WO2015096804A1 - 杂化有机硅热塑性弹性体及其制备方法 - Google Patents

杂化有机硅热塑性弹性体及其制备方法 Download PDF

Info

Publication number
WO2015096804A1
WO2015096804A1 PCT/CN2014/095078 CN2014095078W WO2015096804A1 WO 2015096804 A1 WO2015096804 A1 WO 2015096804A1 CN 2014095078 W CN2014095078 W CN 2014095078W WO 2015096804 A1 WO2015096804 A1 WO 2015096804A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
structural formula
thermoplastic elastomer
compound
double
Prior art date
Application number
PCT/CN2014/095078
Other languages
English (en)
French (fr)
Inventor
黄强
王崇浩
李楠
熊婷
李步春
王有治
Original Assignee
成都硅宝科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都硅宝科技股份有限公司 filed Critical 成都硅宝科技股份有限公司
Priority to US15/108,480 priority Critical patent/US9593198B2/en
Publication of WO2015096804A1 publication Critical patent/WO2015096804A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4063Mixtures of compounds of group C08G18/62 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/724Combination of aromatic polyisocyanates with (cyclo)aliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences

Definitions

  • the invention belongs to the field of polymer materials, and in particular relates to a hybrid silicone thermoplastic elastomer and a preparation method thereof.
  • silicone elastomer materials give the material excellent performance for a wide range of applications in the building, automotive, new energy, road and bridge, electronics, aerospace and medical industries.
  • Conventional silicone elastomer materials usually require a mixing process to add reinforcing fillers such as calcium carbonate and silica to the silicone polymer base, as well as additives such as crosslinking agents, coupling agents, and catalysts. Get the corresponding performance.
  • the silicone polymer binder and the crosslinking agent form a stable chemical cross-linking structure at room temperature or high temperature, so that the material has certain mechanical properties.
  • the silicone elastomer material can be used only once, without the thermoplastic processing and the repeated processing of plastics and thermoplastic elastomers.
  • a blend of silicone and other polymer materials can be prepared by polymer blending.
  • the polymer polymer segment can be modified by a polymer synthesis method or a chemical modification method to introduce a new molecular chain link to prepare a hybrid silicone elastomer material.
  • This new structure coexists the silicone segment with other polymer segments at the molecular scale, so that the material not only has the characteristics of the silicone material, but also gives the material more excellent properties, such as improved mechanical properties and corrosion resistance. Improvement, bonding performance increased.
  • a silicone-polystyrene copolymer, a silicone-polyethylene copolymer, a silicone-poly(urea) urethane copolymer, a silicone-polyamide copolymer, and the like can be prepared by a polymer synthesis method.
  • Organic Silicon hybrid material Due to the difficulty of raw materials and processes, the silicone-poly(urea) urethane material prepared by the condensation polymerization method has the most industrialized production prospects.
  • silicone-polyurea copolymers have attracted attention because of their rigid urea bonds, which make silicone-polyurea materials have excellent mechanical properties and thermoplastic processing properties.
  • a synthesis method for synthesizing a linear silicone-polyurea block copolymer using a chain extender is disclosed in the patent EP 0250248.
  • the patent US 20040210024 A1 discloses a double-ended amino silicone oil and a linear silicone-polyurea block copolymer elasticity. The preparation method of the body.
  • the organosilicon-polyurea block group is mainly composed of a linear polymer.
  • the rigid polyurea structure forms a physical crosslinking point by intermolecular hydrogen bonding, because the linear copolymer is highly viscous during processing. Poor fluidity and high softening temperatures are required.
  • the branched macromolecular chain polymer can effectively improve the processing fluidity of the silicone polymer and improve the processing property of the silicone polymer relative to the linear macromolecular chain, and currently has such a well-processed silicone-polyurea miscellaneous Silicone thermoplastic elastomers have not been reported.
  • this patent proposes a hybrid silicone thermoplastic elastomer and a preparation method thereof.
  • the present invention adopts the following technical solutions:
  • n is a positive integer of 4 to 100;
  • n is a positive integer of 4 to 100;
  • h is a positive integer from 1 to 40;
  • k is a positive integer from 0 to 40;
  • l is a positive integer from 0 to 40;
  • R 1 to R 4 are the same or different alkane, olefin, and aromatic hydrocarbon groups having 1 to 10 carbon atoms;
  • R 5 to R 14 are H or a group, and R 5 to R 14 are not all H;
  • R 15 is a linear or branched polymer having 1 to 100 carbon atoms, and at least linear or branched silicone polymer having 2 to 100 silicon atoms One;
  • the group is a linear or branched polymer having 1 to 100 carbon atoms, or a H atom of a linear or branched silicone polymer having 2 to 100 silicon atoms is Replace
  • X is an alkylene group, an arylene group, an alkylene aryl group or an arylenealkyl group having 1 to 10 carbon atoms;
  • Z is an alkylene group, an arylene group, an alkylene aryl group or an arylenealkyl group having 1 to 10 carbon atoms;
  • Y 1 is an alkylene group, an arylene group, an alkylene aryl group or an arylene group having 1 to 20 carbon atoms;
  • Y 2 is an alkylene group, an arylene group, an alkylene aryl group or an arylene group having 1 to 20 carbon atoms;
  • Y 3 is an alkylene group, an arylene group, an alkylene aryl group or an arylenealkyl group having 1 to 20 carbon atoms.
  • the Y 1 is 2,6-methylphenylene, 4,4'- Methylene diphenylene, 3,3'-dimethoxy-4,4'-biphenylene, tetramethyl-m-diphenylene, 4,4'-methylene dicyclo ring Any of hexyl, 3,5,5-trimethyl-3-methylenecyclohexylene, 1,6-hexylene, 1,4-cyclohexylene, 2,2,4-trimethylhexylene Species
  • Y 2 is 2,6-methylphenylene, 4,4'-methylenediphenylene, 3,3'-dimethoxy-4,4'-biphenylene, tetramethyl- M-diphenylene, 4,4'-methylene dicyclohexylene, 3,5,5-trimethyl-3-methylene cyclohexylene, 1,6-hexylene, 1,4- Any of cyclohexylene and 2,2,4-trimethylhexylene, Y 3 is 2,6-methylphenylene, 4,4'-methylenediphenylene, 3,3'-dimethoxy-4,4'-biphenylene, tetramethyl-m-diphenylene, 4,4'-methylenedicyclohexylene, 3,5,5-trimethyl- Any one of 3-methylenecyclohexylene, 1,6-hexylene, 1,4-cyclohexylene, and 2,2,4-trimethylhexylene.
  • a method for preparing a hybrid silicone thermoplastic elastomer which comprises a double-end functionalized organopolysiloxane, a structural formula of OCN-Y-NCO compound, and a structural formula
  • the branching compound and the bulk polymerization system formed by the compound of the formula NH 2 -Z-NH 2 with or without addition are subjected to a condensation reaction;
  • the double-end functionalized organopolysiloxane is a mixture of a double-ended aminopolyorganopolysiloxane or a double-ended aminopolyorganopolysiloxane and a double-ended hydroxypolysiloxane; specifically, the double-end functionalized Preferred amino-polymethylsiloxanes of organopolysiloxanes, terminal amino polymethylvinylsiloxanes, amino-polymethylphenylsiloxanes, amino-polymethylphenylvinylsiloxanes One or more of alkane, hydroxyl terminated polymethylsiloxane, hydroxyl terminated polymethylvinylsiloxane, hydroxyl terminated polymethylphenylsiloxane, hydroxyl terminated polymethylphenylvinylsiloxanekind of mixture.
  • the structural formula is an alkylene group, an arylene group, an alkylene aryl group or an arylene group having 1 to 20 carbon atoms in the OCN-Y-NCO compound;
  • R is at least one of a linear or branched polymer having 1 to 100 carbon atoms and a linear or branched silicone polymer having 2 to 100 silicon atoms;
  • the branch is a linear or branched polymer having 1 to 100 carbon atoms, or a H atom of a linear or branched silicone polymer having 2 to 100 silicon atoms is Replace
  • a further technical solution is: adding an organic solvent to the bulk polymerization system, wherein the organic solvent is such that the organopolysiloxane, the structural formula is OCN-Y-NCO compound, and the structural formula
  • the branched compound and the compound of the formula NH 2 -Z-NH 2 sufficiently dissolve the mixed organic solvent.
  • the solution is at least one of dichloromethane, tetrahydrofuran, toluene, xylene, N,N-dimethylformamide, N,N-dimethylacetamide, isopropanol and the like.
  • the double-end functionalized organopolysiloxane can be completely reacted with the OCN-Y-NCO compound and then added.
  • the branched compound is reacted with the NH 2 -Z-NH 2 compound;
  • the OCN-Y-NCO compound may be first reacted with the NH 2 -Z-NH 2 compound before the addition of the double-ended functionalized organopolysiloxane and Reacting the branched;
  • double-ended may also be functionalized organopolysiloxane, OCN-Y-NCO compound, NH 2 -Z-NH 2 and the compound
  • the branched compound is simultaneously added to the reaction system to react at the same time.
  • the double-end functionalized organopolysiloxane has a degree of polymerization of 4 to 100, preferably a degree of polymerization of 4 to 80.
  • a further technical solution is that the double-end amino-organopolysiloxane or the double-end amino group-containing silicone polymer in the mixture of the double-end amino organopolysiloxane and the double-end hydroxypolysiloxane accounts for double-end functionalization.
  • the organopolysiloxane has a mass ratio of 0.2 to 1, preferably 0.4 to 1.
  • the compound of the formula OCN-Y-NCO is toluene diisocyanate, benzhydryl-4,4'-diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, At least one of benzene dimethylene diisocyanate, 4,4'-cyclohexylmethane diisocyanate, p-phenylene diisocyanate and an isomer thereof, and halogen-substituted diphenylmethyl-4,4'-diisocyanate.
  • the compound of the formula OCN-Y-NCO is toluene diisocyanate, diphenylmethyl-4,4'-diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 4, At least one of 4'-cyclohexylmethane diisocyanate.
  • the mass ratio of the OCN-Y-NCO compound to the double-end functionalized organopolysiloxane is from 0.01 to 0.4, preferably from 0.03 to 0.3.
  • the silicone polymer in the branch is one of polymethylsiloxane, polyphenylsiloxane, polymethylphenylsiloxane, polymethylvinylsiloxane having a silicon atom number of 2 to 80. kind.
  • a further technical solution is that the structural formula is The mass ratio of the branched compound to the double-end functionalized organopolysiloxane is from 0.001 to 0.15, preferably from 0.0015 to 0.1.
  • the branching compound can undergo a ring opening reaction with the hydrogen atoms of the living wave in the polymer to form a new polymer chain.
  • the compound of the formula NH 2 -Z-NH 2 is ethylenediamine, propylenediamine, butanediamine, pentamethylenediamine, hexamethylenediamine, p-phenylenediamine, isophthalic acid. At least one of an amine and o-phenylenediamine; preferably at least one of ethylenediamine, propylenediamine, hexamethylenediamine, p-phenylenediamine, and m-phenylenediamine.
  • a further technical solution is that the mass ratio of the NH 2 -Z-NH 2 compound to the double-end functionalized organopolysiloxane is 0 to 0.15, preferably 0 to 0.12.
  • an appropriate amount of a catalyst such as butyltin silicate in February may be added to the reaction system.
  • the invention has the following beneficial effects:
  • the hybrid silicone thermoplastic elastomer of the present invention is prepared by ring-opening reaction of an epoxy group in a branch containing an epoxy group with an active hydrogen in a silicone-polyurea block copolymer.
  • the branching degree and softening temperature of the silicone-polyurea block copolymer can be adjusted by the chain length of the branch containing the epoxy group and the amount of the branching agent, and the softening temperature can be in the range of 40 ° C to 190 ° C, and Processing fluidity is better.
  • the designed silicone thermoplastic elastomer may further contain a double-vulcanized double bond structure. It can further improve the mechanical properties and application fields of the product.
  • the invention provides a hybrid silicone thermoplastic elastomer prepared by a simple condensation reaction method.
  • the preparation method is simple, does not require strict reaction conditions, is easy to control and amplify, and can be in a temperature range of -20 ° C to 100 ° C. Implement aggregation.
  • the silicone block copolymer prepared by the invention is a novel structure of thermoplastic elastomer with excellent mechanical properties, tensile strength up to 11 MPa, and elongation at break up to 650%.
  • the material can fully exert the performance advantages of the silicone polymer material such as heat resistance, cold resistance, weather resistance, ozone resistance, gas permeability and biological inertness; the material can also be molded by injection, extrusion, molding, etc., and can be repeatedly processed; It is used in construction bonding adhesives, LED fixing materials, solar panel packaging materials, coating adhesives, pressure sensitive adhesives, etc.; preparation methods and processes are efficient, raw materials are available in a wide range, production is easy to enlarge, and considerable commercialization The value of production.
  • the molecular weight of all high molecular polymers is determined by gel permeation chromatography (GPC) at 25 ° C, and the molecular weight of polystyrene is used as a standard;
  • the softening point is determined by Vicat softening point method or dynamic thermomechanical analysis (DMA);
  • the melt index was tested by a melt indexer and the measurement conditions were 190 ° C / 2.16 kg.
  • terminal aminopolymethylsiloxane having a degree of polymerization of 20 and 10 g of terminal hydroxyl polymethylvinylsiloxane having a degree of polymerization of 48 are first dissolved in tetrahydrofuran and N,N. In a mixed solution of dimethylformamide. After heating to 60 ° C, 12 g of toluene solution of diphenylmethyl-4,4'-diisocyanate was added.
  • the temperature was further raised to 90 ° C, and then 0.2 g of ethylenediamine was added to continue the reaction for 2 hours, and 2 g of a toluene solution of an epoxy resin having a molecular weight of 500 was further added.
  • the reaction product was transferred to an ethanol/water solution to precipitate a polymer, and the polymer was washed and dried under vacuum at 60 ° C to a constant weight.
  • the polymer hybrid silicone thermoplastic elastomer product yield was 98%, the weight average molecular weight was 8 ⁇ 10 4 , the softening point was 120 ° C, and the melt index was 1.8 g/10 min.
  • terminal aminopolymethylsiloxane having a degree of polymerization of 20 and 10 g of terminal hydroxyl polymethylvinylsiloxane having a degree of polymerization of 48 are first dissolved in tetrahydrofuran and N,N. In a mixed solution of dimethylformamide. After heating to 60 ° C, 12 g of toluene solution of diphenylmethyl-4,4'-diisocyanate was added. After reacting for 2 hours, the temperature was further increased to 90 ° C, and then 0.2 g of ethylenediamine was added to continue the reaction for 2 hours.
  • the reactant was transferred to an ethanol/water solution to precipitate a polymer, and the polymer was washed and dried under vacuum at 60 ° C until constant. weight.
  • the polymer hybrid silicone thermoplastic elastomer product yield was 96%, the weight average molecular weight was 7.5 ⁇ 10 4 , the softening point was 150 ° C, and the melt index was 1.3 g/10 min.
  • terminal aminopolymethylvinylsiloxane having a degree of polymerization of 38 100 g of terminal aminopolymethylvinylsiloxane having a degree of polymerization of 38, 15 g of terminal aminopolymethylphenylsiloxane having a degree of polymerization of 10, and 15 g of terminal amino group having a degree of polymerization of 75
  • Polymethylsiloxane and 10 g of the terminal hydroxyl polymethylphenylsiloxane having a degree of polymerization of 58 were dissolved in a mixed solution of dichloromethane and N,N-dimethylformamide for use.
  • a certain amount of a mixed solution of dichloromethane and N,N-dimethylformamide was added to the reactor, and the above three solutions were simultaneously added dropwise at 40 ° C. After the completion of the dropwise addition, the reaction was further heated to 80 ° C for 2 hours, and refluxed under reflux. 0.5 g of an epoxy resin having a molecular weight of 200 and 0.7 g of a terminal epoxy polymethylphenylsiloxane toluene having a molecular weight of 800 were added under the conditions. After the reaction was continued for 2 hours, the reactant was transferred to an ethanol/water solution to precipitate a polymer, and the polymer was washed and dried under vacuum at 60 ° C to a constant weight.
  • the polymer hybrid silicone thermoplastic elastomer has a yield of 97%, a weight average molecular weight of 1.1 ⁇ 10 5 , a softening point of 120° C., a tensile strength of 6.4 MPa, and an elongation at break of 300%.
  • terminal amino polymethylphenylsiloxane with a degree of polymerization of 30 100 g of terminal aminopolymethylsiloxane with a degree of polymerization of 30, 15 g of terminal aminopolymethylsiloxane with a degree of polymerization of 78, and 15 g of terminal aminopolymethyl with a degree of polymerization of 10 Vinyl vinyl siloxane, 10 g of hydroxyl terminated polymethylphenylsiloxane having a degree of polymerization of 15 and 50 g of terminal hydroxyl polymethylsiloxane having a degree of polymerization 70 are dissolved in dichloromethane, toluene and N, N Methylformamide mixed solution.
  • the polymer hybrid silicone thermoplastic elastomer has a yield of 99%, a weight average molecular weight of 5 ⁇ 10 4 , a softening point of 80 ° C, a tensile strength of 5.4 MPa, and an elongation at break of 350%.
  • terminal aminopolymethylsiloxane 100 g of terminal aminopolymethylsiloxane with a degree of polymerization of 20, 15 g of terminal amino polymethyl organopolysiloxane having a degree of polymerization of 58 and 5 g of terminal aminopolymethyl having a degree of polymerization of 30 at 25 ° C
  • the vinylvinylsiloxane is decomposed in a mixed solution of tetrahydrofuran and N,N-dimethylformamide.
  • terminal aminopolymethylsiloxane with a degree of polymerization of 20, 15 g of terminal amino polymethyl organopolysiloxane having a degree of polymerization of 58 and 5 g of terminal aminopolymethyl having a degree of polymerization of 30 at 25 ° C
  • the vinylvinylsiloxane is decomposed in a mixed solution of tetrahydrofuran and N,N-dimethylformamide. After heating to 60, a solution of 20 g of 4,4'-cyclohexylmethane diisocyanate in toluene was added. A solution of 1 g of propylenediamine in tetrahydrofuran was placed.
  • the reactant was transferred to an ethanol/water solution to precipitate a polymer, and the polymer was washed and dried under vacuum at 60 ° C to a constant weight.
  • the yield of the polymer product was 99%, the weight average molecular weight was 5 ⁇ 10 4 , and the melting temperature was high, and the melt index could not be tested under the conditions.
  • terminal aminopolymethylsiloxane having a degree of polymerization of 30 100 g of hydroxyl-terminated polymethylvinylsiloxane having a degree of polymerization of 55 and 15 g of a degree of polymerization of 30 were first introduced into the reactor.
  • the terminal hydroxyl polymethylphenylsiloxane is uniformly mixed in toluene or tetrahydrofuran.
  • 20 g of hexamethylene diisocyanate and 10 g of isophorone diisocyanate and 10 g of hexamethylenediamine were slowly added.
  • terminal aminopolymethylsiloxane having a degree of polymerization of 40 100 g of terminal aminopolymethylsiloxane having a degree of polymerization of 40, 80 g of terminal aminopolymethylvinylsiloxane having a degree of polymerization of 78, and 10 g of a degree of polymerization of 30 in a reactor at 50 ° C
  • the amino group polymethylphenylsiloxane is uniformly mixed in a tetrahydrofuran and toluene solution. After heating to 80 ° C, 20 g of a toluene solution of 4,4'-cyclohexylmethane diisocyanate was slowly added.
  • terminal aminopolymethylvinylsiloxane having a degree of polymerization of 40 and 80 g of a terminal hydroxyl polymethylsiloxane isopropanol solution having a degree of polymerization of 78 were first mixed in a reactor at -10 °C. Evenly. 20 g of 4,4'-cyclohexylmethane diisocyanate was slowly added. After continuing the reaction for 1 h, 1.8 g of ⁇ -glycidyl ether propyl trimethoxysilane was added.
  • Example 1 After continuing the reaction for 1 h, the post-treatment was carried out as in Example 1 to prepare a hybrid silicone thermoplastic elastomer having a polymer product yield of 100%, a softening point of 120 ° C, a tensile strength of 11 MPa, and an elongation at break of 650%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明公开了一种杂化有机硅热塑性弹性体及其制备方法,所述的共聚物具有式(I)的结构式。所述的制备方法为通过双端官能化有机聚硅氧烷、结构通式为OCN-Y-NCO化合物、结构通式为(A)的支化物以及添加或者不添加的结构通式为NH2-Z-NH2的化合物在溶液或者本体聚合体系中制备。本发明的共聚物的软化温度可在40℃~190℃范围内,且加工流动性更好。

Description

杂化有机硅热塑性弹性体及其制备方法 技术领域
本发明属于高分子材料领域,具体涉及一种杂化有机硅热塑性弹性体及其制备方法。
背景技术
有机硅弹性体材料独特的化学结构赋予了材料优异的性能,可广泛的用于建筑、汽车、新能源、道路道桥、电子、航天航空和医疗行业。传统的有机硅弹性体材料在使用时通常需要经过混炼工艺在有机硅聚合物基料中加入碳酸钙、二氧化硅等增强填料,以及交联剂、偶联剂、催化剂等助剂才能够得到相应的使用性能。有机硅聚合物基料与交联剂在室温或者高温条件下形成稳定化学交联结构,使得材料具有一定的力学性能。但是由于稳定的化学键一般形成就很难被破坏,因而有机硅弹性体材料仅能一次加工使用,不具备塑料和热塑性弹性体一样的加热塑性加工和多次重复加工的性能。
通过高分子共混的方法能够制备得到有机硅与其他高分子材料的共混物,但是由于有机硅材料的表面能低,与其他高分子材料共混后会存在着明显的相分离现象,使得最终的产物失去使用价值。采用高分子合成的方法或者化学改性的方法可以对有机硅聚合物链段进行改性,引入新的分子链节,制备得到杂化的有机硅弹性体材料。这种新型的结构是将有机硅链段与其他高分子链段在分子尺度共存,使得材料既具有有机硅材料的特性,还赋予材料更为优异的性能,比如力学性能的提高、耐腐蚀能力改善、粘接性能增加。
目前,可通过高分子合成的方法制备得到有机硅-聚苯乙烯共聚物、有机硅-聚乙烯共聚物、有机硅-聚(脲)氨酯共聚物、有机硅-聚酰胺共聚物等多种有机 硅杂化材料。由于原材料和工艺难度,采用缩合聚合方法制备得到的有机硅-聚(脲)氨酯材料最具有工业化生产的前景。特别是有机硅-聚脲共聚物因为具有刚性的脲键,使得有机硅-聚脲材料有优异的力学性能和热塑性的加工性能而备受关注。专利EP 0250248中公开了一种使用扩链剂合成线性有机硅-聚脲嵌段共聚物的合成方法,专利US 20040210024A1公开了一种双端氨基硅油及线性有机硅-聚脲嵌段共聚物弹性体的制备方法。
目前有机硅-聚脲嵌段组以线性聚合物为主,作为热塑弹性体材料使用时,刚性聚脲结构以分子间氢键作用形成物理交联点,由于线性共聚物在加工时粘度大流动性差,且需要很高软化温度。支化大分子链聚合物相对于线性大分子链可以有效的提高有机硅聚合物的加工流动性,改善有机硅聚合物加工性能,目前具有这种加工流动性好的有机硅-聚脲类杂化有机硅热塑性弹性体还未见报道。
发明内容
为了解决现有技术中有机硅热塑性弹性体的加工难题和开发新型结构的有机硅热塑性弹性体材料,本专利提出了一种杂化有机硅热塑性弹性体及其制备方法。
为了解决上述的技术问题,本发明采取以下的技术方案:
一种杂化有机硅热塑性弹性体,具有式I的结构式:
Figure PCTCN2014095078-appb-000001
其中:
m为4~100的正整数;
n为4~100的正整数;
h为1~40的正整数;
k为0~40的正整数;
l为0~40的正整数;
R1~R4为相同或者不同的含有1~10个碳原子的烷烃、烯烃、芳烃基团;
R5~R14为H或
Figure PCTCN2014095078-appb-000002
基团,且R5~R14不全为H;R15为含有1~100个碳原子线性或支化的聚合物、含有2~100个硅原子的线性或者支化的有机硅聚合物中至少一种;即
Figure PCTCN2014095078-appb-000003
基团为含有1~100个碳原子线性或支化的聚合物,或含有2~100个硅原子的线性或者支化的有机硅聚合物中的一个H原子被
Figure PCTCN2014095078-appb-000004
取代;
X为1~10个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基;
Z为1~10个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基;
Y1为1~20个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基;
Y2为1~20个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基;
Y3为1~20个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基。
为了使得制备得到的杂化有机硅热塑性弹性体具有更好的性能及广泛的原料来源,在上述的结构式中,所述的Y1为2,6-甲代亚苯基、4,4’-亚甲基二亚苯基、3,3’-二甲氧基-4,4’-亚联苯基、四甲基-间-亚二苯基、4,4’-亚甲基二亚环己基、3,5,5-三甲基-3-亚甲基亚环己基、1,6-亚己基、1,4-亚环己基、2,2,4-三甲基亚己基中任一种;
Y2为2,6-甲代亚苯基、4,4’-亚甲基二亚苯基、3,3’-二甲氧基-4,4’-亚联苯基、四甲基-间-亚二苯基、4,4’-亚甲基二亚环己基、3,5,5-三甲基-3-亚甲基亚环己基、1,6-亚己基、1,4-亚环己基、2,2,4-三甲基亚己基中任一种,Y3为2,6-甲代亚苯基、4,4’-亚甲基二亚苯基、3,3’-二甲氧基-4,4’-亚联苯基、四甲基-间- 亚二苯基、4,4’-亚甲基二亚环己基、3,5,5-三甲基-3-亚甲基亚环己基、1,6-亚己基、1,4-亚环己基、2,2,4-三甲基亚己基中任一种。
一种杂化有机硅热塑性弹性体的制备方法,通过双端官能化有机聚硅氧烷、结构通式为OCN-Y-NCO化合物、结构通式为
Figure PCTCN2014095078-appb-000005
的支化物以及添加或者不添加的结构通式为NH2-Z-NH2的化合物形成的本体聚合体系进行缩合反应;
其中:双端官能化有机聚硅氧烷为双端氨基有机聚硅氧烷或双端氨基有机聚硅氧烷与双端羟基聚硅氧烷的混合物;具体的为,所述双端官能化有机聚硅氧烷的优选至端氨基聚甲基硅氧烷,端氨基聚甲基乙烯基硅氧烷,端氨基聚甲基苯基硅氧烷,端氨基聚甲基苯基乙烯基硅氧烷、端羟基聚甲基硅氧烷,端羟基聚甲基乙烯基硅氧烷,端羟基聚甲基苯基硅氧烷,端羟基聚甲基苯基乙烯基硅氧烷中一种或几种的混合物。
结构通式为OCN-Y-NCO化合物中,Y为1~20个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基;
结构通式为
Figure PCTCN2014095078-appb-000006
的支化物中,R为含有1~100个碳原子线性或支化的聚合物、含有2~100个硅原子的线性或者支化的有机硅聚合物中至少一种;结构通式为
Figure PCTCN2014095078-appb-000007
的支化物为含有1~100个碳原子线性或支化的聚合物,或含有2~100个硅原子的线性或者支化的有机硅聚合物中的一个H原子被
Figure PCTCN2014095078-appb-000008
取代;
结构通式为NH2-Z-NH2的化合物,Z为1~10个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基。
进一步的技术方案是:所述的本体聚合体系中加入有机溶剂,所述的有机 溶剂为能使得上述有机聚硅氧烷、结构通式为OCN-Y-NCO化合物、结构通式的
Figure PCTCN2014095078-appb-000009
的支化物、结构通式为NH2-Z-NH2的化合物充分溶解混合的有机溶剂。具体的为:所述的溶液为二氯甲烷、四氢呋喃、甲苯、二甲苯、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、异丙醇等中至少一种。
本发明的制备方法中可以先将双端官能化有机聚硅氧烷与OCN-Y-NCO化合物反应完全后加入
Figure PCTCN2014095078-appb-000010
支化物和NH2-Z-NH2化合物反应;也可以先将OCN-Y-NCO化合物与NH2-Z-NH2化合物反应后再加入双端官能化的有机聚硅氧烷和
Figure PCTCN2014095078-appb-000011
支化物反应;还可以将双端官能化的有机聚硅氧烷、OCN-Y-NCO化合物、NH2-Z-NH2化合物和
Figure PCTCN2014095078-appb-000012
支化物同时加入到反应体系中同时反应。
为了使得制备得到的杂化有机硅热塑性弹性体更为优异的性能,所述的双端官能化有机聚硅氧烷的聚合度为4~100,优选聚合度为4~80。
进一步的技术方案是:所述双端氨基有机聚硅氧烷或双端氨基有机聚硅氧烷与双端羟基聚硅氧烷的混合物中的双端氨基的有机硅聚合物占双端官能化的有机聚硅氧烷质量比为0.2~1,优选0.4~1。
进一步的技术方案是:所述的通式为OCN-Y-NCO化合物为甲苯二异氰酸酯、二苯甲基-4,4’-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、苯二亚甲基二异氰酸酯、4,4’-环己基甲烷二异氰酸酯、对苯二异氰酸酯及其异构体、卤素取代的二苯甲基-4,4’-二异氰酸酯中至少一种。优选的是:所述的通式为OCN-Y-NCO化合物为甲苯二异氰酸酯、二苯甲基-4,4’-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、4,4’-环己基甲烷二异氰酸酯中至少一种。
进一步的技术方案是:所述的结构通式为OCN-Y-NCO化合物与双端官能化有机聚硅氧烷的质量比为0.01~0.4,优选为0.03~0.3。
进一步的技术方案是:所述的结构通式为
Figure PCTCN2014095078-appb-000013
支化物中有机硅聚合物为硅原子数目为2~80的聚甲基硅氧烷、聚苯基硅氧烷、聚甲基苯基硅氧烷、聚甲基乙烯基硅氧烷中的一种。
进一步的技术方案是:所述的结构通式为
Figure PCTCN2014095078-appb-000014
支化物与双端官能化有机聚硅氧烷的质量比为0.001~0.15,优选0.0015~0.1。
本发明中,加入的
Figure PCTCN2014095078-appb-000015
支化物可以与聚合物中活波的氢原子发生开环反应,形成新的聚合物链。
进一步的技术方案是:所述的结构通式为NH2-Z-NH2化合物为乙二胺、丙二胺、丁二胺、戊二胺、己二胺、对苯二胺、间苯二胺、邻苯二胺中至少一种;优选自乙二胺、丙二胺、己二胺、对苯二胺、间苯二胺中至少一种。
进一步的技术方案是:所述的所述结构通式为NH2-Z-NH2化合物与双端官能化的有机聚硅氧烷的质量比为0~0.15,优选0~0.12。
为了改善缩合聚合反应速率,特别是低温条件下的聚合速率,反应体系中还可以加入适量的催化剂,如二月硅酸丁基锡等。
本发明与现有技术相比,具有以下的有益效果:
本发明的杂化有机硅热塑性弹性体是通过含有环氧基团的支化物中环氧基团与有机硅-聚脲嵌段共聚物中的活泼氢发生开环反应制备得到。可以通过含有环氧基团的支化物的链长度以及支化物用量来调整有机硅-聚脲嵌段共聚物的支化度和软化温度,其软化温度可在40℃~190℃范围内,且加工流动性更好。在本发明中,设计合成的有机硅热塑性弹性体中还可含有二次硫化的双键结构, 可进一步提高产品的力学性能和应用领域。
本发明提供了一种通过简单的缩合反应方法制备得到了杂化有机硅热塑性弹性体,本制备方法简单,无需严格的反应条件,易于控制和放大,在-20℃到100℃温度范围均能够实现聚合。
通过本发明所制备得到的有机硅嵌段共聚物是一种新型结构的热塑性弹性体,力学性能优异,拉伸强度可达11Mpa,断裂伸长率可达650%。该材料可充分发挥有机硅聚合物材料的耐热、耐寒、耐候、耐臭氧、透气、生物惰性等性能优势;该材料还能够进行注射、挤出、模压等成型,可反复加工;可被用作建筑粘接用胶、LED固定材料、太阳能电池板封装用材料、涂覆胶、压敏胶等诸多领域;制备方法和工艺高效、原料可选范围大、生产放大容易,具有可观的商业化生产的价值。
具体实施方式
下面结合本发明的实施例对本发明作进一步的阐述和说明,但本发明的实施方式不限于此。
本发明的实施例的性能测试:
1、所有高分子聚合物的分子量在25℃条件下通过凝胶渗透色谱仪(GPC)测定,以聚苯乙烯分子量为标准;
2、拉伸强度和断裂伸长率参照GB/T 528-2009标准测定;
3、软化点通过维卡软化点方法或者动态热机械分析法(DMA)测定;
4、熔融指数通过熔融指数仪测试,测定条件190℃/2.16kg。
实施例1
在25℃条件下,反应器中,先将100g聚合度为20的端氨基聚甲基硅氧烷和10g聚合度为48的端羟基聚甲基乙烯基硅氧烷溶解于四氢呋喃和N,N二甲 基甲酰胺混合溶液中。在升温至60摄氏度后,加入二苯甲基-4,4’-二异氰酸酯12g的甲苯溶液。反应2h后,继续升温至90℃后加入乙二胺0.2g继续反应2h,再加入2g分子量为500的环氧树脂甲苯溶液。继续反应1h后,将反应物转移至乙醇/水溶液中析出聚合物,将聚合物洗涤干净后,在60℃条件下真空干燥至恒重。聚合物杂化有机硅热塑性弹性体产物收率98%,重均分子量8×104,软化点120℃,熔融指数1.8g/10min。
对比例1
在25℃条件下,反应器中,先将100g聚合度为20的端氨基聚甲基硅氧烷和10g聚合度为48的端羟基聚甲基乙烯基硅氧烷溶解于四氢呋喃和N,N二甲基甲酰胺混合溶液中。在升温至60摄氏度后,加入二苯甲基-4,4’-二异氰酸酯12g的甲苯溶液。反应2h后,继续升温至90℃后加入乙二胺0.2g继续反应2h后,将反应物转移至乙醇/水溶液中析出聚合物,将聚合物洗涤干净后,在60℃条件下真空干燥至恒重。聚合物杂化有机硅热塑性弹性体产物收率96%,重均分子量7.5×104,软化点150℃,熔融指数1.3g/10min。
实施例2
在25℃条件下,先将100g聚合度为38的端氨基聚甲基乙烯基硅氧烷,15g聚合度为10的端氨基聚甲基苯基硅氧烷、15g聚合度为75的端氨基聚甲基硅氧烷和10g聚合度为58的端羟基聚甲基苯基硅氧烷溶解于二氯甲烷和N,N二甲基甲酰胺混合溶液中备用。配置二苯甲基-4,4’-二异氰酸酯6g,甲苯二异氰酸酯0.2g,4,4’-环己基甲烷二异氰酸10g的甲苯溶液备用。配置乙二胺0.2g、丙二胺0.3g、对苯二胺0.1g的二氯甲烷和四氢呋喃的混合溶液备用。
在反应器中加入一定量的二氯甲烷和N,N二甲基甲酰胺混合溶液,在40℃同时滴加上述三种溶液,滴加结束后,继续反应2h升温至80℃,在冷凝回流的 条件下加入0.5g的分子量200的环氧树脂和0.7g分子量为800的末端环氧聚甲基苯基硅氧烷甲苯溶液。继续反应2h后,将反应物转移至乙醇/水溶液中析出聚合物,将聚合物洗涤干净后,在60℃条件下真空干燥至恒重。聚合物杂化有机硅热塑性弹性体产物收率97%,重均分子量1.1×105,软化点120℃,拉伸强度6.4Mpa,断裂伸长率300%。
实施例3
在25℃条件下,先将100g聚合度为30的端氨基聚甲基苯基硅氧烷,15g聚合度为78的端氨基聚甲基硅氧烷、15g聚合度为10的端氨基聚甲基乙烯基硅氧烷、10g聚合度为15的端羟基聚甲基苯基硅氧烷和50g聚合度为70的端羟基聚甲基硅氧烷溶解于二氯甲烷、甲苯和N,N二甲基甲酰胺混合溶液中。
升温至60℃后同时加入异佛尔酮二异氰酸酯2g,甲苯二异氰酸酯0.2g,4,4’-环己基甲烷二异氰酸20g的甲苯溶液和1g丙二胺、0.2g邻苯二胺的四氢呋喃的溶液和1g环氧丙烷和0.7g分子量为700的末端环氧化聚甲基硅氧烷甲苯溶液。继续反应3h后,将反应物转移至乙醇/水溶液中析出聚合物,将聚合物洗涤干净后,在60℃条件下真空干燥至恒重。聚合物杂化有机硅热塑性弹性体产物收率99%,重均分子量5×104,软化点80℃,拉伸强度5.4Mpa,断裂伸长率350%。
实施例4
在25℃条件下,先将100g聚合度为20的端氨基聚甲基硅氧烷,15g聚合度为58的端氨基聚甲基有机聚硅氧烷、5g聚合度为30的端氨基聚甲基乙烯基硅氧烷解于四氢呋喃和N,N二甲基甲酰胺混合溶液中。
升温至60℃后同时加入,4,4’-环己基甲烷二异氰酸20g的甲苯溶液。配置丙二胺1g的四氢呋喃的溶液和0.6g分子量为400的末端环氧聚苯基硅氧烷二氯 甲烷溶液。继续反应3h后,将反应物转移至乙醇/水溶液中析出聚合物,将聚合物洗涤干净后,在60摄氏度条件下真空干燥至恒重。聚合物杂化有机硅热塑性弹性体产物收率99%,重均分子量7×104,软化点100℃。
对比例2
在25℃条件下,先将100g聚合度为20的端氨基聚甲基硅氧烷,15g聚合度为58的端氨基聚甲基有机聚硅氧烷、5g聚合度为30的端氨基聚甲基乙烯基硅氧烷解于四氢呋喃和N,N二甲基甲酰胺混合溶液中。升温至60后同时加入,4,4’-环己基甲烷二异氰酸20g的甲苯溶液。配置丙二胺1g的四氢呋喃的溶液。继续反应3h后,将反应物转移至乙醇/水溶液中析出聚合物,将聚合物洗涤干净后,在60℃条件下真空干燥至恒重。聚合物产物收率99%,重均分子量5×104,熔融温度高,无法在该条件下测试熔融指数。
实施例5
在50℃条件下,在反应器中先将100g聚合度为30的端氨基聚甲基硅氧烷,100g聚合度为58的聚甲基乙烯基硅氧烷、5g聚合度为30的端羟基聚甲基硅氧烷混合均匀。升温至90℃后,缓慢加入4,4’-环己基甲烷二异氰酸20g和异佛尔酮二异氰酸酯1g。继续反应2h后加入1g分子量为700的含有环氧结构官能团的聚甲基硅氧烷。继续反应1h后,制备得到杂化有机硅热塑性弹性体,聚合物产物收率100%,重均分子量9×104,软化点150℃。
实施例6
在50℃条件下,在反应器中先将85g聚合度为30的端氨基聚甲基硅氧烷,100g聚合度为55的端羟基聚甲基乙烯基硅氧烷和15g聚合度为30的端羟基聚甲基苯基硅氧烷在甲苯、四氢呋喃中混合均匀。升温至90℃后,缓慢加入六亚甲基二异氰酸20g和异佛尔酮二异氰酸酯10g和己二胺10g。继续反应2h后 加入8g分子量为700的环氧甲基乙烯基聚硅氧烷。继续反应1h后,制备杂化有机硅热塑性弹性体材料,聚合物产物收率100%,重均分子量1.3×105,软化点50℃。
实施例7
在50℃条件下,在反应器中先将100g聚合度为40的端氨基聚甲基硅氧烷,80g聚合度为78的端氨基聚甲基乙烯基硅氧烷、10g聚合度为30的端氨基聚甲基苯基硅氧烷在四氢呋喃和甲苯溶液中混合均匀。升温至80℃后,缓慢加入4,4’-环己基甲烷二异氰酸20g的甲苯溶液。继续反应2h后加入1.8gγ-缩水甘油醚丙基三甲氧基硅烷和2g的环氧已烷。继续反应1h后,制备得到杂化有机硅热塑性弹性体,聚合物产物收率100%,重均分子量8.7×104,软化点110℃。
实施例8
在-10℃条件下,在反应器中先将100g聚合度为40的端氨基聚甲基乙烯基硅氧烷,80g聚合度为78的端羟基聚甲基硅氧烷异丙醇溶液中混合均匀。缓慢加入4,4’-环己基甲烷二异氰酸20g。继续反应1h后加入1.8gγ-缩水甘油醚丙基三甲氧基硅烷。继续反应1h后,如实施例1进行后处理,制备得到杂化有机硅热塑性弹性体,聚合物产物收率100%,软化点120℃,拉伸强度11Mpa,断裂伸长率650%。
实施例9
在0℃条件下,在反应器中先将100g聚合度为40的端氨基聚甲基乙烯基硅氧烷,10g聚合度为30的端羟基聚甲基硅氧烷、1.0g含有环氧基团分子量300的聚甲基乙烯基硅氧烷在异丙醇溶液中混合均匀。缓慢加入4,4’-环己基甲烷二异氰酸12g和0.1g二月桂酸丁基锡催化剂的甲苯溶液。继续反应2h按实施例1后处理方式制备得到杂化有机硅热塑性弹性体,聚合物产物收率100%,重均分 子量5×104,软化点130℃,拉伸强度8Mpa,断裂伸长率450%。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (10)

  1. 一种杂化有机硅热塑性弹性体,其特征在于具有式I的结构式:
    Figure PCTCN2014095078-appb-100001
    其中:
    m为4~100的正整数;
    n为4~100的正整数;
    h为1~40的正整数;
    k为0~40的正整数;
    l为0~40的正整数;
    R1~R4为相同或者不同的含有1~10个碳原子的烷烃、烯烃、芳烃基团;
    R5~R14为H或
    Figure PCTCN2014095078-appb-100002
    基团,且R5~R14不全为H;
    R15为含有1~100个碳原子线性或支化的聚合物、含有2~100个硅原子的线性
    或者支化的有机硅聚合物中至少一种;
    X为1~10个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基;
    Z为1~10个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基;
    Y1为1~20个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基;
    Y2为1~20个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基;
    Y3为1~20个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基。
  2. 根据权利要求1所述的杂化有机硅热塑性弹性体,其特征在于所述的Y1为2,6-甲代亚苯基、4,4’-亚甲基二亚苯基、3,3’-二甲氧基-4,4’-亚联苯基、四甲基-间-亚二苯基、4,4’-亚甲基二亚环己基、3,5,5-三甲基-3-亚甲基亚环己基、1,6-亚己基、1,4-亚环己基、2,2,4-三甲基亚己基中任一种;Y2为2,6-甲代亚苯基、4,4’-亚甲基二亚苯基、3,3’-二甲氧基-4,4’-亚联苯基、四甲基-间-亚二苯基、 4,4’-亚甲基二亚环己基、3,5,5-三甲基-3-亚甲基亚环己基、1,6-亚己基、1,4-亚环己基、2,2,4-三甲基亚己基中任一种,Y3为2,6-甲代亚苯基、4,4’-亚甲基二亚苯基、3,3’-二甲氧基-4,4’-亚联苯基、四甲基-间-亚二苯基、4,4’-亚甲基二亚环己基、3,5,5-三甲基-3-亚甲基亚环己基、1,6-亚己基、1,4-亚环己基、2,2,4-三甲基亚己基中任一种。
  3. 一种杂化有机硅热塑性弹性体的制备方法,其特征在于:通过双端官能化有机聚硅氧烷、结构通式为OCN-Y-NCO化合物、结构通式为
    Figure PCTCN2014095078-appb-100003
    的支化物以及添加或者不添加的结构通式为NH2-Z-NH2的化合物形成的本体聚合体系进行缩合反应;
    其中:双端官能化有机聚硅氧烷为双端氨基有机聚硅氧烷或双端氨基有机聚硅氧烷与双端羟基聚硅氧烷的混合物;
    结构通式为OCN-Y-NCO化合物中,Y为1~20个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基;
    结构通式为
    Figure PCTCN2014095078-appb-100004
    的支化物中,R选自含有1~100个碳原子线性或支化的聚合物、含有2~100个硅原子的线性或者支化的有机硅聚合物中至少一种;结构通式为NH2-Z-NH2的化合物,Z为1~10个碳原子的亚烷基、亚芳基、亚烷基芳基、亚芳基烷基。
  4. 根据权利要求3所述的杂化有机硅热塑性弹性体的制备方法,其特征在于所述的本体聚合体系中加入有机溶剂,所述的有机溶剂为能使得上述有机聚硅氧烷、结构通式为OCN-Y-NCO化合物、结构通式的
    Figure PCTCN2014095078-appb-100005
    的支化物、结构通式为NH2-Z-NH2的化合物充分溶解混合的有机溶剂。
  5. 根据权利要求3所述的杂化有机硅热塑性弹性体的制备方法,其特征在于所述 的双端官能化有机聚硅氧烷的聚合度为4~100。
  6. 根据权利要求3所述的杂化有机硅热塑性弹性体的制备方法,其特征在于所述的通式为OCN-Y-NCO化合物为甲苯二异氰酸酯、二苯甲基-4,4’-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、苯二亚甲基二异氰酸酯、4,4’-环己基甲烷二异氰酸酯、对苯二异氰酸酯及其异构体、卤素取代的二苯甲基-4,4’-二异氰酸酯中至少一种。
  7. 根据权利要求3所述的杂化有机硅热塑性弹性体的制备方法,其特征在于所述的结构通式为
    Figure PCTCN2014095078-appb-100006
    支化物中有机硅聚合物为硅原子数目为2~80的聚甲基硅氧烷、聚苯基硅氧烷、聚甲基苯基硅氧烷、聚甲基乙烯基硅氧烷中的一种。
  8. 根据权利要求3所述的杂化有机硅热塑性弹性体的制备方法,其特征在于所述的结构通式为OCN-Y-NCO化合物与双端官能化有机聚硅氧烷的质量比为0.01~0.4;所述的结构通式为
    Figure PCTCN2014095078-appb-100007
    支化物与双端官能化有机聚硅氧烷的质量比为0.001~0.15。
  9. 根据权利要求3所述的杂化有机硅热塑性弹性体的制备方法,其特征在于所述的结构通式为NH2-Z-NH2化合物为乙二胺、丙二胺、丁二胺、戊二胺、己二胺、对苯二胺、间苯二胺、邻苯二胺中至少一种。
  10. 根据权利要求3所述的杂化有机硅热塑性弹性体的制备方法,其特征在于所述的所述结构通式为NH2-Z-NH2化合物与双端官能化的有机聚硅氧烷的质量比为0~0.15。
PCT/CN2014/095078 2013-12-27 2014-12-26 杂化有机硅热塑性弹性体及其制备方法 WO2015096804A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/108,480 US9593198B2 (en) 2013-12-27 2014-12-26 Hybrid organosilicon thermoplastic elastomer and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310737491.3 2013-12-27
CN201310737491.3A CN103709412B (zh) 2013-12-27 2013-12-27 杂化有机硅热塑性弹性体及其制备方法

Publications (1)

Publication Number Publication Date
WO2015096804A1 true WO2015096804A1 (zh) 2015-07-02

Family

ID=50402789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095078 WO2015096804A1 (zh) 2013-12-27 2014-12-26 杂化有机硅热塑性弹性体及其制备方法

Country Status (3)

Country Link
US (1) US9593198B2 (zh)
CN (1) CN103709412B (zh)
WO (1) WO2015096804A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709412B (zh) * 2013-12-27 2016-04-20 成都硅宝科技股份有限公司 杂化有机硅热塑性弹性体及其制备方法
CN104387546B (zh) * 2014-12-17 2017-03-29 武汉大学 一种苯基有机硅改性聚氨酯树脂及其制备方法和应用
CN106146788B (zh) * 2015-04-01 2019-03-05 成都硅宝科技股份有限公司 轮胎用改性有机硅材料及其制备方法
CN105949773A (zh) * 2016-05-05 2016-09-21 成都硅宝科技股份有限公司 一种有机硅热塑性薄膜及其制备方法
CN107459646B (zh) * 2017-07-27 2019-06-11 中国科学院化学研究所 杂化氰酸酯树脂的制备方法
CN107903369B (zh) * 2017-11-24 2022-09-16 万华化学集团股份有限公司 一种有机硅-聚氨酯热塑性弹性体的制备方法及其用途
CN108117631B (zh) * 2018-01-31 2022-05-17 青岛沙木新材料有限公司 浇注型阻尼材料
CN109796766A (zh) * 2019-03-12 2019-05-24 李秀英 一种用改性纳米碳酸钙-硅藻土制备汽车密封条用耐紫外老化硅橡胶的方法
CN116041651B (zh) * 2022-12-15 2024-07-19 中国石油大学(北京) 一种用于增稠二氧化碳的有机硅聚合物、其制备方法和应用
CN116217804B (zh) * 2022-12-16 2024-09-06 中化化工科学技术研究总院有限公司 一种有机硅杂化复合材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644654A (en) * 1987-06-26 1989-01-09 Dainippon Printing Co Ltd Hot mold releasing agent
EP1610947A1 (de) * 2003-04-10 2006-01-04 Wacker-Chemie GmbH Laminatglas mit polysiloxan-harnstoff-copolymer
EP2209838A1 (de) * 2007-11-08 2010-07-28 Bayer MaterialScience AG Polysiloxanmodifizierte polyisocyanate
CN101815744A (zh) * 2007-08-14 2010-08-25 迈图高新材料有限责任公司 新型聚脲-和/或聚氨酯-聚有机硅氧烷化合物
CN102300898A (zh) * 2009-01-30 2011-12-28 莱雅公司 包括聚硅氧烷/聚脲水性分散体和硅烷的化妆品组合物、及化妆处理方法
CN102942667A (zh) * 2012-10-22 2013-02-27 青岛海洋新材料科技有限公司 一种聚硅氧烷-聚氨基甲酸酯凝胶体材料及其制备方法
CN103709412A (zh) * 2013-12-27 2014-04-09 成都硅宝科技股份有限公司 杂化有机硅热塑性弹性体及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512650A (en) * 1986-06-20 1996-04-30 Minnesota Mining And Manufacturing Company Block copolymer, method of making the same, diamine precursors of the same, method of making such diamines and end products comprising the block copolymer
DE3752135T2 (de) * 1986-06-20 1998-04-16 Minnesota Mining & Mfg Blockcopolymer, Verfahren zu seiner Herstellung, Diaminvorprodukte für dieses Verfahren bzw. Verfahren zu deren Herstellung sowie das Blockcopolymer enthaltende Endprodukte
JP3917181B2 (ja) * 1995-04-25 2007-05-23 スリーエム カンパニー ポリジオルガノシロキサンポリ尿素セグメントコポリマーおよびその生成方法
US6407195B2 (en) * 1996-04-25 2002-06-18 3M Innovative Properties Company Tackified polydiorganosiloxane oligourea segmented copolymers and a process for making same
EP1258503A1 (de) * 2001-05-15 2002-11-20 Clariant International Ltd. Modifizierte Polyorganosiloxane, wässrige Emulsionen davon, ihre Herstellung und Verwendung
DE10137855A1 (de) * 2001-08-02 2003-02-27 Consortium Elektrochem Ind Organopolysiloxan/Polyharnstoff/ Polyurethan-Blockcopolymere
US20070270240A1 (en) * 2002-09-09 2007-11-22 Reactamine Technology, Llc Pure polyurea and method for making same
US20060189778A1 (en) * 2002-09-09 2006-08-24 Reactamine Technology, Llc Silicone modified polyurea
JP2006505643A (ja) * 2002-11-04 2006-02-16 ジーイー・バイエル・シリコーンズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンジツトゲゼルシヤフト 線状ポリアミノおよび/またはポリアンモニウムポリシロキサン共重合体ii

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644654A (en) * 1987-06-26 1989-01-09 Dainippon Printing Co Ltd Hot mold releasing agent
EP1610947A1 (de) * 2003-04-10 2006-01-04 Wacker-Chemie GmbH Laminatglas mit polysiloxan-harnstoff-copolymer
CN101815744A (zh) * 2007-08-14 2010-08-25 迈图高新材料有限责任公司 新型聚脲-和/或聚氨酯-聚有机硅氧烷化合物
EP2209838A1 (de) * 2007-11-08 2010-07-28 Bayer MaterialScience AG Polysiloxanmodifizierte polyisocyanate
CN102300898A (zh) * 2009-01-30 2011-12-28 莱雅公司 包括聚硅氧烷/聚脲水性分散体和硅烷的化妆品组合物、及化妆处理方法
CN102942667A (zh) * 2012-10-22 2013-02-27 青岛海洋新材料科技有限公司 一种聚硅氧烷-聚氨基甲酸酯凝胶体材料及其制备方法
CN103709412A (zh) * 2013-12-27 2014-04-09 成都硅宝科技股份有限公司 杂化有机硅热塑性弹性体及其制备方法

Also Published As

Publication number Publication date
CN103709412B (zh) 2016-04-20
US9593198B2 (en) 2017-03-14
CN103709412A (zh) 2014-04-09
US20160319065A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
WO2015096804A1 (zh) 杂化有机硅热塑性弹性体及其制备方法
US20090099291A1 (en) Organosilicon-polyurea base polymer, elastomer prepared therefrom, preparation thereof and use of the same
CN107987278B (zh) 一种苯并环丁烯官能化有机硅树脂及其制备方法
CN105399917A (zh) 一种有机硅改性热塑性聚氨酯弹性体及其制备方法
CN1221430A (zh) 多异氰酸酯改性异单烯烃-对烷基苯乙烯弹性体组合物
CN107522864B (zh) 一种硅烷改性聚合物及其制备方法
Zhang et al. A highly stretchable and room temperature autonomous self-healing supramolecular organosilicon elastomer with hyperbranched structure
CN107236199B (zh) 一种改性三元乙丙橡胶及制备方法
CN112689655A (zh) 自修复组合物
Lv et al. Robust, healable and hydrophobically recoverable polydimethylsiloxane based supramolecular material with dual-activate hard segment
CN103965642A (zh) 一种聚苯硫醚/硅橡胶热塑性弹性体、制备方法及其应用
CN107383375A (zh) 一种用于tpu改性的有机硅改性聚酯的制备方法
CN114380980A (zh) 自修复有机硅弹性体材料及其制备方法
CN110724268B (zh) 一种含二甲基硅氧烷悬挂链的双酚a型环氧树脂的制备方法及其应用
JP2024055880A (ja) テレケリックポリウレタン、その調製方法及び使用
CN111286005B (zh) 一种功能性热塑性聚氨酯及其制备方法
CN111303004B (zh) 作为氨基封端的酰亚胺单体、有机杂化膜及其制备方法
CN110437624B (zh) 一种透明双官能环氧树脂-硅橡胶嵌段网络材料
CN112646545A (zh) 可喷涂的自粘型液体硅橡胶制剂及其制备方法
Huang et al. Organic/inorganic hybrid bismaleimide resin with octa (aminophenyl) silsesquioxane
CN112250868A (zh) 一种聚硅氧烷-天冬树脂/聚天冬聚脲及其制备方法
CN103160130B (zh) 一种有机硅热塑性弹性体及其制备方法
Dong et al. Preparation and characterization of silicone rubber through the reaction between γ‐chloropropyl and amino groups with siloxane polyamidoamine dendrimers as cross‐linkers
CN112980302B (zh) 一种增强型聚硅氧烷聚脲防覆冰涂层及其制备方法
CN105153904A (zh) 一种聚脲防护涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15108480

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14874839

Country of ref document: EP

Kind code of ref document: A1