路長を長くして分光性能を向上させることができるようになる。
 光源(光源ユニット)101から出射された光は、光学系102を介して回転回折格子110に入射する。光学系102としては、例えばコリメート系が考えられる。回転回折格子110によって分光された光は、仕切板131の開口133を介して反射ミラー132に入射する。反射ミラー132によって反射された光は、試料容器104内を通過した後にスリット103及び光学系106を介してPD107に入射する。なお、図7の場合には、スリット103が試料容器104からの光の出射側に配置されているが、スリット103は図1に示したように試料容器104への光の入射側に配置されていてもよい。回路基板134にはAD変換回路108等の回路が設けられている。また回路基板134には演算装置120(図1)へと繋がる出力ケーブル135が接続されている。
 図7の具現化した生体成分情報測定装置100は、例えば長手方向が10cmで幅方向が5cm程度に小型化することができる。
 図8は、実施の形態で説明した回転回折格子110によって中心波長1.45μmのLED光を分光したときのスペクトルを計算した結果を示す。図8から、ラインセンサを使用して分光した場合と同様のスペクトルを得ることができることが分かった。因みに、計算条件は、光源101-回転回折格子110-PD107のなす角度が50°であり、回折格子111のグレーティングピッチが2μmである。
 なお、上述の実施の形態では、回転回折格子110をミラー面と垂直な方向に高周波単振動させることにより、測定信号にチョッパー信号を重畳する場合について述べたが、チョッパー信号の重畳のさせ方はこれに限らない。例えば、図9に示すように、光源101をパルス駆動することにより、チョッパー信号を重畳してもよい。ここで、パルス駆動される光源101の発光周期は、ロックインアンプで用いる周波数に設定すればよい。
 また、上述の実施の形態では、測定対象105を所定位置に配置する測定対象配置部として試料容器104を用いた場合について述べたが、測定対象配置部はこれに限らない。また、測定対象105も血液や培養細胞、尿など溶液に限らず、要は光を透過するものであればよい。例えば測定対象105は皮膚片などであってもよく、この場合、測定対象配置部はその皮膚片を保持するものである。また、測定対象配置部は、単に測定対象105を位置決めする空間であってもよい。
 さらに、本発明の生体情報測定装置は、図10に示すような配置によって実現してもよい。図1及び図6との対応部分に同一符号を付して示す図10において、生体情報測定装置400は、光源101からの光をスリット401を介してコリメートミラー402に入射する。コリメートミラー402は、光源光を平行光にして、回転回折格子110に出射する。上述の実施の形態と同様に回転回折格子110によって分光された光は、試料容器104に入射し、試料容器104内の測定対象を透過する(一部吸収される)。透過光は、集光ミラー403によって集光された後、スリット404を介してPD107に入射される。なお、試料容器104は、コリメートミラー402と回転回折格子110との間に配置してもよい。またPD107や各光学部品は、1個に限らず複数であってもよい。さらに、コリメートミラー402及び集光ミラー403は、レンズ系であってもよい。
 さらに、上述の実施の形態では、回転回折格子110は、MEMSミラーと、MEMSミラーのミラー面に形成された回折格子とを有する、構成とした場合について述べたが、これに限らない。回転回折格子110は、電磁駆動方式のミラーと、電磁駆動方式のミラーのミラー面に形成された回折格子とを有する、構成としてもよい。そして、電磁駆動方式のミラーのミラー面を、上述の実施の形態と同様に回転駆動して分光を行うようにすれば、上述の実施の形態と同様の効果を得ることができる。
 回転回折格子110は、反射型(ミラー型)の回折格子に限らず、透過型の回折格子を用いるようにしてもよい。要は、回折格子により、回転に応じて分光できるような構成であればよい。
 図11は、生体情報測定装置100(300、400)の使用例を示すものである。便器501内の前方部分に採尿部502を設けると共に、便器501外に生体情報測定装置100(300、400)を設ける。なお、便器501内の採尿部502の位置は、これに限らず採尿可能であればどこでもよい。採尿部502で採取された尿は、生体情報測定装置100(300、400)の試料容器104内に送られ、貯めた状態又は流れた状態で生体情報測定装置100(300、400)によって尿成分が測定される。生体情報測定装置100(300、400)によって尿成分が測定されると、試料容器104内の尿は便器501内に戻される。本発明によれば、小型の生体情報測定装置100(300、400)を実現できるので、便器501の利用者に邪魔にならない空間に生体情報測定装置100(300、400)を配置できるようになる。
 上述の実施の形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 2014年7月8日出願の特願2014-140395の日本出願および2015年1月28日出願の特願2015-014302の日本出願にそれぞれ含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明は、光によって生体成分を分析する生体成分情報測定装置に適用し得る。
 100、300、400 生体成分情報測定装置
 101 光源
 102、106 光学系
 103、401、404 スリット
 104 試料容器
 105 測定対象
 107 フォトディテクター(PD)
 108 アナログディジタル変換回路(AD変換)
 109 ケース
 110 回転回折格子
 111 回折格子
 120 演算装置
 131 仕切板
 132 反射ミラー
 133 開口
 134 回路基板
 200 MEMSデバイス
 201 駆動部
 202 固定フレーム
 203 可動フレーム
 204、205 梁部
 204a、204b、205a、205b 梁
 402 コリメートミラー
 403 集光ミラー

Claims (6)

  1.  光源と、
     前記光源からの光を透過して出射する測定対象を配置する測定対象配置部と、
     前記測定対象からの透過光を受光する受光素子と、
     前記光源から前記測定対象までの光学経路、或いは、前記測定対象から前記受光素子までの光学経路に設けられ、前記光源からの光を分光して前記測定対象に入射させ、或いは、前記測定対象からの透過光を分光して前記受光素子に入射させる回転回折格子と、
     を具備する生体成分情報測定装置。
  2.  前記回転回折格子は、
     MEMS(Micro Electro Mechanical Systems)ミラーと、前記MEMSミラーのミラー面に形成された回折格子とを有する、
     請求項1に記載の生体成分情報測定装置。
  3.  前記回転回折格子は、
     前記ミラー面への入射角が変化するように回転すると共に、前記ミラー面に対して垂直方向に振動する、
     請求項2に記載の生体成分情報測定装置。
  4.  前記回転回折格子を、前記ミラー面に対して垂直方向に振動させることにより、前記受光素子により得られる信号にチョッパー信号を重畳する、
     請求項3に記載の生体成分情報測定装置。
  5.  前記回転回折格子は、
     電磁駆動方式のミラーと、前記電磁駆動方式のミラーのミラー面に形成された回折格子とを有する、
     請求項1に記載の生体成分情報測定装置。
  6.  前記測定対象は、尿である、
     請求項1に記載の生体成分情報測定装置。
PCT/JP2015/003327 2014-07-08 2015-07-02 生体成分情報測定装置 WO2016006211A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580036621.8A CN106471354A (zh) 2014-07-08 2015-07-02 生物体成分信息测定装置
US15/319,838 US20170138842A1 (en) 2014-07-08 2015-07-02 Biological component information measurement device
EP15818474.7A EP3168600A1 (en) 2014-07-08 2015-07-02 Biological component information measurement device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014140395A JP2016017829A (ja) 2014-07-08 2014-07-08 生体成分情報測定装置
JP2014-140395 2014-07-08
JP2015-014302 2015-01-28
JP2015014302A JP2016138828A (ja) 2015-01-28 2015-01-28 生体成分情報測定装置

Publications (1)

Publication Number Publication Date
WO2016006211A1 true WO2016006211A1 (ja) 2016-01-14

Family

ID=55063863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003327 WO2016006211A1 (ja) 2014-07-08 2015-07-02 生体成分情報測定装置

Country Status (5)

Country Link
US (1) US20170138842A1 (ja)
EP (1) EP3168600A1 (ja)
CN (1) CN106471354A (ja)
TW (1) TW201602550A (ja)
WO (1) WO2016006211A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595225B (zh) * 2016-05-03 2017-08-11 Infrared reflection light measuring device
CN107084792A (zh) * 2017-05-16 2017-08-22 中国电子科技集团公司第四十研究所 液晶调制光学相控阵列式光谱仪、探测方法
CN109211822A (zh) * 2017-07-03 2019-01-15 联光学工业股份有限公司 红外线反射光测定装置
CN108844916A (zh) * 2018-05-03 2018-11-20 苏州高新区建金建智能科技有限公司 一种近红外线800-1400光谱照射细胞病毒的管道结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113132A (ja) * 1983-11-25 1985-06-19 Agency Of Ind Science & Technol ラマン分光測定装置
JPH0290041A (ja) * 1988-09-28 1990-03-29 Teijin Ltd 分光分析方法及び装置
JP2005315711A (ja) * 2004-04-28 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd ガス分析装置
WO2015098047A1 (ja) * 2013-12-27 2015-07-02 ミツミ電機株式会社 生体情報測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189191B2 (en) * 2005-07-26 2012-05-29 Tufts University Spectroscopic imaging microscopy
US9036147B2 (en) * 2009-05-29 2015-05-19 Toyota Jidosha Kabushiki Kaisha Spectrum measuring apparatus
US9529083B2 (en) * 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
CN103080729B (zh) * 2010-08-19 2016-01-20 西铁城控股株式会社 折射率测定装置以及折射率测定方法
RU2616653C2 (ru) * 2012-06-05 2017-04-18 Хайпермед Имэджинг, Инк. Способы и устройство для соосного формирования изображения с множеством длин волн
DE102013206396A1 (de) * 2013-04-11 2014-10-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (FHG) Mikroaktuatoranordnung zur Ablenkung elektromagnetischer Strahlung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113132A (ja) * 1983-11-25 1985-06-19 Agency Of Ind Science & Technol ラマン分光測定装置
JPH0290041A (ja) * 1988-09-28 1990-03-29 Teijin Ltd 分光分析方法及び装置
JP2005315711A (ja) * 2004-04-28 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd ガス分析装置
WO2015098047A1 (ja) * 2013-12-27 2015-07-02 ミツミ電機株式会社 生体情報測定装置

Also Published As

Publication number Publication date
TW201602550A (zh) 2016-01-16
CN106471354A (zh) 2017-03-01
EP3168600A1 (en) 2017-05-17
US20170138842A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
EP1784625B1 (en) Autonomous calibration for optical analysis system
US7505128B2 (en) Compact, hand-held raman spectrometer microsystem on a chip
US7602488B2 (en) High-speed, rugged, time-resolved, raman spectrometer for sensing multiple components of a sample
CN109642868B (zh) 光学特性测定装置和光学特性测定方法
JP6395981B1 (ja) 光源一体型レンズアセンブリ及びこれを含む分光分析装置
US8561454B2 (en) Photoacoustic sensor
JP6387610B2 (ja) 生体情報測定装置
US20060167347A1 (en) Composite spectral measurement method and its spectral detection instrument
WO2016006211A1 (ja) 生体成分情報測定装置
JP2005300547A5 (ja)
KR20190038177A (ko) 분광기
JP2007519004A5 (ja)
KR20150037977A (ko) 이중 분광계
KR20110127122A (ko) 시료분석장치
JP2004252214A (ja) 任意波長選択フィルタ、マルチチャネルモニタおよび生体検査装置
CN1838911A (zh) 使用波长路由器从电磁波谱中测量分析物
JP7565431B2 (ja) 吸収分光分析器および使用方法
WO2004077030A1 (ja) 免疫クロマト試験片の測定装置及び光源装置
JP2006300674A (ja) 分光光度計
JP2016138828A (ja) 生体成分情報測定装置
JP4470939B2 (ja) 生体スペクトル測定装置
JP2020513572A (ja) 液体中のndirグルコース検出
Wang et al. Compact surface plasmon resonance sensor using the digital versatile disc grating as a coupler and a disperser
JP2016017829A (ja) 生体成分情報測定装置
RU2251668C2 (ru) Спектрометр

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818474

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015818474

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15319838

Country of ref document: US

Ref document number: 2015818474

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE